WO2023117637A1 - Procédé et ensemble d'installations pour la production de gaz de synthèse - Google Patents

Procédé et ensemble d'installations pour la production de gaz de synthèse Download PDF

Info

Publication number
WO2023117637A1
WO2023117637A1 PCT/EP2022/085907 EP2022085907W WO2023117637A1 WO 2023117637 A1 WO2023117637 A1 WO 2023117637A1 EP 2022085907 W EP2022085907 W EP 2022085907W WO 2023117637 A1 WO2023117637 A1 WO 2023117637A1
Authority
WO
WIPO (PCT)
Prior art keywords
biogas
fluidized bed
bed reactor
plant
synthesis gas
Prior art date
Application number
PCT/EP2022/085907
Other languages
German (de)
English (en)
Inventor
Rolf Klaus Otto Schmitt
Hubertus Kurt Winkler
Martin Karch
Bernd Max Bodeit
Original Assignee
BHYO GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BHYO GmbH filed Critical BHYO GmbH
Publication of WO2023117637A1 publication Critical patent/WO2023117637A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants
    • C10J3/482Gasifiers with stationary fluidised bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/09Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
    • C10J2300/0983Additives
    • C10J2300/0989Hydrocarbons as additives to gasifying agents to improve caloric properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/12Heating the gasifier
    • C10J2300/1246Heating the gasifier by external or indirect heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/16Integration of gasification processes with another plant or parts within the plant
    • C10J2300/1681Integration of gasification processes with another plant or parts within the plant with biological plants, e.g. involving bacteria, algae, fungi

