EP2767794B1 - Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile - Google Patents

Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile Download PDF

Info

Publication number
EP2767794B1
EP2767794B1 EP14155480.8A EP14155480A EP2767794B1 EP 2767794 B1 EP2767794 B1 EP 2767794B1 EP 14155480 A EP14155480 A EP 14155480A EP 2767794 B1 EP2767794 B1 EP 2767794B1
Authority
EP
European Patent Office
Prior art keywords
projectile
control surfaces
spherical shape
housing
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14155480.8A
Other languages
German (de)
French (fr)
Other versions
EP2767794A1 (en
Inventor
Richard Roy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nexter Munitions SA
Original Assignee
Nexter Munitions SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexter Munitions SA filed Critical Nexter Munitions SA
Publication of EP2767794A1 publication Critical patent/EP2767794A1/en
Application granted granted Critical
Publication of EP2767794B1 publication Critical patent/EP2767794B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • F42B15/01Arrangements thereon for guidance or control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B10/00Means for influencing, e.g. improving, the aerodynamic properties of projectiles or missiles; Arrangements on projectiles or missiles for stabilising, steering, range-reducing, range-increasing or fall-retarding
    • F42B10/60Steering arrangements
    • F42B10/62Steering by movement of flight surfaces
    • F42B10/64Steering by movement of flight surfaces of fins

Definitions

  • the technical field of the invention is that of the projectiles guided by steerable steerings in incidence.
  • US 2008/006736 A1 discloses a projectile steerable steerable bearing having at least two control surfaces each pivotable relative to the projectile about a pivot axis perpendicular to the longitudinal axis of the projectile.
  • This type of device requires knowing the exact angular position both incidence and roll of each rudder to make it adopt the appropriate position to follow the desired trajectory to the projectile.
  • the projectile being subjected to a roll that can be very important, especially if it is fired from a rifled gun, it is therefore necessary to make continual corrections of the incidence of the control surfaces.
  • the invention proposes to solve the problem of complexity of controlling the incidence of the control surfaces as a function of their angular position around the projectile.
  • the invention also makes it possible to reduce the numerous and brutal loads of the motors.
  • the invention also makes it possible to reduce the number of parts and to simplify the mechanical structure of the control device of the control surfaces.
  • a projectile 103 in flight has a substantially cylindrical body 100.
  • This projectile 103 comprises in the rear part a stabilizer itself comprising fixed-effect fins 102 intended to stabilize the projectile 103 along its pitch axes Y and yaw Z.
  • the projectile is driven in a rotational movement R about its axis. longitudinal said axis of roll X.
  • an orientation device 105 having control surfaces 2 integral with the projectile 103 and each able to pivot on a steering axis 7 perpendicular to the roll axis X so as to modify their incidence and by way of Consequently, the projectile 103 is adopted with a desired trajectory. Since the control surfaces 2 are integral with the projectile 103, they are also driven by the same rotational movement R around the roll axis X as the projectile 103.
  • a warhead 104 housing a steering device 1 for orienting the incidence of the control surfaces. 2 of the projectile 103 in response to a guide law programmed in a homing device (not shown).
  • control surfaces 2 are shown here in their deployed position and are four in number.
  • the skilled person may choose to equip the projectile with at least two or more rudders, in even or odd quantities, and regularly distributed angularly around the projectile.
  • Each rudder 2 comprises a steering plane 2a whose base is integral with a first end of a steering foot 2b pivotally mounted in a cylindrical and radial bore 100a of the projectile body 100.
  • Each steering plane 2a is intended to influence by its pivoting about the axis 7 the aerodynamic supports of the projectile 103 to change its trajectory.
  • Each bore 100a of the projectile body 100 opens radially into a central housing 10 of the projectile body 100.
  • This central housing 10 is a cylindrical housing which receives a central control means 5 which has at least one spherical shape whose center 0 is located on the longitudinal axis X of the projectile 103 and on the pivot axes 7 of the control surfaces 2 (the spherical shape or sphere 5 will be better seen at the figure 3 ).
  • the central control means 5 is thus a sphere 5 having grooves 8 which are oriented along meridians of the sphere which meet at the poles 6a and 6b of the sphere 5. There are as many grooves 8 that there are governes 2.
  • One of the poles 8a of the sphere carries a control arm 11 protruding from the sphere 5.
  • the two poles 6a and 6b of the sphere 5 located at each end of the grooves 8 are also positioned on the longitudinal axis X.
  • the control arm 11 is then positioned on this axis X and the grooves are therefore arranged parallel to the longitudinal axis X of the projectile when the control surfaces 2 are themselves parallel to the longitudinal axis X of the projectile.
  • the transmission member 20 comprises on a first face 20a facing the sphere 5 a first preferably prismatic profile 21 corresponding to the groove 8. This first profile 21 is able to slide in the groove 8.
  • the transmission member 20 comprises a second face 20b parallel to the first face 20a.
  • the second face 20b of the transmission member 20 comprises a second profile 22 intended to slide in a corresponding slot 23 carried by the steering foot 2b.
  • the profiles 21 and 22 have the form of tabs.
  • the two tabs 21 and 22 being orthogonal to each other and integral with a cylindrical portion of the member 20.
  • the transmission member 20 is substantially cylindrical and chosen to have a diameter D1 slightly smaller than the diameter D2 of the steering foot 2b so that it can translate in a plane P normal to the axis of rotation 7 of the rudder 2 without interfering with the cylindrical wall of the bore 100a which contains it.
  • the transmission member 20 thus connected with the sphere 5 and the steering foot 2b behaves in the manner of a seal called Oldham. It makes it possible to reduce the friction at the level of the connections and makes it possible to overcome the relative misalignments between the axis of rotation 7 of the fin and the instantaneous pivot axis of the sphere 5 which evolves at each moment of the piloting.
  • the fin receives from the sphere 5 only the mechanical torque ensuring pivoting about the axis 7 of the rudder 2.
  • a first pair of control surfaces 2 has its pivot axis 7 contained in the plane K, while the second pair of control surfaces 2a has its pivot axis 7bis collinear with the pitch axis Y.
  • the transmission member 20a For each rudder of the second pair 2a, the transmission member 20a then communicates a pivoting torque to the control surfaces 2a via its first and second profiles (not visible in these figures) which respectively correspond with the groove 8a of the sphere 5 and the steering foot 2b bis, thus making ⁇ affect the control surfaces 2bis.
  • each transmission member 20 associated with the control surfaces 2 without incidence can transmit force but lets slip the groove 8 associated with it without transmitting pivoting to the control surfaces 2 which then remain in the plane K at zero incidence.
  • control surfaces 2 regardless of the angular position of the control surfaces 2 about the longitudinal axis X, the control surfaces 2 always adopt the appropriate incidence to orient the projectile towards the direction D which is given by the positioning of the end 11a of the arm 11 (ie down in the example selected).
  • the projectile comprises a positioning means 12 having a substantially circular housing 13 and a rack 14 visible to the figure 9 .
  • the rack 14 has a toothed portion 14a which is integral with a plate 14b which is housed in a slideway 15 of the housing 13 (see FIGS. figures 2 and 10 ).
  • the rack 14 can thus translate in a direction parallel to the diameter of the housing 13.
  • the housing 13 is coaxial with the longitudinal axis X of the projectile and has an oblong hole 16 oriented parallel to the slideway 15 and allowing the arm 11 to pass so that the free end 11a of the arm 11 can cooperate with a hole 24 carried by the plate 14b of the rack 14 (see figures 2 and 10 ).
  • the end 11a of the arm is spherical and the connection between this end and the hole 24 of the rack 14 forms a ball joint.
  • the rack 14 is intended to mesh with a pinion 18 of a first motor M1 (pinion visible at figures 2 , 9 and 11 , motor M1 visible at the figure 11 ) aligned with the longitudinal axis X of the projectile 103 in order to be able to control the translation of the rack 14 into the housing 13.
  • a first motor M1 pinion visible at figures 2 , 9 and 11 , motor M1 visible at the figure 11
  • the housing 13 has on its periphery a ring gear C2 intended to mesh with a second motor M2 (ring gear C2 and M2 motor visible to figures 10 and 11 ).
  • the positioning means 12 makes it possible to orient the projectile 103 towards a given direction D transverse to the projectile 103.
  • the engines must rotate synchronously at an angular speed - ⁇ in the opposite direction projectile 103 to compensate for the rotation of the latter animated with a speed ⁇ .
  • the engines will have to phase out.
  • the second motor M2 will rotate at a speed - ⁇ ⁇ ⁇ 2 to rotate the housing 13 by an angle ⁇ relative to the absolute reference RA while the motor M1 will always turn to the speed - ⁇ .
  • This phase shift will be maintained until the slideway 15 is parallel to the direction D chosen for the desired correction, and this always compensating for the rotation of the projectile.
  • the next step is to slide the rack 14 in the given direction D by rotation of the first motor M1 at a speed - ⁇ ⁇ ⁇ 1.
  • the second motor M2 always turning at the speed - ⁇ .
  • the translation of the rack 14 causes the eccentricity E between the end 11a of the arm 11 and the longitudinal axis X thus giving the desired correction amplitude.
  • the amplitude being determined by the control law of the orientation of the projectile.
  • the invention therefore makes it possible to obtain a controllable projectile comprising a simple and reliable control surface control device and where the problems of electromagnetic solicitations are greatly reduced owing to the regular activity of the engines which are not subject to brutal and incessant peaks of intensity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Toys (AREA)

