TWI493148B - Solar collector positioning apparatus - Google Patents
Solar collector positioning apparatus Download PDFInfo
- Publication number
- TWI493148B TWI493148B TW101115325A TW101115325A TWI493148B TW I493148 B TWI493148 B TW I493148B TW 101115325 A TW101115325 A TW 101115325A TW 101115325 A TW101115325 A TW 101115325A TW I493148 B TWI493148 B TW I493148B
- Authority
- TW
- Taiwan
- Prior art keywords
- frame
- solar collector
- intermediate frame
- base
- solar
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/47—Mountings or tracking
Landscapes
- Photovoltaic Devices (AREA)
Description
本申請案主張2010年11月24日申請之美國臨時申請案序號61/417,086之35 USC §119(e)的利益,其完整內容係藉由引用方式而納入本文中。 This application claims the benefit of US Provisional Application Serial No. 61/417,086, 35 USC § 119 (e), filed on Nov. 24, 2010, the entire disclosure of which is incorporated herein by reference.
本發明一般是屬於由太陽能能量提供動力之裝置的技術領域,在特定具體實施例中是與光電電力有關。數個特定具體實施例是有關於接附太陽能收集器模組的裝置;以及更具體而言,是有關於太陽能收集器模組的自動定位,以供模組表面維持於與太陽的電磁輻射實質垂直之方向。 The present invention is generally in the technical field of devices powered by solar energy, and in particular embodiments is related to photovoltaic power. A number of specific embodiments are related to the attachment of the solar collector module; and more specifically, to the automatic positioning of the solar collector module for maintaining the surface of the module with the electromagnetic radiation of the sun. The direction of the vertical.
本發明的特定具體實施例是有關於太陽能收集器模組的表面方向之自動調整,以置放模組表面為垂直於太陽的電磁輻射。這些具體實施例係集中在使光電模組移動至與太陽射線垂直方向的方法。此種太陽能模組之移動已被給予一個業界所廣泛接受的名稱「追日(tracking)」,並且在此後將用於代表這個動作。對於消費者而言,一般有兩種類型的商業可得的追日機制。第一種類型的追日系統(已知為單軸追日系統)係使光電模組從早上的向東方位偏斜到下午的向西方位,其無法調整針對太陽穿過天空的路徑之季節性傾角及偏角進行調整。第二種類型的追日系統(已知為雙軸追日系統)係使太陽能模組定位為垂直於太陽射線,其具有可針對整年太陽路徑的傾角及偏角進行補償之裝置。 A particular embodiment of the invention relates to the automatic adjustment of the surface orientation of the solar collector module to place the surface of the module as electromagnetic radiation perpendicular to the sun. These specific embodiments focus on the method of moving the optoelectronic module to a direction perpendicular to the sun's rays. The movement of such solar modules has been given the industry-widely accepted name "tracking" and will be used to represent this action thereafter. For consumers, there are generally two types of commercially available chasing mechanisms. The first type of chasing system (known as the single-axis chasing system) deflects the optoelectronic module from the morning to the east to the west to the afternoon, which cannot adjust the season for the sun to cross the sky. Adjust the inclination and yaw angle. The second type of tracking system (known as the two-axis tracking system) positions the solar module perpendicular to the sun ray, which has means for compensating for the dip and yaw angles of the solar path throughout the year.
見於第1圖中之本發明之一具體實施例是一太陽能收集器模組定位裝置1。第1圖之具體實施例一般包含一基部結構2、以及藉由基部支撐腳11而連接至該基部結構2之一中間框體4。在此具體實施例中,基部支撐腳11具有對於該基部結構2的一鉸鏈連接17,以及對於該中間框體4的一鉸鏈連接17,藉此將該中間框體4之移動限制在一平面,該平面垂直於被該基部結構2佔據之平面。 One embodiment of the invention, as seen in Figure 1, is a solar collector module positioning device 1. The specific embodiment of Fig. 1 generally comprises a base structure 2 and an intermediate frame 4 connected to the base structure 2 by a base support leg 11. In this particular embodiment, the base support foot 11 has a hinged connection 17 to the base structure 2 and a hinged connection 17 to the intermediate frame 4, thereby limiting the movement of the intermediate frame 4 to a plane This plane is perpendicular to the plane occupied by the base structure 2.
這個定位裝置1的具體實施例也具有一太陽能收集器支撐框體6,其藉由中間支撐腳13而連接到該中間框體4。中間支撐腳13同樣具有對於太陽能收集器支撐框體6的一鉸鏈連接17,以及對於中間框體4的一鉸鏈連接17,藉此將該太陽能收集器支撐框體6之移動限制在一平面,其正交於中間框體所佔據之平面。此處所使用的「正交」是指兩個物件(例如,向量或平面)以直角交叉。 A specific embodiment of this positioning device 1 also has a solar collector support frame 6 that is connected to the intermediate frame 4 by intermediate support legs 13. The intermediate support leg 13 likewise has a hinged connection 17 to the solar collector support frame 6 and a hinged connection 17 to the intermediate frame 4, whereby the movement of the solar collector support frame 6 is restricted to a plane, It is orthogonal to the plane occupied by the intermediate frame. As used herein, "orthogonal" means that two objects (eg, vectors or planes) intersect at right angles.
在本發明說明中所使用的名詞「太陽能收集器模組」是指任何裝置,其可為了有用之目的而收集太陽能能量,或為了遠端收集之目的而將能量重新導向。太陽能收集器模組的一個例子是可將太陽能能量轉換成電力的光電面板或模組。太陽能收集器模組的其他非限制性例子是太陽能之水加熱器面板、太陽能之熱冷凝器、太陽能之熱蒸發器或鏡子。 The term "solar collector module" as used in the description of the present invention refers to any device that collects solar energy for useful purposes or redirects energy for remote collection purposes. An example of a solar collector module is a photovoltaic panel or module that converts solar energy into electricity. Other non-limiting examples of solar collector modules are solar water heater panels, solar thermal condensers, solar thermal evaporators or mirrors.
1‧‧‧太陽能收集器模組定位裝置 1‧‧‧Solar collector module positioning device
2‧‧‧基部框體 2‧‧‧ base frame
4‧‧‧中間框體 4‧‧‧Intermediate frame
6‧‧‧支撐框體 6‧‧‧Support frame
8‧‧‧太陽能收集器裝置 8‧‧‧Solar collector device
9A/9B/12/15‧‧‧框體構件 9A/9B/12/15‧‧‧ frame components
11A/11B/11C/11D/13/13A/13B/13C/13D/31/111/113‧‧‧支撐腳 11A/11B/11C/11D/13/13A/13B/13C/13D/31/111/113‧‧‧ Support feet
16‧‧‧交叉構件 16‧‧‧cross members
17/17a/17b/17x/17y‧‧‧鉸鏈連接 17/17a/17b/17x/17y‧‧‧ Hinged connection
19‧‧‧致動器 19‧‧‧Actuator
25‧‧‧支柱 25‧‧‧ pillar
30A/30B‧‧‧謝比雪夫連桿組 30A/30B‧‧‧Shebyshev connecting rod set
32‧‧‧致動連桿 32‧‧‧Activity linkage
33‧‧‧連桿 33‧‧‧ Connecting rod
40‧‧‧連接 40‧‧‧Connect
70‧‧‧觀測點 70‧‧‧ observation points
71‧‧‧天頂 71‧‧‧ Zenith
72‧‧‧方位 72‧‧‧ Position
75‧‧‧太陽 75‧‧‧The sun
76‧‧‧太陽向量 76‧‧‧Sun Vector
80‧‧‧第一移動平面 80‧‧‧First moving plane
81‧‧‧第二移動平面 81‧‧‧Second moving plane
85‧‧‧控制系統 85‧‧‧Control system
86‧‧‧控制器 86‧‧‧ Controller
87‧‧‧切換器 87‧‧‧Switcher
88‧‧‧脈衝寬度調變器 88‧‧‧ pulse width modulator
89‧‧‧電源供應器 89‧‧‧Power supply
90‧‧‧電子分級/羅盤裝置 90‧‧‧Electronic grading/compass device
91‧‧‧GPS介面 91‧‧‧GPS interface
92‧‧‧網路介面 92‧‧‧Internet interface
93‧‧‧通訊埠 93‧‧‧Communication埠
94‧‧‧電位計 94‧‧‧potentiometer
115‧‧‧旋轉點 115‧‧‧Rotation point
133/135‧‧‧連桿 133/135‧‧‧ connecting rod
136‧‧‧孔洞 136‧‧‧ holes
200‧‧‧太陽能收集器定位裝置 200‧‧‧Solar collector positioning device
201‧‧‧框體 201‧‧‧ frame
205‧‧‧輪件 205‧‧‧ Wheels
第1圖是本發明之一具體實施例的透視圖。 Figure 1 is a perspective view of one embodiment of the present invention.
