EP2703768A1 - Projectile with adjustable fins and method for controlling the fins of such a projectile - Google Patents

Projectile with adjustable fins and method for controlling the fins of such a projectile Download PDF

Info

Publication number
EP2703768A1
EP2703768A1 EP13182416.1A EP13182416A EP2703768A1 EP 2703768 A1 EP2703768 A1 EP 2703768A1 EP 13182416 A EP13182416 A EP 13182416A EP 2703768 A1 EP2703768 A1 EP 2703768A1
Authority
EP
European Patent Office
Prior art keywords
projectile
ring
disc
control surfaces
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13182416.1A
Other languages
German (de)
French (fr)
Other versions
EP2703768B1 (en
Inventor
Richard Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Priority to PL13182416T priority Critical patent/PL2703768T3/en
Publication of EP2703768A1 publication Critical patent/EP2703768A1/en
Application granted granted Critical
Publication of EP2703768B1 publication Critical patent/EP2703768B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the technical field of the invention is that of the projectiles guided by steerable steerings in incidence.
  • This type of device requires knowing the exact angular position both incidence and roll of each rudder to make it adopt the appropriate position to follow the desired trajectory to the projectile.
  • the projectile being subjected to a roll that can be very important, especially if it is fired from a rifled gun, it is therefore necessary to make continual corrections of the incidence of the control surfaces.
  • the invention proposes to solve the problem of complexity of the adjustment of the incidence of the control surfaces as a function of their angular position around the projectile
  • the invention also makes it possible to reduce the numerous and brutal loads of the motors.
  • the invention relates to a projectile steerable steerable bearing having at least three control surfaces each pivotable relative to the projectile about a pivot axis perpendicular to the longitudinal axis of the projectile, characterized in that it comprises a steering ring orientation ring, having as many arms as there are control surfaces, which ring can translate in a plane perpendicular to the longitudinal axis of the projectile and in at least two directions of this plane, orientation ring can turn on itself around its center parallel to the longitudinal axis of the projectile, each arm comprising means cooperating with an orientation lever integral with a rudder to be able to cause pivoting of the rudder about its pivot axis when of the displacement of the ring, the translation of the ring being ensured by a means of positioning the center of the ring in the plane relative to a rep absolute re centered on the longitudinal axis of the projectile.
  • the positioning means comprises a disc positioned in a central bore of the ring and which has a circular opening. eccentric to the center of the disc to move the center of the ring by the rotation of the disc.
  • the means for positioning the center of the ring in the two directions of the plane P comprises a cam cooperating with the eccentric circular opening of the disc, this eccentric circular opening comprising a ring gear internally meshing with a pinion centered on the axis. longitudinal projectile, the combined rotations of the pinion and the cam allowing the displacement of the disk.
  • the positioning means comprises a disk positioned in a central bore of the ring and which comprises a sliding connection oriented parallel to a diameter of the disk and intended to allow the displacement of the disk radially relative to a coaxial plate. to the roll axis, the disc having a rack parallel to the slide, rack gear meshing with a pinion carried by a secondary shaft coaxial with the roll axis.
  • a projectile 100 in flight has a substantially cylindrical body 103.
  • This projectile 100 comprises in the rear part a stabilizer 101 which itself comprises fixed-effect fins 102 intended to stabilize the projectile 100 along its Y and Z-axis pitch.
  • the projectile is rotated R around its longitudinal axis called axis of roll X.
  • control surfaces 2 integral with the projectile and each able to pivot on a steering axis perpendicular to the roll axis so as to modify their incidence and consequently, to adopt a desired trajectory to the
  • the control surfaces 2 being integral with the projectile 100 are also driven by the same rotational movement R around the roll axis as the projectile 100.
  • a warhead 104 housing a control device 1 for orienting the control surfaces 2 of the projectile 100 in response to a guide law programmed in a homing device (not shown) .
  • control device 1 comprises the following elements: control surfaces 2 integral with the projectile and orientable in incidence by pivoting about axes 7 perpendicular to the longitudinal axis of roll X.
  • Each rudder 2 comprises a steering plane 2a whose base is integral with a steering foot 2b pivotally mounted relative to the projectile body.
  • Each director plane 2a is intended to influence by its pivoting around the axis 7 the aerodynamic supports of the projectile to change its trajectory.
  • Each rudder 2 comprises perpendicularly to its pivot axis 7 a lever 3 integral with the rudder foot 2b of the rudder 2.
  • the free end 3a of the lever 3 facing the front of the projectile is spherical.
  • the steering base 2b may include or be associated with unrepresented deployment means (as described in the patent FR2955653 or in the patent EP1550837 for example).
  • the control device comprises a ring 5 called steering ring orientation ring.
  • This ring 5 comprises an annular portion 5a and as many arms 6 that the projectile comprises control surfaces 2.
  • Each arm 6 is integral with the annular portion 5a and extends radially to the annular portion 5a.
  • the orientation ring 5 and each arm are located in a plane P perpendicular to the roll axis X of the projectile. Ring 5 is held in its plane P by guide means not shown, for example between two fixed plates integral with the projectile body.
  • Each arm 6 of the ring 5 comprises a longitudinal groove 77 intended to receive the spherical end 3a of the levers 3.
  • the groove 77 allows the sphere 3 to slide in the direction of the length of the groove 77 and in the direction of the thickness of the arm 6.
  • each sphere 3a is intended to correspond with an opening 4a of a carriage 4.
  • the carriage 4 comprises guide means 4b intended to cooperate with grooves (not shown) which are fixed with respect to the projectile body and intended to form links orthogonal guides to the roll axis X of the projectile.
  • the first guiding means thus comprises a prismatic bar 4b intended to correspond with a groove of the body of the projectile 100 (groove not shown).
  • the bar 4b can slide freely in the groove, perpendicularly to the pivot axis 7 of the control surface and parallel to the plane P of the ring 5.
  • the second guide means 4c is integral with the first guide means 4b and comprises a pair of rails 4c oriented parallel to the pivot axis 7 of the rudder 2 and guiding an arm 6 of the ring 5.
  • Each carriage 4 is intended for facilitate the movements of the sphere 3a of the lever 3 relative to the arms 6. In particular, it allows the spherical end to slide with a greater amplitude in the direction of the thickness of the arm 6.
  • the ring 5 can be translated in all directions of the plane P (see figure 2 ) perpendicular to the roll axis X.
  • the figure 4 shows the positioning of the ring 5 when the control surfaces 2 are in the neutral (control plane parallel to the roll axis X).
  • the ring 5 is then coaxial to the roll axis X.
  • this so-called neutral position or initial position of the ring 5 at the start of the stroke is shown in dotted lines.
  • the translation in a direction D of the ring 5 from the neutral position to the position of the ring 5 shown in solid lines generates a component of normal forces to the arms 6b which are perpendicular to the displacement D. This component then causes the pivoting of the control surfaces 2b via the levers 3 (levers 3 better seen at the figure 2 ).
  • Positioning means 8 makes it possible to modify the position of the center 5b of the ring 5 in the plane P with respect to an absolute reference centered on the X axis (mark provided by a satellite positioning system or GPS or for example, by an onboard inertial navigation system).
  • This offset T corresponds to a radial distance between the axis X of the projectile and the center 5b of the ring 5, it is represented on the figure 6 .
  • the two other control surfaces 2b which are perpendicular to the control surfaces 2a have their pivot axis 7 which is offset by a gap E with respect to the direction of the associated arm 6 carried by the ring 5.
  • the difference E is equal to the offset T given to the ring 5.
  • the incidence ⁇ is maximum for these control surfaces 2b whose axes are perpendicular to Direction D ( figures 5 , 6 and 7 ).
  • each rudder being animated with a rotational movement R around the projectile cyclically goes through a zero incidence then a maximum incidence and this twice in a single round around the projectile 100.
  • direction D of displacement of the ring 5 corresponds to the direction of the desired trajectory correction for the projectile.
  • This device thus allows easy adjustment of the correction to be made to the trajectory of the projectile without requiring to know at any time the angular position of each rudder relative to the direction that it is desired to give the projectile.
  • orientation of the projectile in a direction D is determined by the vector passing through the center 5b of the ring 5 and the roll axis X of the projectile.
  • This positioning is obtained as will now be described using a positioning means 8.
  • the control device 1 comprises a positioning means 8 intended to move and position the center 5b of the ring 5 with a shift T more or less important with respect to the center of the projectile X and directed in the direction where it is desired to orient the projectile.
  • the positioning means 8 is shown exploded at the figure 8 and assembled at the figure 9 . It comprises a primary eccentric positioning means 16 and a secondary eccentric positioning means 19.
  • the primary eccentric positioning means 16 comprises a cam 9 in the form of a disk portion integral with a first end of a tubular primary shaft 10 of axis X, thus coaxial with the projectile.
  • the cam 9 is eccentric by a value R1 with respect to the roll axis X and comprises a recess 51 with a cylindrical profile of axis X.
  • the second end of the primary shaft 10 has an external toothing 18 intended to rotate the primary shaft 10 around the roll axis X by means of a first motor not shown.
  • the secondary eccentric positioning means 19 comprises a disc 12 itself having a circular opening 13.
  • the circular opening 13 comprises a ring gear 23.
  • the circular opening 13 is intended to receive the cam 9 of the primary positioning means 16 previously described.
  • the circular opening 13 has its center coincides with that of the cam 9, and it is eccentric with respect to the center of the disc 12 of a value R2.
  • the secondary eccentric positioning means 19 comprises a secondary shaft 20 which carries at each of its ends pinions 21 and 22.
  • the secondary shaft 20 is intended to be adjusted in a bore 52 of the primary shaft 10.
  • One of the pinions 22 is intended to be placed in the recess 51 of the cam 9 and its toothing is intended to correspond with the ring gear 23 of the disk 12.
  • the other gear 21 is positioned in the vicinity of the toothing 18 of the primary shaft 10.
  • the latter gear 21 is intended to mesh with a second motor (not shown).
  • the figure 9 allows to see the positioning means 8 assembled with the primary and secondary positioning means in place relative to each other.
  • the two eccentric positioning means 16 and 19 each comprise a maximum eccentric point. This point is located by a circle C1 on the cam 9 and gives the maximum eccentricity of the cam 9 with respect to the roll axis X. On the disc 12, the circle C2 gives the maximum eccentric point of the disc 12 opposite the center of the cam 9.
  • the translation of the ring 5 in the plane P operates in three phases from a so-called neutral position corresponding to the straight flight of the projectile.
  • the maximum eccentricity points C1 and C2 of the cam 9 and the disc 12 are diametrically opposite with respect to the roll axis X of the projectile 100 thus forming an alignment A with the center of the pinion 22 (centered on the axis of X roll).
  • control surfaces In flight, the control surfaces (not shown) rotate with the projectile around the longitudinal axis X and drive the ring 5 in rotation. Maintaining this neutral position of the control surfaces is ensured by driving by the motors of the primary shaft 10 and the secondary shaft 20 so as to continuously compensate for the rotation of the projectile.
  • the primary and secondary shafts 20 then both rotate at the same speed- ⁇ which is equal to and opposite to the rotational speed ⁇ of the projectile.
  • the disk 12 and the cam 9 are immobile in the absolute reference such that at the figure 4 and their position is permanently known to the seeker. In the absence of offset of the center 5b of the ring 5 relative to the axis of roll X of the projectile, the control surfaces are thus maintained in neutral.
  • a course correction in a direction D must be ordered.
  • the two motors will first orient, in a rotational movement M, the disc 12 and the cam 9 so that the alignment A formed by the maximum eccentric points C1 and C2 and the roll axis X are perpendicular to the direction D which is aimed at.
  • This orientation is done by giving a differential to the speeds of rotation of the motors relative to the speed of rotation of the projectile on itself.
  • These motors will be given a speed equal to - ⁇ ⁇ ⁇ with a projectile rotating at the speed ⁇ .
  • This orientation is obtained by simultaneous rotation, in the same direction and at the same angular velocity ⁇ ⁇ of the disc 12 and the cam 9.
  • the skilled person will choose the rotational speeds of the motors and their direction of rotation according to the ratios transmission between different sprockets and crowns and depending on the relative mounting direction of each motor.
  • both engines will rotate in order to bring each of the maximum eccentric points C1 and C2 closer to the chosen direction D.
  • the motors are actuated simultaneously with identical speeds but in opposite directions so as to orient the eccentric point C2 of the disk 12 by an angle ⁇ 1 with respect to the direction D and to orient the eccentric point C1 of the cam 9 of an angle - ⁇ 1 with respect to the direction D (see figures 11 and 12 ).
  • one motor will be given a speed equal to - ⁇ + b while the other motor will have a speed equal to - ⁇ -b.
  • is the absolute value of the instantaneous rotation speed of the projectile and b is an absolute value of a speed entrenched or added to ⁇ to rotate the disk 12 and the cam 9.
  • the velocities ⁇ and b will be chosen constant or variable by skilled in the art depending on the vivacity of the correction to be made to the trajectory of the projectile.
  • the center 5b of the ring 5 will then slide in the plane P in the direction D with an offset T with respect to the roll axis X.
  • the essential is therefore to move the ring 5 in both directions of the plane P by a positioning means 8. This avoids the use of a motor for each rudder. In particular, the rapid and untimely loading of these motors and the complex and relatively long calculations are avoided in order to determine the corrections of incidence to be ensured permanently.
  • the angular position of C1 it is easily obtained by measuring the rotation angle of the motor driving the pinion 18, so the cam 9.
  • the angular position of the cam 9 in the absolute reference is possible to resort to the use of an optical sensor integral with the body of the projectile and rotating with it.
  • the position of this sensor is precisely known with respect to the absolute reference provided by the inertial unit of the projectile.
  • the precise angular position of the maximum eccentricity C1 of the cam 9 will be read by the sensor for example on an optical scale O surrounding the shaft 10 (FIG. figure 9 ).
  • the angular position of the cam 9 is thus known, the angular position of C2 can be obtained relative to the angular position of the cam 9, for example by a magnetic measurement of the rotation of the disc 12 around the cam 9.
  • a magnetic tape B is placed in the vicinity of the ring gear 13 and a read head C capable of reading this strip B is integral with the cam 9 and collects the angular position information between the disk 12 and the cam 9.
  • This angular information is transmitted to an on-board computer responsible for servocontrol and commands via conductive tracks P placed on the primary shaft 10 and connected to the cursor C. These tracks will be read for example by an inductive sensor or by brushes. These means are illustrated by way of example in figure 9 .
  • a positioning means 8 comprises a disc 12 intended to cooperate with the bore 5c of the ring 5 described above.
  • the ring 5 has not been shown in this figure, but the structural characteristics of this ring and its cooperation with the control surfaces are identical to what has been described above with reference to FIGS. figures 2 and 3 .
  • the positioning of the ring 5 in a plane perpendicular to the longitudinal axis of the projectile will make it possible to control the control surfaces.
  • This positioning of the ring 5, so its center 5b, is provided by the control of the displacement of the disc 12 which is coaxial with the ring 5 and around which this ring will rotate.
  • the disc 12 has a sliding connection 60 corresponding to a plate 61 integral with the primary shaft 10.
  • the slide connection may be for example of the dovetail type.
  • the slide connection 60 is oriented parallel to a diameter of the disc 12.
  • the disc 12 further comprises a rack 62 oriented parallel to the slide connection 60.
  • the primary shaft 10 is coaxial with the roll axis X of the projectile, is secured to the plate 61 by one of its ends and has a primary pinion 18 at its second end, pinion which, as in the previous embodiment, meshes with a motor (not shown).
  • a secondary shaft 20 Coaxially to this primary shaft 10 is a secondary shaft 20 having a pinion (63 or 21) at each of its ends. Pinion 21 is driven as in the previous embodiment by a motor (not shown). The pinion 63 meshes with the rack 62.
  • first rotation of the primary shaft 10 will be performed so as to position the slideway 60 parallel to the desired direction D for a given trajectory correction, then a rotation of the secondary shaft 20 for moving the rack 62.
  • the rotation of the primary shaft 10 and secondary 20 will be by electric motors.
  • a first phase the rotational speed ⁇ of the projectile is compensated by rotating the primary shaft 10 and the secondary shaft 20 together by an angle - ⁇ (as in the previous embodiment).
  • This position of the disk 12 corresponding to a neutral position of the control surfaces (without incidence). Note that if the primary shaft and the secondary shaft rotate together with the projectile and the disc 12 is centered, then the control surfaces are still neutral and the trajectory of the projectile is not affected.
  • This first phase of immobilization of the positioning means in the absolute reference is there to give an angular reference to the following phases.
  • a course correction in a direction D must be ordered.
  • the rotation of the primary shaft 10 is then controlled to position the rack 62 parallel to the direction D of the desired path correction. So that the disc 12 remains coaxial with X during the orientation of the rack, the orientation operation of the rack 62 must therefore give rise to the level of the secondary shaft 20 to a compensation of the rotation of the rack 62 around of X. Therefore, for a rotation of the plate 61 by an angle ⁇ , the secondary shaft 20 will have to turn simultaneously of the same value and in the same direction.
  • the secondary axis 20 is controlled to move the rack 62 in the desired direction D ( figure 14 ).
  • the disc 12 is thus eccentred with a value E with respect to the roll axis X.
  • the disc 12 is surrounded by the ring 5 (not shown on the figures 13 and 14 ) slides this one in the plane P thus acting on the inclination of the control surfaces of the projectile.
  • the angular position is easily obtained as in the previous embodiment by optical sensors for measuring the rotation of the motors driving these pinions.
  • the position of the rack 62 with respect to the plate 61 is obtained using, for example, a sensor secured to the plate 61 and reading the position of marks made on the disk 12 (for example teeth of the rack 62).