Definitions

  • the invention relates to a method and a plant network for generating synthesis gas from carbon-containing and hydrogen-containing input materials by gasification in a fluidized bed reactor.
  • Synthesis gas is understood to mean a gas mixture which is essentially made up of carbon monoxide (CO) and hydrogen (H2) and which can be used to synthesize other chemical products.
  • CO carbon monoxide
  • H2 hydrogen
  • methanol can be synthesized from such a synthesis gas.
  • methanol can be used as an energy supplier for various purposes.
  • the production of synthesis gas from waste materials from the metallurgical and petrochemical industries is known in principle.
  • biological input materials biological input materials
  • a suitable method for this is the generation of synthesis gas in a fluidized bed reactor.
  • a gaseous fluid flows through the biological material present as a loose bed of solids, forming a fluidized bed in the form of a fluid-solids suspension.
  • the inflowing fluid is usually steam, air and/or oxygen and the biological material is, for example, organic waste, sewage sludge, manure, animal waste or the like.
  • the fluidized bed reactor is heated in order to cause outgassing of the gaseous compounds contained in the biological material.
  • a gas is initially formed which contains hydrogen (H2), methane (CH4), carbon monoxide (CO) and carbon dioxide (CO2) as the main components.
  • this gas is basically suitable for thermal conversion and thus for generating electricity.
  • the proportion of hydrogen and carbon monoxide can also be increased in order to achieve a larger amount of synthesis gas.
  • the methane reacts with the oxygen or atmospheric oxygen introduced into the fluidized bed reactor, with the oxidation being controlled in such a way that the methane is not completely converted into carbon dioxide and water vapor. Rather, the reaction process is interrupted at an early stage in order to obtain carbon monoxide and hydrogen.
  • Such a method and such a device are known from EP 2 705 121 B1 and DE 10 2004 032 830 A1.
  • Another method and a device for gasifying biomass are known from DE 102 270 74 A1.
  • Further methods and devices in the context of the invention are known from DE 10 2007 006 980 A1, DE 10 2008 032 166 A1, DE 10 2006 022 265 A1, DE 10 2009 039 845 A1, DE 102 58 485 A1, DE 10 2004 045 772 A1, DE 10 2007 012 452 A1, DE 10 2008 036 A1, EP 1 865 046 A1, the technical article "Choren fueIR aus dem Carbo-VR-Vergaser", conference report on biomass gasification - International Amsterdam Conference, October 2003, pages 234 to 238 and the specialist article "The Blue Tower - Hydrogen from Biomass”, conference report on biomass gasification - Leipzig International Conference, October 2003, pages 240 to 249.
  • the method for generating synthesis gas comprises the following steps:
  • the biogas produced in the biogas plant is used to heat the fluidized bed reactor.
  • the invention thus provides that at least some of the biological input materials are not directly in the fluidized bed reactor, but first is introduced into a biogas plant, with such a biogas plant forming a biogas from the input materials through fermentation processes, which consists of a high proportion of methane.
  • the biogas formed in such biogas plants is usually thermally converted directly to generate electricity or fed into the natural gas network. This is possible because the chemical composition of the biogas largely corresponds to that of natural gas.
  • Such biogas plants are usually found in agricultural areas, since a large number of biological input materials can be supplied for further use in this way. From an economic point of view, however, such systems can only be operated on the basis of government subsidies, which, however, will expire soon and thus make further use appear unlikely, at least from an economic point of view.
  • the invention has recognized that such biogas plants can be coupled extremely usefully with a fluidized bed reactor for the production of synthesis gas due to their existing infrastructure.
  • a part of the biological input materials is first converted into biogas in the existing biogas plant, leaving fermentation residues behind.
  • the conversion of the biological input materials does not necessarily take place completely in this embodiment variant, so that a considerable proportion of carbon-containing and hydrogen-containing components also remains in the fermentation residues.
  • These fermentation residues can then in turn be used as input material in the fluidized bed reactor for generating synthesis gas, while the biogas generated in the biogas plant is used for heating the fluidized bed reactor.
  • biogas plants work most effectively if they can process plants containing sugar, starch or oil as biological input materials.
  • Other input materials such as grass, residual wood, landscape maintenance material, etc. essentially consist of biopolymer cellulose, hemicellulose and lignin.
  • the conversion of these substances in biogas plants is difficult, since lignin in particular, which protects the plant structure against microbial degradation, is hardly digestible for the microorganisms. As a result, unused input materials also remain in the fermentation residues and previously had to be disposed of at high cost.
  • lignin has a very high carbon content, which is advantageous for gasification.
  • input materials such as grass, residual wood, landscape maintenance material, but also sewage sludge can be processed directly and introduced directly into the fluidized bed reactor as additional biological input materials for the production of synthesis gas.
  • the biological input materials processed by drying and pressing are preferably packaged in the form of compacted pellets.
  • the pellets can be fed into the fluidized bed reactor using a screw conveyor.
  • the unfermented residual components of the fermentation residues can be used for a further purpose, resulting in both economic and resource-saving advantages.