第2圖是在天體座標中之太陽位置圖。 Figure 2 is a map of the position of the sun in the coordinates of the celestial body.
第3A圖是在一具體實施例中太陽位置相對於裝置位置之圖式。 Figure 3A is a diagram of the position of the sun relative to the position of the device in a particular embodiment.
第3B圖是在另一具體實施例中太陽位置相對於裝置位置之 圖式。 Figure 3B is a diagram of the position of the sun relative to the position of the device in another embodiment. figure.
第4圖繪示了第1圖裝置的偏斜角度之圖式。 Figure 4 is a diagram showing the deflection angle of the device of Figure 1.
第5圖是第1圖中所示裝置之偏斜角度的示意圖式。 Fig. 5 is a schematic view showing the skew angle of the apparatus shown in Fig. 1.
第6圖說明了如第1圖中定位為一整合單元之多個裝置。 Figure 6 illustrates a plurality of devices positioned as an integrated unit as in Figure 1.
第7圖是本發明之一第二具體實施例之透視圖。 Figure 7 is a perspective view of a second embodiment of the present invention.
第8A圖是本發明之一第三具體實施例之透視圖。 Figure 8A is a perspective view of a third embodiment of the present invention.
第8B圖是第8A圖之具體實施例的一變化例。 Fig. 8B is a modification of the specific embodiment of Fig. 8A.
第9圖說明了如第8A圖定位為一整合單元之多個裝置。。 Figure 9 illustrates a plurality of devices positioned as an integrated unit as shown in Figure 8A. .
第10圖是本發明之一第四具體實施例的透視圖。 Figure 10 is a perspective view of a fourth embodiment of the present invention.
第11圖是第10圖中裝置之偏斜角度的示意圖式。 Fig. 11 is a schematic view showing the skew angle of the device in Fig. 10.
第12圖是本文描述裝置之一控制系統的一具體實施例之示意圖式。 Figure 12 is a schematic illustration of one embodiment of a control system of one of the devices described herein.
第13圖是在第8A圖及第8B圖中所示之謝比雪夫(Chebyshev)連桿的示意圖式。 Figure 13 is a schematic diagram of the Chebyshev linkage shown in Figures 8A and 8B.
第14圖是一示例收集器面板間隔的示意圖式,藉由調整北-南方向中的相鄰面板而避開面板的陰影。 Figure 14 is a schematic illustration of an example collector panel spacing that avoids shadowing of the panel by adjusting adjacent panels in the north-south direction.
第15圖是一示例收集器面板間隔的示意圖式,用以藉由調整東-西方向中的相鄰面板而避開面板的陰影。 Figure 15 is a schematic illustration of an example collector panel spacing to avoid shadowing of the panel by adjusting adjacent panels in the east-west direction.
第16圖是由某些具體實施例所執行之「回溯追日(backtracking)」功能的示意圖式。 Figure 16 is a schematic illustration of the "backtracking" function performed by certain embodiments.
第17圖是固定在運輸載具上的本發明之一具體實施例之透視圖。 Figure 17 is a perspective view of one embodiment of the invention secured to a transport vehicle.
在第1圖中觀察到的鉸鏈連接17是一般鉸接裝置之代表性描述。在本發明說明中所使用的名詞「鉸鏈連接」是指任何類型的連接,其可容許一些範圍的旋轉,但不容許或實質上不容許轉變。非限制性的例子包含插接、樞接、軸台、軸承連接及插入之U形鉤。在第1圖的具體實施例中,鉸鏈連接17實質上將鉸接元件限制在單一平面中 旋轉。 The hinge connection 17 observed in Figure 1 is a representative depiction of a general hinge device. The term "hinge connection" as used in the description of the present invention refers to any type of connection that allows for some range of rotation, but does not allow or substantially tolerate the transition. Non-limiting examples include plugs, pivots, pillow blocks, bearing connections, and inserted U-shaped hooks. In the particular embodiment of Figure 1, the hinge connection 17 substantially confines the hinge element to a single plane Rotate.
在第1圖中所觀察到的基部結構2是由一系列基部框體構件9所組成的框體結構,其從側向框體構件9B及縱向框體構件9A形成一般成直角的基部結構。基部框體構件9命名為側向及縱向,大部分是任意的,除了在使用中、許多具體實施例將基部框體構件9A大體上以東西向排列而定位,留下一般是北-南排列的側向基部框體構件9B者之外。基部框體構件9可由任何足夠堅硬的材料(考慮材料的強度及橫切的形狀/面積)所形成,以及非限制性的例子包含木頭、金屬(較佳是輕重量金屬,例如鋁)以及足夠堅硬的聚合物材料。雖然在第1圖中的基部結構2是框體結構,但基部結構2可以是具有非框體的類型,如以下說明的其他具體實施例所揭露者。可使用任何數量的不同基部結構,只要它們提供基部支撐腳適合的連接點即可。 The base structure 2 observed in Fig. 1 is a frame structure composed of a series of base frame members 9, which form a generally right-angled base structure from the lateral frame members 9B and the longitudinal frame members 9A. The base frame members 9 are named laterally and longitudinally, and are mostly arbitrary, except that in use, in many embodiments, the base frame members 9A are positioned generally in an east-west orientation, leaving a generally north-south arrangement. The lateral base frame member 9B is outside. The base frame member 9 can be formed of any sufficiently rigid material (considering the strength of the material and the shape/area of the cross-cut), and non-limiting examples include wood, metal (preferably light weight metal such as aluminum) and sufficient Hard polymer material. Although the base structure 2 in Fig. 1 is a frame structure, the base structure 2 may be of a type having a non-frame, as disclosed in other specific embodiments described below. Any number of different base structures can be used as long as they provide a suitable attachment point for the base support foot.