Abstract

The projectile has orientation rings (5) provided in control surfaces (2) and displaced towards a plane (P) perpendicular to a longitudinal axis (X). The rings are rotated around its center parallel to the axis. Each ring has an arm (6) whose longitudinal groove (77) is engaged with a lever (3) that is secured to the surface to pivot the surface around a pivot axis (7) during movement of the ring. The displacement of the ring is ensured by a positioning unit (8) that positions the center of the ring in the plane relative to an absolute reference mark centered on the longitudinal axis. An independent claim is also included for a method for controlling control surfaces of a projectile.

Description

Le domaine technique de l'invention est celui des projectiles guidés par des gouvernes orientables en incidence.The technical field of the invention is that of the projectiles guided by steerable steerings in incidence.

Pour guider un projectile jusqu'à son but il est connu d'avoir recours à des gouvernes placées sur le pourtour du projectile, soit en empennage soit en position avant (gouvernes dites canard). L'incidence des gouvernes est adaptée en vol en fonction de la trajectoire que l'on souhaite donner au projectile. Le pilotage de l'incidence est assuré par des moteurs électriques le plus souvent. Le brevet US7246539 décrit ainsi un dispositif de pilotage de gouvernes de projectile comportant quatre gouvernes ainsi que des trains d'engrenages associés à des moteurs permettant de régler l'incidence des gouvernes.To guide a projectile to its goal it is known to use the control surfaces placed on the circumference of the projectile, either in empennage or in the forward position (so-called duck controls). The incidence of the control surfaces is adapted in flight according to the trajectory that one wishes to give to the projectile. The steering of the incidence is provided by electric motors most often. The patent US7246539 describes a control device projectile control surfaces with four control surfaces and gear trains associated with motors for adjusting the incidence of control surfaces.

Ce type de dispositif nécessite de connaître la position angulaire exacte tant en incidence qu'en roulis de chaque gouverne pour lui faire adopter la position convenable pour faire suivre la trajectoire voulue au projectile. Le projectile étant soumis à un roulis qui peut être très important, en particulier s'il est tiré depuis une arme à canon rayé, il est donc nécessaire de réaliser des corrections continuelles de l'incidence des gouvernes.This type of device requires knowing the exact angular position both incidence and roll of each rudder to make it adopt the appropriate position to follow the desired trajectory to the projectile. The projectile being subjected to a roll that can be very important, especially if it is fired from a rifled gun, it is therefore necessary to make continual corrections of the incidence of the control surfaces.

Ces corrections doivent se faire extrêmement rapidement ce qui nécessite des moyens de calcul rapide et des mouvements rapides des gouvernes. Ceci génère des pics de courant, provoque une commande par à-coup des moteurs et provoque la génération de champs magnétiques intenses et irréguliers de la part des moteurs. Ces champs perturbent les moyens de guidage du projectile tels les autodirecteurs ou d'autres moyens de détection. En outre la solution proposée par US7246539 est complexe en terme de nombre d'engrenages et de pièces de transmission des mouvements.These corrections must be made extremely quickly which requires rapid calculation means and rapid movements of the control surfaces. This generates current peaks, causes a jerk control of the motors and causes the generation of intense and irregular magnetic fields from the motors. These fields disturb the projectile guidance means such as the homing devices or other detection means. In addition the proposed solution by US7246539 is complex in terms of the number of gears and motion transmission parts.

Ainsi l'invention se propose de résoudre le problème de complexité du réglage de l'incidence des gouvernes en fonction de leur position angulaire autour du projectile,Thus the invention proposes to solve the problem of complexity of the adjustment of the incidence of the control surfaces as a function of their angular position around the projectile,

L'invention permet aussi de réduire les sollicitations nombreuses et brutales des moteurs.The invention also makes it possible to reduce the numerous and brutal loads of the motors.