  • the starting materials in the biogas plant are only converted to a degree of conversion of between 87%, preferably between 20% and 60%.
  • a degree of conversion means that, based on the maximum possible amount of biogas from the input material used, only a certain proportion was actually obtained, in particular based on the maximum possible amount of methane.
  • At least one heating device for heating the fluidized bed reactor, which has a burner for generating heat, which is operated with a fuel gas which at least partially contains the biogas produced in the biogas plant as a component.
  • biogas usually has a high proportion of methane, which corresponds to between 50 and 60% by volume.
  • Other components are water vapour, oxygen, nitrogen, ammonia, hydrogen and hydrogen sulfide. Due to the high methane content, the biogas can thus be used as a fuel gas, although in principle other components can also be added.
  • These further components can be, for example, natural gas or also part of the synthesis gas produced in the fluidized bed reactor.
  • the fuel gas is then burned by oxidation and the heat generated in this way is used to heat up the fluidized bed reactor.
  • the at least one heating device is designed to heat the reactor to a temperature between 600 and 1000.degree.
  • At least two heating devices which then bring about different temperature zones on different housing sections.
  • at least one first gasification zone with a gasification temperature of between 600 and 770° C., preferably between 700 and 770° C. can be produced.
  • a second gasification zone with a second Gasification temperature preferably has a temperature between 770 and 1000 °C, preferably between 770 and 900 °C.
  • a fluidized bed material can be used to support the formation of a fluidized bed.
  • This fluidized bed material can preferably be in the form of sand.
  • the biogas plant and the fluidized bed reactor can also be positioned separately from one another.
  • biogas plants which already exist locally around the fluidized bed reactor, supply biogas and fermentation residues to a central fluidized bed reactor.
  • the biogas produced can also be fed into the existing natural gas network and removed through a connection to the fluidized bed reactor.
  • the fermentation residues can, for example, be transported to the fluidized bed reactor by tanker.
  • the fuel gas contains the biogas produced in the biogas plant in a proportion of between 55% by weight, preferably between 10 and 35% by weight.
  • the other shares can be formed from natural gas or synthesis gas, for example.
  • the at least one heater preferably heats the fluidized bed reactor in an allothermal manner.
  • the heat generated in the burner is supplied to the fluidized bed reactor without the hot exhaust gases of the burner materially entering the fluidized bed reactor reach.
  • guide plates can also be provided, via which the surface acting on the fluidized bed is increased.
  • the fermentation residues are not the only material with which the fluidized bed reactor is operated. Rather, the fermentation residues represent only a portion of the biological input material with which the fluidized bed reactor is operated. Basically, garden waste, green waste, sewage sludge and much more. can also be used in the fluidized bed reactor.
  • the biological input material is preferably dried and/or pressed so that a water content of less than 20% can be achieved.
  • the subject matter of the invention is also a plant network for carrying out the method according to the invention with a biogas plant for the fermentation of input materials into biogas and a fluidized bed reactor for the production of synthesis gas, the biogas plant being connected to the fluidized bed reactor via a first transport device, the first transport device being set up to to introduce the carbon-containing and hydrogen-containing components of the fermentation residues from the biogas plant into the fluidized bed reactor.
  • an advantageous variant of the method also have a second transport device which is adapted to biogas from the Introduce biogas plant in a heater for heating the fluidized bed reactor.
  • the biogas plant and the fluidized bed reactor can thus be arranged spatially close to one another, so that the starting materials produced in the biogas plant can be further processed directly in the fluidized bed reactor.
  • a pipeline system is a pipeline system within the scope of the invention that is not connected to a municipal natural gas pipeline system, so that apart from the fluidized bed reactor no or only a few consumers can be operated with the biogas produced.
  • the other possible consumers are only consumers within the framework of the plant network or also consumers in the vicinity, e.g. B. in the area of an affiliated farm.
  • the biological input material of the fluidized bed reactor is advantageously processed so that a fluidizable solid mass with a water content of less than 20% is achieved.
  • the fermentation residues can be pressed.
  • This can preferably be done with a belt filter press or a frame filter press or a chamber filter press or a screw press.
  • the waste heat from the exhaust gas scrubbing of the fluidized bed reactor is used to dry the biological input materials. This can advantageously be done in a belt dryer.
  • the garden waste, the green waste and the sewage sludge as well as agricultural waste can also be fed to the pressing process and/or the drying process, depending on the water content.
  • the biological input material of the fluidized bed reactor is preferably prepared in such a way that the biological input material can be fluidized.
  • a comminution process can also be used for this purpose, for example.
  • the biological input material is compacted into fluidizable pellets after the comminution process.
  • the system network also includes a reception point and a storage area for biological input materials, such as grass, residual wood and landscape conservation material.