雖然在第1圖中並沒有很清楚地看到,但將可理解的是中間框體4是由框體構件12以實質上相同於參考基部框體構件9所說明的方式而建構。第1圖的具體實施例顯示二個基部支撐腳11A及11B在它們的下端部(經由鉸鏈連接17)而連接到一側向基部框體構件9B,以及其他二個基部支撐腳11C及11D,基部支撐腳11C及11D連接到對側的側向基部框體構件9B。如上所建議,基部支撐腳11是在它們的上端部(經由鉸鏈連接17)連接到中間框體構件12。第1圖的裝置將中間支撐腳13以實質上相似的方式放置在中間框體4及太陽能收集器支撐框體6之間。中間支撐腳13A及13B將在每一端部分別鉸接到中間框體構件12及太陽能收集器支撐框體構件15,而中間支撐腳13C及13D則將在每一端部鉸接到對側的中間框體構件12及收集器支撐框體構件15。雖然第1圖顯示二個位在中間框體4上的收集器支撐框體6,但將可理解的是單一收集器支撐框體6或超過二個 收集器支撐框體6,也可以定位在中間框體4上。 Although not clearly seen in Figure 1, it will be understood that the intermediate frame 4 is constructed from the frame member 12 in a manner substantially identical to that described with reference to the base frame member 9. The specific embodiment of Fig. 1 shows that the two base support legs 11A and 11B are connected at their lower ends (via the hinge connection 17) to the one side base frame member 9B, and the other two base support legs 11C and 11D, The base support legs 11C and 11D are connected to the opposite side base frame members 9B. As suggested above, the base support feet 11 are connected to the intermediate frame member 12 at their upper ends (via the hinge connection 17). The apparatus of Fig. 1 places the intermediate support legs 13 between the intermediate frame 4 and the solar collector support frame 6 in a substantially similar manner. The intermediate support legs 13A and 13B will be hinged at each end to the intermediate frame member 12 and the solar collector support frame member 15, respectively, while the intermediate support legs 13C and 13D will be hinged at each end to the opposite intermediate frame. The member 12 and the collector support the frame member 15. Although Figure 1 shows two collector support frames 6 positioned on the intermediate frame 4, it will be understood that a single collector supports the frame 6 or more than two. The collector support frame 6 can also be positioned on the intermediate frame 4.
一般而言,收集器支撐框體6將由堅硬的框體構件與連接到收集器支撐框體6的太陽能收集器裝置8一起形成。當然,收集器支撐框體6也可採取其他非框體的形式,例如單一片的平面材料(例如,木夾板片段)。同樣地,也可有太陽能收集器模組本身的結構是足夠強的具體實施例,以容許直接接到中間支撐腳13的鉸鏈連接17。在這樣的例子中,太陽能收集器模組的整體結構可被視為是收集器支撐框體6。 In general, the collector support frame 6 will be formed from a rigid frame member with a solar collector device 8 that is coupled to the collector support frame 6. Of course, the collector support frame 6 can also take the form of other non-frames, such as a single piece of planar material (eg, a wood splint segment). Likewise, there may be specific embodiments in which the structure of the solar collector module itself is sufficiently strong to allow direct connection to the hinged connection 17 of the intermediate support leg 13. In such an example, the overall structure of the solar collector module can be considered to be the collector support frame 6.
如同以下參考第6圖更詳細地說明,在中間框體4及收集器支撐框體6間之中間支撐構件13的鉸鏈連接安排,係作為將收集器支撐框體6的旋轉限制在相對於中間框體4的單一旋轉平面(例如,第3A圖)。同樣地,鉸接的基部支撐腳11係作為將中間框體4限制在相對於基部支撐2的單一旋轉平面。 As explained in more detail below with reference to Fig. 6, the hinge connection arrangement of the intermediate support members 13 between the intermediate frame 4 and the collector support frame 6 serves as limiting the rotation of the collector support frame 6 in relation to the middle. A single plane of rotation of the frame 4 (eg, Figure 3A). Likewise, the hinged base support foot 11 acts as a single plane of rotation that constrains the intermediate frame 4 relative to the base support 2.
第1圖進一步一般性說明線性致動器19將如何被定位在中間框體4及收集器支撐框體6之間。在第1圖的特定具體實施例中,線性致動器19是接到收集器支撐框體6上的交叉構件16以及在中間框體4上的框體構件(未見於第1圖中)。在這個具體實施例中,線性致動器19是樞接(也就是鉸接或插接)到交叉構件16以及中間框體構件。線性致動器19可以是容許致動器的控制伸展及收縮之任何數量的裝置。在一較佳具體實施例中,線性致動器19是動力螺桿型的裝置,但也可以替換地是水力或氣動啟動的汽缸,或框架齒輪或小齒輪、旋轉凸輪、鏈條驅動機及滑輪、或皮帶驅動機及滑輪。雖然第1圖僅顯示在中間框體4及收集器支撐框體6之間的一個線性致動器19,但其他的具體實施例也可使用兩個或多個。雖然並沒有清楚地顯示在第1圖中,但應可理解的是,線性致動器19也可以類似於上述之 方式而連接在基部支撐2及中間框體4之間。某些具體實施例(例如,第八圖至第9圖)將致動器定位,以達到在框體的偏斜角度中相同的移動範圍,該框體被移動用於致動器的完全伸展及完全收縮。例如,有關以下討論的四連桿之連桿組中更詳細說明之+/- 45°偏斜角度。 Figure 1 further illustrates generally how the linear actuator 19 will be positioned between the intermediate frame 4 and the collector support frame 6. In the particular embodiment of Fig. 1, the linear actuator 19 is a cross member 16 attached to the collector support frame 6 and a frame member on the intermediate frame 4 (not shown in Fig. 1). In this particular embodiment, the linear actuator 19 is pivotally (i.e., hinged or plugged) to the cross member 16 and the intermediate frame member. Linear actuator 19 can be any number of devices that allow for controlled extension and contraction of the actuator. In a preferred embodiment, the linear actuator 19 is a power screw type device, but may alternatively be a hydraulically or pneumatically actuated cylinder, or a frame gear or pinion, a rotary cam, a chain drive and a pulley, Or belt drive and pulley. Although FIG. 1 shows only one linear actuator 19 between the intermediate frame 4 and the collector support frame 6, two or more other embodiments may be used. Although not clearly shown in Figure 1, it should be understood that the linear actuator 19 can also be similar to the above. The method is connected between the base support 2 and the intermediate frame 4. Some embodiments (eg, Figures 8 through 9) position the actuator to achieve the same range of motion in the skew angle of the frame, the frame being moved for full extension of the actuator And fully contracted. For example, the +/- 45° skew angle is described in more detail in the four-link linkage set discussed below.
控制系統演算法:如以上所建議,所描述的具體實施例之一項主要功能是使太陽能收集器模組接到收集器支撐框體6,以確實地維持相對於太陽移動的特定位置。一個具體實施例將利用一種控制方法及系統,其在以下結合第二至四圖而說明。觀察第2圖,在這個太陽能收集器定位裝置固定的地球的表面的點,被稱為觀測點70。平行於地球表面並包含觀測點70的平面,將被稱為「地表平面」。控制系統計算具有在其觀測點原點並經過太陽的單一向量。這個向量(此後稱為太陽向量76)對於地球表面上的系統位置、一年中的日期及一天中的時間都是獨特的。輸入系統以計算這個向量的系統輸入值,是觀測點的緯度及經度、日期以及一天中的時間。利用這些輸入值太陽向量可藉由標準方法而計算,例如,美國國家海洋及大氣管理局所出版以及在所附的附錄A中更詳細說明的標準方法。 Control System Algorithm: As suggested above, one of the primary functions of the described specific embodiment is to attach the solar collector module to the collector support frame 6 to positively maintain a particular position relative to the sun. A particular embodiment will utilize a control method and system that is described below in connection with Figures 2 through 4. Looking at Fig. 2, the point on the surface of the earth fixed by this solar collector positioning device is called observation point 70. A plane parallel to the surface of the earth and containing observation points 70 will be referred to as a "surface plane." The control system calculates a single vector with the origin at its observation point and passing through the sun. This vector (hereafter referred to as the Sun Vector 76) is unique to the location of the system on the Earth's surface, the date of the year, and the time of day. Enter the system to calculate the system input value for this vector, which is the latitude and longitude of the observation point, the date, and the time of day. The use of these input values for the solar vector can be calculated by standard methods, such as the standard method published by the National Oceanic and Atmospheric Administration and as described in more detail in Appendix A.