Description

Le domaine technique de l'invention est celui des projectiles guidés par des gouvernes orientables en incidence.The technical field of the invention is that of the projectiles guided by steerable steerings in incidence.

Pour guider un projectile jusqu'à son but il est connu d'avoir recours à des gouvernes placées sur le pourtour du projectile, soit en empennage soit en position avant (gouvernes dites canard). L'incidence des gouvernes est adaptée en vol en fonction de la trajectoire que l'on souhaite donner au projectile. Le pilotage de l'incidence est assuré par des moteurs électriques le plus souvent. Le brevet US7246539 décrit ainsi un dispositif de pilotage de gouvernes de projectile comportant quatre gouvernes ainsi que des trains d'engrenages associés à des moteurs permettant de régler l'incidence des gouvernes.To guide a projectile to its goal it is known to use the control surfaces placed on the circumference of the projectile, either in empennage or in the forward position (so-called duck controls). The incidence of the control surfaces is adapted in flight according to the trajectory that one wishes to give to the projectile. The steering of the incidence is provided by electric motors most often. The patent US7246539 describes a control device projectile control surfaces with four control surfaces and gear trains associated with motors for adjusting the incidence of control surfaces.

US 2008/006736 Al divulgue un projectile à gouvernes orientables en incidence comportant au moins deux gouvernes pouvant chacune pivoter par rapport au projectile autour d'un axe de pivotement perpendiculaire à l'axe longitudinal du projectile. US 2008/006736 A1 discloses a projectile steerable steerable bearing having at least two control surfaces each pivotable relative to the projectile about a pivot axis perpendicular to the longitudinal axis of the projectile.

Ce type de dispositif nécessite de connaître la position angulaire exacte tant en incidence qu'en roulis de chaque gouverne pour lui faire adopter la position convenable pour faire suivre la trajectoire voulue au projectile. Le projectile étant soumis à un roulis qui peut être très important, en particulier s'il est tiré depuis une arme à canon rayé, il est donc nécessaire de réaliser des corrections continuelles de l'incidence des gouvernes.This type of device requires knowing the exact angular position both incidence and roll of each rudder to make it adopt the appropriate position to follow the desired trajectory to the projectile. The projectile being subjected to a roll that can be very important, especially if it is fired from a rifled gun, it is therefore necessary to make continual corrections of the incidence of the control surfaces.

