EP1396046B1 - Method for orienting a hexapod turret - Google Patents
Method for orienting a hexapod turret Download PDFInfo
- Publication number
- EP1396046B1 EP1396046B1 EP02743335A EP02743335A EP1396046B1 EP 1396046 B1 EP1396046 B1 EP 1396046B1 EP 02743335 A EP02743335 A EP 02743335A EP 02743335 A EP02743335 A EP 02743335A EP 1396046 B1 EP1396046 B1 EP 1396046B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- moving plate
- orientation
- hexapod
- legs
- rotation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/12—Supports; Mounting means
- H01Q1/125—Means for positioning
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T74/00—Machine element or mechanism
- Y10T74/20—Control lever and linkage systems
- Y10T74/20207—Multiple controlling elements for single controlled element
- Y10T74/20305—Robotic arm
- Y10T74/20329—Joint between elements
Definitions
- the invention relates to the application of hexapod turrets to the pointing of equipment such as antennas, optronic devices or telescopes, optical measuring or telecommunication devices or any device whose function requires orientation in space.
- the hexapod turrets or platforms of Stewart or Gough are devices generally used as antenna supports or telescopes allowing an adjustment of their orientation.
- the patent EP 0 515 888 filed on May 12, 1992 in the name of ANT NACHRICHTENTECH describes an example of a pointing device comprising a hexapod turret.
- a hexapod turret comprises a platform or fixed base, a movable plate on which is fixed the device to be oriented and six legs of adjustable length connecting the movable plate to the base. The ends of the legs are fixed in pairs by means of cardan-type links on the movable plate and the base so that the legs form triangles.
- Each leg includes two nested tubes slidable relative to each other. These tubes are powered by linear piezoelectric motors that adjust the length of the leg.
- Such a device makes it possible to move the movable plate according to six degrees of freedom.
- the object of the invention is to use a hexapod device to orient equipment with a large deflection and aiming on at least 2 ⁇ steradians so as to cover at least the half-space above the horizon.
- Another object of the invention is to orient the equipment in all directions of the half-space while permanently maintaining good rigidity.
- the document EP 0 266 026 A1 describes a method of moving the movable plate of a hexapod according to the preamble of claim 1.
- the invention proposes a method of moving the mobile plate of a hexapode according to claim 1.
- This method advantageously makes it possible to position the plate of the hexapod with an offset to avoid singular points, ie the positions in which the hexapod turret loses its rigidity.
- a deportation law giving a single position of the center OB of the plate in space according to its orientation is defined.
- This law defines a geometric surface called “offset surface” on which the center OB of the plate evolves.
- the displacement of the movable plate can be achieved by controlling a rotation of the movable plate along an axis perpendicular to the plane containing the sighting vectors V i and V i + 1 .
- This method of controlling the length variation of the legs avoids configurations of the hexapod turret which could reduce its rigidity and damage the mechanisms of the legs by collisions.
- the global movement of orientation of the moving plate is decomposed into a succession of unit displacements of azimuth ⁇ ⁇ and elevation ⁇ ⁇ of the movable platen. For each unitary displacement, the overall method of displacement (determination of a virtual rotation followed by a virtual translation) is reproduced.
- the invention further proposes a device for moving the movable plate of a hexapod, according to claim 13.
- the hexapod turret 100 comprises a base 10 and a movable plate 20 connected by six identical cylinders 1, 2, 3, 4, 5 and 6 constituting legs.
- Each jack i connects a point A i of the fixed base 10 to a point B i of the movable plate 20 and is set to a length L i corresponding to the distance A i B i .
- the connections between jacks and base 10 as well as the connections between jacks and movable plate 20 are materialized by twelve gimbal joints (or universal joint). Each of these joints comprise two elementary axes of rotation which intersect at points A 1 , A 2 , A 3 , A 4 , A 5 , A 6 , B 1 , B 2 , B 3 , B 4 , B 5 and B 6. .
- the points A i are located at a distance RA from the center OA of the fixed base 10 and are divided into three pairs, the pairs (A 1 , A 2 ), (A 3 , A 4 ) and (A 5 , A 6 ) being placed at 120 ° to each other.
- the points B i are located at a distance RB from the center OB of the moving plate 20 and are divided into three pairs, the pairs (B 2 , B 3 ), (B 4 , B 5 ), (B 6 , B 1 ) being placed at 120 ° to each other.
- Two jacks from a pair of points on the base 10 are always connected to points of distinct pairs on the movable plate 20. In this way, the jacks 1 to 6 converge two by two alternately towards the base 10 or towards the plateau mobile 20.
- connection is shown in more detail at the points B 2 and B 3 between the pair of jacks 2 and 3, and the movable plate 20.
- Such a connection comprises a central support 41 screwed onto the plate 10 and bearing symmetrically two cylindrical axes 42 oriented in the direction B 2 B 3 . Pivoting joints 43 are mounted on the pins 42.
- Each seal 43 has a bore which allows it to be fitted on one of the axes 42 of the central support 41.
- a pivot connection is made by a direct contact between a seal 43 and the surface of an axis 42.
- Each seal 43 is stopped in translation on the axis 42 by a circlip 44 mounted in a groove of the axis 42 or by a nut mounted on the threaded end of the shaft 42.
- the seals 43 further comprise two axes 45 perpendicular to their bore.
- the ends 46 of the cylinders 2 and 3 have a generally clevis shape, consisting of two symmetrical parts inserting the gasket 43 and having bores in which are fitted the pins 45 of the gasket 43.
- the ends 46 in the yoke of the cylinders 2 and 3 have chamfers so as to allow them maximum clearance relative to the seal 43 in all orientation configurations thereof.
- connection is shown in greater detail at the points A 1 and A 2 between the pair of jacks 1 and 2, and the fixed base 10.
- This connection is comparable to the connection between jacks and movable plate shown in FIG. figure 4 .
- It comprises a central support 51 screwed onto the base 10 and symmetrically carrying two concentric cylindrical axes 52 oriented along the direction A 1 A 2 .
- Swivel joints 53 having a bore and two perpendicular axes 55 are mounted on the axes 52.
- the ends 56 of the cylinders 1 and 2 have a generally clevis shape, consisting of two symmetrical parts inserting a seal 52 and having bores in which are fitted the axes of the seal 52.
- the end portions 56 of the cylinders 1 and 2 support a device 57 for controlling the lengths L 1 and L 2 of the cylinders 1 and 2.
- the cylinder 1 comprising two sets LA and L B being able to slide relative to each other so as to vary the length L 1 of the cylinder 1.
- the device 57 for adjusting the length comprises a motor not 61 whose output axis 62 supports a worm 63 for driving in rotation a toothed wheel 64 disposed perpendicularly to the axis 62.
- This toothed wheel 64 drives a screw to ball 65 extending in the length of the assembly LA.
- the assembly L B comprises a nut 66 mounted integrally in which the ball screw 65 pivots. The rotation of the ball screw 65 in the nut 66 causes the translation of the nut 66 along the screw 65.