  • the first transport device can be a conveyor unit which connects the two plant components to one another.
  • the conveyor units are preferably adapted depending on the water content of the input materials. This can be the case, for example, when it is very wet Fermentation residues can be an eccentric screw or screw conveyor. In the case of input materials that have already been dried or pressed and processed, conveyor belts are also suitable.
  • the conveyor unit can also be a mobile conveyor unit, e.g. B. a transport vehicle, truck or the like, which removes the fermentation residues from the biogas plant and feeds them to the fluidized bed reactor.
  • a mobile conveyor unit e.g. B. a transport vehicle, truck or the like.
  • Such a configuration is particularly useful when the fluidized bed reactor and the biogas plant are at a certain spatial distance from one another.
  • the first transport device in the form of a mobile conveyor unit, in which case the biogas is then filled into a tank load scale, for example, and transported via this to the fluidized bed reactor.
  • the biogas can also be fed into the existing natural gas network, with the fluidized bed reactor also being connected to the natural gas network and drawing its fuel gas from it. Balanced, this is also a system network.
  • the synthesis gas is processed into pure hydrogen gas.
  • the synthesis gas is preferably freed from soot, any sulfur compounds present are removed, the carbon monoxide is converted to carbon dioxide and hydrogen by means of a water gas conversion reaction, the residual water is removed and the carbon dioxide is removed.
  • the system network also includes a storage capacity for hydrogen, possibly a connection to a hydrogen network and a hydrogen filling station for motor traffic.
  • the subject matter of the invention is also the use of input materials, which are only partially converted into biogas by fermentation in a biogas plant, in a fluidized bed reactor for the production of synthesis gas.
  • the biogas produced is advantageously used to heat up the fluidized bed reactor.
  • the synthesis gas which is generated in a plant network of a biogas plant with a fluidized bed reactor for gasifying biological input materials, is used to obtain pure hydrogen. This makes it possible to advantageously provide clean hydrogen from biological input materials for future mobility.
  • FIG. 2 shows the system network according to FIG. 1 with alternative transport devices.
  • the fluidized bed reactor 1 shows a plant network with a fluidized bed reactor 1 for generating synthesis gas 2 from a biological input material 3.
  • the fluidized bed reactor 1 has a fluidized bed 4, which is formed from the biological input materials 3 and which is additionally filled with a mixture of Water vapor 5 and air or oxygen 6 is operated. So that a synthesis gas 2 can be formed from the biological input materials 3, the input materials 3 must be fluidizable and have a water content of less than 20%. Steam 5 and air or oxygen 6 are introduced into the fluidized bed reactor 1 in such a way that the biological input material 3 forms a dancing fluidized bed 4, with the fluidized bed 4 being heated to a great extent at the same time.
  • a heating device 7 in the form of a burner is provided, which is operated with a fuel gas 8 and an air flow 9 .
  • This heating device 7 then conducts the heat in the form of a heat exchanger arrangement 10 to the fluidized bed 4 without the exhaust gases generated in the burner reaching the fluidized bed reactor 1 .
  • the synthesis gas 2 produced can be cleaned of solids 12 in a first cyclone 11 , with the solids 12 then returning to the fluidized-bed reactor 1 .
  • the synthesis gas 2 is then cooled in a heat exchanger arrangement 13 which is operated with cooling water 14 .
  • a heat exchanger arrangement 13 which is operated with cooling water 14 .
  • another cyclone 15 is provided, which separates the remaining solids 12 and leaves the cleaned synthesis gas 2 behind.
  • the waste heat from the heat exchanger arrangement 13 is preferably used to dry the biological input materials 3 in a dryer (not shown).
  • a biogas plant 16 is coupled to the fluidized bed reactor 1 , the biogas 17 produced in the biogas plant 16 being used as fuel gas 8 in the heating device 7 .
  • the combustible gas 8 can also be made up of other combustible gases 19 , which can be, for example, natural gas or the synthesis gas 2 produced in the fluidized bed reactor 1 .
  • the fermentation residues 20 produced in the biogas plant 16 are used in the fluidized bed 4 further biological input substances 21 can also be provided here.
  • the fermentation residues 20 and the other biological input materials 21 are processed, for example in a chamber filter press, a belt dryer and in a crushing apparatus, which are not shown for the sake of simplicity.
  • the biogas plant 16 is correspondingly designed to produce biogas 17 by fermenting biomass, with the fermentation residues 20 remaining behind. Through targeted control, however, the biomass used is only partially converted into biogas 20, so that the remaining fermentation residues 20 continue to have a high proportion of carbon-containing and hydrogen-containing components.
  • the biogas 17 can, for example, be connected directly via a pipeline to the heating device 7 designed as a burner.
  • FIG. 2 An alternative embodiment is shown in FIG. 2, the process diagram basically corresponding to the process diagram according to FIG. However, in this case the biogas plant 16 is located further away from the fluidized bed reactor 1, so that both the biogas 17 and the fermentation residues 20 are provided with transport devices in the form of mobile delivery units 22 or pipelines in the form of the natural gas network, which in the example shown are trucks or tank load scales are designed.
  • transport devices in the form of mobile delivery units 22 or pipelines in the form of the natural gas network, which in the example shown are trucks or tank load scales are designed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