Ces corrections doivent se faire extrêmement rapidement, ce qui nécessite des moyens de calcul rapide et des mouvements rapides des gouvernes. Ces mouvements rapides génèrent des pics de courant au niveau des moteurs provoquant une commande par à-coup des moteurs. Ces pics de courants sont aussi à l'origine de champs magnétiques intenses et irréguliers au niveau des moteurs. Ces champs perturbent les moyens de guidage du projectile tels les autodirecteurs ou d'autres moyens de détection. En outre les solutions proposées par US7246539 et US2008/006736A1 sont complexes en termes de nombre d'engrenages et de pièces de transmission des mouvements.These corrections must be made extremely quickly, which requires rapid calculation means and rapid movements of the control surfaces. These fast movements generate current peaks at the motors causing a jerk control of the motors. These current peaks are also at the origin of intense and irregular magnetic fields in the motors. These fields disrupt the projectile guidance means such as the homing or other detection means. In addition, the solutions proposed by US7246539 and US2008 / 006736A1 are complex in terms of the number of gears and motion transmission parts.

Ainsi l'invention se propose de résoudre le problème de complexité du pilotage de l'incidence des gouvernes en fonction de leur position angulaire autour du projectile.Thus the invention proposes to solve the problem of complexity of controlling the incidence of the control surfaces as a function of their angular position around the projectile.

L'invention permet aussi de réduire les sollicitations nombreuses et brutales des moteurs.The invention also makes it possible to reduce the numerous and brutal loads of the motors.

L'invention permet aussi de réduire le nombre de pièces et de simplifier la structure mécanique du dispositif de pilotage des gouvernes.The invention also makes it possible to reduce the number of parts and to simplify the mechanical structure of the control device of the control surfaces.

L'invention sera mieux comprise à la lecture de la description suivante, description faite en référence aux dessins annexés dans laquelle :

  • La figure 1 représente une vue schématique d'un projectile selon l'invention en vol.
  • La figure 2 représente une vue éclatée d'un dispositif d'orientation selon l'invention.
  • La figure 3 représente une vue de détail du dispositif d'orientation selon l'invention sans moyen de positionnement.
  • La figure 4 représente une vue de côté schématique d'un moyen de transmission de couple.
  • La figure 5 représente une vue de côté d'un dispositif d'orientation selon l'invention avec une paire de gouvernes sous incidence et sans moyen de positionnement.
  • La figure 6 représente une vue de face d'un dispositif d'orientation dans la configuration de la figure 5.
  • La figure 7 représente une vue de face d'un dispositif d'orientation dans la configuration de la figure 5 avec un ensemble de gouvernes en rotation.
  • La figure 8 représente une vue de détail du dispositif d'orientation selon l'invention avec un moyen de positionnement.
  • La figure 9 représente une vue de trois quarts d'un dispositif d'orientation selon l'invention avec ses gouvernes et avec un moyen de positionnement.
  • La figure 10 montre de façon agrandie une vue de détail du dispositif d'orientation, la crémaillère étant positionnée dans sa glissière.
  • La figure 11 est une vue schématique montrant le positionnement des moteurs.
The invention will be better understood on reading the following description, description given with reference to the appended drawings in which:
  • The figure 1 represents a schematic view of a projectile according to the invention in flight.
  • The figure 2 represents an exploded view of an orientation device according to the invention.
  • The figure 3 represents a detailed view of the orientation device according to the invention without positioning means.
  • The figure 4 is a schematic side view of a torque transmission means.
  • The figure 5 represents a side view of an orientation device according to the invention with a pair of control surfaces under incidence and without positioning means.
  • The figure 6 represents a front view of an orientation device in the configuration of the figure 5 .
  • The figure 7 represents a front view of an orientation device in the configuration of the figure 5 with a set of rotating control surfaces.
  • The figure 8 represents a detailed view of the orientation device according to the invention with a positioning means.
  • The figure 9 represents a three-quarter view of an orientation device according to the invention with its control surfaces and with a positioning means.
  • The figure 10 shows in a magnified view a detail view of the orientation device, the rack being positioned in its slide.
  • The figure 11 is a schematic view showing the positioning of the motors.

Selon la figure 1, un projectile 103 en vol comporte un corps 100 sensiblement cylindrique. Ce projectile 103 comporte en partie arrière un empennage comportant lui-même des ailerons 102 à incidence fixe destinés à stabiliser le projectile 103 selon ses axes de tangage Y et lacet Z. Le projectile est animé d'un mouvement de rotation R autour de son axe longitudinal dit axe de roulis X.According to figure 1 a projectile 103 in flight has a substantially cylindrical body 100. This projectile 103 comprises in the rear part a stabilizer itself comprising fixed-effect fins 102 intended to stabilize the projectile 103 along its pitch axes Y and yaw Z. The projectile is driven in a rotational movement R about its axis. longitudinal said axis of roll X.

En partie avant du projectile 100 se situe un dispositif d'orientation 105 comportant des gouvernes 2 solidaires du projectile 103 et pouvant chacune pivoter sur un axe de gouverne 7 perpendiculairement à l'axe de roulis X de manière à modifier leur incidence et par voie de conséquence, faire adopter une trajectoire souhaitée au projectile 103. Les gouvernes 2 étant solidaires du projectile 103, elles sont aussi animées du même mouvement de rotation R autour de l'axe de roulis X que le projectile 103.In the front part of the projectile 100 is an orientation device 105 having control surfaces 2 integral with the projectile 103 and each able to pivot on a steering axis 7 perpendicular to the roll axis X so as to modify their incidence and by way of Consequently, the projectile 103 is adopted with a desired trajectory. Since the control surfaces 2 are integral with the projectile 103, they are also driven by the same rotational movement R around the roll axis X as the projectile 103.

En partie avant du projectile 103, au voisinage des gouvernes 2, se situe une ogive 104 abritant un dispositif de pilotage 1 destiné à orienter en incidence les gouvernes 2 du projectile 103 en réponse à une loi de guidage programmée dans un autodirecteur (non représenté).In the front part of the projectile 103, in the vicinity of the control surfaces 2, is a warhead 104 housing a steering device 1 for orienting the incidence of the control surfaces. 2 of the projectile 103 in response to a guide law programmed in a homing device (not shown).