- the screw 65 has a speed of rotation proportional to that of the stepper motor 61. To determine the coefficient of proportionality between these speeds, it suffices to know the geometrical characteristics of the different mechanical parts (in particular the steps of the screw 65, the wheel 64 and the worm 63). Theoretically, by controlling the angular position of the output shaft 62 of the motor 61, the length L 1 of the cylinder 1 is obtained. To control this length, it is possible, for example, to use a position servo of the motor 61 in an open loop, or an absolute position measurement of the axis 62 by resolver for a closed-loop servocontrol. It is also possible to use optical encoders, incremental or absolute, single-turn or multi-turn.
- the Figures 6 to 8 represent the axes of rotation of the various constituent elements of the universal joints.
- the RPJ axis is linked to the central support 41 or 51 and the RSJ axes to the joints 43 or 53.
- the figure 10 is a graphical representation of the angle of rotation of the joint 43 at the point A 1 around RPJ as a function of the azimuth ⁇ for a fixed elevation ⁇ of the movable plate 20.
- the figure 11 is a graphical representation of the angle of rotation of the jack 1 at the point A 1 around RSJ as a function of the azimuth ⁇ for a fixed elevation ⁇ of the moving plate 20.
- the figure 12 gives the relative angle of rotation between the two elements LA and LB of the cylinder 1 as a function of the azimuth ⁇ for a fixed elevation ⁇ of the movable plate 20.
- hexapod turret 100 supports a satellite dish 30, it is shown in the reference position.
- the cylinders 1, 2, 3, 6, 5 and 6 are all set to the same length L 0 .
- the center OB is located vertically from the center OA on the vertical axis z 0 .
- the reference position can also be chosen as a virtual position of the turret.
- the reference position can be defined as a position for which the cylinders would take a length L 0 greater than the length that they can mechanically reach.
- a reference R 0 is defined, linked to the base 10, of center OA and of axes (x 0 , y 0 , z 0 ).
- the position of the movable plate 20 can be entirely determined by the position of its center OB and a viewing direction V defined by an azimuth ⁇ and an elevation ⁇ .
- the reference R 01 of center OB and of axes (x 01 , y 01 , z 01 ) is defined as the image by the rotation of the coordinate system R 0 with respect to the axis z 0 and of angle ⁇ .
- the reference R 02 of center OB and of axes (x 02 , y 02 , z 02 ) are defined as the image by the rotation of the reference R 01 with respect to the axis y 01 and of angle ⁇ .
- the reference R 02 is a reference fixed with respect to the movable plate 20.
- the direction x 02 defines the viewing direction V in the R 0 mark.
- the hexapod structure theoretically makes it possible to position the mobile plate 20 in the space according to six degrees of freedom. However, some positions lead to unstable configurations of the hexapod structure.
- the figure 15 represents a hexapod turret 100 in a configuration approaching instability.
- the movable plate 20 is substantially aligned with the cylinders 1 and 2 (the angle between leg and normal plateau reaches the limit value of 80 degrees).
- the structure 100 loses its rigidity when the angles between its elements (angles between axes jacks 1 to 6 and the normal to the plane of the fixed base 10 or movable plate 20) become close to 90 degrees. This phenomenon is particularly detrimental when the structure is placed outside and likely to be exposed to difficult climatic conditions.
- the hexapod turret 100 is used to point equipment towards elements situated at great distances from the dimensions of the turret, one is only interested in the orientation of its plate 20 and not in the position of the latter in the reference R 0 .
- the pointing direction V fixes the two orientation parameters ⁇ and ⁇ .
- An offset law d of the moving plate 20 is defined as a function of the aiming direction V to be pointed. For example, it is possible to control the variation of the lengths L 1 to L 6 of the legs 1 to 6 so that the center OB of the movable plate 20 moves in a plane perpendicular to the axis z 0 , that is to say at a height z constant with respect to the base 10. This plane defines the "offset surface" on which the OB point must always be.
- the point OB is offset by a distance d in the direction x 01 from its reference configuration illustrated in FIG. figure 13 .
- the direction x 01 of offset therefore depends on the azimuth angle ⁇ and the offset distance d is a function of the plateau elevation ⁇ .
- the Figures 16 and 17 give examples of laws of offset according to the elevation ⁇ .
- the hexapod turret 100 is in configurations in which the angles between the axes of the cylinders 1 to 6 and the normal to the plane of the fixed base 10 or movable plate 20 are always less than 45 degrees for example (giving a 45 degree safety margin).
- These laws make it possible to position the turret 100 away from singular points of low rigidity.
- the lengths L i of the jacks i obtainable are limited. Indeed, one must take into account the minimum and maximum possible elongations. On the other hand, one must respect the margin of safety chosen concerning the angles between the elements. One can choose a maximum angle of 135 or 150 degrees for example.
- FIG. 18 there is shown a displacement of the moving plate 20 of the turret 100.
- V 1 ( ⁇ 1 , ⁇ 1 ) towards a direction of view
- this reference R 02 we consider a virtual axis of rotation RH y 02 direction and passing through a fixed point PRH on the axis z 0 .
- a virtual rotation of the mobile plate 20 of RH axis and angle 90 ° - ⁇ 2 is performed. This rotation makes it possible to pass from the reference position of the turret (platform oriented at the zenith) to the position corresponding to the sighting direction V 2 .
- the reference position can be virtual.
- the offset of the moving plate (20) is determined in the direction of azimuth ⁇ 2 by virtue of the law of offset and the position of the points A 1 to A 6 and B 1 to B 6 are deduced therefrom. configuration.
- a virtual translation of the mobile plate 20 is carried out making it possible to bring the point OB back onto the offset surface.
- the lengths L 1 to L 6 of the legs 1 to 6 of the hexapod 100 are determined in this position of the plate 20. From this is deduced the elongation of each leg 1 to 6 necessary to pass from the orientation V 1 to V 2 with offset.
- t 1 second
- each leg length adjustment device i We realize a interpolation of the length of the legs: for example, an elongation speed of each jack i of / t ⁇ ⁇ The i (Linear interpolation).
- the turret 100 may pass through a singular point.
- the displacement of the plateau 20 from V 1 to V 2 can be decomposed into a series of unit displacements of azimuth ⁇ and elevation ⁇ ⁇ .
- Each unitary displacement makes it possible to go from a viewing direction V i to a viewing direction V i + 1 close to V i .
- the elongations of the cylinders are calculated by means of the two successive virtual transformations (a virtual rotation followed by a virtual translation) as previously described. In this way, the plate 20 is moved in a series of positions corresponding to target directions V 1 , ...
- V i , V i + 1 ... V 2 having a deviation of ⁇ ⁇ and ⁇ ⁇ .
- the values of ⁇ ⁇ and ⁇ ⁇ are chosen sufficiently small so that the plate 20 never goes through singular points or configurations that are physically impossible to achieve. Indeed, the smaller ⁇ ⁇ and ⁇ ⁇ are, the fewer the successive positions OB of the plateau 20 can approach a singular point.
- the successive positions of the viewing direction V i are illustrated. These positions are for example chosen with successive deviations of 1 °.
- the unitary trajectory of the orientation vector V i between two successive positions corresponds to a rotation of axis perpendicular to the plane containing the two successive orientations.
- the successive positions of V i can follow a direct global trajectory corresponding to an axis rotation perpendicular to V 1 and V 2 as illustrated on FIG. figure 19 or any global trajectory as illustrated on the figure 20 .