L'invention sera mieux comprise à la lecture de la description suivante, description faite en référence aux dessins annexés dans laquelle

  • La figure 1 représente un projectile en vol selon l'invention.
  • La figure 2 représente une vue éclatée d'un dispositif de commande selon l'invention.
  • La figure 3 représente une vue éclatée d'un dispositif de commande selon une variante de l'invention.
  • La figure 4 représente une vue en coupe transversale d'un dispositif de commande selon l'invention dans une configuration neutre.
  • La figure 5 représente une vue en coupe transversale d'un dispositif de commande selon l'invention dans une configuration de correction de trajectoire d'amplitude maximale (gouvernes braquées au maximum).
  • La figure 6 est une vue analogue à la figure 5 pour une position angulaire du projectile différente.
  • La figure 7 est une vue de côté du dispositif de commande dans une configuration de gouvernes braquées au maximum.
  • La figure 8 représente une vue éclatée d'un moyen de positionnement.
  • La figure 9 représente une vue du moyen de positionnement assemblé.
  • La figure 10 représente une vue en coupe transversale du projectile durant une première phase de pilotage.
  • La figure 11 représente une vue en coupe transversale du projectile durant une seconde phase de pilotage intervenant après la phase de la figure 10.
  • La figure 12 représente une vue de détails grossie et simplifiée de la figure 11.
  • La figure 13 représente une vue en coupe longitudinale d'un moyen de positionnement selon une variante de l'invention.
  • La figure 14 représente une vue en coupe transversale A-A du moyen de positionnement de la figure 13, la trace du plan AA étant repérée à la figure 13.
The invention will be better understood on reading the following description, description made with reference to the accompanying drawings in which
  • The figure 1 represents a projectile in flight according to the invention.
  • The figure 2 represents an exploded view of a control device according to the invention.
  • The figure 3 represents an exploded view of a control device according to a variant of the invention.
  • The figure 4 represents a cross-sectional view of a control device according to the invention in a neutral configuration.
  • The figure 5 represents a cross-sectional view of a control device according to the invention in a maximum amplitude trajectory correction configuration (maximum control surfaces).
  • The figure 6 is a view similar to the figure 5 for an angular position of the different projectile.
  • The figure 7 is a side view of the control device in a configuration of raised control surfaces.
  • The figure 8 represents an exploded view of a positioning means.
  • The figure 9 represents a view of the assembled positioning means.
  • The figure 10 represents a cross-sectional view of the projectile during a first driving phase.
  • The figure 11 represents a cross-sectional view of the projectile during a second pilot phase occurring after the phase of the figure 10 .
  • The figure 12 represents a magnified and simplified detail view of the figure 11 .
  • The figure 13 is a longitudinal sectional view of a positioning means according to a variant of the invention.
  • The figure 14 represents a cross-sectional view AA of the positioning means of the figure 13 , the trace of the AA plan being identified at the figure 13 .

Ainsi l'invention porte sur un projectile à gouvernes orientables en incidence comportant au moins trois gouvernes pouvant chacune pivoter par rapport au projectile autour d'un axe de pivotement perpendiculaire à l'axe longitudinal du projectile, projectile caractérisé en ce qu'il comporte une bague d'orientation des gouvernes, bague comportant autant de bras qu'il y a de gouvernes, bague pouvant se translater dans un plan perpendiculaire à l'axe longitudinal du projectile et suivant au moins deux directions de ce plan, bague d'orientation pouvant tourner sur elle-même autour de son centre parallèle à l'axe longitudinal du projectile, chaque bras comportant des moyens coopérant avec un levier d'orientation solidaire d'une gouverne pour pouvoir entrainer un pivotement de la gouverne autour de son axe de pivotement lors du déplacement de la bague, la translation de la bague étant assurée par un moyen de positionnement du centre de la bague dans le plan relativement à un repère absolu centré sur l'axe longitudinal du projectile.Thus, the invention relates to a projectile steerable steerable bearing having at least three control surfaces each pivotable relative to the projectile about a pivot axis perpendicular to the longitudinal axis of the projectile, characterized in that it comprises a steering ring orientation ring, having as many arms as there are control surfaces, which ring can translate in a plane perpendicular to the longitudinal axis of the projectile and in at least two directions of this plane, orientation ring can turn on itself around its center parallel to the longitudinal axis of the projectile, each arm comprising means cooperating with an orientation lever integral with a rudder to be able to cause pivoting of the rudder about its pivot axis when of the displacement of the ring, the translation of the ring being ensured by a means of positioning the center of the ring in the plane relative to a rep absolute re centered on the longitudinal axis of the projectile.

Selon un premier mode de réalisation, le moyen de positionnement comporte un disque positionné dans un alésage central de la bague et qui comporte une ouverture circulaire excentrée par rapport au centre du disque afin de déplacer le centre de la bague par la rotation du disque.According to a first embodiment, the positioning means comprises a disc positioned in a central bore of the ring and which has a circular opening. eccentric to the center of the disc to move the center of the ring by the rotation of the disc.

Avantageusement, le moyen de positionnement du centre de la bague dans les deux directions du plan P comporte une came coopérant avec l'ouverture circulaire excentrée du disque, cette ouverture circulaire excentrée comportant une couronne à denture intérieure engrenant avec un pignon centré sur l'axe longitudinal du projectile, les rotations combinées du pignon et de la came permettant le déplacement du disque.Advantageously, the means for positioning the center of the ring in the two directions of the plane P comprises a cam cooperating with the eccentric circular opening of the disc, this eccentric circular opening comprising a ring gear internally meshing with a pinion centered on the axis. longitudinal projectile, the combined rotations of the pinion and the cam allowing the displacement of the disk.

Selon un second mode de réalisation, le moyen de positionnement comporte un disque positionné dans un alésage central de la bague et qui comporte une liaison glissière orientée parallèlement à un diamètre du disque et destinée à permettre le déplacement du disque radialement par rapport à un plateau coaxial à l'axe de roulis, le disque comportant une crémaillère parallèle à la glissière, crémaillère engrénant avec un pignon porté par un arbre secondaire coaxial à l'axe de roulis.According to a second embodiment, the positioning means comprises a disk positioned in a central bore of the ring and which comprises a sliding connection oriented parallel to a diameter of the disk and intended to allow the displacement of the disk radially relative to a coaxial plate. to the roll axis, the disc having a rack parallel to the slide, rack gear meshing with a pinion carried by a secondary shaft coaxial with the roll axis.

L'invention porte également sur un procédé de commande des gouvernes d'un projectile destiné à orienter le projectile selon une direction donnée D transversale au projectile, procédé selon un premier mode de réalisation caractérisé en ce qu'il comporte successivement les étapes suivantes:

  • faire tourner le moyen de positionnement en sens inverse du roulis du projectile afin de compenser la rotation du projectile,
  • faire pivoter la came et le disque de manière à ce que leurs points d'excentration maximale respectifs soient diamétralement opposés et que l'alignement A formé par ces points soit perpendiculaire à la direction visée,
  • faire pivoter simultanément et en sens inverse le disque et la came d'une même valeur angulaire de manière à rapprocher chacun des points d'excentration de la direction visée, ce qui déplace le centre de la bague dans la direction voulue et selon une amplitude de mouvement voulue.
The invention also relates to a control method of the control surfaces of a projectile for orienting the projectile in a given direction D transverse to the projectile, a method according to a first embodiment characterized in that it comprises successively the following steps:
  • rotating the positioning means in the opposite direction to the roll of the projectile to compensate for the rotation of the projectile,
  • pivoting the cam and disk so that their respective maximum eccentric points are diametrically opposed and that the alignment A formed by these points is perpendicular to the intended direction,
  • rotate the disk and the cam at the same angular value simultaneously and in opposite directions so as to bring each of the eccentric points closer to the direction This moves the center of the ring in the desired direction and with a desired range of motion.

Selon un autre mode de réalisation de l'invention, le procédé d'orientation du projectile selon une direction donnée D transversale au projectile, est caractérisé en ce qu'il comporte successivement les étapes suivantes:

  • faire tourner le moyen de positionnement en sens inverse du roulis du projectile afin de compenser la rotation du projectile,
  • faire pivoter le plateau d'un angle Φ de manière à ce que la glissière soit parallèle à la direction donnée D, tout en compensant la rotation du projectile et en faisant tourner l'arbre secondaire simultanément d'une même valeur angulaire et dans le même sens pour conserver le disque centré sur l'axe de roulis X,
  • faire glisser le disque dans la direction donnée D par rotation de l'arbre secondaire jusqu'à ce que l'excentration E entre centre du disque et axe de roulis X donne l'amplitude de correction voulue.
According to another embodiment of the invention, the projectile orientation method in a given direction D transverse to the projectile, is characterized in that it comprises successively the following steps:
  • rotating the positioning means in the opposite direction to the roll of the projectile to compensate for the rotation of the projectile,
  • rotating the plate by an angle Φ so that the slide is parallel to the given direction D, while compensating the rotation of the projectile and rotating the secondary shaft simultaneously of the same angular value and in the same sense to keep the disc centered on the roll axis X,
  • slide the disk in the given direction D by rotation of the secondary shaft until the eccentricity E between the center of the disk and roll axis X gives the desired correction amplitude.

Selon la figure 1 un projectile 100 en vol comporte un corps 103 sensiblement cylindrique. Ce projectile 100 comporte en partie arrière un empennage 101 qui comporte lui-même des ailerons 102 à incidence fixe destinés à stabiliser le projectile 100 selon ses axes de tangage Y et lacet Z. Le projectile est animé d'un mouvement de rotation R autour de son axe longitudinal dit axe de roulis X.According to figure 1 a projectile 100 in flight has a substantially cylindrical body 103. This projectile 100 comprises in the rear part a stabilizer 101 which itself comprises fixed-effect fins 102 intended to stabilize the projectile 100 along its Y and Z-axis pitch. The projectile is rotated R around its longitudinal axis called axis of roll X.

Situé en partie avant du projectile 100, se trouvent des gouvernes 2 solidaires du projectile et pouvant chacune pivoter sur un axe de gouverne perpendiculairement à l'axe de roulis de manière à modifier leur incidence et par voie de conséquence, faire adopter une trajectoire souhaitée au projectile 100. Les gouvernes 2 étant solidaires du projectile 100, sont aussi animées du même mouvement de rotation R autour de l'axe de roulis que le projectile 100.Located in front of the projectile 100, there are control surfaces 2 integral with the projectile and each able to pivot on a steering axis perpendicular to the roll axis so as to modify their incidence and consequently, to adopt a desired trajectory to the The control surfaces 2 being integral with the projectile 100, are also driven by the same rotational movement R around the roll axis as the projectile 100.

En partie avant du projectile 100, au voisinage des gouvernes 2, se situe une ogive 104 abritant un dispositif de pilotage 1 destiné à orienter en incidence les gouvernes 2 du projectile 100 en réponse à une loi de guidage programmée dans un autodirecteur (non représenté).In the front part of the projectile 100, in the vicinity of the control surfaces 2, is a warhead 104 housing a control device 1 for orienting the control surfaces 2 of the projectile 100 in response to a guide law programmed in a homing device (not shown) .

Selon la figure 2, le dispositif de pilotage 1 comporte les éléments suivants: des gouvernes 2 solidaires du projectile et orientables en incidence par pivotement autour d'axes 7 perpendiculaires à l'axe longitudinal de roulis X.According to figure 2 , the control device 1 comprises the following elements: control surfaces 2 integral with the projectile and orientable in incidence by pivoting about axes 7 perpendicular to the longitudinal axis of roll X.

Les gouvernes 2 sont représentées ici dans leur position déployée. Chaque gouverne 2 comporte un plan directeur 2a dont la base est solidaire d'un pied de gouverne 2b monté pivotant par rapport au corps de projectile. Chaque plan directeur 2a est destiné à influencer par son pivotement autour de l'axe 7 les appuis aérodynamiques du projectile pour modifier sa trajectoire. Chaque gouverne 2 comporte perpendiculairement à son axe de pivotement 7 un levier 3 solidaire du pied de gouverne 2b de la gouverne 2. L'extrémité libre 3a du levier 3 dirigée vers l'avant du projectile est de forme sphérique. Le pied de gouverne 2b pourra comporter ou être associé à des moyens de déploiement non représentés (tels que décrit dans le brevet FR2955653 ou dans le brevet EP1550837 par exemple).The control surfaces 2 are shown here in their deployed position. Each rudder 2 comprises a steering plane 2a whose base is integral with a steering foot 2b pivotally mounted relative to the projectile body. Each director plane 2a is intended to influence by its pivoting around the axis 7 the aerodynamic supports of the projectile to change its trajectory. Each rudder 2 comprises perpendicularly to its pivot axis 7 a lever 3 integral with the rudder foot 2b of the rudder 2. The free end 3a of the lever 3 facing the front of the projectile is spherical. The steering base 2b may include or be associated with unrepresented deployment means (as described in the patent FR2955653 or in the patent EP1550837 for example).