Selon la figure 2, le dispositif de pilotage 1 comporte les éléments suivants:

  • Des gouvernes 2 solidaires du projectile et orientables en incidence par pivotement autour d'axes 7 perpendiculaires à l'axe longitudinal de roulis X.
According to figure 2 , the control device 1 comprises the following elements:
  • Control surfaces 2 integral with the projectile and orientable in incidence by pivoting about axes 7 perpendicular to the longitudinal axis of roll X.

Les gouvernes 2 sont représentées ici dans leur position déployée et sont au nombre de quatre. L'homme du métier pourra choisir d'équiper le projectile d'au moins deux gouvernes ou plus, en quantité paire ou impaire, et régulièrement réparties angulairement autour du projectile.The control surfaces 2 are shown here in their deployed position and are four in number. The skilled person may choose to equip the projectile with at least two or more rudders, in even or odd quantities, and regularly distributed angularly around the projectile.

Chaque gouverne 2 comporte un plan directeur 2a dont la base est solidaire d'une première extrémité d'un pied de gouverne 2b monté pivotant dans un alésage 100a cylindrique et radial du corps de projectile 100. Chaque plan directeur 2a est destiné à influencer par son pivotement autour de l'axe 7 les appuis aérodynamiques du projectile 103 pour modifier sa trajectoire.Each rudder 2 comprises a steering plane 2a whose base is integral with a first end of a steering foot 2b pivotally mounted in a cylindrical and radial bore 100a of the projectile body 100. Each steering plane 2a is intended to influence by its pivoting about the axis 7 the aerodynamic supports of the projectile 103 to change its trajectory.

Chaque alésage 100a du corps de projectile 100 débouche radialement dans un logement 10 central du corps de projectile 100. Ce logement central 10 est un logement cylindrique qui reçoit un moyen de commande central 5 qui comporte au moins une forme sphérique dont le centre 0 est situé sur l'axe longitudinal X du projectile 103 et sur les axes de pivotement 7 des gouvernes 2 (la forme sphérique ou sphère 5 sera mieux vue à la figure 3).Each bore 100a of the projectile body 100 opens radially into a central housing 10 of the projectile body 100. This central housing 10 is a cylindrical housing which receives a central control means 5 which has at least one spherical shape whose center 0 is located on the longitudinal axis X of the projectile 103 and on the pivot axes 7 of the control surfaces 2 (the spherical shape or sphere 5 will be better seen at the figure 3 ).

Selon le mode de réalisation représenté, le moyen de commande central 5 est ainsi une sphère 5 comportant des rainures 8 qui sont orientées selon des méridiennes de la sphère qui se rejoignent aux pôles 6a et 6b de la sphère 5. Il y a autant de rainures 8 qu'il y a de gouvernes 2.According to the embodiment shown, the central control means 5 is thus a sphere 5 having grooves 8 which are oriented along meridians of the sphere which meet at the poles 6a and 6b of the sphere 5. There are as many grooves 8 that there are governes 2.

Un des pôles 8a de la sphère porte un bras de commande 11 faisant saillie par rapport à la sphère 5. On notera à la figure 3 que, quand les gouvernes 2 sont orientées à incidence nulle (aussi appelée position neutre), les deux pôles 6a et 6b de la sphère 5 situés à chaque extrémités des rainures 8, sont également positionnés sur l'axe longitudinal X. Le bras de commande 11 est alors positionné sur cet axe X et les rainures sont donc disposées parallèlement à l'axe longitudinal X du projectile lorsque les gouvernes 2 sont elles-mêmes parallèles à l'axe longitudinal X du projectile.One of the poles 8a of the sphere carries a control arm 11 protruding from the sphere 5. It will be noted that figure 3 when the control surfaces 2 are oriented at zero incidence (also called neutral position), the two poles 6a and 6b of the sphere 5 located at each end of the grooves 8, are also positioned on the longitudinal axis X. The control arm 11 is then positioned on this axis X and the grooves are therefore arranged parallel to the longitudinal axis X of the projectile when the control surfaces 2 are themselves parallel to the longitudinal axis X of the projectile.

Pour chaque gouverne 2, entre la sphère 5 et le pied de gouverne 2b se situe un organe de transmission 20, destiné à transmettre à la gouverne 2, uniquement les mouvements de rotation de la sphère 5 autour de l'axe de pivotement 7 de la gouverne 2.For each rudder 2, between the sphere 5 and the rudder 2b is a transmission member 20, intended to transmit to the rudder 2, only the rotational movements of the sphere 5 about the pivot axis 7 of the governs 2.

Comme il est possible de le voir à la figure 4, l'organe de transmission 20 comporte sur une première face 20a orientée vers la sphère 5 un premier profil 21 préférentiellement prismatique correspondant avec la rainure 8. Ce premier profil 21 est apte à glisser dans la rainure 8. L'organe de transmission 20 comporte une seconde face 20b parallèle à la première face 20a. La seconde face 20b de l'organe de transmission 20 comporte un second profil 22 destiné à coulisser dans une fente 23 correspondante portée par le pied de gouverne 2b.As it is possible to see him at the figure 4 , the transmission member 20 comprises on a first face 20a facing the sphere 5 a first preferably prismatic profile 21 corresponding to the groove 8. This first profile 21 is able to slide in the groove 8. The transmission member 20 comprises a second face 20b parallel to the first face 20a. The second face 20b of the transmission member 20 comprises a second profile 22 intended to slide in a corresponding slot 23 carried by the steering foot 2b.

En considérant les plus grandes longueurs des profils 21 et 22, on notera que ceux-ci sont orthogonaux l'un à l'autre. Les profils 21 et 22 ont ici la forme de languettes. Les deux languettes 21 et 22 étant orthogonales l'une à l'autre et solidaires d'une partie cylindrique de l'organe 20.Considering the longest lengths of the profiles 21 and 22, it will be noted that these are orthogonal to each other. The profiles 21 and 22 here have the form of tabs. The two tabs 21 and 22 being orthogonal to each other and integral with a cylindrical portion of the member 20.