- the method of moving the movable plate 20 of the hexapod 100 previously described has the effect of linking the rotation of the movable plate 20 about its own axis x 02 to its azimuth rotation about the axis z 0 linked to the base 10
- V 1 ( ⁇ 1 , ⁇ 1 )
- V 2 ( ⁇ 2 , ⁇ 2 )
- the mobile plate 20 continuously compensates for this rotation of azimuth by rotating about its own axis z 02 of angle - ( ⁇ 2 - ⁇ 1 ).
- the overall rotation of the movable plate 20 about the axis z 0 is always zero.
- This method has for example the advantage that electrical cables connected to the device 30 mounted on the movable plate 20 and connecting the device to the ground never undergo torsion during the displacement of the movable plate 20.
- This feature makes it possible to control a continuous rotation the movable plate 20 about the azimuth axis z 0 without risking damage to the mechanism of the hexapod 100.
- the moving plate moving device does not require a rotary joint.
- Another advantage of this method is that it permanently controls the proper operation of the displacement device. Indeed, in the case where one of the leg length adjustment devices or one of the cylinders would be deficient, it is sometimes difficult to perceive a malfunction of the hexapod.
- the stops of the cylinders are in this case the only arrangements likely to stop the movement device in its movement.
- the hexapod structure risks passing through singular points leading to an inevitable damage to the universal joints.
- the orientation device comprises means for controlling that the overall rotation of the movable plate 20 about the axis z 0 is always zero.
- figure 21 represents an example of such control means.
- These means comprise a cable 80 connecting the center OB of the movable plate 20 to the center OA of the fixed base 10.
- This cable 80 has the properties of being flexible in bending and rigid in torsion. It is connected at a first end, at the center OB mobile plate 20 by a rigid connection and at a second end, at the center OA of the fixed base 10 by a pivot connection 82.
- the cable 80 is provided at this second end of 84.
- the second end of the cable 80 is always fixed with respect to the base 10 and the indicator element 84 is in contact with a detection circuit 86.
- the rotation of the plate 20 around the Z axis 0 generates the rotation of the cable 80 relative to the base 10.
- This rotation causes the rotation of the indicator element 84, which is no longer in contact with the detection circuit 86.
- the detection circuit 86 detects this cut of contact and sends an alert signal to a control device of the leg adjustment devices. In response to this signal, the controller stops movement of the hexapod 100.
- control means could be used.
Landscapes
- Control Of Position Or Direction (AREA)
- Manipulator (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Description
L'invention concerne l'application de tourelles hexapodes aux pointages d'équipements tels que des antennes, des appareils optroniques ou des télescopes, des dispositifs optiques de mesure ou de télécommunication ou tout dispositif dont la fonction nécessite une orientation dans l'espace.The invention relates to the application of hexapod turrets to the pointing of equipment such as antennas, optronic devices or telescopes, optical measuring or telecommunication devices or any device whose function requires orientation in space.
Les tourelles hexapodes ou plates-formes de Stewart ou de Gough sont des dispositifs généralement utilisés comme supports d'antennes ou de télescopes permettant un réglage de leur orientation. Le brevet
Dans le brevet
Le but de l'invention est d'utiliser un dispositif hexapode pour orienter un équipement avec un grand débattement et une visée sur au moins 2π stéradians de façon à couvrir au moins le demi-espace au-dessus de l'horizon.The object of the invention is to use a hexapod device to orient equipment with a large deflection and aiming on at least 2π steradians so as to cover at least the half-space above the horizon.
Le problème posé par l'utilisation d'une structure hexapode est qu'elle perd sa rigidité lorsque les angles entre deux jambes d'une même articulation et la normale au plan du socle fixe ou du plateau mobile deviennent proches de 90°, ce phénomène est couramment appelé l'effet "genouillère".The problem posed by the use of a hexapod structure is that it loses its rigidity when the angles between two legs of the same joint and the normal to the plane of the fixed base or the moving plate become close to 90 °, this phenomenon is commonly called the "knee" effect.
Un autre but de l'invention est de pouvoir orienter l'équipement dans toutes les directions du demi-espace en conservant en permanence une bonne rigidité.Another object of the invention is to orient the equipment in all directions of the half-space while permanently maintaining good rigidity.
Le document
L'invention propose un procédé de déplacement du plateau mobile d'un hexapode conforme à la revendication 1.The invention proposes a method of moving the mobile plate of a hexapode according to
Ce procédé permet avantageusement de positionner le plateau de l'hexapode avec un déport permettant d'éviter les points singuliers, c'est à dire les positions dans lesquelles la tourelle hexapode perd sa rigidité.This method advantageously makes it possible to position the plate of the hexapod with an offset to avoid singular points, ie the positions in which the hexapod turret loses its rigidity.
Très préférentiellement, on définit une loi de déport donnant une position unique du centre OB du plateau dans l'espace en fonction de son orientation. Cette loi définit une surface géométrique dite « surface de déport » sur laquelle le centre OB du plateau évolue.Very preferably, a deportation law giving a single position of the center OB of the plate in space according to its orientation is defined. This law defines a geometric surface called "offset surface" on which the center OB of the plate evolves.
Selon des variantes de ce procédé :
- la loi de déport définit une surface géométrique continue,
- la surface de déport est un plan,
- la surface de déport est une portion de sphère.
- the law of offset defines a continuous geometrical surface,
- the offset surface is a plane,
- the offset surface is a sphere portion.
Le déplacement du plateau mobile peut être réalisé en commandant une rotation du plateau mobile selon un axe perpendiculaire au plan contenant les vecteurs de visée Vi et Vi+1.The displacement of the movable plate can be achieved by controlling a rotation of the movable plate along an axis perpendicular to the plane containing the sighting vectors V i and V i + 1 .
La variation de longueur des jambes de l'hexapode peut avantageusement être déterminée selon les étapes suivantes :
- on définit une position de référence de l'hexapode selon laquelle toutes les jambes sont réglées à la même longueur L0,
- on détermine la variation de longueur de chaque jambe pour que le plateau mobile de l'hexapode se déplace de la position de référence à la direction de visée Vi+1 par une rotation virtuelle dans le plan d'azimut α i+1, et par une translation virtuelle du centre OB du plateau vers une surface de déport définie par la loi de déport,
- on en déduit une variation de longueur totale pour chaque jambe pour passer de la direction Vi à la direction Vi+1.
- defining a reference position of the hexapod according to which all the legs are set to the same length L 0 ,
- the variation in length of each leg is determined so that the movable plate of the hexapod moves from the reference position to the viewing direction V i + 1 by a virtual rotation in the azimuth plane α i + 1 , and by a virtual translation of the center OB of the plate towards a surface of offset defined by the law of offset,
- a variation in total length for each leg is deduced from the direction V i to the direction V i + 1 .
Ce procédé de commande de la variation de longueur des, jambes permet d'éviter des configurations de la tourelle hexapode qui risqueraient de réduire sa rigidité et d'endommager les mécanismes des jambes par des collisions.This method of controlling the length variation of the legs avoids configurations of the hexapod turret which could reduce its rigidity and damage the mechanisms of the legs by collisions.
Dans une mise en oeuvre de l'invention, le mouvement global d'orientation du plateau mobile est décomposé en une succession de déplacements unitaires d'azimut Δα et d'élévation Δβ du plateau mobile. Pour chaque déplacement unitaire, le procédé global de déplacement (détermination d'une rotation virtuelle suivi d'une translation virtuelle) est reproduit.In one implementation of the invention, the global movement of orientation of the moving plate is decomposed into a succession of unit displacements of azimuth Δ α and elevation Δ β of the movable platen. For each unitary displacement, the overall method of displacement (determination of a virtual rotation followed by a virtual translation) is reproduced.