所得到的太陽向量76是由二個座標角度(方位72及天頂71)及一個純量數量所組成。為了這些計算之目的,數量將是單一的(1)。方位72(或有時稱為「方位角」)是在地表平面中旋轉的角度。方位角72的起點是真北(當系統是定位在北/南方向時的0度),以及旋轉是以順時鐘方向向東90度、向南180度以及向西270度進行。方位角72在其與垂直於地球表面的平面正交時停止,並且包含在內的是太陽75及觀測點70。天頂71是在觀測點70處與地表平面垂直的線與觀測點70及太陽75間的線之間所測量的角度。 天頂角71的起點是直接在頭頂上的(0度),並且以包含太陽向量76及觀測點70的平面中朝向方位向量的正向而進行。當天頂向量與太陽75及觀測點70交叉時,天頂角停止。如果系統是朝向真北以外的方向,則方位角72可簡單地朝向脫離真北調整角度純量及方向。 The resulting solar vector 76 is composed of two coordinate angles (azimuth 72 and zenith 71) and a scalar quantity. For the purposes of these calculations, the quantity will be single (1). Azimuth 72 (or sometimes referred to as "azimuth") is the angle of rotation in the ground plane. The starting point of the azimuth angle 72 is true north (when the system is positioned at 0 degrees in the north/south direction), and the rotation is 90 degrees eastward, 180 degrees south, and 270 degrees west. The azimuth angle 72 is stopped when it is orthogonal to a plane perpendicular to the surface of the earth, and is included in the sun 75 and the observation point 70. Zenith 71 is the angle measured between the line perpendicular to the ground plane at observation point 70 and the line between observation point 70 and sun 75. The starting point of the zenith angle 71 is directly at the top of the head (0 degrees) and is performed in the forward direction of the orientation vector in the plane containing the sun vector 76 and the observation point 70. When the top vector intersects the sun 75 and the observation point 70, the zenith angle stops. If the system is oriented in a direction other than true north, the azimuth angle 72 can simply adjust the angular scalar and direction away from true north.
如同先前的建議,第1圖的太陽能收集器定位系統僅可在二個平面中移動。觀察第3A圖,在第3A圖中之系統的「羅盤方位」是真北,係以中間框體被定位使其在北/南方向中偏斜的意義而言。第一移動平面80(中間框體4的第一移動平面)是在觀測點70正交於地球表面。第二移動平面81(太陽能收集器支撐框體6的第二移動平面)是正交於第一移動平面80並正交於中間框體4。結果,系統需要將計算的太陽向量(S)簡化為分量向量。這些分量向量必須(i)包含在太陽能收集器定位裝置的移動的平面內,以及(ii)是(這些向量的)乘積以產生太陽向量(S)。如同第4圖所建議,分量向量將被分別命名為向量N(北)及向量E(東)。向量N將設置在包含0度方位向量及0度天頂向量的平面。向量E將設置於包含90度方位向量及0度天頂向量的平面。兩個向量的原點將是觀測點。當向量是平行於地球表面時,分量向量的角位移將是0。角位移是以朝向0度天頂向量的正向而進行。當平行於0度天頂向量時,每個分量向量都將具有90度的角位移。 As previously suggested, the solar collector positioning system of Figure 1 can only be moved in two planes. Looking at Figure 3A, the "compass orientation" of the system in Figure 3A is true north, in the sense that the intermediate frame is positioned to deflect in the north/south direction. The first moving plane 80 (the first moving plane of the intermediate frame 4) is orthogonal to the earth's surface at the observation point 70. The second moving plane 81 (the second moving plane of the solar collector support frame 6) is orthogonal to the first moving plane 80 and orthogonal to the intermediate frame 4. As a result, the system needs to reduce the calculated sun vector (S) to a component vector. These component vectors must (i) be included in the plane of movement of the solar collector positioning device, and (ii) be the product of (these vectors) to produce the sun vector (S). As suggested in Figure 4, the component vectors will be named vector N (north) and vector E (east), respectively. The vector N will be set to a plane containing a 0 degree azimuth vector and a 0 degree zenith vector. The vector E will be set to a plane containing a 90 degree azimuth vector and a 0 degree zenith vector. The origin of the two vectors will be the observation point. When the vector is parallel to the Earth's surface, the angular displacement of the component vector will be zero. The angular displacement is performed in the forward direction toward the 0 degree zenith vector. When parallel to the 0 degree zenith vector, each component vector will have an angular displacement of 90 degrees.
決定向量N及向量E的第一步驟是將太陽向量(S)的天體座標轉換為由 S x (東分量), S y (北分量), S z (上分量,也就是所有方向都與地球表面垂直)表示的笛卡兒座標。這是藉由以下方程式而完成:對於天體到笛卡兒轉換的通用方程式: ;r是天體的半徑 The first step in determining the vector N and the vector E is to convert the celestial coordinates of the solar vector (S) into S x (east component), S y (north component), and S z (upper component, that is, all directions with the earth) Cartesian coordinates represented by the surface vertical). This is done by the following equation: the general equation for the celestial to Cartesian transformation: ; r is the radius of the celestial body
S x =r * sin(天頂)* sin(方位) S x = r * sin (zenith) * sin (orientation)
S y =r * sin(天頂)* cos(方位) S y = r * sin (zenith) * cos (orientation)
S z =r * cos(天頂)如同先前的說明,太陽向量是定義為具有一個(單一向量)的純量數量純量,其可將上述方程式簡化為: r=1 S z = r * cos (zenith) As previously stated, the solar vector is defined as a scalar quantity of scalar quantity with a (single vector) that simplifies the above equation: r =1
S x =sin(天頂)* sin(方位) S x =sin ( zenith) * sin (orientation)
S y =sin(天頂)* cos(方位) S y =sin (zenith) * cos (orientation)
S z =cos(天頂)太陽向量(向量S)將由笛卡兒分量( S x , S y , S z )而定義。其遵循向量N將由笛卡兒量( N x , N y , N z )而定義,以及向量E將由( E x , E y , E z )而定義。向量N從0度方位的角度是定義為對於太陽能收集器定位裝置的北偏斜角度。向量E從90度方位的角度是定義為對於太陽能收集器定位裝置的東偏斜角度。可找到發現這些角度如下:
單位向量E=( E x ,0, E z )利用矩陣代數:
(S x ,S y ,S z )=(-E z N y )x,(-N z E x )y,(E x N y )z 所以: S x =-E z N y ( S x , S y , S z )=(- E z N y ) x , (- N z E x ) y , ( E x N y ) z Therefore: S x =-E z N y
SS yy =-N=-N zz E E xx
S z =E x N y 改寫這些方程式並取代成偏斜角度方程式:
例如,裝置1±90°的旋轉將導致東偏斜角度係中間框體4將偏斜的角度,以及北偏斜角度係太陽能收集器支撐框體6將偏斜的角度。上述之「偏斜角度」在此處有時也可稱為「傾斜角度」。 For example, a 1 ± 90° rotation of the device will result in an east skew angle where the intermediate frame 4 will be deflected, and a north skew angle at which the solar collector support frame 6 will be deflected. The "skew angle" described above may sometimes be referred to as "tilt angle".