On notera à la figure 3 que l'organe de transmission 20 est sensiblement cylindrique et choisi d'un diamètre D1 légèrement inférieur au diamètre D2 du pied de gouverne 2b afin qu'il puisse se translater dans un plan P normal à l'axe de rotation 7 de la gouverne 2 sans interférer avec la paroi cylindrique de l'alésage 100a qui le contient. L'organe de transmission 20 ainsi connecté avec la sphère 5 et le pied de gouverne 2b se comporte à la manière d'un joint dit de Oldham. Il permet de réduire les frottements au niveau des liaisons et permet de pallier les désalignements relatifs entre l'axe de rotation 7 de l'ailette et l'axe instantané de pivotement de la sphère 5 qui évolue à chaque instant du pilotage. Ainsi l'ailette ne reçoit de la sphère 5 que le couple mécanique assurant le pivotement autour de l'axe 7 de la gouverne 2.We will note in figure 3 that the transmission member 20 is substantially cylindrical and chosen to have a diameter D1 slightly smaller than the diameter D2 of the steering foot 2b so that it can translate in a plane P normal to the axis of rotation 7 of the rudder 2 without interfering with the cylindrical wall of the bore 100a which contains it. The transmission member 20 thus connected with the sphere 5 and the steering foot 2b behaves in the manner of a seal called Oldham. It makes it possible to reduce the friction at the level of the connections and makes it possible to overcome the relative misalignments between the axis of rotation 7 of the fin and the instantaneous pivot axis of the sphere 5 which evolves at each moment of the piloting. Thus the fin receives from the sphere 5 only the mechanical torque ensuring pivoting about the axis 7 of the rudder 2.

Ainsi, selon les figures 5 et 6, si l'on écarte l'extrémité 11a du bras 11 vers le bas d'une distance E par rapport à l'axe longitudinal X, le bras 11 entraine en pivotement la sphère 5 selon un angle α de centre O qui est situé dans un plan K défini par les axes longitudinaux X de roulis et Z de lacet. L'axe de tangage Y est alors perpendiculaire au plan K. Selon les figures 5 et 6, une première paire de gouvernes 2 a son axe de pivotement 7 contenu dans le plan K, alors que la seconde paire de gouvernes 2bis a son axe de pivotement 7bis colinéaire à l'axe de tangage Y.Thus, according to the figures 5 and 6 if the end 11a of the arm 11 is moved downwards by a distance E with respect to the longitudinal axis X, the arm 11 pivots the sphere 5 at an angle α of center O which is situated in a plane K defined by the longitudinal axes X of roll and Z of yaw. The pitch axis Y is then perpendicular to the plane K. According to the figures 5 and 6 , a first pair of control surfaces 2 has its pivot axis 7 contained in the plane K, while the second pair of control surfaces 2a has its pivot axis 7bis collinear with the pitch axis Y.

Pour chaque gouverne de la seconde paire 2bis, l'organe de transmission 20bis communique alors un couple de pivotement aux gouvernes 2bis par l'intermédiaire de ses premier et deuxième profils (non visibles sur ces figures) qui correspondent respectivement avec la rainure 8bis de la sphère 5 et le pied de gouverne 2b bis, faisant ainsi prendre une incidence α aux gouvernes 2bis.For each rudder of the second pair 2a, the transmission member 20a then communicates a pivoting torque to the control surfaces 2a via its first and second profiles (not visible in these figures) which respectively correspond with the groove 8a of the sphere 5 and the steering foot 2b bis, thus making α affect the control surfaces 2bis.

Dans le même temps, les rainures 8 associées aux gouvernes 2, d'axe de pivotement 7 colinéaire à l'axe de lacet Z, sont orientées parallèlement à l'axe longitudinal X et ne présentent donc pas d'angle d'incidence. Le premier profil de chaque organe de transmission 20 associé aux gouvernes 2 sans incidence ne peut transmettre d'effort mais laisse glisser la rainure 8 qui lui est associée sans transmettre de pivotement aux gouvernes 2 qui restent alors dans le plan K à incidence nulle.At the same time, the grooves 8 associated with the control surfaces 2, of pivot axis 7 collinear with the yaw axis Z, are oriented parallel to the longitudinal axis X and therefore have no angle of incidence. The first profile of each transmission member 20 associated with the control surfaces 2 without incidence can transmit force but lets slip the groove 8 associated with it without transmitting pivoting to the control surfaces 2 which then remain in the plane K at zero incidence.

Lorsque le projectile et l'ensemble des gouvernes 2 et 2bis est en rotation R autour de l'axe longitudinal X, comme à la figure 7, la sphère 5 est entrainée en rotation par l'appui des premières formes des organes de transmission 20 et 20bis sur les parois latérales des rainures 8. Si l'on considère que l'on conserve la position précédemment donnée à l'extrémité 11a du bras 11 vers le bas, l'axe de pivotement 7 de chaque paire de gouvernes 2 et 2bis va passer successivement par le plan K et par un plan normal à ce plan K. Ainsi chaque rainure 8 va alternativement subir une inclinaison d'un angle α lorsque l'axe de la gouverne 7 passera par le plan normal au plan K et sera alignée sur l'axe longitudinal X lorsque l'axe de pivotement X de la gouverne 2 passera par le plan K.When the projectile and the set of control surfaces 2 and 2bis is rotated R about the longitudinal axis X, as at figure 7 , the sphere 5 is rotated by the support of the first forms of the transmission members 20 and 20bis on the side walls of the grooves 8. If we consider that we maintain the position previously given to the end 11a of the arm 11 down, the pivot axis 7 of each pair of control surfaces 2 and 2bis will pass successively by the plane K and a plane normal to this plane K. Thus each groove 8 will alternately undergo an inclination of an angle α when the axis of the rudder 7 will pass through the plane normal to the plane K and will be aligned on the longitudinal axis X when the pivot axis X of the rudder 2 will pass through the plane K.