Cette décomposition en Δα et Δβ unitaires évite que le plateau ne passe par un point singulier lors de son mouvement de passage d'une position à l'autre. De cette manière, on s'assure qu'au cours du mouvement du plateau mobile, la tourelle hexapode se trouve toujours dans une configuration stable.This decomposition into unit Δ α and Δ β prevents the plate from passing through a singular point during its movement from one position to another. In this way, it is ensured that during the movement of the moving plate, the hexapod turret is always in a stable configuration.
Le procédé peut avantageusement être complété par les étapes suivantes:
- on commande les dispositifs de réglages en fonction des longueurs Li des jambes à obtenir et en ce que ce calcul prend en compte les angles relatifs entre les éléments constitutifs des liaisons reliant les jambes au plateau et au socle fixe,
- les angles formés par les axes des jambes et la normale au plan du socle fixe et les angles formés par les axes des jambes et la normale au plan du plateau mobile sont toujours inférieurs à un angle maximum défini entre 40 et 80 degrés.
- the adjustment devices are controlled according to the lengths L i of the legs to be obtained and in that this calculation takes into account the relative angles between the constituent elements of the connections connecting the legs to the platform and to the fixed base,
- the angles formed by the axes of the legs and the normal to the plane of the fixed base and the angles formed by the axes of the legs and the normal to the plane of the movable plate are always less than a maximum angle defined between 40 and 80 degrees.
L'invention propose en outre un dispositif de déplacement du plateau mobile d'un hexapode, conforme à la renvendication 13.The invention further proposes a device for moving the movable plate of a hexapod, according to claim 13.
Le dispositif peut être complété par les caractéristiques suivantes :
- le dispositif comprend des moyens de mesure de la position de l'axe du moteur,
- des liaisons sont disposées sur le socle fixe selon un premier cercle de rayon RA et des liaisons sont disposées sur le plateau mobile selon un deuxième cercle de rayon RB, le rapport RA/RB étant sensiblement égal à 1,5,
- les liaisons sont disposées par paires sur le plateau mobile ou sur le socle fixe selon un cercle de rayon R, la distance entre deux liaisons d'une même paire étant sensiblement égale à R/10,
- l'élongation maximale d'une jambe est inférieure à 2,
- l'élongation maximale d'une jambe est supérieure à 1,7.
- the device comprises means for measuring the position of the axis of the motor,
- links are arranged on the fixed base according to a first circle of radius RA and links are arranged on the moving plate in a second circle of radius RB, the ratio RA / RB being substantially equal to 1.5,
- the links are arranged in pairs on the mobile platform or on the fixed base in a circle of radius R, the distance between two links of the same pair being substantially equal to R / 10,
- the maximum elongation of a leg is less than 2,
- the maximum elongation of a leg is greater than 1.7.
Ces différentes caractéristiques permettent en particulier d'obtenir des débattements importants.These different characteristics make it possible in particular to obtain significant deflections.
D'autres caractéristiques et avantages ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des figures annexées parmi lesquelles:
- la
figure 1 est un schéma cinématique d'une tourelle hexapode, - la
figure 2 est un schéma de la répartition sur le socle fixe des liaisons entre les jambes et le socle fixe, - la
figure 3 est un schéma de la répartition sur le plateau mobile des liaisons entre les jambes et le plateau mobile, - la
figure 4 représente un exemple de liaison entre le plateau mobile et une paire de jambes, - la
figure 5 représente un exemple de liaison entre le socle fixe et une paire de jambes, - les
figures 6 à 8 représentent les différents éléments mécaniques utilisés dans les liaisons desfigures 4 et5 , - la
figure 9 est une vue en coupe d'un dispositif de réglage de longueur d'un vérin, - la
figure 9bis est une vue en coupe du dispositif de réglage de lafigure 9 selon la coupe A-A, - les
figures 10 et 11 sont des représentations graphiques des angles de rotation des éléments constitutifs d'une liaison entre un vérin et le socle en fonction de l'orientation du plateau mobile, - la
figure 12 est une représentation graphique de l'angle de rotation relative entre les deux éléments constitutifs d'une jambe en fonction de l'orientation du plateau mobile, - la
figure 13 représente une tourelle hexapode sur lequel a été montée une antenne parabolique, dans sa position de référence, - la
figure 14 représente le système de repères azimut-élévation utilisés pour définir l'orientation du plateau mobile dans l'espace, - la
figure 15 représente une tourelle hexapode sur laquelle a été montée une antenne parabolique, la tourelle se trouve dans une position se rapprochant d'une configuration instable, - les
figures 16 et 17 représentent des exemples de lois de déport du plateau mobile en fonction de son élévation, - la
figure 18 illustre un principe de déplacement du plateau mobile de la tourelle, - les
figures 19 et 20 illustrent des trajectoires possibles de déplacement de la tourelle, - la
figure 21 représente un exemple de mise en oeuvre de moyens de contrôle du fonctionnement de la tourelle hexapode.
- the
figure 1 is a kinematic diagram of a hexapod turret, - the
figure 2 is a diagram of the distribution on the fixed base of the connections between the legs and the fixed base, - the
figure 3 is a diagram of the distribution on the mobile platform of the connections between the legs and the movable plate, - the
figure 4 represents an example of connection between the movable plate and a pair of legs, - the
figure 5 represents an example of connection between the fixed base and a pair of legs, - the
Figures 6 to 8 represent the different mechanical elements used in the connections offigures 4 and5 , - the
figure 9 is a sectional view of a length adjustment device of a jack, - the
figure 9bis is a sectional view of the adjustment device of thefigure 9 according to the AA cut, - the
Figures 10 and 11 are graphical representations of the angles of rotation of the constituent elements of a connection between a jack and the base according to the orientation of the movable plate, - the
figure 12 is a graphical representation of the relative angle of rotation between the two constituent elements of a leg as a function of the orientation of the moving plate, - the
figure 13 represents a hexapod turret on which a satellite dish has been mounted, in its reference position, - the
figure 14 represents the system of azimuth-elevation markers used to define the orientation of the moving plate in space, - the
figure 15 represents a hexapod turret on which a satellite dish has been mounted, the turret is in a position approximating an unstable configuration, - the
Figures 16 and 17 represent examples of laws of offset of the moving plate according to its elevation, - the
figure 18 illustrates a principle of displacement of the moving plate of the turret, - the
Figures 19 and 20 illustrate possible trajectories of movement of the turret, - the
figure 21 represents an exemplary implementation of means for controlling the operation of the hexapod turret.