在說明用的具體實施例中,是致動器19的長度決定收集器支撐框體6或中間框體4的方位角度。然而,決定致動器長度的數學計算,對於不同的具體實施例可能是不同的。在第1圖的具體實施例中,支撐腳11(在基部2及中間框體4之間)及支撐腳13(在中間框體4及收集器支撐框體6之間)的幾何互連,形成典型的四連桿之連桿組。四連桿之連桿組的簡單圖式描繪在第5圖。在第5圖的具體實施例中,上連接點及下連接點是由致動器伸展的長度、致動器收縮的長度、支撐腳長度以及在上框體及下框體上的支撐腳連接點間之距離而支配。以下的推導會產生對於所要的(偏斜角度)數值之用於(致動器長度)的數值。以下的方程式定義所示的四連桿之連桿組:
|I 2 | * sin(θ 2 )+|I 3 | * sin(θ 3 )+|I 4 | * sin(θ 4 )=0除了包含 I 4 者之外,將所有的項數移到方程式的右手邊,並且將兩邊平方,得到:|I 4 | 2 * cos 2 (θ 4 )=(|I 1 |-|I 2 | * cos(θ 2 )-|I 3 | * cos(θ 3 )) 2 | I 2 | * sin( θ 2 )+| I 3 | * sin( θ 3 )+| I 4 | * sin( θ 4 )=0 Move all the number of terms to the equation except for those containing I 4 On the right hand side, and square the two sides, get: | I 4 | 2 * cos 2 ( θ 4 )=(| I 1 |-| I 2 | * cos( θ 2 )-| I 3 | * cos( θ 3 )) 2
|I 4 | 2 * sin 2 (θ 4 )=(-|I 2 | * sin(θ 2 )-|I 3 | * sin(θ 3 )) 2 結合以上方程式,並且應用三角關係cos 2 (θ)* cos 2 (θ)=1,得到:
第5圖也顯示一具體實施例,其中線性致動器I7的第一端部(或下端部)在基部支撐上的鉸鏈連接(也就是,點「a」及「b」)間之點「f」連接到基部支撐。然而,線性致動器的第二端部(或上端部)在中間框體上的鉸鏈連接「c」及「d」外的點「e」而連接到中間框體。相似的排列也可用於在中間框體及太陽能收集器支撐框體之間作用的線性致動器。然而,第5圖僅為一個具體實施例,並且在其他具體實施例中,線性致動器的第二端部或上端部可連接在第5圖中所示的點「d」之上。 Figure 5 also shows a specific embodiment in which the first end (or lower end) of the linear actuator I 7 is hinged to the base support (i.e., between points "a" and "b"). "f" is connected to the base support. However, the second end portion (or the upper end portion) of the linear actuator is connected to the intermediate frame by a hinge "c" on the intermediate frame and a point "e" outside the "d". A similar arrangement can also be used for linear actuators acting between the intermediate frame and the solar collector support frame. However, FIG. 5 is only one specific embodiment, and in other embodiments, the second end or upper end of the linear actuator may be connected above the point "d" shown in FIG.
第6圖說明第1圖具體實施例的許多可能修飾之一。第6圖顯示一系列的收集器支撐框體6可如何被定位在中間框體4上。在這個具體實施例中,中間支撐腳13的數目是二的倍數(也就是,在第6圖中觀察到在每一套收集器支撐框體6上所看到的六個支撐腳13),並且可以增加(也 就是,8、10、12...)至任何程度,只要中間框體4及基部結構2具有充足的結構強度以承受該數目的收集器支撐框體6即可。如同第1圖具體實施例,第6圖說明在每二個中間支撐腳13間的一個線性致動器19,但將可理解的是也可使用超過一個的線性致動器。可觀察到在這個具體實施例中的基部支撐腳11也是以二的倍數而使用。 Figure 6 illustrates one of many possible modifications of the specific embodiment of Figure 1. Figure 6 shows how a series of collector support frames 6 can be positioned on the intermediate frame 4. In this particular embodiment, the number of intermediate support legs 13 is a multiple of two (i.e., the six support legs 13 seen on each set of collector support frames 6 are observed in Figure 6), And can be added (also That is, 8, 10, 12...) to any extent as long as the intermediate frame 4 and the base structure 2 have sufficient structural strength to withstand the number of collector support frames 6. As with the specific embodiment of Fig. 1, Fig. 6 illustrates a linear actuator 19 between each of the two intermediate support legs 13, but it will be understood that more than one linear actuator may be used. It can be observed that the base support foot 11 in this particular embodiment is also used in multiples of two.
第7圖說明一種選擇性的基底支撐2。並非如第1圖所觀察到的基底支撐2是框體結構,第7圖顯示一系列形成基底支撐2的支柱25。在這個具體實例中,每個基底支撐腳都藉由一鉸鏈連接17而固定在支柱25。同樣地,致動器19的下端部也插接至支柱25。支柱25可由實際上任何堅硬的材料所形成,例如木頭、混凝土、鋼或足夠堅硬的聚合物。當然,第1圖之建構的基底支撐2及第7圖之支柱基底支撐2僅是基底支撐2可涵蓋的各種形狀之兩個非限定的例子。可使用許多其他的基底支撐結構,其同樣將可作為鉸鏈連接17的定位點。 Figure 7 illustrates an alternative substrate support 2. The base support 2, which is not as observed in Fig. 1, is a frame structure, and Fig. 7 shows a series of struts 25 forming the base support 2. In this particular example, each of the substrate support legs is secured to the post 25 by a hinged connection 17. Likewise, the lower end of the actuator 19 is also plugged into the post 25. The struts 25 can be formed from virtually any hard material such as wood, concrete, steel or a sufficiently rigid polymer. Of course, the base support 2 of FIG. 1 and the support base support 2 of FIG. 7 are only two non-limiting examples of various shapes that the base support 2 can cover. Many other substrate support structures can be used which will also serve as anchor points for the hinge connection 17.
第8A圖說明使用一體化致動系統的本發明之另一具體實施例。在第8A圖中,一體化致動系統係採取謝比雪夫連桿組30的形式。可觀察到這個具體實施例是相似於第1圖,在於基底結構2包含縱向框體構件9A及側向框體構件9B,具有至少兩組(例如在第8A圖中三組)的基底支撐腳11。謝比雪夫連桿組30A是定位在基底支撐2及中間框體4之間,並且一般地包含連接支撐腳31、致動連桿組32以及連接性連桿組33。連接支撐腳31在它們的上端部藉由鉸鏈連接17以類似於先前具體實施例的方式而連接到中間框體4。連桿組支撐腳31的下端部是經由鉸鏈連接17而連接到致動連桿組32。將在第8A圖中觀察到的兩個致動連桿組32依序接附至連接性連桿組33。致動器19在一端部接附(也就是插接)基底框體構件,以及在另一端部接附至連接性 連桿組33。 Figure 8A illustrates another embodiment of the present invention using an integrated actuation system. In Figure 8A, the integrated actuation system takes the form of a Shebyshev linkage 30. It can be observed that this particular embodiment is similar to Figure 1 in that the base structure 2 comprises a longitudinal frame member 9A and a lateral frame member 9B having at least two sets of base support legs (e.g., three groups in Figure 8A). 11. The Shephersh link set 30A is positioned between the base support 2 and the intermediate frame 4 and generally includes a connection support leg 31, an actuation link set 32, and a connectivity link set 33. The connecting support legs 31 are connected at their upper ends to the intermediate frame 4 by means of a hinge connection 17 in a manner similar to the previous embodiment. The lower end portion of the link set support leg 31 is connected to the actuating link set 32 via a hinge connection 17. The two actuation link sets 32 observed in Fig. 8A are sequentially attached to the connectivity link set 33. The actuator 19 attaches (ie, inserts) the base frame member at one end and attaches to the connector at the other end Link set 33.
將可理解的是致動器19的伸展/收縮,將連接性連桿組33分別向近端部基底框體構件9A(如在第8A圖中所看到者)移動及離開近端部基底框體構件9A。這個安排導致致動器19係藉由將平行於地表平面的平面內之線性致動器延伸轉化成中間框體的旋轉之連桿組,而在該基部結構及中間框體之間連接。雖然在第8A圖中有些看不見,但將可理解的是類似的謝比雪夫連桿組30B也以上述相同的方式定位在中間框體4及收集器支撐框體6之間。 It will be understood that the extension/contraction of the actuator 19 moves the connecting link set 33 toward the proximal base frame member 9A (as seen in Figure 8A) and away from the proximal base, respectively. Frame member 9A. This arrangement causes the actuator 19 to be coupled between the base structure and the intermediate frame by extending a linear actuator extending in a plane parallel to the surface plane into a rotating link set of the intermediate frame. Although somewhat invisible in Figure 8A, it will be appreciated that a similar Shephersh Link set 30B is also positioned between the intermediate frame 4 and the collector support frame 6 in the same manner as described above.