Ainsi, quelle que soit la position angulaire des gouvernes 2 autour de l'axe longitudinal X, les gouvernes 2 adoptent toujours l'incidence adaptée pour orienter le projectile vers la direction D qui est donnée par le positionnement de l'extrémité 11a du bras 11 (soit vers le bas dans l'exemple retenu).Thus, regardless of the angular position of the control surfaces 2 about the longitudinal axis X, the control surfaces 2 always adopt the appropriate incidence to orient the projectile towards the direction D which is given by the positioning of the end 11a of the arm 11 (ie down in the example selected).

Afin de commander le positionnement de l'extrémité 11a du bras 11 relativement à l'axe longitudinal X et angulairement par rapport à un repère absolu RA, le projectile comporte un moyen de positionnement 12 comportant un boitier sensiblement circulaire 13 et une crémaillère 14 visibles à la figure 9.In order to control the positioning of the end 11a of the arm 11 relative to the longitudinal axis X and angularly relative to an absolute reference RA, the projectile comprises a positioning means 12 having a substantially circular housing 13 and a rack 14 visible to the figure 9 .

La crémaillère 14 comporte une partie dentée 14a qui est solidaire d'une plaque 14b qui se loge dans une glissière 15 du boîtier 13 (voir les figures 2 et 10).The rack 14 has a toothed portion 14a which is integral with a plate 14b which is housed in a slideway 15 of the housing 13 (see FIGS. figures 2 and 10 ).

La crémaillère 14 peut ainsi se translater selon une direction parallèle au diamètre du boitier 13.The rack 14 can thus translate in a direction parallel to the diameter of the housing 13.

Comme cela est visible à la figure 8, le boîtier 13 est coaxial à l'axe longitudinal X du projectile et il comporte un trou oblong 16 orienté parallèlement à la glissière 15 et qui permet de laisser passer le bras 11 afin que l'extrémité libre 11a du bras 11 puisse coopérer avec un trou 24 porté par la plaque 14b de la crémaillère 14 (voir les figures 2 et 10). L'extrémité 11a du bras est sphérique et la liaison entre cette extrémité et le trou 24 de la crémaillère 14 forme une rotule.As can be seen in figure 8 , the housing 13 is coaxial with the longitudinal axis X of the projectile and has an oblong hole 16 oriented parallel to the slideway 15 and allowing the arm 11 to pass so that the free end 11a of the arm 11 can cooperate with a hole 24 carried by the plate 14b of the rack 14 (see figures 2 and 10 ). The end 11a of the arm is spherical and the connection between this end and the hole 24 of the rack 14 forms a ball joint.

La crémaillère 14 est destinée à engrener avec un pignon 18 d'un premier moteur M1 (pignon visible aux figures 2, 9 et 11, moteur M1 visible à la figure 11) aligné sur l'axe longitudinal X du projectile 103 afin de pouvoir commander la translation de la crémaillère 14 dans le boitier 13.The rack 14 is intended to mesh with a pinion 18 of a first motor M1 (pinion visible at figures 2 , 9 and 11 , motor M1 visible at the figure 11 ) aligned with the longitudinal axis X of the projectile 103 in order to be able to control the translation of the rack 14 into the housing 13.

Le boitier 13 comporte sur sa périphérie une couronne dentée C2 destinée à engrener avec un second moteur M2 (couronne dentée C2 et moteur M2 visibles aux figures 10 et 11).The housing 13 has on its periphery a ring gear C2 intended to mesh with a second motor M2 (ring gear C2 and M2 motor visible to figures 10 and 11 ).

Le moyen de positionnement 12 permet d'orienter le projectile 103 vers une direction donnée D transversale au projectile 103. Lors du vol du projectile 103, lorsque les gouvernes sont à incidence nulle et afin qu'elles demeurent dans cette position, les moteurs doivent tourner de manière synchrone à une vitesse angulaire -Ω dans le sens inverse du projectile 103 pour compenser la rotation de ce dernier animé d'une vitesse Ω.The positioning means 12 makes it possible to orient the projectile 103 towards a given direction D transverse to the projectile 103. During the flight of the projectile 103, when the control surfaces are at zero incidence and so that they remain in this position, the engines must rotate synchronously at an angular speed -Ω in the opposite direction projectile 103 to compensate for the rotation of the latter animated with a speed Ω.

Afin d'orienter le projectile 103 en changeant l'incidence des gouvernes 2, les moteurs vont devoir se déphaser. Pour cela le second moteur M2 va tourner à une vitesse -Ω ± ω2 pour faire pivoter le boîtier 13 d'un angle Φ par rapport au repère absolu RA alors que le moteur M1 tournera toujours à la vitesse -Ω. Ce déphasage sera maintenu jusqu'à ce que la glissière 15 soit parallèle à la direction D choisie pour la correction souhaitée, et ceci toujours en compensant la rotation du projectile.In order to orient the projectile 103 by changing the incidence of the control surfaces 2, the engines will have to phase out. For this the second motor M2 will rotate at a speed -Ω ± ω2 to rotate the housing 13 by an angle Φ relative to the absolute reference RA while the motor M1 will always turn to the speed -Ω. This phase shift will be maintained until the slideway 15 is parallel to the direction D chosen for the desired correction, and this always compensating for the rotation of the projectile.

Ainsi, comme représenté à la figure 10, pour connaître la position angulaire de la glissière 15 dans le repère absolu RA il est possible, par exemple, de recourir à l'utilisation d'un capteur optique 51 solidaire du corps du projectile et tournant avec celui-ci et apte à lire une couronne codeuse 52 solidaire de la périphérie du boitier 13. La position de ce capteur 51 est précisément connue par rapport au repère absolu fourni par une centrale inertielle du projectile. Un calculateur embarqué pourra alors aisément connaître la position angulaire de la glissière 15 au fur et à mesure de la rotation du corps du projectile autour du boitier 13. L'amplitude de déplacement de la crémaillère 14 peut être également mesurée par un capteur de type linéaire 53 situé entre le boitier 13 et la crémaillère 14.Thus, as represented in figure 10 in order to know the angular position of the slideway 15 in the absolute reference RA, it is possible, for example, to resort to the use of an optical sensor 51 integral with the body of the projectile and rotating therewith and able to read a Encoder ring 52 secured to the periphery of the housing 13. The position of this sensor 51 is precisely known with respect to the absolute reference provided by an inertial unit of the projectile. An onboard computer can then easily know the angular position of the slide 15 as and when the body of the projectile is rotated around the housing 13. The displacement amplitude of the rack 14 can also be measured by a linear type sensor 53 located between the housing 13 and the rack 14.