Sur la
Comme représenté à la
Sur la
Chaque joint 43 comporte un alésage qui permet de l'emmancher sur l'un des axes 42 du support central 41. Dans ce cas, une liaison pivot est réalisée par un contact direct entre un joint 43 et la surface d'un axe 42. On peut choisir de réaliser les éléments dans des matériaux permettant de limiter le frottement: par exemple on réalise les axes 42 en acier et les joints 43 en bronze. Pour limiter encore les frottements, cette liaison peut aussi être réalisée en intercalant des éléments de type palier lisse rapporté dans le joint 43 ou roulement à bille ou à aiguilles. Chaque joint 43 est arrêté en translation sur l'axe 42 par un circlips 44 monté dans une rainure dé l'axe 42 ou par un écrou monté sur l'extrémité filetée de l'axe 42.Each
Les joints 43 comportent en outre deux axes 45 perpendiculaires à leur alésage. Les extrémités 46 des vérins 2 et 3 présentent une forme générale de chape, constituée de deux parties symétriques insérant le joint 43 et présentant des alésages dans lesquels sont emmanchés les axes 45 du joint 43. Les extrémités 46 en chape des vérins 2 et 3 présentent des chanfreins de manière à leur permettre un débattement maximum par rapport au joint 43 dans toutes les configurations d'orientation de ceiui-ci.The
Sur la
Les parties extrêmes 56 des vérins 1 et 2 supportent un dispositif 57 permettant de commander les longueurs L1 et L2 des vérins 1 et 2.The
Sur la
Dans ce dispositif de réglage, la vis 65 a une vitesse de rotation proportionnelle à celle du moteur pas à pas 61. Pour déterminer le coefficient de proportionnalité entre ces vitesses, il suffit de connaître les caractéristiques géométriques des différentes pièces mécaniques (notamment les pas de la vis 65, de la roue 64 et de la vis sans fin 63). Théoriquement, en contrôlant la position angulaire de l'axe 62 de sortie du moteur 61, on obtient la longueur L1 du vérin 1. Pour commander cette longueur, on peut par exemple utiliser un asservissement de position du moteur 61 en boucle ouverte, ou une mesure absolue de position de l'axe 62 par resolveur pour un asservissement en boucle fermée. Il est également possible d'utiliser des codeurs optiques, incrémentaux ou absolus, mono-tour ou multi-tours.In this adjustment device, the
Néanmoins, l'allongement de vérin 1 n'est pas directement proportionnel à la grandeur angulaire mesurée par ce dispositif. En effet, au cours des variations de position du plateau mobile 20, il se produit une rotation relative des ensembles LA et LB. Cette rotation supplémentaire vient modifier la longueur L1 du vérin 1 par l'intermédiaire de la liaison hélicoïdale, indépendamment de l'action du moteur 61. On prend donc en compte cet effet pour établir la consigne donnée au moteur. Les rotations relatives sont déterminées analytiquement d'après les positions des points B1 à B6 calculées. Les calculs intermédiaires permettent de déterminer les rotations des éléments des joints de cardan.Nevertheless, the elongation of
Les
La
Sur la
Comme représenté à la
La structure hexapode permet en théorie de positionner le plateau mobile 20 dans l'espace selon six degrés de liberté. Cependant, certaines positions conduisent à des configurations instables de la structure hexapode. La
Etant donné que l'on utilise la tourelle hexapode 100 pour pointer des équipements vers des éléments situés à des grandes distances par rapport aux dimensions de la tourelle, on ne s'intéresse qu'à l'orientation de son plateau 20 et non pas à la position de celui-ci dans le repère R0.Since the
La direction de pointage V fige les deux paramètres d'orientation α et β. On définit une loi de déport d du plateau mobile 20 en fonction de la direction de visée V à pointer. Par exemple, on peut commander la variation des longueurs L1 à L6 des jambes 1 à 6 pour que le centre OB du plateau mobile 20 se déplace selon un plan perpendiculaire à l'axe z0, c'est à dire à une hauteur z constante par rapport au socle 10. Ce plan définit la «surface de déport » sur laquelle devra toujours se trouver le point OB. Pour une direction de visée V donnée, le point OB est déporté d'une certaine distance d dans la direction x01 par rapport à sa configuration de référence illustrée à la
Les
Bien entendu, il existe de nombreuses façons de définir le déport d à appliquer:
- selon le type de surface de déport sur laquelle se déplace le point OB: on peut choisir une surface de déport autre qu'un plan, par exemple une portion de sphère ou d'ellipsoïde,
- selon la loi de positionnement sur cette surface: on peut par exemple fixer une loi de déport d en fonction de l'angle d'élévation β.
- depending on the type of offset surface on which the OB point moves: one can choose a different offset surface than a plane, for example a portion of sphere or ellipsoid,
- according to the law of positioning on this surface: one can for example fix a law of offset d according to the angle of elevation β.
Il existe néanmoins des conditions à ces choix. D'une part, les longueurs Li des vérins i pouvant être obtenues sont limitées. En effet, on doit prendre en compte les élongations minimale et maximale possibles. D'autre part, on doit respecter la marge de sécurité choisie concernant les angles entre les éléments. On peut choisir un angle maximum de 135 ou 150 degrés par exemple.There are nevertheless conditions to these choices. On the one hand, the lengths L i of the jacks i obtainable are limited. Indeed, one must take into account the minimum and maximum possible elongations. On the other hand, one must respect the margin of safety chosen concerning the angles between the elements. One can choose a maximum angle of 135 or 150 degrees for example.
Sur la
Dans une première étape, on considère le repère R02 orienté de manière à ce que x02 = V 2. Dans ce repère R02, on considère un axe de rotation virtuel RH de direction y02 et passant par un point PRH fixe sur l'axe z0. On réalise une rotation virtuelle du plateau mobile 20 d'axe RH et d'angle 90°-β2. Cette rotation permet de passer de la position de référence de la tourelle (plateau orienté au zénith) à la position correspondant à la direction de visée V2. Comme précédemment décrit, la position de référence peut être virtuelle.In a first step, the reference R 02 is considered oriented so that x 02 = V 2 . In this reference R 02 , we consider a virtual axis of rotation RH y 02 direction and passing through a fixed point PRH on the axis z 0 . A virtual rotation of the
Dans une deuxième étape, on détermine le déport du plateau mobile (20) selon la direction d'azimut α2 grâce à la loi de déport et on en déduit la position des points A1 à A6 et B1 à B6 dans cette configuration. A cet effet, on réalise une translation virtuelle du plateau mobile 20 permettant de ramener le point OB sur la surface de déport. On détermine les longueurs L1 à L6 des jambes 1 à 6 de l'hexapode 100 dans cette position du plateau 20. On en déduit l'allongement de chaque jambe 1 à 6 nécessaire pour passer de l'orientation V1 à V2 avec déport.In a second step, the offset of the moving plate (20) is determined in the direction of azimuth α 2 by virtue of the law of offset and the position of the points A 1 to A 6 and B 1 to B 6 are deduced therefrom. configuration. For this purpose, a virtual translation of the
Pour déplacer le plateau 20 de V1 à V2 en un temps t déterminé (par exemple t = 1 seconde), chaque dispositif de réglage de longueur de jambe i doit commander un allongement des vérins de ΔL i. On réalise une interpolation de la longueur des jambes : par exemple on commande une vitesse d'allongement de chaque vérin i de
Lorsque le déplacement du plateau 20 devient trop important (par exemple le déplacement de V1 à V2 est supérieur à 1°), la tourelle 100 risque de passer par un point singulier. Pour éviter ces points singuliers, le déplacement du plateau 20 de V1 à V2 peut être décomposé en une suite de déplacements unitaires d'azimut Δα et d'élévation Δβ. Chaque déplacement unitaire permet de passer d'une direction de visée Vi à une direction de visée Vi+1 proche de Vi. Pour chaque déplacement unitaire, on calcule les allongements des vérins grâce aux deux transformations virtuelles successives (une rotation virtuelle suivie d'une translation virtuelle) comme décrit précédemment. De cette manière, le plateau 20 est déplacé selon une suite de positions correspondant à des directions de visées V1,...Vi, Vi+1...V2 présentant un écart de Δα et Δβ. Les valeurs de Δα et Δβ sont choisies suffisamment petites pour que le plateau 20 ne passe jamais par des points singuliers ou des configurations impossibles à réaliser physiquement. En effet, plus Δα et Δβ seront petits, moins les positions successives OB du plateau 20 ne pourront s'approcher d'un point singulier.When the displacement of the
Sur les
Bien entendu, il existe une infinité de manières de caractériser la direction de visée V suivant les systèmes de repérage et les conventions utilisées. En outre, bien qu'on utilise ce système de coordonnées pour définir la direction de visée V, on ne reproduit pas nécessairement les rotations azimut et élévation mécaniquement. On peut commander des rotations et des translations différentes conduisant à la direction de visée définie en azimut et en élévation.Of course, there is an infinite number of ways of characterizing the aiming direction V according to the tracking systems and conventions used. In addition, although we use this coordinate system to define the direction of sight V, one does not necessarily reproduce the rotations azimuth and elevation mechanically. Different rotations and translations can be ordered leading to the defined azimuth and elevation direction of view.