L'invention concerne un procédé de génération de gaz de synthèse (2) comprenant les étapes suivantes : conversion partielle par fermentation de matières biologiques de départ (3) en biogaz (17) dans une installation de biogaz (16), des résidus de fermentation (20) contenant une fraction de composants carbonés et hydrogénés étant formés en plus du biogaz (17) ; et introduction des résidus de fermentation (20) dans un réacteur à lit fluidisé chauffé (1) dans lequel un gaz de synthèse (2) est formé par gazéification à partir des résidus de fermentation (20).
PCT/EP2022/085907 2021-12-22 2022-12-14 Procédé et ensemble d'installations pour la production de gaz de synthèse WO2023117637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021134191.4 2021-12-22
DE102021134191.4A DE102021134191A1 (de) 2021-12-22 2021-12-22 Verfahren und Anlageverbund zur Erzeugung von Synthesegas

Publications (1)

Publication Number Publication Date
WO2023117637A1 true WO2023117637A1 (fr) 2023-06-29

Family

ID=84888575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/085907 WO2023117637A1 (fr) 2021-12-22 2022-12-14 Procédé et ensemble d'installations pour la production de gaz de synthèse

Country Status (2)

Country Link
DE (1) DE102021134191A1 (fr)
WO (1) WO2023117637A1 (fr)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334026A (en) * 1980-01-18 1982-06-08 Institute Of Gas Technology Hybrid bio-thermal liquefaction
DE10227074A1 (de) 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE10258485A1 (de) 2002-12-10 2004-07-08 Innovativer Anlagenbau E&H Gmbh Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen
DE102004032830A1 (de) 2004-07-06 2006-02-23 Rolf Schmitt Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren)
DE102004045772A1 (de) 2004-09-15 2006-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes
DE102006022265A1 (de) 2006-04-26 2007-10-31 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
EP1865046A1 (fr) 2006-06-08 2007-12-12 Hörmann Energietechnik GmbH & Co. KG Procédé et dispositif destinés à la production de gaz combustible à partir d'un combustible solide
DE102007006980A1 (de) 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007012452A1 (de) 2007-03-15 2008-09-25 Mci Management Center Innsbruck Internationale Fachhochschulgesellschaft Mbh Vergaser
DE102008032166A1 (de) 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102009039845A1 (de) 2008-09-02 2010-03-04 Berger, Manfred Anlage zur Erzeugung von Holzgas
US8153850B2 (en) * 2007-05-11 2012-04-10 The Texas A&M University System Integrated biofuel production system
US8444725B2 (en) * 2006-09-11 2013-05-21 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
EP2705121B1 (fr) 2011-05-06 2018-05-02 Babcock Noell GmbH Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire
US20200002631A1 (en) * 2015-08-06 2020-01-02 Wormser Energy Solutions, Inc. All-Steam Gasification with Carbon Capture

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4289625A (en) 1980-01-18 1981-09-15 Institute Of Gas Technology Hybrid bio-thermal gasification
US20090031615A1 (en) 2007-08-01 2009-02-05 General Electric Company Integrated method for producing a fuel component from biomass and system therefor
DE102008036502A1 (de) 2008-08-05 2010-02-11 Krones Ag Verfahren und Vorrichtung zur Herstellung von Synthesegas aus Biomasse
DE102014202190A1 (de) 2014-02-06 2015-08-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zum Erzeugen von elektrischer Energie durch Vergasung von Feststoffen, insbesondere Biomasse
DE102016220614B4 (de) 2016-10-20 2018-10-04 Technische Universität Bergakademie Freiberg Verfahren und Vorrichtung zur quasi-kontinuierlichen Zuführung von polydispersen Schüttgütern in druckaufgeladene Räume

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4334026A (en) * 1980-01-18 1982-06-08 Institute Of Gas Technology Hybrid bio-thermal liquefaction
DE10227074A1 (de) 2002-06-17 2004-01-15 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Verfahren zur Vergasung von Biomasse und Anlage hierzu
DE10258485A1 (de) 2002-12-10 2004-07-08 Innovativer Anlagenbau E&H Gmbh Verfahren und Vorrichtung zur Gewinnung von Wärmeenergie und/oder motortauglichem Gas durch Vergasung von Feststoffen
DE102004032830A1 (de) 2004-07-06 2006-02-23 Rolf Schmitt Verfahren zur Erzeugung von wasserstoffreichen Synthesegas aus biogenen Stoffen und sonstigen kohlenstoffhaltigen Verbindungen mittels Wasserdampfvergasung (Dampfreformierung) in einem indirekt beheizten Wirbelschichtreaktor bei gleichzeitiger partieller Oxidation der Einsatzstoffe durch geregelte Einbringung von Sauerstoff in den Wirbelschichtreaktor (Hybridverfahren)
DE102004045772A1 (de) 2004-09-15 2006-03-16 Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg Verfahren und Vorrichtung zur Erzeugung eines Produktgases durch thermochemische Vergasung eines kohlenstoffhaltigen Einsatzstoffes
DE102006022265A1 (de) 2006-04-26 2007-10-31 Spot Spirit Of Technology Ag Verfahren und Vorrichtung zur optimierten Wirbelschichtvergasung
EP1865046A1 (fr) 2006-06-08 2007-12-12 Hörmann Energietechnik GmbH & Co. KG Procédé et dispositif destinés à la production de gaz combustible à partir d'un combustible solide
US8444725B2 (en) * 2006-09-11 2013-05-21 Purdue Research Foundation System and process for producing synthetic liquid hydrocarbon
DE102007006980A1 (de) 2007-02-07 2008-08-14 Technische Universität Bergakademie Freiberg Verfahren zur Vergasung fester Brennstoffe in der Wirbelschicht unter erhöhtem Druck
DE102007012452A1 (de) 2007-03-15 2008-09-25 Mci Management Center Innsbruck Internationale Fachhochschulgesellschaft Mbh Vergaser
US8153850B2 (en) * 2007-05-11 2012-04-10 The Texas A&M University System Integrated biofuel production system
DE102008032166A1 (de) 2008-07-08 2010-01-14 Karl-Heinz Tetzlaff Verfahren und Vorrichtung zur Herstellung von teerfreiem Synthesgas aus Biomasse
DE102009039845A1 (de) 2008-09-02 2010-03-04 Berger, Manfred Anlage zur Erzeugung von Holzgas
EP2705121B1 (fr) 2011-05-06 2018-05-02 Babcock Noell GmbH Procédé et dispositif pour l'élaboration de gaz de synthèse à partir de substances de départ carbonées, par gazéification dans un réacteur à courant tourbillonnaire
US20200002631A1 (en) * 2015-08-06 2020-01-02 Wormser Energy Solutions, Inc. All-Steam Gasification with Carbon Capture