Une fois cet angle Φ atteint, les deux moteurs se remettent en phase.Once this angle Φ is reached, the two motors get back in phase.

L'étape suivante consiste à faire glisser la crémaillère 14 dans la direction donnée D par rotation du premier moteur M1 à une vitesse -Ω ± ω1. Le second moteur M2 tournant toujours à la vitesse -Ω. La translation de la crémaillère 14 entraine l'excentration E entre l'extrémité 11a du bras 11 et l'axe longitudinal X donnant ainsi l'amplitude de correction voulue. L'amplitude étant déterminée par la loi de commande de l'orientation du projectile.The next step is to slide the rack 14 in the given direction D by rotation of the first motor M1 at a speed -Ω ± ω1. The second motor M2 always turning at the speed -Ω. The translation of the rack 14 causes the eccentricity E between the end 11a of the arm 11 and the longitudinal axis X thus giving the desired correction amplitude. The amplitude being determined by the control law of the orientation of the projectile.

L'invention permet donc d'obtenir un projectile pilotable comportant un dispositif d'orientation des gouvernes simple et fiable et où les problèmes de sollicitations électromagnétiques sont grandement diminués du fait de l'activité régulière des moteurs qui ne sont pas soumis à de brutaux et incessants pics d'intensités.The invention therefore makes it possible to obtain a controllable projectile comprising a simple and reliable control surface control device and where the problems of electromagnetic solicitations are greatly reduced owing to the regular activity of the engines which are not subject to brutal and incessant peaks of intensity.

Il est possible de mettre en oeuvre l'invention avec un nombre de gouvernes différent de quatre. On pourra ainsi réaliser un projectile comportant trois gouvernes orientables ou cinq gouvernes. Il suffit pour cela de modifier tout simplement le nombre de rainures 8 réalisées dans la sphère 5 (une rainure par gouverne). Le procédé de commande des gouvernes reste dans tous les cas le même. Un projectile selon l'invention comportant seulement deux gouvernes est envisageable également mais sera plus difficile à piloter.It is possible to implement the invention with a number of control surfaces different from four. We can thus achieve a projectile with three steerable control surfaces or five control surfaces. Simply change the number of grooves 8 made in the sphere 5 (one groove per rudder). The control method of the control surfaces remains in all cases the same. A projectile according to the invention comprising only two control surfaces is also possible but will be more difficult to control.

Claims (4)

  1. Projectile (103) with incidence steerable control surfaces (2) comprising at least two control surfaces (2) each being rotatable with respect to the projectile (103) around a pivot axis (7) perpendicular to the longitudinal axis (X) of the projectile (103), wherein the projectile is characterised in that it comprises:
    - central means (5) for controlling the control surfaces (2), comprising at least a spherical shape (5), the center (O) of which being on the longitudinal axis (X), the spherical shape (5) being arranged in a housing (10) of the projectile,
    - a control arm (11) secured to the spherical shape (5) and adapted to rotate the spherical shape (5) at least around the pitch (Y) and yaw (Z) axes of the projectile (103) passing through the center (O) of the spherical shape (5),
    - for each control surface (2), a transmission member (20) cooperating with the spherical shape (5) by a first side (20a) and with the control surface foot (2b) by a second side (20b), wherein the transmission member (20) is intended to transmit to the control surface the rotation movements of the spherical shape (5) around the pivot axis (7) of the control surface,
    - arm positioning means (12) adapted to position an end of the arm (11) in a position determined with respect to an absolute frame (RA) centered on the longitudinal axis (X) of the projectile;
    wherein the spherical shape (5) comprises, for each control surface (2), a groove (8) oriented along a meridian line of the spherical shape (5) and starting from the control arm (11), wherein the grooves are arranged parallel to the longitudinal axis (X) when the control surfaces (2) are parallel to the longitudinal axis (X) of the projectile, wherein each groove (8) cooperates with the first side (20a) of the transmission member by a first profile (21) of the transmission member (20) corresponding to the groove (8), wherein the first profile (21) is adapted to slide in the groove (8).
  2. Projectile (103) with incidence steerable control surfaces (2) according to claim 1, characterised in that the second side (20b) of the transmission member (20) comprises a second profile (22) orthogonal to the first profile (21), wherein the second profile (22) cooperates with a slot (23) carried by the control surface foot (2b), wherein the second profile (22) is adapted to slide in the slot (23).
  3. Projectile (103) with incidence steerable control surfaces (2) according to one of claims 1 and 2, characterised in that the positioning means (12) comprises a housing (13) coaxial with the projectile (103), wherein the housing (13) encloses a rack which is secured to the end of the arm (11) by a ball joint, wherein the rack can also slide in a slideway (15) of the housing (13) which is oriented parallel to a diameter of the housing (13), wherein a first motor (M1) meshes with the rack (14) to move it in the slideway (15) and the housing (13) is surrounded by a ring gear meshing with a second motor (M2) adapted to angularly orientate the slideway (15).
  4. Method for controlling the control surfaces (2) of a projectile (103) according to claim 3 intended to orientate the projectile (103) along a given direction (D) transverse to the projectile (103), wherein the method is characterized in that it successively comprises the following steps:
    - rotating the first and second motors (M1, M2) in phase and in a direction opposite to the rolling of the projectile so as to compensate for the rotation of the projectile (103),
    - pivoting the housing (12) with an angle Φ by dephasing the rotation of the second motor (M2) with respect to the rotation speed of the first motor (M1) so that the slideway (15) is parallel to the given direction D, while compensating for the rotation of the projectile by maintaining the rotation of the first motor (M1) in a direction opposite to the rolling of the projectile,
    - resynchronizing the first and second motors (M1, M2) so as to compensate for the rotation of the projectile (103),
    - sliding the rack (14) in the given direction D by dephasing the rotation of the first motor (M1) with respect to the rotation speed of the second motor (M2) which is still maintained in the direction opposite to the rolling of the projectile until the off-centering E between the end of the arm (11) and the longitudinal axis (X) provides the desired correction amplitude.
EP14155480.8A 2013-02-18 2014-02-17 Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile Active EP2767794B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1300370A FR3002319B1 (en) 2013-02-18 2013-02-18 PROJECTILE WITH ORIENTABLE GOVERNMENTS AND METHOD OF ORDERING THE GOVERNMENTS OF SUCH PROJECTILE