Le procédé de déplacement du plateau mobile 20 de l'hexapode 100 précédemment décrit a pour effet de lier la rotation du plateau mobile 20 autour de son axe propre x02 à sa rotation d'azimut autour de l'axe z0 lié au socle 10. Lorsque le plateau mobile 20 est déplacé d'une direction de visée V 1 = (α 1,β 1 ) vers une direction de visée V 2 = (α2,β2 ), il tourne autour de l'axe z0 d'un angle d'azimut α2-α 1 . Avec le procédé précédemment décrit, le plateau mobile 20 compense en permanence cette rotation d'azimut en effectuant une rotation autour de son axe propre z02 d'angle -(α 2-α 1). Ainsi, il en résulte que la rotation globale du plateau mobile 20 autour de l'axe z0 est toujours nulle.The method of moving the
Ce procédé présente par exemple l'avantage que des câbles électriques liés au dispositif 30 monté sur le plateau mobile 20 et reliant ce dispositif au sol ne subissent jamais de torsion lors du déplacement du plateau mobile 20. Cette caractéristique permet de pouvoir commander une rotation continue du plateau mobile 20 autour de l'axe d'azimut z0 sans risquer d'endommager le mécanisme de l'hexapode 100. En outre, le dispositif de déplacement du plateau mobile ne nécessite pas de joint tournant.This method has for example the advantage that electrical cables connected to the
Un autre avantage de ce procédé est qu'il permet de contrôler en permanence le bon fonctionnement du dispositif de déplacement. En effet, dans le cas où l'un des dispositifs de réglage de longueur de jambe ou l'un des vérins serait déficient, il est parfois difficile de s'apercevoir d'une anomalie de fonctionnement de l'hexapode. Les butées des vérins sont dans un tel cas les seules dispositions susceptibles d'arrêter le dispositif de déplacement dans son mouvement. Cependant, la loi de mouvement n'étant plus respectée, la structure hexapode risque de passer par des points singuliers conduisant à un endommagement inévitable des joints universels.Another advantage of this method is that it permanently controls the proper operation of the displacement device. Indeed, in the case where one of the leg length adjustment devices or one of the cylinders would be deficient, it is sometimes difficult to perceive a malfunction of the hexapod. The stops of the cylinders are in this case the only arrangements likely to stop the movement device in its movement. However, since the law of motion is no longer respected, the hexapod structure risks passing through singular points leading to an inevitable damage to the universal joints.
Pour éviter ces risques, le dispositif d'orientation comprend des moyens pour contrôler que la rotation globale du plateau mobile 20 autour de l'axe z0 est toujours nulle.To avoid these risks, the orientation device comprises means for controlling that the overall rotation of the
A cet effet, la
Dans le cas d'une déficience de l'un des dispositifs de réglage de longueur des jambes 1, 2, 3, 4, 5, ou 6 ou de déficience de l'un des vérins, la rotation du plateau 20 autour de l'axe z0 génère la rotation du câble 80 par rapport au socle 10. Cette rotation entraîne la rotation de l'élément indicateur 84, qui ne se trouve plus en contact avec le circuit de détection 86. Le circuit de détection 86 détecte cette coupure de contact et envoie un signal d'alerte à un dispositif de commande des dispositifs de réglage des jambes. En réponse à ce signal, le dispositif de commande stoppe le mouvement de l'hexapode 100.In the case of a deficiency of one of the leg
Bien entendu, d'autres types de moyens de contrôle pourraient être utilisés.Of course, other types of control means could be used.
Claims (22)
- A process for moving the moving plate (20) of a hexapod (100) whose legs (1, 2, 3, 4, 5, 6) are fitted with a length-adjusting device, from an orientation Vi defined by its azimuth-elevation (αi, βi) coordinates towards an orientation Vi+1 defined by its azimuth-elevation (αi+1, βi+1) coordinates, comprising steps wherein:- a law is defined which defines an offset distance d according to the orientation of the plate (20),- the offset distance corresponding to the orientation Vi+1 is determined,- the adjustment devices are controlled in order to modify the lengths L1 to L6 of the legs (1, 2, 3, 4, 5, 6) in order to displace the moving plate (20) from orientation Vi to orientation Vi+1 and to offset it in relation to the perpendicular on the fixed base (10) of the hexapod (100) passing through the centre OA of said base (10), in the azimuth plane of Vi+1 of the distance d, characterised in that it also comprises steps according to which there is continuous verification that the overall rotation of the moving plate (20) relative to the vertical to the fixed base (10) is zero, and when it is detected that the overall rotation of the moving plate (20) relative to the vertical to the fixed base (10) is no longer zero a command is generated to stop the movement of the hexapod (100).
- The process as claimed in claim 1, characterised in that an offset law is defined giving a unique position of the centre OB of the plate in space as a function of its orientation.
- The process as claimed in claim 2, characterised in that the offset law defines a continuous geometric surface.
- The process as claimed in claim 3, characterised in that the offset surface is a plane.
- The process as claimed in claim 3, characterised in that the offset surface is a portion of a sphere.
- The process as claimed in any one of the preceding claims, characterised in that the moving plate (20) is moved by controlling rotation of the moving plate (20) around an axis perpendicular to the plane containing the pointing vectors Vi and Vi+1.
- The process as claimed in any one of the preceding claims, characterised in that the variation in length of the legs (1, 2, 3, 4, 5, 6) of the hexapod (100) is determined according to the following stages:- a reference position of the hexapod (100) is defined according to which all the legs (1, 2, 3, 4, 5, 6) are adjusted to the same length L0,- the variation in length of each leg (1, 2, 3, 4, 5, 6) is determined so that the moving plate (20) of the hexapod (100) moves from the reference position to the pointing direction Vi+1 by virtual rotation in the plane of azimuth αi+1, and by virtual translation of the centre OB of the plate (20) towards an offset surface defined by the offset law,- a variation in total length is deduced therefrom for each leg (1, 2, 3, 4, 5, 6) to switch from direction Vi to direction Vi+1.