謝比雪夫連桿組的作用是中間框體4的偏斜移動轉換成直線近似值,也就是將致動器19之指定的線性移動轉換成中間框體4(或收集器支撐框體6)之指定的偏斜角度。在謝比雪夫連桿組中,連接性連桿組33的完整線性移動係對應到 θ 3 (如第5圖中所觀察者)從-90°至90°的角度改變。設計在第8A圖中所示的具體實施例之第一步驟係決定將使用的致動器之行程長度。接著,應決定用於謝比雪夫連桿組的移動範圍。在這個步驟所選擇的移動範圍最終將是在這個平面中的收集器之角移動之限制因素。當偏斜移動分配給中間框體4時,中間框體4也在致動器移動的方向中線性移動。在致動器移動的方向中之這個線性移動,是藉由四連桿之連桿組而提供。中間框體4將如第13圖所示在謝比雪夫從-90°至90°移動而移動2*I3的距離。謝比雪夫連桿組(示意地顯示於第13圖中)是由4個連桿而製成。在第8A圖及第13圖中,四連桿之連桿組的鉸鏈連接是以17a及17b表示,而謝比雪夫連桿組的鉸鏈連接是以17x及17y表示。連桿長度係定義為「A」(在第8A圖中,鉸鏈連接17x與17y之間的距離)之短連桿的倍數。存在有長度為2*A之一連桿(第8A圖中的元件32)以及長度為2.5*A的兩個連桿(第8A圖中的元件31)。根據謝比雪夫方程式,短 連桿將運行一段距離「A」,同時展示90°的角位移。因此,對於-90°至90°之一完整位移而言,其將運行2*A之一段距離。為了達到需要的動作範圍,致動器必須容許謝比雪夫連桿組為了框體4的所需角度偏斜之線性移動,以及因四連桿之連桿組支撐造成之框體4的縱向移動之補償距離。動作範圍/180°=致動器行程/(2*A+2* I3)。I3(見第13圖)為第8A圖所見之四連桿之連桿組的鉸鏈連接17a與17b之間的距離。長度「A」與「I3」係經選擇以決定所需的動作範圍。 The effect of the Shebyshev linkage is that the deflection movement of the intermediate frame 4 is converted into a linear approximation, that is, the specified linear movement of the actuator 19 is converted into the intermediate frame 4 (or the collector support frame 6). The specified skew angle. In the Shebyshev linkage, the complete linear movement of the connecting linkage 33 corresponds to an angle of θ 3 (as observed in Figure 5) from -90° to 90°. The first step in the design of the embodiment shown in Figure 8A determines the length of the stroke of the actuator to be used. Next, the range of motion for the Shebyshev linkage should be determined. The range of motion selected at this step will ultimately be the limiting factor for the angular movement of the collector in this plane. When the skew movement is assigned to the intermediate frame 4, the intermediate frame 4 also moves linearly in the direction in which the actuator moves. This linear movement in the direction of movement of the actuator is provided by a four-link linkage set. The intermediate frame 4 will move a distance of 2*I3 from Shephershev from -90° to 90° as shown in Fig. 13. The Shebyshev linkage (shown schematically in Figure 13) is made up of four links. In Figs. 8A and 13th, the hinge connection of the four-link linkage set is indicated by 17a and 17b, and the hinge connection of the Shebyshev linkage is indicated by 17x and 17y. The length of the link is defined as the multiple of the short link of "A" (in Figure 8A, the distance between the hinge connections 17x and 17y). There are two links of length 2*A (element 32 in Fig. 8A) and two links of length 2.5*A (element 31 in Fig. 8A). According to the Shebyshev equation, the short link will run a distance "A" while exhibiting an angular displacement of 90°. Therefore, for a full displacement of -90° to 90°, it will run a distance of 2*A. In order to achieve the required range of motion, the actuator must allow the Xiebyshev linkage to linearly move for the desired angular deflection of the frame 4, as well as the longitudinal movement of the frame 4 due to the linkage of the four-link linkage. Compensation distance. Operating range / 180 ° = actuator stroke / (2 * A + 2 * I 3 ). I 3 (see Fig. 13) is the distance between the hinge connections 17a and 17b of the four-link linkage set as seen in Fig. 8A. The lengths "A" and "I 3 " are selected to determine the desired range of motion.
因此,在第8A圖與第9圖之具體實施例中,致動器19的長度的線性變化係對應於 θ 3 的線性變化(見第13圖)。如已知致動器19的長度與框體偏斜角度 θ 3 ,則在致動器19完全伸展及完全收縮時,在任何所需偏斜角度下致動器19的長度為:所需之致動器長度= θ 3 /180° *(2*A+2*I3)。一旦選擇好長度「A」,即可輕易找到謝比雪夫連桿組的剩餘元件。四連桿之連桿組設計的剩餘部分(在選擇上述後I3)係依據因斯坦方程式(Freudenstein’s Equation)而定:
當多個太陽能收集器支撐框體被使用於一單一中間框體時,較佳是要考量太陽能收集器支座的分隔距 離。此分隔距離較佳是提供為使得太陽能收集器在其設計動作範圍的極端部不會在彼此間投射出陰影。概念化第9圖之具體實施例,第15圖表示了相鄰太陽能收集器框體6的角度移動(亦即,第9圖中的東/西向偏斜)。分隔距離(F)係定義為當太陽能收集器處於水平位置時,相鄰的太陽能收集器邊緣之間的距離。 When a plurality of solar collector support frames are used in a single intermediate frame, it is preferable to consider the separation distance of the solar collector supports. from. This separation distance is preferably provided such that the solar collectors do not project shadows between each other at the extremes of their design range of motion. In a specific embodiment of conceptualizing Fig. 9, Fig. 15 shows the angular movement of the adjacent solar collector frame 6 (i.e., the east/west deflection in Fig. 9). The separation distance (F) is defined as the distance between adjacent solar collector edges when the solar collector is in a horizontal position.
α=東向動作範圍/2 α=eastward motion range/2
W=太陽能收集器的短側長度 W = short side length of the solar collector
F=2*(W * cos(α))-W當使用多個中間框體而使得一或多個致動器調整中間框體的偏斜角度時,較佳需考量的是相鄰中間框體所支撐的太陽能收集器之間的分隔距離。必須提供此一分隔距離,使得太陽能收集器在其設計動作範圍的極端部不會對彼此投射出陰影。第14圖表示相鄰中間框體的角度移動(亦即,第9圖中的北/南向偏斜角度)。分隔距離(F)係定義為當太陽能收集器處於水平位置時,由不同中間框體所支撐之太陽能收集器的相鄰太陽能收集器邊緣之間的距離。對於北/南向移動而言,太陽能收集器的中心係與旋轉中心分隔某一距離X;X係與四連桿之連桿組維度有關。 F=2*(W * cos(α))-W When using one or more intermediate frames to cause one or more actuators to adjust the skew angle of the intermediate frame, it is preferable to consider adjacent intermediate frames. The separation distance between the solar collectors supported by the body. This separation distance must be provided so that the solar collectors do not cast shadows on each other at the extremes of their design range of motion. Fig. 14 shows the angular movement of the adjacent intermediate frame (i.e., the north/south skew angle in Fig. 9). The separation distance (F) is defined as the distance between adjacent solar collector edges of a solar collector supported by different intermediate frames when the solar collector is in a horizontal position. For north/south movement, the center of the solar collector is separated from the center of rotation by a distance X; the X system is related to the link group dimension of the four links.