Le dispositif de pilotage comporte une bague 5 dite bague d'orientation des gouvernes. Cette bague 5 comporte une partie annulaire 5a et autant de bras 6 que le projectile comporte de gouvernes 2. Chaque bras 6 est solidaire de la partie annulaire 5a et s'étend radialement à la partie annulaire 5a. La bague d'orientation 5 et chaque bras sont situés dans un plan P perpendiculaire à l'axe de roulis X du projectile. La bague 5 est maintenue dans son plan P par des moyens de guidage non représentés, par exemple entre deux plaques fixes solidaires du corps de projectile.The control device comprises a ring 5 called steering ring orientation ring. This ring 5 comprises an annular portion 5a and as many arms 6 that the projectile comprises control surfaces 2. Each arm 6 is integral with the annular portion 5a and extends radially to the annular portion 5a. The orientation ring 5 and each arm are located in a plane P perpendicular to the roll axis X of the projectile. Ring 5 is held in its plane P by guide means not shown, for example between two fixed plates integral with the projectile body.

Chaque bras 6 de la bague 5 comporte une rainure longitudinale 77 destinée à recevoir l'extrémité sphérique 3a des leviers 3. La rainure 77 laisse coulisser la sphère 3 dans le sens de la longueur de la rainure 77 et dans le sens de l'épaisseur du bras 6.Each arm 6 of the ring 5 comprises a longitudinal groove 77 intended to receive the spherical end 3a of the levers 3. The groove 77 allows the sphere 3 to slide in the direction of the length of the groove 77 and in the direction of the thickness of the arm 6.

Selon une variante illustrée à la figure 3, chaque sphère 3a est destinée à correspondre avec une ouverture 4a d'un chariot 4. Le chariot 4 comporte des moyens de guidage 4b destinés à coopérer avec des rainures (non représentées) fixes par rapport au corps de projectile et destinées à former des liaisons glissières orthogonales à l'axe de roulis X du projectile.According to a variant illustrated in figure 3 each sphere 3a is intended to correspond with an opening 4a of a carriage 4. The carriage 4 comprises guide means 4b intended to cooperate with grooves (not shown) which are fixed with respect to the projectile body and intended to form links orthogonal guides to the roll axis X of the projectile.

Le premier moyen de guidage comporte ainsi une barrette prismatique 4b destinée à correspondre avec une rainure du corps du projectile 100 (rainure non représentée). La barrette 4b peut librement coulisser dans la rainure, perpendiculairement à l'axe de pivotement 7 de la gouverne et parallèlement au plan P de la bague 5.The first guiding means thus comprises a prismatic bar 4b intended to correspond with a groove of the body of the projectile 100 (groove not shown). The bar 4b can slide freely in the groove, perpendicularly to the pivot axis 7 of the control surface and parallel to the plane P of the ring 5.

Le second moyen de guidage 4c est solidaire du premier moyen de guidage 4b et comporte une paire de rails 4c orientés parallèlement à l'axe de pivotement 7 de la gouverne 2 et guidant un bras 6 de la bague 5. Chaque chariot 4 est destiné à faciliter les mouvements de la sphère 3a du levier 3 par rapport aux bras 6. En particulier, il permet à l'extrémité sphérique de coulisser avec une plus grande amplitude dans le sens de l'épaisseur du bras 6.The second guide means 4c is integral with the first guide means 4b and comprises a pair of rails 4c oriented parallel to the pivot axis 7 of the rudder 2 and guiding an arm 6 of the ring 5. Each carriage 4 is intended for facilitate the movements of the sphere 3a of the lever 3 relative to the arms 6. In particular, it allows the spherical end to slide with a greater amplitude in the direction of the thickness of the arm 6.

La bague 5 peut être translatée dans toutes les directions du plan P (voir figure 2) perpendiculairement à l'axe de roulis X.The ring 5 can be translated in all directions of the plane P (see figure 2 ) perpendicular to the roll axis X.

La figure 4 montre le positionnement de la bague 5 lorsque les gouvernes 2 sont au neutre (plan des gouvernes parallèle à l'axe de roulis X). La bague 5 est alors coaxiale à l'axe de roulis X. Sur la figure 5, cette position dite neutre ou position initiale de la bague 5 au départ du coup, est représentée en pointillés. La translation dans une direction D de la bague 5 depuis la position neutre jusqu'à la position de la bague 5 représentée en traits pleins, engendre une composante d'efforts normaux aux bras 6b qui sont perpendiculaires au déplacement D. Cette composante entraine alors le pivotement des gouvernes 2b via les leviers 3 (leviers 3 mieux vus à la figure 2).The figure 4 shows the positioning of the ring 5 when the control surfaces 2 are in the neutral (control plane parallel to the roll axis X). The ring 5 is then coaxial to the roll axis X. On the figure 5 this so-called neutral position or initial position of the ring 5 at the start of the stroke, is shown in dotted lines. The translation in a direction D of the ring 5 from the neutral position to the position of the ring 5 shown in solid lines, generates a component of normal forces to the arms 6b which are perpendicular to the displacement D. This component then causes the pivoting of the control surfaces 2b via the levers 3 (levers 3 better seen at the figure 2 ).

Les rainures 77 des bras 6a (figure 5) qui sont orientées parallèlement à la direction D de déplacement de la bague 5 coulissent par rapport aux leviers 3, n'entrainant ainsi aucun pivotement des gouvernes 2a associées.The grooves 77 of the arms 6a ( figure 5 ) which are oriented parallel to the direction D of displacement of the ring 5 slide relative to the levers 3, thus causing no pivoting of the associated control surfaces 2a.

Comme on peut le voir à la figure 6, la rotation en vol du projectile autour de son axe de roulis X (ou axe longitudinal) engendre la rotation des gouvernes 2 autour de cet axe X. La bague 5 est de fait entrainée en rotation autour de son propre axe par les leviers 3 des gouvernes 2.As can be seen at figure 6 , the rotation in flight of the projectile around its axis of roll X (or longitudinal axis) causes the rotation of the control surfaces 2 about this axis X. The ring 5 is in fact rotated about its own axis by the levers 3 of the control surfaces 2.

Un moyen de positionnement 8 détaillé plus loin, permet de modifier la position du centre 5b de la bague 5 dans le plan P par rapport à un repère absolu centré sur l'axe X (repère fourni par un système de positionnement par satellites ou GPS ou par une centrale de navigation inertielle embarquée par exemple).Positioning means 8 detailed later, makes it possible to modify the position of the center 5b of the ring 5 in the plane P with respect to an absolute reference centered on the X axis (mark provided by a satellite positioning system or GPS or for example, by an onboard inertial navigation system).

Ainsi un décalage entre le centre de rotation 5b de la bague 5 et l'axe longitudinal X du projectile pourra être établi. Ce décalage T correspond à une distance radiale entre l'axe X du projectile et le centre 5b de la bague 5, il est représenté sur la figure 6.Thus an offset between the center of rotation 5b of the ring 5 and the longitudinal axis X of the projectile can be established. This offset T corresponds to a radial distance between the axis X of the projectile and the center 5b of the ring 5, it is represented on the figure 6 .

Au fur et à mesure de la rotation des bras 6 de la bague 5, lorsque ceux ci se rapprochent de la direction D, les gouvernes sont progressivement mises au neutre. A l'inverse lorsque les bras tournent jusqu'à un angle de 90° par rapport à la direction D, les gouvernes 2 pivotent jusqu'à l'angle de braquage maximal qui est directement relié à l'amplitude du décalage T entre le centre 5b de la bague 5, dans sa position centrale d'origine, et la position actuelle du centre de la bague 5.As and when the rotation of the arms 6 of the ring 5, when they are close to the direction D, the control surfaces are gradually put in neutral. Conversely, when the arms rotate to an angle of 90 ° to the direction D, the control surfaces 2 pivot to the angle of maximum deflection which is directly related to the amplitude of the offset T between the center 5b of the ring 5, in its original central position, and the current position of the center of the ring 5.

Sur la figure 6 on voit donc qu'avec un tel déplacement de la bague 5 dans la direction D, les leviers 3 de chaque gouverne 2 sont ou non entraînés en pivotement par le bras 6 de la bague 5 associé audit levier.On the figure 6 it can thus be seen that with such a displacement of the ring 5 in the direction D, the levers 3 of each rudder 2 are or are not pivoted by the arm 6 of the ring 5 associated with said lever.

Ainsi sur la figure 5 on voit que lorsque l'axe de pivotement 7 d'une gouverne 2a se trouve aligné avec la direction D de déplacement de la bague 5 (direction considérée radialement à l'axe de roulis X), cette gouverne 2a n'est pas pivotée par rapport à son axe 7 (elle est au neutre). Ceci est donc le cas pour les deux gouvernes horizontales 2a sur la figure 5.So on the figure 5 it can be seen that when the pivot axis 7 of a rudder 2a is aligned with the direction D of displacement of the ring 5 (direction considered radially to the roll axis X), this rudder 2a is not pivoted by compared to its axis 7 (it is in neutral). This is the case for the two horizontal control surfaces 2a on the figure 5 .

Inversement les deux autres gouvernes 2b qui sont perpendiculaires aux gouvernes 2a, ont leur axe de pivotement 7 qui est décalé d'un écart E par rapport à la direction du bras 6 associé porté par la bague 5. Dans la position angulaire des gouvernes de la figure 5, l'écart E est égal au décalage T donné à la bague 5. Il en résulte un pivotement de ces gouvernes 2b qui est commandé par les bras 6. L'incidence α, est maximale pour ces gouvernes 2b dont les axes sont perpendiculaires à la direction D (figures 5, 6 et 7).Conversely, the two other control surfaces 2b which are perpendicular to the control surfaces 2a, have their pivot axis 7 which is offset by a gap E with respect to the direction of the associated arm 6 carried by the ring 5. In the angular position of the control surfaces of the figure 5 , the difference E is equal to the offset T given to the ring 5. This results in a pivoting of these control surfaces 2b which is controlled by the arms 6. The incidence α, is maximum for these control surfaces 2b whose axes are perpendicular to Direction D ( figures 5 , 6 and 7 ).