- The process as claimed in any one of the preceding claims, characterised in that the overall orientation movement of the moving plate (20) is organised in a succession of unit displacements of azimuth Δα and elevation Δβ of the moving plate (20).
- The process as claimed in any one of the preceding claims, characterised in that the adjustment devices are controlled as a function of the lengths Li of the legs (1, 2, 3, 4, 5, 6) to be obtained and in that this calculation takes into consideration the relative angles between the elements making up links joining the legs (1, 2, 3, 4, 5, 6) to the plate (20) and to the fixed base (10).
- The process as claimed in claim 9, characterised in that the relative angles between the elements making up the links connecting the legs (1, 2, 3, 4, 5, 6) to the plate (20) and to the base (10) are determined from positions of the linking points calculated between the legs (1, 2, 3, 4, 5, 6) and the plate (20), and from this the relative rotations between the sliding assemblies of the jacks is deduced.
- The process as claimed in claim 10, characterised in that each leg (1, 2, 3, 4, 5, 6) of the hexapod (100) comprises a jack constituted by two assemblies sliding relative to one another and an actuator (61) whose exit axis (62) drives in rotation a screw (65) making up a helicoidal link between the sliding assemblies, in that an additional elongation of each jack is deduced due to the relative rotations between its sliding assemblies (LA, LB) as a function of the geometric characteristic of the helicoidal link, and in that this additional elongation is taken into account for establishing a set-point for controlling the actuator (61).
- The process as claimed in any one of the preceding claims, characterised in that the angles formed by the axes of the legs (1, 2, 3, 4, 5, 6) and the perpendicular to the plane of the fixed base (10) and the angles formed by the axes of the legs (1, 2, 3, 4, 5, 6) and the perpendicular to the plane of the moving plate (20) are always less than a maximum angle defined between 40 and 80 degrees.
- A device for displacing the moving plate (20) of a hexapod (100), whose legs (1, 2, 3, 4, 5, 6) are fitted with a length-adjusting device, from an orientation Vi defined by its azimuth-elevation (αi, βi) coordinates towards an orientation Vi+1 defined by its azimuth-elevation (αi+1, βi+1) coordinates, comprising control means suitable for carrying out the following steps:- defining a law which defines an offset distance d according to the orientation of the plate (20),- determining the offset distance corresponding to the orientation Vi+1,- controlling the adjustment devices in order to modify the lengths L1 to L6 of the legs (1, 2, 3, 4, 5, 6) in order to displace the moving plate (20) from orientation Vi to orientation Vi+1 and to offset it in relation to the perpendicular on the fixed base (10) of the hexapod (100) passing through the centre OA of said base (10), in the azimuth plane of Vi+1 of the distance d, the device being characterised in that it comprises means for verifying that the overall rotation of the moving plate (20) relative to a vertical to the fixed base (10) is zero, and in that the control means are suitable for generating a command in order to stop the movement of the hexapod when the general rotation of the moving plate (20) with respect to the vertical to the fixed base (10) is not zero.
- The device as claimed in claim 13, characterised in that each leg (1, 2, 3, 4, 5, 6) of the hexapod (100) comprises a jack comprising a first and a second assembly (LA, LB) capable of sliding relative to one another, an actuator (61) whose output axis (62) drives in rotation a screw (65) placed perpendicularly in the axis (62) of the motor (61), said screw (65) extending over the length of the first assembly (LA) and capable of pivoting inside a nut (66) mounted solid with the second assembly (LB), rotation of the screw (65) in the nut (66) driving translation of the second assembly (LB) relative of the first assembly (LA).
- The device as claimed in claim 14, characterised in that the control means are intended to determine any additional elongation of each jack due to the relative rotations between its sliding assemblies (LA, LB) as a function of the geometric characteristics of the helicoidal link, and to take into account this additional elongation to establish a set-point to control the actuator (61).
- The device as claimed in claim 14 or 15, characterised in that it comprises means for measuring the position of the axis (62) of the actuator (61).
- The device as claimed in any one of claims 13 to 16, characterised in that links are arranged on the fixed base (10) according to a first circle of radius RA and links are arranged on the moving plate (20) according to a second circle of radius RB, the RA/RB ratio being substantially equal to 1.5.
- The device as claimed in any one of claims 13 to 17, characterised in that the links are arranged in pairs on the moving plate (20) or on the fixed base (10) in accordance with a circle of radius R, the distance between two links of the same pair being substantially equal to R/10.
- The device as claimed in claim 13 to 18, characterised in that the maximum elongation of a leg is less than or equal to 2.
- The device as claimed in any one of claims 13 to 19, characterised in that the maximum elongation of a leg is greater than or equal to 1.7.
- The device as claimed in any one of claims 13 to 20, characterised in that it comprises an element rigid in torsion connected at a first end, to the moving plate (20) via a rigid link and at a second end, to the fixed base (10) via a pivoting link, as well as means for detecting rotation of the second end of the element relative to the base (20).
- The device as claimed in claim 21, characterised in that the detection means comprise an indicator element fixed at the second end of the cable as well as a detection circuit, and in that when the second end of the cable is fixed relative to the base (10) the indicator element makes contact with a detection circuit and when the second end of the cable turns relative to the fixed base (10), the indicator element breaks this contact.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0107136 | 2001-05-31 | ||
FR0107136A FR2825445B1 (en) | 2001-05-31 | 2001-05-31 | METHOD OF ORIENTATION OF A HEXAPOD TURRET |
PCT/FR2002/001816 WO2002097920A1 (en) | 2001-05-31 | 2002-05-30 | Method for orienting a hexapod turret |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1396046A1 EP1396046A1 (en) | 2004-03-10 |
EP1396046B1 true EP1396046B1 (en) | 2013-01-02 |
EP1396046B9 EP1396046B9 (en) | 2013-07-10 |
Family
ID=8863813
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02743335.8A Expired - Lifetime EP1396046B9 (en) | 2001-05-31 | 2002-05-30 | Method for orienting a hexapod turret |
Country Status (6)
Country | Link |
---|---|
US (1) | US7081866B2 (en) |
EP (1) | EP1396046B9 (en) |
KR (1) | KR100880290B1 (en) |
ES (1) | ES2402406T3 (en) |
FR (1) | FR2825445B1 (en) |
WO (1) | WO2002097920A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7469381B2 (en) | 2007-01-07 | 2008-12-23 | Apple Inc. | List scrolling and document translation, scaling, and rotation on a touch-screen display |
US7250939B2 (en) | 2002-03-19 | 2007-07-31 | Aol Llc | Display motion multiplier |
ES2231026A1 (en) * | 2003-10-27 | 2005-05-01 | Ramem, S.A. | Hexapod type positioner for solar tracking of solar concentrators |
ITRM20050338A1 (en) * | 2005-06-28 | 2006-12-29 | Finmeccanica Spa | ISOSTATIC SUPPORT STRUCTURE FOR ANTENNAS REFLECTORS OF LARGE FIXED OR REINFORCABLE DIMENSIONS. |