Publications (2)

Publication Number Publication Date
EP2767794A1 EP2767794A1 (en) 2014-08-20
EP2767794B1 true EP2767794B1 (en) 2015-07-15

Family

ID=48856678

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14155480.8A Active EP2767794B1 (en) 2013-02-18 2014-02-17 Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile

Country Status (3)

Country Link
US (1) US9163915B2 (en)
EP (1) EP2767794B1 (en)
FR (1) FR3002319B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3041744B1 (en) * 2015-09-29 2018-08-17 Nexter Munitions ARTILLERY PROJECTILE HAVING A PILOTED PHASE.
FR3078152B1 (en) * 2018-02-22 2021-11-05 Nexter Munitions ORIENTABLE GOVERNANCE PROJECTILE
FR3080912B1 (en) 2018-05-02 2020-04-03 Nexter Munitions PROJECTILE POWERED BY STATOREACTOR
JP7465531B2 (en) 2020-07-17 2024-04-11 国立研究開発法人宇宙航空研究開発機構 Rocket control system and method for controlling landing operation of rocket
US11650033B2 (en) * 2020-12-04 2023-05-16 Bae Systems Information And Electronic Systems Integration Inc. Control plate-based control actuation system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210298A (en) * 1978-08-01 1980-07-01 The United States Of America As Represented By The Secretary Of The Army Electro-mechanical guidance actuator for a missile
US4738412A (en) * 1987-08-24 1988-04-19 The United States Of America As Represented By The Secretary Of The Navy Air stabilized gimbal platform
US7246539B2 (en) * 2005-01-12 2007-07-24 Lockheed Martin Corporation Apparatus for actuating a control surface
US20080006736A1 (en) * 2006-07-07 2008-01-10 Banks Johnny E Two-axis trajectory control system

Also Published As

Publication number Publication date
US20140231577A1 (en) 2014-08-21
US9163915B2 (en) 2015-10-20
EP2767794A1 (en) 2014-08-20
FR3002319B1 (en) 2015-02-27
FR3002319A1 (en) 2014-08-22

Similar Documents

Publication Publication Date Title
EP2767794B1 (en) Projectile with control surfaces and procedure of controlling the control surfaces of such a projectile
EP1772698B1 (en) Actuating mechanism for the rudders of a projectile
CA1333027C (en) Device for extending a missile fin
EP3436691B1 (en) Fluidic rotor having orientable blades with improved blade control
EP3275579B1 (en) Drilling device with advancing speed controlled automatically or by a self-aligning spindle
EP2703768B1 (en) Projectile with adjustable fins and method for controlling the fins of such a projectile
EP1165369B1 (en) Helicopter with highly stable and highly manoeuvrable pendular piloting system
EP3393903B1 (en) System and method for marine vehicle thruster control
EP3531061B1 (en) Projectile with adjustable fins
EP3956219B1 (en) Propulsion device for rotorcraft with vertical take-off and landing, and a rotorcraft comprising at least one such propulsion device
WO2021089474A1 (en) Articulation having three degrees of freedom for a robot, and corresponding control method
FR2980117A1 (en) Contrarotative rotor integrated vertical takeoff and landing flying machine e.g. reduced helicopter module, has orientation module mounted on frame and comprising orientation unit to pivot contrarotative motor around pitch and rolling axes
WO2009065818A1 (en) Actuator with transfer of angular momentum for the attitude control of a spacecraft
EP2668100B1 (en) Method and system for piloting a flying craft with rear propulsion unit
FR2890375A1 (en) ROTARY VESSEL CONTROL ASSEMBLY
EP3081484B1 (en) A system for controlling a rotorcraft rotor, a rotorcraft fitted with such a system, and an associated control method
FR2980842A1 (en) Gyrostabilized projectile for firing from tank gun, has warhead including pair of wings deployed on warhead, where motor reducer allows wings to be deployed according to variable aperture whose amplitude is determined by control electronics
WO2013041784A1 (en) System for steering a flying object using pairs of lateral nozzles
WO2017109149A1 (en) Marine vehicle thruster control method
EP0455543B1 (en) Device for pointing a reflector antenna
EP3221271B1 (en) Device for handling the edge of a ribbon of float glass, comprising an inclined-axis wheel, and installation comprising such a device
EP3376153A1 (en) Ballistic protection device for observation means
CH251987A (en) Rotary hydraulic motor of the axial type with propeller for high pressure and specific speed.
BE512772A (en)
CH94355A (en) Propeller for flying devices of the helicopter type with direction, propulsion and stabilization by tilting in all directions.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17P Request for examination filed (corrected)

Effective date: 20141201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROY, RICHARD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602014000081

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F42B0010620000

Ipc: F42B0015010000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F42B 10/64 20060101ALI20150130BHEP

Ipc: F42B 10/62 20060101ALI20150130BHEP

Ipc: F42B 15/01 20060101AFI20150130BHEP

INTG Intention to grant announced

Effective date: 20150218

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 737028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602014000081

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 737028

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150715

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150715

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151016

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151116

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602014000081

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

26N No opposition filed

Effective date: 20160418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170228

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140217

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150715

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240123

Year of fee payment: 11

Ref country code: GB

Payment date: 20240123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240123

Year of fee payment: 11

Ref country code: IT

Payment date: 20240123

Year of fee payment: 11

Ref country code: FR

Payment date: 20240123

Year of fee payment: 11