Ainsi, comme on le voit aux figures 5 et 6, lorsque les gouvernes tournent autour de l'axe de roulis X, plus l'angle formé par l'axe de pivotement 7 de la gouverne et la direction D s'approche de 90° plus le décalage E entre le bras 6 de la bague 5 et l'axe de pivotement 7 de la gouverne associée 2 augmente jusqu'à la valeur maximale E=T. Ceci entrainant ainsi une rotation de la gouverne 2 autour de son axe de pivotement 7, ce qui donne une incidence non nulle α aux gouvernes 2 comme on le voit à la figure 7. L'incidence maximale est obtenue pour les positions des gouvernes avec leur axe 7 perpendiculaire à la direction D. L'incidence diminue lorsque l'angle α passe de 90° à 180° et croît à nouveau lorsque l'angle α passe de 180° à 270°.Thus, as we see in figures 5 and 6 when the control surfaces rotate around the roll axis X, the angle formed by the pivot axis 7 of the rudder and the direction D approaches 90 ° plus the offset E between the arm 6 of the ring 5 and the pivot axis 7 of the associated rudder 2 increases to the maximum value E = T. This thus causing a rotation of the rudder 2 about its pivot axis 7, which gives a non-zero incidence α to the control surfaces 2 as seen in FIG. figure 7 . The maximum incidence is obtained for the positions of the control surfaces with their axis 7 perpendicular to the direction D. The incidence decreases when the angle α passes from 90 ° to 180 ° and increases again when the angle α goes from 180 ° to 270 °.

On perçoit nettement en comparant la figure 5 et la figure 6 que l'angle d'incidence α maximal pour une gouverne 2b sera atteint (pour une position donnée de la bague 5) lorsqu'un angle de 90 degrés entre l'axe de pivotement 7 de la gouverne 2b et la direction D sera atteint.We clearly perceive by comparing the figure 5 and the figure 6 that the maximum angle of incidence α for a rudder 2b will be reached (for a given position of the ring 5) when a 90 degree angle between the pivot axis 7 of the rudder 2b and the direction D will be reached.

Ainsi chaque gouverne étant animée d'un mouvement de rotation R autour du projectile va de manière cyclique passer par une incidence nulle puis une incidence maximale et ceci deux fois de suite durant un seul tour autour du projectile 100.Thus, each rudder being animated with a rotational movement R around the projectile cyclically goes through a zero incidence then a maximum incidence and this twice in a single round around the projectile 100.

On a noté que la direction D de déplacement de la bague 5 correspond à la direction de la correction de trajectoire souhaitée pour le projectile.It has been noted that the direction D of displacement of the ring 5 corresponds to the direction of the desired trajectory correction for the projectile.

Plus le décalage T à la figure 5 entre le centre 5b de la bague 5 et l'axe de roulis X est important et plus l'incidence maximale apportée à chaque gouvernes 2 lors de son passage à la perpendiculaire de la direction D est également important (c'est à dire plus l'angle α de la figure 7 est important).Plus the offset T at the figure 5 between the center 5b of the ring 5 and the roll axis X is important and the greater the incidence brought to each control surface 2 when passing perpendicular to the direction D is also important (ie more angle α of the figure 7 is important).

Ce dispositif permet ainsi un réglage aisé de la correction à apporter à la trajectoire du projectile sans nécessiter de connaître à tout moment la position angulaire de chaque gouverne par rapport à la direction que l'on souhaite donner au projectile.This device thus allows easy adjustment of the correction to be made to the trajectory of the projectile without requiring to know at any time the angular position of each rudder relative to the direction that it is desired to give the projectile.

Ainsi l'orientation du projectile dans une direction D est déterminée par le vecteur passant par le centre 5b de la bague 5 et l'axe de roulis X du projectile.Thus the orientation of the projectile in a direction D is determined by the vector passing through the center 5b of the ring 5 and the roll axis X of the projectile.

L'amplitude du décalage radial T suivant cette direction D (décalage du centre 5b de la bague par rapport à l'axe de roulis X) donne l'amplitude de la correction donnée (valeur de l'angle de braquage α donné aux gouvernes).The amplitude of the radial offset T along this direction D (offset of the center 5b of the ring relative to the roll axis X) gives the amplitude of the given correction (value of the steering angle α given to the control surfaces) .

Ce positionnement est obtenu comme cela va maintenant être décrit à l'aide d'un moyen de positionnement 8.This positioning is obtained as will now be described using a positioning means 8.

Selon la figure 2, le dispositif de commande 1 comporte un moyen de positionnement 8 destiné à déplacer et positionner le centre 5b de la bague 5 avec un décalage T plus ou moins important par rapport au centre du projectile X et dirigé dans la direction ou l'on souhaite orienter le projectile.According to figure 2 , the control device 1 comprises a positioning means 8 intended to move and position the center 5b of the ring 5 with a shift T more or less important with respect to the center of the projectile X and directed in the direction where it is desired to orient the projectile.

Le moyen de positionnement 8 est représenté de façon éclatée à la figure 8 et assemblée à la figure 9. Il comporte un moyen de positionnement excentrique primaire 16 et un moyen de positionnement excentrique secondaire 19.The positioning means 8 is shown exploded at the figure 8 and assembled at the figure 9 . It comprises a primary eccentric positioning means 16 and a secondary eccentric positioning means 19.

Le moyen de positionnement excentrique primaire 16 comporte une came 9 en forme de portion de disque solidaire d'une première extrémité d'un arbre primaire 10 tubulaire d'axe X, donc coaxial au projectile. La came 9 est excentrée d'une valeur R1 par rapport à l'axe de roulis X et comporte un évidement 51 à profil cylindrique d'axe X. La seconde extrémité de l'arbre primaire 10 comporte une denture externe 18 destinée à faire tourner l'arbre primaire 10 autour de l'axe de roulis X au moyen d'un premier moteur non représenté.The primary eccentric positioning means 16 comprises a cam 9 in the form of a disk portion integral with a first end of a tubular primary shaft 10 of axis X, thus coaxial with the projectile. The cam 9 is eccentric by a value R1 with respect to the roll axis X and comprises a recess 51 with a cylindrical profile of axis X. The second end of the primary shaft 10 has an external toothing 18 intended to rotate the primary shaft 10 around the roll axis X by means of a first motor not shown.

Le moyen de positionnement excentrique secondaire 19 comporte un disque 12 comportant lui-même une ouverture circulaire 13. L'ouverture circulaire 13 comporte une couronne à denture intérieure 23. L'ouverture circulaire 13 est destinée à recevoir la came 9 du moyen de positionnement primaire 16 précédemment décrit.The secondary eccentric positioning means 19 comprises a disc 12 itself having a circular opening 13. The circular opening 13 comprises a ring gear 23. The circular opening 13 is intended to receive the cam 9 of the primary positioning means 16 previously described.

L'ouverture circulaire 13 a son centre confondu avec celui de la came 9, et elle est excentrée par rapport au centre du disque 12 d'une valeur R2.The circular opening 13 has its center coincides with that of the cam 9, and it is eccentric with respect to the center of the disc 12 of a value R2.

Le moyen de positionnement excentrique secondaire 19 comporte un arbre secondaire 20 qui porte à chacune de ses extrémités des pignons 21 et 22. L'arbre secondaire 20 est destiné à être ajusté dans un alésage 52 de l'arbre primaire 10. Un des pignons 22 est destiné à être placé dans l'évidement 51 de la came 9 et sa denture est destinée à correspondre avec la couronne dentée 23 du disque 12.The secondary eccentric positioning means 19 comprises a secondary shaft 20 which carries at each of its ends pinions 21 and 22. The secondary shaft 20 is intended to be adjusted in a bore 52 of the primary shaft 10. One of the pinions 22 is intended to be placed in the recess 51 of the cam 9 and its toothing is intended to correspond with the ring gear 23 of the disk 12.

L'autre pignon 21 est positionné au voisinage de la denture 18 de l'arbre primaire 10. Ce dernier pignon 21 est destiné à engrener avec un second moteur (non représenté).The other gear 21 is positioned in the vicinity of the toothing 18 of the primary shaft 10. The latter gear 21 is intended to mesh with a second motor (not shown).

La figure 9 permet de voir le moyen de positionnement 8 assemblé avec les moyens de positionnement primaire et secondaire en place l'un par rapport à l'autre.The figure 9 allows to see the positioning means 8 assembled with the primary and secondary positioning means in place relative to each other.

Les deux moyens de positionnement excentriques 16 et 19 comportent chacun un point d'excentration maximale. Ce point est localisé par un cercle C1 sur la came 9 et donne l'excentration maximale de la came 9 vis à vis de l'axe de roulis X. Sur le disque 12, le cercle C2 donne le point d'excentration maximal du disque 12 vis à vis du centre de la came 9.The two eccentric positioning means 16 and 19 each comprise a maximum eccentric point. This point is located by a circle C1 on the cam 9 and gives the maximum eccentricity of the cam 9 with respect to the roll axis X. On the disc 12, the circle C2 gives the maximum eccentric point of the disc 12 opposite the center of the cam 9.

Sur les figures 4,5,6,9,10,12 on notera que l'alésage intérieur 5c de la bague 5 coopère avec la circonférence du disque 12. La bague 5 et le disque 12 sont ajustés l'un par rapport à l'autre de manière à permettre la rotation de la bague 5 par glissement autour du disque 12. Le centre 5b de la bague 5 est confondu avec celui du disque 12. De ce fait, la bague 5, tout comme le disque 12 est excentrée d'une valeur R2 par rapport au centre de la came 9.On the figures 4 , 5 , 6 , 9 , 10 , 12 note that the inner bore 5c of the ring 5 cooperates with the circumference of the disc 12. The ring 5 and the disc 12 are adjusted relative to each other so as to allow the rotation of the ring 5 by sliding around the disk 12. The center 5b of the ring 5 coincides with that of the disk 12. As a result, the ring 5, just like the disk 12, is eccentric by a value R2 with respect to the center of the cam 9.

Afin d'orienter le projectile, la translation de la bague 5 dans le plan P s'opère en trois phases depuis une position dite neutre correspondant au vol rectiligne du projectile. Dans une telle position représentée à la figure 4, les points d'excentration maximale C1 et C2 de la came 9 et du disque 12 sont diamétralement opposés par rapport l'axe de roulis X du projectile 100 formant ainsi un alignement A avec le centre du pignon 22 (centré sur l'axe de roulis X).In order to orient the projectile, the translation of the ring 5 in the plane P operates in three phases from a so-called neutral position corresponding to the straight flight of the projectile. In such a position represented in figure 4 , the maximum eccentricity points C1 and C2 of the cam 9 and the disc 12 are diametrically opposite with respect to the roll axis X of the projectile 100 thus forming an alignment A with the center of the pinion 22 (centered on the axis of X roll).

Dans cette configuration, le centre 5b de la bague 5 est confondu avec l'axe de roulis X. Les gouvernes sont alors au neutre.In this configuration, the center 5b of the ring 5 coincides with the roll axis X. The control surfaces are then in neutral.

En vol, les gouvernes (non représentées), tournent avec le projectile autour de l'axe longitudinal X et entraînent en rotation la bague 5. Le maintien de cette position neutre des gouvernes est assuré par un entraînement par les moteurs de l'arbre primaire 10 et de l'arbre secondaire 20 de manière à compenser en continu la rotation du projectile. Les arbres primaires 10 et secondaires 20 tournent alors tous deux à la même vitesse -Ω qui est égale et opposée à la vitesse de rotation Ω du projectile. Ainsi le disque 12 et la came 9 sont immobiles dans le repère absolu tel qu'à la figure 4 et leur position est en permanence connue de l'autodirecteur. En l'absence de décalage du centre 5b de la bague 5 par rapport à l'axe de roulis X du projectile, les gouvernes sont ainsi maintenues au neutre.In flight, the control surfaces (not shown) rotate with the projectile around the longitudinal axis X and drive the ring 5 in rotation. Maintaining this neutral position of the control surfaces is ensured by driving by the motors of the primary shaft 10 and the secondary shaft 20 so as to continuously compensate for the rotation of the projectile. The primary and secondary shafts 20 then both rotate at the same speed-Ω which is equal to and opposite to the rotational speed Ω of the projectile. Thus the disk 12 and the cam 9 are immobile in the absolute reference such that at the figure 4 and their position is permanently known to the seeker. In the absence of offset of the center 5b of the ring 5 relative to the axis of roll X of the projectile, the control surfaces are thus maintained in neutral.