US7671797B1 (en) * | 2006-09-18 | 2010-03-02 | Nvidia Corporation | Coordinate-based system, method and computer program product for adjusting an antenna |
DE102006046758A1 (en) * | 2006-09-29 | 2008-04-03 | Abb Patent Gmbh | Arrangement, especially for positioning objects, has at least one pair of supports made up of two supports that run parallel one inside the other and together form parallelogram |
SE530700C2 (en) * | 2006-12-21 | 2008-08-19 | Hexagon Metrology Ab | Method and apparatus for compensating geometric errors in processing machines |
FR2929195B1 (en) * | 2008-03-27 | 2010-05-07 | Peugeot Citroen Automobiles Sa | CONTROLLED VARIABLE ORIENTATION LIGHTING PROJECTOR FOR MOTOR VEHICLE |
US8215199B2 (en) * | 2008-11-17 | 2012-07-10 | Marcroft Sacha L | Parallel kinematic positioning system |
US9027545B2 (en) | 2010-11-24 | 2015-05-12 | William J. DeVillier | Solar collector positioning apparatus |
TWI493148B (en) * | 2011-11-22 | 2015-07-21 | William J Devillier | Solar collector positioning apparatus |
US9376221B1 (en) * | 2012-10-31 | 2016-06-28 | The Boeing Company | Methods and apparatus to point a payload at a target |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0266026A1 (en) * | 1986-08-01 | 1988-05-04 | HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research | Tracking antenna mount |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742812B2 (en) * | 1986-06-04 | 1995-05-10 | 富士重工業株式会社 | Deployed structure |
DE4117538C1 (en) | 1991-05-29 | 1992-07-09 | Ant Nachrichtentechnik Gmbh, 7150 Backnang, De | |
GB9324218D0 (en) * | 1993-11-25 | 1994-01-12 | Renishaw Plc | Position determination machines |
AU2228897A (en) * | 1997-03-11 | 1998-09-29 | Orbit Communications, Tracking And Telemetry Ltd. | Satellite tracking system |
US6041500A (en) * | 1998-01-23 | 2000-03-28 | Giddings & Lewis, Inc. | Automatic assembly machine and method utilizing six-axis positioning device |
US6542132B2 (en) * | 2001-06-12 | 2003-04-01 | Harris Corporation | Deployable reflector antenna with tensegrity support architecture and associated methods |
-
2001
- 2001-05-31 FR FR0107136A patent/FR2825445B1/en not_active Expired - Fee Related
-
2002
- 2002-05-30 ES ES02743335T patent/ES2402406T3/en not_active Expired - Lifetime
- 2002-05-30 WO PCT/FR2002/001816 patent/WO2002097920A1/en not_active Application Discontinuation
- 2002-05-30 KR KR1020037001452A patent/KR100880290B1/en active IP Right Grant
- 2002-05-30 US US10/479,648 patent/US7081866B2/en not_active Expired - Lifetime
- 2002-05-30 EP EP02743335.8A patent/EP1396046B9/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0266026A1 (en) * | 1986-08-01 | 1988-05-04 | HER MAJESTY THE QUEEN in right of New Zealand Department of Scientific and Industrial Research | Tracking antenna mount |
Also Published As
Publication number | Publication date |
---|---|
EP1396046A1 (en) | 2004-03-10 |
FR2825445A1 (en) | 2002-12-06 |
KR100880290B1 (en) | 2009-01-23 |
WO2002097920A1 (en) | 2002-12-05 |
US20040244525A1 (en) | 2004-12-09 |
ES2402406T3 (en) | 2013-05-03 |
FR2825445B1 (en) | 2004-02-13 |
WO2002097920A8 (en) | 2005-04-07 |
US7081866B2 (en) | 2006-07-25 |
EP1396046B9 (en) | 2013-07-10 |
KR20030051608A (en) | 2003-06-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1396046B1 (en) | Method for orienting a hexapod turret | |
EP3055726B1 (en) | Near-linear drive systems for positioning reflectors | |
CA1256914A (en) | Retractile polyarticulated mechanism | |
US9054409B2 (en) | Systems for positioning reflectors, such as passive reflectors | |
EP2880337B1 (en) | Rotary motion apparatus moving a reflective surface | |
FR2728695A1 (en) | Drive motor system for accurate positioning of telescope | |
EP2767794B1 (en) | Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile | |
EP3045396B1 (en) | Pointing assembly of an instrument | |
FR2995090A1 (en) | ANGULAR POSITIONING ARRANGEMENT COMPRISING TWO MECHANICAL MOTION TRANSMISSION UNITS WITH TWO DEAD POINTS EACH | |
EP0172291B1 (en) | Retractable multi-articulated mechanism | |
FR2498379A1 (en) | ORTHOGONAL AXIS ORIENTATION DEVICE, USE IN A HYPERFREQUENCY ANTENNA AND HYPERFREQUENCY ANTENNA COMPRISING SUCH A DEVICE | |
EP3213370A1 (en) | Device for adjusting a mobile element such as an antenna deck | |
FR2550980A1 (en) | DEVICE FOR SUPPORTING A SENSOR FOR AN AUTOMATIC MACHINE AND ITS APPLICATION TO SUCH A MACHINE | |
FR2690532A1 (en) | Pointing, or aiming, device for optical equipment e.g. for satellite communication using modulated laser beam - has system of two mirrors rotating about axes perpendicular to each other with fine tuning of first mirror | |
WO2012131741A1 (en) | Sun follower with parallel kinematics and process for controlling such follower | |
EP2703691B1 (en) | Apparatus for angular positioning with three dead centers | |
EP3870408B1 (en) | Method for causing a tool at the end of an articulated arm to press without slipping against a surface, and device for implementing same | |
FR2977823A1 (en) | MOTORIZED TABLE FOR MICROMETER POSITIONING | |
CA1257692A (en) | Antenna steering device allowing a scanning in two orthogonal directions | |
EP0455543B1 (en) | Device for pointing a reflector antenna | |
FR2530831A1 (en) | Variable optical deflector device, application to a homing-head optical system. | |
FR2769969A1 (en) | POINTING MECHANISM WITH TWO INDEPENDENT ROTATION MOVEMENTS, WITHOUT DEATH POINT | |
EP0482987B1 (en) | Compact sighting system with large angular sweep capability for optronic target acquisition and localisation equipment | |
WO2007003906A2 (en) | A positioning system | |
FR2876926A1 (en) | DEVICE AND INSTALLATION FOR FOLDING A FLAN |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20031222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040414 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ENERTEC |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ZODIAC DATA SYSTEMS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 592051 Country of ref document: AT Kind code of ref document: T Effective date: 20130115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 60244332 Country of ref document: DE Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: MICHELI AND CIE SA, CH |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2402406 Country of ref document: ES Kind code of ref document: T3 Effective date: 20130503 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 592051 Country of ref document: AT Kind code of ref document: T Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130502 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130403 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20131003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20130102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60244332 Country of ref document: DE Effective date: 20131003 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20140527 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20140528 Year of fee payment: 13 Ref country code: CH Payment date: 20140612 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20140626 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150530 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20200421 Year of fee payment: 19 Ref country code: ES Payment date: 20200602 Year of fee payment: 19 Ref country code: FR Payment date: 20200422 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200423 Year of fee payment: 19 Ref country code: IT Payment date: 20200421 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A Owner name: SAFRAN DATA SYSTEMS Effective date: 20210414 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60244332 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210530 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20220802 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200530 |