Also Published As

Publication number Publication date
DE102021134191A1 (de) 2023-06-22

Similar Documents

Publication Publication Date Title
EP2082013B1 (fr) Procédé pour préparer un produit gazeux riche en hydrogène
WO2010003968A2 (fr) Procédé et dispositif pour produire du gaz de synthèse à faible teneur en goudrons à partir de biomasse
EP3132004B1 (fr) Système et procédé de traitement thermo-catalytique d'une matière et huile de pyrolyse fabriqué au moyen de ceux-ci
EP2284141A1 (fr) Procédé et dispositif de fabrication de particules de charbon enrichies avec des matières minérales
WO2008081407A2 (fr) Matériau et/ou combuistible produit à partir de biomasse
WO2010115563A2 (fr) Pyrolyse basse température de biomasse dans la couche pour une gazéification à lit entraîné consécutive
DE102009012668A1 (de) Verfahren und Anlage zur Verwertung von Biomasse
DE102008058444A1 (de) Verfahren und Vorrichtung zur Herstellung von Werk- oder Brennstoffen
EP2390301B1 (fr) Installation de réacteur et procédé de production d'un produit de matière solide enrichi en carbone à l'aide d'une augmentation de la teneur en carbone
WO2018069320A1 (fr) Procédé et dispositif pour la gazéification de biomasse
DE10030778C2 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
WO2023117637A1 (fr) Procédé et ensemble d'installations pour la production de gaz de synthèse
DE10127138C2 (de) Verfahren und Vorrichtung zur Erzeugung eines Brenngases aus Biomassen
WO2008006397A1 (fr) Procédé de fabrication de méthane et réacteur destiné à la mise en oeuvre de ce procédé
DE102008047563A1 (de) Verfahren und Vorrichtung zur Aufbereitung von kunststoffhaltigen Stoffen
EP3067407B1 (fr) Système et méthode pour la gazéification de matière carbonée
DE102013202713A1 (de) Vergasungsverfahren zur Erzeugung von Synthesegas mit integrierter Bereitstellung des Vergasungsmittels
EP2481705A1 (fr) Procédé et dispositif de recyclage matériel et/ou énergétique de résidus biogènes
WO2008128831A1 (fr) Procédé et appareil destinés à réduire la concentration de co2 dans l'air
DE102022111330A1 (de) Verfahren zur Behandlung von Biomassen
EP1798296B1 (fr) Utilisation matérielle de biogaz
DE102014107969A1 (de) Verfahren zur Behandlung einer feuchten, heizwertarmen Masse
DE102022105359A1 (de) Verfahren zur Herstellung von Wasserstoff aus Biomasse
WO2020200341A1 (fr) Procédé et dispositif de production d'hydrogène à partir d'une matière première carbonée
DE202021102347U1 (de) Konditioniertes Klärschlammprodukt, Produktionseinrichtung und Klärschlammsystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22839637

Country of ref document: EP

Kind code of ref document: A1