Dans une seconde phase, illustrée à la figure 10, une correction de trajectoire suivant une direction D doit être commandée. Les deux moteurs vont tout d'abord orienter, selon un mouvement de rotation M, le disque 12 et la came 9 de telle façon que l'alignement A formé par les points d'excentration maximale C1 et C2 et l'axe de roulis X soient perpendiculaires à la direction D qui est visée. Cette orientation se fait en donnant un différentiel aux vitesses de rotation des moteurs par rapport à la vitesse de rotation du projectile sur lui-même. On donnera à ces moteurs une vitesse égale à -Ω±θ avec un projectile tournant à la vitesse Ω. Cette orientation est obtenue par rotation simultanée, dans le même sens et à une même vitesse angulaire ±θ du disque 12 et de la came 9. L'Homme du métier choisira les vitesses de rotation des moteurs et leur sens de rotation en fonction des rapports de transmission entre les différents pignons et couronnes et en fonction du sens de montage relatif de chaque moteur.In a second phase, illustrated in figure 10 , a course correction in a direction D must be ordered. The two motors will first orient, in a rotational movement M, the disc 12 and the cam 9 so that the alignment A formed by the maximum eccentric points C1 and C2 and the roll axis X are perpendicular to the direction D which is aimed at. This orientation is done by giving a differential to the speeds of rotation of the motors relative to the speed of rotation of the projectile on itself. These motors will be given a speed equal to -Ω ± θ with a projectile rotating at the speed Ω. This orientation is obtained by simultaneous rotation, in the same direction and at the same angular velocity ± θ of the disc 12 and the cam 9. The skilled person will choose the rotational speeds of the motors and their direction of rotation according to the ratios transmission between different sprockets and crowns and depending on the relative mounting direction of each motor.

Dans une troisième phase, illustrée à la figure 11, les deux moteurs vont tourner dans le but de rapprocher chacun des points d'excentration maximale C1 et C2 de la direction D choisie. Pour cela les moteurs sont actionnés simultanément avec des vitesses identiques mais de sens opposés de façon à orienter le point d'excentration C2 du disque 12 d'un angle α1 par rapport à la direction D et à orienter le point d'excentration C1 de la came 9 d'un angle -α1 par rapport à la direction D (voir figures 11 et 12). On donnera pour cela à un moteur une vitesse égale à -Ω+b tandis que l'autre moteur aura une vitesse égale à -Ω-b. Ω est la valeur absolue de la vitesse de rotation instantanée du projectile et b est une valeur absolue d'une vitesse retranchée ou ajoutée à Ωpour faire pivoter le disque 12 et la came 9. Les vitesses θ et b seront choisies constantes ou variables par l'homme du métier en fonction de la vivacité de la correction à apporter à la trajectoire du projectile.In a third phase, illustrated in figure 11 both engines will rotate in order to bring each of the maximum eccentric points C1 and C2 closer to the chosen direction D. For this, the motors are actuated simultaneously with identical speeds but in opposite directions so as to orient the eccentric point C2 of the disk 12 by an angle α1 with respect to the direction D and to orient the eccentric point C1 of the cam 9 of an angle -α1 with respect to the direction D (see figures 11 and 12 ). For this purpose, one motor will be given a speed equal to -Ω + b while the other motor will have a speed equal to -Ω-b. Ω is the absolute value of the instantaneous rotation speed of the projectile and b is an absolute value of a speed entrenched or added to Ω to rotate the disk 12 and the cam 9. The velocities θ and b will be chosen constant or variable by skilled in the art depending on the vivacity of the correction to be made to the trajectory of the projectile.

Ce faisant, le centre 5b de la bague 5 va alors glisser dans le plan P selon la direction D avec un décalage T par rapport à l'axe de roulis X.In doing so, the center 5b of the ring 5 will then slide in the plane P in the direction D with an offset T with respect to the roll axis X.

Ce décalage a pour valeur T = R1cosαl+ R2cosαl et il donne l'amplitude de la correction qui est apportée suivant la direction D (figure 12).This shift has the value T = R1cosα1 + R2cosαl and it gives the amplitude of the correction which is brought along the direction D ( figure 12 ).

L'essentiel est donc de pouvoir déplacer la bague 5 dans les deux directions du plan P par un moyen de positionnement 8. On évite ainsi l'emploi d'un moteur pour chaque gouverne. On évite surtout les sollicitations rapides et intempestives de ces moteurs et les calculs complexes et relativement longs pour déterminer les corrections d'incidence à assurer en permanence.The essential is therefore to move the ring 5 in both directions of the plane P by a positioning means 8. This avoids the use of a motor for each rudder. In particular, the rapid and untimely loading of these motors and the complex and relatively long calculations are avoided in order to determine the corrections of incidence to be ensured permanently.

Bien entendu pour assurer l'asservissement des moteurs commandant les pignons 18 et 21 (donc la commande du moyen de positionnement 8) il est nécessaire de maîtriser la position angulaire dans un repère absolu des points d'excentration C1 (pour la came 9) et C2 (pour le disque 12). Une autre solution décrite ci après consiste à maîtriser la position angulaire dans un repère absolu d'un premier point d'excentration et de maîtriser la position angulaire de l'autre point d'excentration relativement au premier point d'excentration maximale.Of course to ensure the servocontrol of the engines controlling the gears 18 and 21 (therefore the control of the means of positioning 8) it is necessary to control the angular position in an absolute reference of the eccentric points C1 (for the cam 9) and C2 (for the disc 12). Another solution described below is to control the angular position in an absolute reference of a first eccentric point and to control the angular position of the other eccentric point relative to the first point of maximum eccentricity.

Concernant la position angulaire de C1, celle ci est obtenue aisément par la mesure de l'angle de rotation du moteur entraînant le pignon 18, donc la came 9. Ainsi pour connaître la position angulaire de la came 9 dans le repère absolu il est possible de recourir à l'utilisation d'un capteur optique solidaire du corps du projectile et tournant avec celui ci. La position de ce capteur est précisément connue par rapport au repère absolu fourni par la centrale inertielle du projectile. La position angulaire précise de l'excentration maximale C1 de la came 9 sera lue par le capteur par exemple sur une graduation optique O entourant l'arbre 10 (figure 9). La position angulaire de la came 9 étant ainsi connue, la position angulaire de C2 peut donc être obtenue relativement à la position angulaire de la came 9, par exemple par une mesure magnétique de la rotation du disque 12 autour de la came 9. Pour cela une bande magnétique B est placé au voisinage de la couronne à denture intérieure 13 et une tête de lecture C apte à lire cette bande B est solidaire de la came 9 et collecte l'information de position angulaire entre le disque 12 et la came 9. Cette information angulaire est transmise à un calculateur embarqué chargé de l'asservissement et des commandes via des pistes conductrices P placées sur l'arbre primaire 10 et reliées au curseur C. Ces pistes seront lues par exemple par un capteur inductif ou par des balais. Ces moyens sont illustrés à titre d'exemple à la figure 9.Regarding the angular position of C1, it is easily obtained by measuring the rotation angle of the motor driving the pinion 18, so the cam 9. Thus to know the angular position of the cam 9 in the absolute reference is possible to resort to the use of an optical sensor integral with the body of the projectile and rotating with it. The position of this sensor is precisely known with respect to the absolute reference provided by the inertial unit of the projectile. The precise angular position of the maximum eccentricity C1 of the cam 9 will be read by the sensor for example on an optical scale O surrounding the shaft 10 (FIG. figure 9 ). The angular position of the cam 9 is thus known, the angular position of C2 can be obtained relative to the angular position of the cam 9, for example by a magnetic measurement of the rotation of the disc 12 around the cam 9. For this a magnetic tape B is placed in the vicinity of the ring gear 13 and a read head C capable of reading this strip B is integral with the cam 9 and collects the angular position information between the disk 12 and the cam 9. This angular information is transmitted to an on-board computer responsible for servocontrol and commands via conductive tracks P placed on the primary shaft 10 and connected to the cursor C. These tracks will be read for example by an inductive sensor or by brushes. These means are illustrated by way of example in figure 9 .

Diverses variantes sont possibles sans sortir du cadre de l'invention. Il est en particulier possible de définir un dispositif commandant un nombre de gouvernes différent de quatre, par exemple trois gouvernes ou bien cinq ou six gouvernes. Seul le nombre de bras de la bague 5 devra alors être modifié. Tous les autres moyens de commande seront inchangés.Various variants are possible without departing from the scope of the invention. In particular it is possible to define a device controlling a number of control surfaces different from four, for example three control surfaces or five or six control surfaces. Only the number of arms of the ring 5 will then have to be modified. All other control methods will remain unchanged.

Il est possible également de définir un dispositif dans lequel les déplacements de la bague d'orientation 5 sont commandés par un moyen de positionnement 8 de structure différente.It is also possible to define a device in which the movements of the orientation ring 5 are controlled by a positioning means 8 of different structure.

Ainsi, selon la figure 13, un moyen de positionnement 8 comporte un disque 12 destiné à coopérer avec l'alésage 5c de la bague 5 décrite précédemment. On n'a pas représenté sur cette figure la bague 5 mais les caractéristiques structurelles de celle-ci et sa coopération avec les gouvernes sont identiques à ce qui a été décrit précédemment en référence aux figures 2 et 3.So, according to the figure 13 , a positioning means 8 comprises a disc 12 intended to cooperate with the bore 5c of the ring 5 described above. The ring 5 has not been shown in this figure, but the structural characteristics of this ring and its cooperation with the control surfaces are identical to what has been described above with reference to FIGS. figures 2 and 3 .

Conformément à l'invention, le positionnement de la bague 5 dans un plan perpendiculaire à l'axe longitudinal du projectile va permettre de commander les gouvernes. Ce positionnement de la bague 5, donc de son centre 5b, est assuré par la commande du déplacement du disque 12 qui est coaxial à la bague 5 et autour duquel cette bague va pouvoir tourner.According to the invention, the positioning of the ring 5 in a plane perpendicular to the longitudinal axis of the projectile will make it possible to control the control surfaces. This positioning of the ring 5, so its center 5b, is provided by the control of the displacement of the disc 12 which is coaxial with the ring 5 and around which this ring will rotate.