α=北向動作範圍/2 α=Northward motion range/2
β=90°-α β=90°-α
L=太陽能收集器的長側長度(假設為一般的矩形太陽能收集器面板),F=(X/tan(α)+L)/sin(β)-x/sin(α)-L L = long side length of the solar collector (assumed to be a general rectangular solar collector panel), F = (X / tan (α) + L) / sin (β) - x / sin (α) - L
第9圖說明了應用謝比雪夫連桿組之太陽能收集器定位裝置的一延伸版本。在第9圖中,兩個分隔的中間框體組件4係位於長形之側向框體構件9B上。各中間框體組件4包含一連接連桿33,且延伸之致動連桿32係裝設於連接連桿33的每一端部處。一致動器19係接附至至少其中一個連接連桿33,且將導致兩個中間框體組件4之偏斜。雖然為 求清晰而未編號於第9圖中,但仍可直接得知謝比雪夫連桿組也可定位於中間框體組件4與收集器支撐框體6之間。 Figure 9 illustrates an extended version of a solar collector positioning device employing a Shebyshev linkage. In Fig. 9, two separate intermediate frame assemblies 4 are located on the lateral side frame members 9B. Each of the intermediate frame assemblies 4 includes a connecting link 33, and the extended actuating link 32 is mounted at each end of the connecting link 33. The actuator 19 is attached to at least one of the connecting links 33 and will cause deflection of the two intermediate frame assemblies 4. Although It is clear and not numbered in Figure 9, but it is still directly known that the Shephersh link set can also be positioned between the intermediate frame assembly 4 and the collector support frame 6.
第10圖說明了太陽能收集器定位裝置的又一具體實施例。第10圖與第1圖之不同處在於基部支撐腳111使其下端部藉由剛性連接40而剛性固定至基部支撐框體構件9B(亦即,連接40不允許支撐腳111的下端部旋轉或轉移)。然而,基部支撐腳111的上端部確實具有對中間框體4的框體構件12之一鉸鏈連接17。此一具體實施例繪示了位於不具基部支撐腳111的基部支座每一側部上之兩個線性致動器19。同樣地,第10圖的具體實施例係應用了一種相對於中間框體4與收集器支撐框部6之間的中間支撐腳113實際上相同的關係。 Figure 10 illustrates yet another embodiment of a solar collector positioning device. The difference between FIG. 10 and FIG. 1 is that the base support leg 111 has its lower end rigidly fixed to the base support frame member 9B by the rigid connection 40 (ie, the connection 40 does not allow the lower end of the support leg 111 to rotate or Transfer). However, the upper end portion of the base support leg 111 does have a hinged connection 17 to one of the frame members 12 of the intermediate frame 4. This particular embodiment illustrates two linear actuators 19 located on each side of the base support without the base support foot 111. Similarly, the specific embodiment of Fig. 10 applies a substantially identical relationship with respect to the intermediate support leg 113 between the intermediate frame 4 and the collector support frame portion 6.
第11圖說明了就第10圖所示之系統的具體實施例而言,如何針對一既定偏斜角度來計算致動器長度。應了解第11圖說明了一種單一線性致動器19(相對於第10圖中所示的兩個致動器19)。使用夠強的結構性構件即可允許使用單一致動器,但對於常用結構性材料而言,第10圖中的兩個致動器10是一種更為實際的設計。在第11圖中,致動器19係在距離基部支撐腳111的固定端部一已知距離(B)處以一端部連接於基部支撐框體2。致動器19的另一端部係連接至中間框體4。基部支撐腳111的長度為(A),且所需之偏斜角度為α。在中間框體4的旋轉點115、致動器19的下連接點與致動器19的上連接點之間存在一個三角形。旋轉點115與下致動器連接點之間的距離是以C表示,旋轉點115與上致動器連接點之間的距離係以R表示,致動器長度係以Z表示。R與C之間的角度為一已知角度β與偏斜角度α的總和。對於一所需偏斜角度而言,致動器長度係如下式:
在控制系統85的此一具體實施例中,控制器86也可連接至一電子分級/羅盤裝置90以供與裝置安裝方向相關之資訊,其使控制系統可為未達分級或未對準於「真正」北方之裝置安裝進行補償。GPS介面91提供了上述觀測點之位置資訊。網際網路介面92可供對系統狀態的遠端存取及系統的遠端控制。最後,控制系統85的此一具體實施例可包含一通訊埠93,其可允許與其他太陽能收集器定 位系統之通訊或網路連接。 In this particular embodiment of the control system 85, the controller 86 can also be coupled to an electronic grading/compass device 90 for information relating to the direction in which the device is mounted, which can cause the control system to be under-graded or misaligned. The installation of "real" north installations is compensated. The GPS interface 91 provides location information for the above observation points. The Internet interface 92 provides remote access to system status and remote control of the system. Finally, this particular embodiment of control system 85 can include a communication port 93 that can be configured with other solar collectors. Bit system communication or network connection.
不同於上述特定具體實施例(或除其以外)之具體實施例、許多其他特徵與變化例皆落於本發明之範疇中。舉例而言,光電模組係可電氣連接至固定於基部框體上之一接線盒。 Specific embodiments that differ from (or in addition to) the specific embodiments described above, many other features and variations are within the scope of the invention. For example, the optoelectronic module can be electrically connected to a junction box that is fixed to the base frame.
接線盒提供了此裝置對相同或類似類型的其他裝置產生電氣互連的一種方式。接線盒也提供了此裝置上控制系統對一組態終端之間的一種通訊方式,其中組態終端係用於位址特定參數的組態、計算監控與疑難排解。 The junction box provides a means by which the device can electrically interconnect other devices of the same or similar type. The junction box also provides a means of communication between the control system and a configuration terminal on the device, where the configuration terminal is used for configuration, calculation monitoring and troubleshooting of address-specific parameters.
光電模組係直接、或經由固定在基部框體上之一接線盒而電氣連接至基部框體上的一反相器模組,反相器提供了將太陽能收集器所產生的DC電力轉化為AC電力的一種方式,其亦允許此裝置對具相同或相似類型之其他裝置的電氣互連,其也允許此裝置電氣互連至AC發光面板,以供電氣負載之直接饋送以及作為一種電系統(utility grid)的互連方式。 The optoelectronic module is electrically connected to an inverter module directly or via a junction box fixed to the base frame, and the inverter provides conversion of DC power generated by the solar collector into One way of AC power that also allows the device to electrically interconnect other devices of the same or similar type, which also allows the device to be electrically interconnected to the AC illuminating panel for direct feeding of the supply gas load and as an electrical system (utility grid) interconnection.
光電模組係電氣連接至充電控制器,充電控制器係直接或經由固定在基部框體上之一接線盒而固定於基部框體上。充電控制器提供了基於儲存電力目的而對電池充電的一種方式。 The optoelectronic module is electrically connected to the charging controller, and the charging controller is fixed to the base frame directly or via a junction box fixed to the base frame. The charge controller provides a way to charge the battery based on the purpose of storing the power.
光電模組之支撐框體係設有可使光電模組夾固於裝置上的任何數量之該領域習知裝置,以供初始裝設這些模組的簡易性、替換這些模組的簡易性、以及因天氣相關事件而卸除這些模組的簡易性。這類夾固裝置的其中一種實例係使用了金屬托架、螺栓及螺帽。托架係固定為使得一部分的托架與太陽能收集器模組的框體重疊。螺栓通過托架而至太陽能收集器模組支撐框體中。螺帽或螺栓的旋緊係增加了框體上托架對模組支撐框體的壓縮力。 The support frame system of the optoelectronic module is provided with any number of conventional devices in the field that can clamp the optoelectronic module to the device for the simplicity of initial installation of the modules, the ease of replacing the modules, and The ease of removing these modules due to weather related events. One example of such a clamping device utilizes metal brackets, bolts, and nuts. The bracket is fixed such that a portion of the bracket overlaps the frame of the solar collector module. The bolt passes through the bracket to the solar collector module support frame. The tightening of the nut or bolt increases the compressive force of the bracket on the frame to the module support frame.