Le disque 12 comporte une liaison glissière 60 correspondant avec un plateau 61 solidaire de l'arbre primaire 10. La liaison glissière pourra être par exemple du type queue d'aronde. Comme on le voit mieux à la figure 14, la liaison glissière 60 est orientée parallèlement à un diamètre du disque 12. Le disque 12 comporte par ailleurs une crémaillère 62 orientée parallèlement à la liaison glissière 60. L'arbre primaire 10 est coaxial à l'axe de roulis X du projectile, il est solidaire du plateau 61 par une de ses extrémités et comporte un pignon primaire 18 à sa seconde extrémité, pignon qui, comme dans le mode de réalisation précédent, engrène avec une motorisation (non représentée).The disc 12 has a sliding connection 60 corresponding to a plate 61 integral with the primary shaft 10. The slide connection may be for example of the dovetail type. As we see best at the figure 14 , the slide connection 60 is oriented parallel to a diameter of the disc 12. The disc 12 further comprises a rack 62 oriented parallel to the slide connection 60. The primary shaft 10 is coaxial with the roll axis X of the projectile, is secured to the plate 61 by one of its ends and has a primary pinion 18 at its second end, pinion which, as in the previous embodiment, meshes with a motor (not shown).

Coaxialement à cet arbre primaire 10 se trouve un arbre secondaire 20 comportant un pignon (63 ou 21) à chacune de ses extrémités. Le pignon 21 est entraîné comme dans le mode de réalisation précédent par une motorisation (non représentée). Le pignon 63 engrène avec la crémaillère 62.Coaxially to this primary shaft 10 is a secondary shaft 20 having a pinion (63 or 21) at each of its ends. Pinion 21 is driven as in the previous embodiment by a motor (not shown). The pinion 63 meshes with the rack 62.

Selon la figure 14, pour déplacer le disque 12 dans le plan P, on opèrera tout d'abord une rotation de l'arbre primaire 10 de manière à positionner la glissière 60 parallèlement à la direction D voulue pour une correction de trajectoire donnée, puis une rotation de l'arbre secondaire 20 pour déplacer la crémaillère 62.According to figure 14 in order to move the disk 12 in the plane P, first rotation of the primary shaft 10 will be performed so as to position the slideway 60 parallel to the desired direction D for a given trajectory correction, then a rotation of the secondary shaft 20 for moving the rack 62.

La rotation des arbres primaire 10 et secondaire 20 se fera par des moteurs électriques.The rotation of the primary shaft 10 and secondary 20 will be by electric motors.

Dans une première phase on compense la vitesse de rotation Ω du projectile en faisant tourner l'arbre primaire 10 et l'arbre secondaire 20 ensemble d'un angle -Ω (comme dans le mode de réalisation précédent) Ceci permet de fixer la position du dispositif 8 donc de la crémaillère 62 dans le repère absolu de façon à maintenir le disque 12 coaxial au plateau 61 et à l'axe X de roulis du projectile. Cette position du disque 12 correspondant à une position neutre des gouvernes (sans incidence). On notera que si l'arbre primaire et l'arbre secondaire tournent ensemble avec le projectile et que le disque 12 est centré, alors les gouvernes sont tout de même au neutre et la trajectoire du projectile n'est pas affectée. Cette première phase d'immobilisation du moyen de positionnement dans le repère absolu est là pour donner une référence angulaire aux phases suivantes.In a first phase the rotational speed Ω of the projectile is compensated by rotating the primary shaft 10 and the secondary shaft 20 together by an angle -Ω (as in the previous embodiment). This makes it possible to fix the position of the device 8 therefore of the rack 62 in the absolute reference so as to maintain the disc 12 coaxial with the plate 61 and the axis X roll of the projectile. This position of the disk 12 corresponding to a neutral position of the control surfaces (without incidence). Note that if the primary shaft and the secondary shaft rotate together with the projectile and the disc 12 is centered, then the control surfaces are still neutral and the trajectory of the projectile is not affected. This first phase of immobilization of the positioning means in the absolute reference is there to give an angular reference to the following phases.

Dans une seconde phase, une correction de trajectoire suivant une direction D doit être commandée. On commande alors la rotation de l'arbre primaire 10 pour positionner la crémaillère 62 parallèlement à la direction D de la correction de trajectoire souhaitée. Afin que le disque 12 reste coaxial à X durant l'orientation de la crémaillère, l'opération d'orientation de la crémaillère 62 devra donc donner lieu au niveau de l'arbre secondaire 20 à une compensation de la rotation de la crémaillère 62 autour de X. Donc pour une rotation du plateau 61 d'un angle Φ, l'arbre secondaire 20 devra tourner simultanément de la même valeur et dans le même sens.In a second phase, a course correction in a direction D must be ordered. The rotation of the primary shaft 10 is then controlled to position the rack 62 parallel to the direction D of the desired path correction. So that the disc 12 remains coaxial with X during the orientation of the rack, the orientation operation of the rack 62 must therefore give rise to the level of the secondary shaft 20 to a compensation of the rotation of the rack 62 around of X. Therefore, for a rotation of the plate 61 by an angle Φ, the secondary shaft 20 will have to turn simultaneously of the same value and in the same direction.

Dans une troisième phase enfin, on commande l'axe secondaire 20 pour déplacer la crémaillère 62 dans la direction D souhaitée (figure 14). On excentre ainsi le disque 12 d'une valeur E par rapport à l'axe de roulis X. Le disque 12 étant entouré par la bague 5 (non représentée sur les figures 13 et 14) fait glisser celle ci dans le plan P agissant ainsi sur l'inclinaison des gouvernes du projectile.Finally, in a third phase, the secondary axis 20 is controlled to move the rack 62 in the desired direction D ( figure 14 ). The disc 12 is thus eccentred with a value E with respect to the roll axis X. The disc 12 is surrounded by the ring 5 (not shown on the figures 13 and 14 ) slides this one in the plane P thus acting on the inclination of the control surfaces of the projectile.

Bien entendu pour assurer l'asservissement des moteurs commandant les pignons 18 et 21 (donc la commande du moyen de positionnement 8) il est nécessaire de maîtriser la position angulaire dans un repère absolu de la crémaillère 62 ainsi que l'amplitude (E) du déplacement de cette crémaillère.Of course, to ensure servocontrol of the motors controlling the gears 18 and 21 (and thus the control of the positioning means 8), it is necessary to control the angular position in an absolute reference of the rack 62 as well as the amplitude (E) of the moving this rack.

La position angulaire est obtenue aisément comme dans le mode de réalisation précédent par des capteurs de mesure optiques de la rotation des moteurs entraînant ces pignons. La position de la crémaillère 62 par rapport au plateau 61 est obtenu à l'aide par exemple d'un capteur solidaire du plateau 61 et lisant la position de repères réalisés sur le de disque 12 (par exemple des dents de la crémaillère 62).The angular position is easily obtained as in the previous embodiment by optical sensors for measuring the rotation of the motors driving these pinions. The position of the rack 62 with respect to the plate 61 is obtained using, for example, a sensor secured to the plate 61 and reading the position of marks made on the disk 12 (for example teeth of the rack 62).

Claims (6)

Projectile (100) à gouvernes (2) orientables en incidence comportant au moins trois gouvernes (2) pouvant chacune pivoter par rapport au projectile (100) autour d'un axe de pivotement (7) perpendiculaire à l'axe longitudinal (X) du projectile (100), projectile caractérisé en ce qu'il comporte une bague d'orientation (5) des gouvernes (2), bague (5) comportant autant de bras (6) qu'il y a de gouvernes (2), bague (5) pouvant se translater dans un plan (P) perpendiculaire à l'axe longitudinal (X) du projectile et suivant au moins deux directions de ce plan (P), bague d'orientation pouvant tourner sur elle-même autour de son centre (5b) parallèle à l'axe longitudinal (X) du projectile, chaque bras (6) comportant des moyens (77) coopérant avec un levier d'orientation (3) solidaire d'une gouverne (2) pour pouvoir entrainer un pivotement de la gouverne (2) autour de son axe de pivotement (7) lors du déplacement de la bague (5), la translation de la bague (5) étant assurée par un moyen de positionnement (8) du centre de la bague (5b) dans le plan (P) relativement à un repère absolu centré sur l'axe longitudinal (X) du projectile.Projectile (100) with steerable control surfaces (2) having at least three control surfaces (2) each pivotable relative to the projectile (100) about a pivot axis (7) perpendicular to the longitudinal axis (X) of the projectile (100), projectile characterized in that it comprises an orientation ring (5) of the control surfaces (2), ring (5) having as many arms (6) as there are control surfaces (2), ring (5) can translate in a plane (P) perpendicular to the longitudinal axis (X) of the projectile and in at least two directions of this plane (P), orientation ring being rotatable about itself around its center (5b) parallel to the longitudinal axis (X) of the projectile, each arm (6) comprising means (77) cooperating with an orientation lever (3) integral with a rudder (2) to be able to cause a pivoting of the rudder (2) around its pivot axis (7) during the displacement of the ring (5), the translation of the ring (5) being ensured by a m positioning means (8) of the center of the ring (5b) in the plane (P) relative to an absolute reference centered on the longitudinal axis (X) of the projectile. Projectile à gouvernes orientables en incidence, selon la revendication 1, caractérisé en ce que le moyen de positionnement (8) comporte un disque (12) positionné dans un alésage central (5c) de la bague (5) et qui comporte une ouverture circulaire (13) excentrée par rapport au centre du disque (12) afin de déplacer le centre (5b) de la bague (5) par la rotation du disque (12).Rotating steerable projectile according to claim 1, characterized in that the positioning means (8) comprises a disc (12) positioned in a central bore (5c) of the ring (5) and which has a circular opening ( 13) eccentric to the center of the disc (12) to move the center (5b) of the ring (5) by the rotation of the disc (12). Projectile à gouvernes orientables en incidence, selon la revendication 2, caractérisé en ce que le moyen de positionnement du centre de la bague dans les deux directions du plan P comporte une came coopérant avec l'ouverture circulaire excentrée (13) du disque 12, cette ouverture circulaire excentrée (13) comportant une couronne à denture intérieure (23) engrenant avec un pignon (22) centré sur l'axe longitudinal (X) du projectile, les rotations combinées du pignon (22) et de la came (9) permettant le déplacement du disque (12).Rotatable steerable projectile according to claim 2, characterized in that the means for positioning the center of the ring in the two directions of the plane P comprises a cam cooperating with the opening circular eccentric (13) of the disc 12, this eccentric circular opening (13) having a ring gear (23) meshing with a pinion (22) centered on the longitudinal axis (X) of the projectile, the combined rotations of the pinion ( 22) and the cam (9) for moving the disk (12). Projectile à gouvernes orientables en incidence, selon la revendication 1, caractérisé en ce que le moyen de positionnement (8) comporte un disque (12) positionné dans un alésage central (5c) de la bague (5) et qui comporte une liaison glissière (60) orientée parallèlement à un diamètre du disque (12) et destinée à permettre le déplacement du disque (12) radialement par rapport à un plateau (61) coaxial à l'axe de roulis (X), le disque (12) comportant une crémaillère (62) parallèle à la glissière (60), crémaillère (62) engrénant avec un pignon (63) porté par un arbre secondaire (20) coaxial à l'axe de roulis (X).Rotating steerable projectile according to claim 1, characterized in that the positioning means (8) comprises a disk (12) positioned in a central bore (5c) of the ring (5) and which comprises a sliding connection ( 60) oriented parallel to a diameter of the disk (12) and intended to allow the disk (12) to move radially relative to a plate (61) coaxial with the roll axis (X), the disk (12) comprising a rack (62) parallel to the slide (60), rack (62) meshing with a pinion (63) carried by a secondary shaft (20) coaxial with the roll axis (X). Procédé de commande des gouvernes d'un projectile selon la revendication 3 destiné à orienter le projectile selon une direction donnée D transversale au projectile, procédé caractérisé en ce qu'il comporte successivement les étapes suivantes: - faire tourner le moyen de positionnement (8) en sens inverse du roulis du projectile (100) afin de compenser la rotation du projectile (100), - faire pivoter la came et le disque de manière à ce que leurs points d'excentration maximale (C1,C2) respectifs soient diamétralement opposés et que l'alignement A formé par ces points (C1,C2) soit perpendiculaire à la direction (D) visée, - faire pivoter simultanément et en sens inverse le disque (12) et la came (9) d'une même valeur angulaire de manière à rapprocher chacun des points d'excentration (C1,C2) de la direction (D) visée, ce qui déplace le centre (5b) de la bague (5) dans la direction voulue et selon une amplitude de mouvement voulue. A control method of the control surfaces of a projectile according to claim 3 for orienting the projectile in a given direction D transverse to the projectile, characterized in that it comprises successively the following steps: rotating the positioning means (8) in the opposite direction to the roll of the projectile (100) in order to compensate for the rotation of the projectile (100), - rotate the cam and the disc so that their respective maximum eccentric points (C1, C2) are diametrically opposed and the alignment A formed by these points (C1, C2) is perpendicular to the direction (D ) referred to, - rotate the disk (12) and the cam (9) of the same angular value simultaneously and in opposite directions so as to bring each of the eccentric points (C1, C2) closer to the direction (D) aimed at, which moves the center (5b) of the ring (5) in the desired direction and in a desired range of motion. Procédé de commande des gouvernes d'un projectile selon la revendication 4 destiné à orienter le projectile selon une direction donnée D transversale au projectile, procédé caractérisé en ce qu'il comporte successivement les étapes suivantes: - faire tourner le moyen de positionnement (8) en sens inverse du roulis du projectile (100) afin de compenser la rotation du projectile (100), - faire pivoter le plateau (61) d'un angle Φ de manière à ce que la glissière (62) soit parallèle à la direction donnée D, tout en compensant la rotation du projectile et en faisant tourner l'arbre secondaire (20) simultanément d'une même valeur angulaire et dans le même sens pour conserver le disque (12) centré sur l'axe de roulis X. - faire glisser le disque (12) dans la direction donnée D par rotation de l'arbre secondaire (20) jusqu'à ce que l'excentration E entre centre du disque (12) et axe de roulis X donne l'amplitude de correction voulue. A control method of the control surfaces of a projectile according to claim 4 for orienting the projectile in a given direction D transverse to the projectile, characterized in that it comprises successively the following steps: rotating the positioning means (8) in the opposite direction to the roll of the projectile (100) in order to compensate for the rotation of the projectile (100), - rotate the plate (61) by an angle Φ so that the slide (62) is parallel to the given direction D, while compensating the rotation of the projectile and rotating the secondary shaft (20) simultaneously of the same angular value and in the same direction to keep the disc (12) centered on the roll axis X. sliding the disc (12) in the given direction D by rotation of the secondary shaft (20) until the eccentricity E between the center of the disc (12) and the roll axis X gives the correction amplitude desired.
EP13182416.1A 2012-08-31 2013-08-30 Projectile with adjustable fins and method for controlling the fins of such a projectile Active EP2703768B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL13182416T PL2703768T3 (en) 2012-08-31 2013-08-30 Projectile with adjustable fins and method for controlling the fins of such a projectile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1202359A FR2995074A1 (en) 2012-08-31 2012-08-31 PROJECTILE WITH ORIENTABLE GOVERNMENTS AND METHOD OF ORDERING THE GOVERNMENTS OF SUCH PROJECTILE

Publications (2)

Publication Number Publication Date
EP2703768A1 true EP2703768A1 (en) 2014-03-05
EP2703768B1 EP2703768B1 (en) 2015-07-08

Family

ID=47739314

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13182416.1A Active EP2703768B1 (en) 2012-08-31 2013-08-30 Projectile with adjustable fins and method for controlling the fins of such a projectile

Country Status (5)

Country Link
US (1) US9297622B2 (en)
EP (1) EP2703768B1 (en)
ES (1) ES2547455T3 (en)
FR (1) FR2995074A1 (en)
PL (1) PL2703768T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL231186A (en) * 2014-02-26 2017-07-31 Israel Aerospace Ind Ltd Fin deployment system
FR3078152B1 (en) * 2018-02-22 2021-11-05 Nexter Munitions ORIENTABLE GOVERNANCE PROJECTILE
US11187505B1 (en) * 2019-07-03 2021-11-30 Gerhard W. Thielman Concatenated annular swing-wing tandem lift enhancer
US11619473B2 (en) * 2021-01-11 2023-04-04 Bae Systems Information And Electronic Systems Integration Inc. Command mixing for roll stabilized guidance kit on gyroscopically stabilized projectile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694533C (en) * 1930-03-04 1940-08-03 Siemens App Device for controlling rockets, in particular rocket projectiles
DE3717688C1 (en) * 1987-05-26 1988-06-09 Messerschmitt Boelkow Blohm Rotating device for aerodynamically acting control surfaces which are mounted such that they can rotate
US5950963A (en) * 1997-10-09 1999-09-14 Versatron Corporation Fin lock mechanism
EP1550837A1 (en) 2003-12-31 2005-07-06 Giat Industries Device for the deployment and the control of the control vanes of a projectile
US7246539B2 (en) 2005-01-12 2007-07-24 Lockheed Martin Corporation Apparatus for actuating a control surface
FR2955653A1 (en) 2010-01-28 2011-07-29 Nexter Munitions DEVICE FOR SIMULTANEOUS DEPLOYMENT OF GOVERNMENTS OF A PROJECTILE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2654334A (en) * 1950-07-20 1953-10-06 Chester C Wheeler Torpedo with rolling hull
US2851982A (en) * 1954-01-18 1958-09-16 John J Fogarty Hydraulic servo actuator unit for torpedo rudders
US3067681A (en) * 1960-01-04 1962-12-11 Telecomputing Corp Guided missile
US3154015A (en) * 1962-09-19 1964-10-27 Martin Marietta Corp Missile flight control system
US4327886A (en) * 1972-11-30 1982-05-04 The United States Of America As Represented By The Secretary Of The Navy Integral rocket ramjet missile
US4588146A (en) * 1984-03-29 1986-05-13 The United States Of America As Represented By The Secretary Of The Army Biaxial folding lever wing
US6247666B1 (en) * 1998-07-06 2001-06-19 Lockheed Martin Corporation Method and apparatus for non-propulsive fin control in an air or sea vehicle using planar actuation
FR2891618B1 (en) * 2005-10-05 2010-06-11 Giat Ind Sa DEVICE FOR DRIVING PROJECTILE GOVERNMENTS.
US8080772B2 (en) * 2007-11-02 2011-12-20 Honeywell International Inc. Modular, harnessless electromechanical actuation system assembly
US8410412B2 (en) * 2011-01-12 2013-04-02 Raytheon Company Guidance control for spinning or rolling vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE694533C (en) * 1930-03-04 1940-08-03 Siemens App Device for controlling rockets, in particular rocket projectiles
DE3717688C1 (en) * 1987-05-26 1988-06-09 Messerschmitt Boelkow Blohm Rotating device for aerodynamically acting control surfaces which are mounted such that they can rotate
US5950963A (en) * 1997-10-09 1999-09-14 Versatron Corporation Fin lock mechanism
EP1550837A1 (en) 2003-12-31 2005-07-06 Giat Industries Device for the deployment and the control of the control vanes of a projectile
US7246539B2 (en) 2005-01-12 2007-07-24 Lockheed Martin Corporation Apparatus for actuating a control surface
FR2955653A1 (en) 2010-01-28 2011-07-29 Nexter Munitions DEVICE FOR SIMULTANEOUS DEPLOYMENT OF GOVERNMENTS OF A PROJECTILE

Also Published As

Publication number Publication date
PL2703768T3 (en) 2015-12-31
US20140061365A1 (en) 2014-03-06
EP2703768B1 (en) 2015-07-08
FR2995074A1 (en) 2014-03-07
ES2547455T3 (en) 2015-10-06
US9297622B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
EP2703768B1 (en) Projectile with adjustable fins and method for controlling the fins of such a projectile
EP3436691B1 (en) Fluidic rotor having orientable blades with improved blade control
EP2767794B1 (en) Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile
CA2557717C (en) Connecting rod in which the length is adjustable during operation
FR2891618A1 (en) Compact device for rotating control surfaces of projectile, e.g. missile, comprises motors for rotating control heads carrying surfaces, via annular segments sliding in circular channel in device body
EP0295978B1 (en) Method and device for positioning a spacecraft in the direction of a celestial body
FR2728695A1 (en) Drive motor system for accurate positioning of telescope
FR2746494A1 (en) SEARCHING HEAD FOR MISSILES OR PROJECTILES
EP2686149B1 (en) Method and device for creating parts, notably elongate parts of revolution, by machining a bar held fixed in rotation
EP1396046B1 (en) Method for orienting a hexapod turret
EP1409947A1 (en) System for elevation and directional angle aiming of a weapon
EP3531061B1 (en) Projectile with adjustable fins
FR2605750A1 (en) BALANCED OPTICAL SYSTEM
WO2009065818A1 (en) Actuator with transfer of angular momentum for the attitude control of a spacecraft
EP0321342B1 (en) Inertial stabilizing device for the inclination of orientable elements and telescope mirror mounted on this device
EP2668100B1 (en) Method and system for piloting a flying craft with rear propulsion unit
FR2980842A1 (en) Gyrostabilized projectile for firing from tank gun, has warhead including pair of wings deployed on warhead, where motor reducer allows wings to be deployed according to variable aperture whose amplitude is determined by control electronics
EP3376153B1 (en) Ballistic protection device for observation means
EP3839604B1 (en) Improved off-centre scanning device
WO2012146835A1 (en) Method for automatically managing a homing device mounted on a projectile, in particular on a missile
BE525409A (en)
BE394108A (en)
FR3021940A1 (en) ADJUSTABLE STEERING WHEEL FOR A MOTOR VEHICLE COMPRISING AN ELECTRIC MOTORIZATION
FR3001707A1 (en) Mini-handle for controlling return force for piloting e.g. pitching, of airplane, has control unit acting on motor as function of measurement signals of position sensor and law of predetermined return force
FR2689969A1 (en) Highly stable aiming head for sights eg for military target - uses two reflectors, one for traversing, other for elevating sight, each mounted, respectively, on its own servo=mechanism, one of which is itself mounted on traversing assembly of other reflector

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140826

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20141015

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 735744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602013002210

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2547455

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20151006

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 735744

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150708

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150708

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150708

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151009

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151108

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151109

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602013002210

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20160411

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230721

Year of fee payment: 11

Ref country code: IT

Payment date: 20230720

Year of fee payment: 11

Ref country code: GB

Payment date: 20230720

Year of fee payment: 11

Ref country code: ES

Payment date: 20230901

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230720

Year of fee payment: 11

Ref country code: PL

Payment date: 20230724

Year of fee payment: 11

Ref country code: FR

Payment date: 20230720

Year of fee payment: 11

Ref country code: DE

Payment date: 20230720

Year of fee payment: 11

Ref country code: BE

Payment date: 20230720

Year of fee payment: 11