在許多具體實施例中,需要避免由一個收集器 面板阻擋太陽射線而產生之任何陰影到達一相鄰控制器面板,即使其需要控制器面板不保持完美正交於太陽向量。控制系統係提供一種演算法,該演算法係藉由使光電模組在已經達到系統的動作範圍限制時逐漸轉回與地球表面平行的位置而使得夜間時在相鄰模組上的陰影達到最小。同樣的,控制系統係提供了一種演算法,該演算法藉由使光電模組逐漸移動至其動作範圍限制(在該處其遇到陽光並開始其日間的追日動作)而使得晨間時在相鄰模組上的陰影達到最小。作為一實例,第9圖所示之具體實施例係使用一日間與夜間日光之抗陰影程序,如第16圖的說明所述者(說明在收集支撐框體上旋轉的收集器面板)。在第16圖的中央是一個由點A、B與C所定義之三角形,控制系統所計算之偏斜角度為Theta。在水平面上方、相對於動作平面之太陽上升角度為α。當太陽位於追日系統的動作範圍內時,Theta即等於(90°-α)。然而,當太陽移動超過追日系統的動作範圍時,Theta即小於(90°-α)。在此情形下,如無修正,收集器C1將投射陰影於C2上。為了避免此情形發生,將針對C1與C2兩者計算出一個新的偏斜角度,使得以角度α通過點C的太陽射線將直射在點A處的C2。當太陽向量通過點C與A時,追日係於「回溯追日」期間達到最佳化。因為追日系統偏斜角度過於陡峭,因此通過C與交錯線段AD的太陽射線會在鄰近的收集器上產生陰影。通過C與交錯線段AD的太陽射線會因追日系統偏斜角度過淺而導致電力損失。因此,太陽上升角度在追日器動作範圍外之變化應產生面板偏斜變化,以於使太陽能收集器面板保持盡可能接近正交於太陽向量時避免形成陰影。由第16圖所示,成立下述回溯追日等式:Y=y1+y2 In many embodiments, it is desirable to avoid by a collector Any shadow created by the panel blocking the sun's rays reaches an adjacent controller panel, even though it requires the controller panel not to be perfectly orthogonal to the sun vector. The control system provides an algorithm that minimizes shadows on adjacent modules at night by causing the optoelectronic module to gradually return to a position parallel to the Earth's surface when it has reached the limits of the system's range of motion. . Similarly, the control system provides an algorithm that makes the morning time by moving the optoelectronic module to its range of motion limits where it encounters sunlight and begins its daytime chasing action. The shadow on adjacent modules is minimized. As an example, the specific embodiment shown in Fig. 9 uses an anti-shadowing procedure for daytime and nighttime sunlight, as explained in the description of Fig. 16 (illustrating a collector panel that rotates on the collection support frame). At the center of Fig. 16 is a triangle defined by points A, B and C, and the deflection angle calculated by the control system is Theta. Above the horizontal plane, the angle of rise of the sun relative to the plane of motion is α. Theta is equal to (90°-α) when the sun is within the range of the chasing system. However, when the sun moves beyond the range of motion of the tracking system, Theta is less than (90°-α). In this case, if there is no correction, the collector C1 will cast a shadow on C2. To avoid this, a new skew angle will be calculated for both C1 and C2 such that the sun ray passing through point C at angle a will be directed at C2 at point A. When the sun vector passes through points C and A, the pursuit of the day is optimized during the "backtracking to the sun" period. Because the chasing system's skew angle is too steep, the sun rays passing through C and the interlaced line AD will create shadows on adjacent collectors. The solar rays passing through C and the interlaced line segment AD may cause power loss due to the shallow angle of the chasing system. Therefore, changes in the sun's rising angle outside the range of the chasing action should result in panel deflection changes to avoid creating shadows when the solar collector panels are kept as close as possible to the solar vector. As shown in Figure 16, the following retrospective chase equation is established: Y=y1+y2
X=L-x1-x2 X=L-x1-x2
TAN(α)=(y1+y2)/(L-x1-x2) TAN(α)=(y1+y2)/(L-x1-x2)
α=90°-偏斜角度(Theta)由於四連桿之連桿組支撐了收集器之故,長度X與Y即非偏斜角度Theta的線性函數。為此緣故,對Theta取得Y、以及對Theta取得X之二階線性回歸式,將這些回歸式替換至上述等式中,得出:TAN(α)=[a(Theta2)2+b(Theta2)+c]/[e(Theta2)2+g(Theta2)+h]其中,a、b、c為Y對Theta之二階線性等式的係數,而e、g、h為X對Theta之二階線性等式的係數。重寫係得出Theta2之二次等式、避免形成陰影之一偏斜角度。本質上,熟習該領域技術之人士將可理解所有係數都是以一特定四連桿之連桿組設計的形狀為基礎,且這些係數將因設計不同而有所變化。 α=90°-Angle angle (Theta) Since the four-link linkage set supports the collector, the lengths X and Y are linear functions of the non-deflection angle Theta. For this reason, the second order linear regression of X is obtained for Theta and X is obtained for Theta, and these regression equations are substituted into the above equations to obtain: TAN(α)=[a(Theta2) 2 +b(Theta2) +c]/[e(Theta2) 2 +g(Theta2)+h] where a, b, c are the coefficients of the second-order linear equation of Y to Theta, and e, g, h are the second-order linearity of X to Theta The coefficient of the equation. The rewrite system yields the second equation of Theta2, avoiding the skew angle of one of the shadows. In essence, those skilled in the art will appreciate that all coefficients are based on the shape of a particular four-link linkage set design and that these coefficients will vary from design to design.
在此一具體實施例中,控制系統係對偏斜角度的可允許範圍繼續評估所需要的偏斜角度Theta(亦即,使太陽能收集器與太陽向量保持正交的角度)。當所需要的偏斜角度小於偏斜角度的可允許範圍時(亦即,特定設計能夠機械性達到的最大偏斜角度),系統即作用正常,因為這是避免形成陰影的設計條件(如第14圖至第16圖所教示)。當所需偏斜角度大於可允許的偏斜角度時,即從上述計算出回溯偏斜角度(Theta2)。將了解到關於第6圖之計算係說明了收集器框體的東/西向偏斜,可應用相同方法來計算中間支撐框體的北/南向偏斜。還有一些此系統之其他具體實施例係將光電模組取代為鏡子,以將太陽射線反射至遠離追日系統之一集中點。舉例而言,使用鏡子可使裝置在一集中式太陽能發電(CSP)系統中作為定日鏡之用。另外一些具體實施例可包含一太陽能追日系統,其經設計以預測太陽在天空相對於觀測點的位置,並且將所裝設的太 陽能模組移動到與太陽射線垂直的位置。該系統藉由在兩個平面中之移動而完成此任務。第一個移動平面為在觀測點處與地表正交之平面,第二個移動平面是與第一個移動平面正交之平面。在這兩個平面中的結合移動可產生太陽能模組的所需位置。 In this particular embodiment, the control system continues to evaluate the required skew angle Theta (i.e., the angle at which the solar collector is orthogonal to the sun vector) for the allowable range of skew angles. When the required skew angle is less than the allowable range of the skew angle (that is, the maximum deflection angle that a particular design can mechanically achieve), the system works normally because this is a design condition that avoids shadow formation (eg, 14 to 16 are taught). When the required skew angle is greater than the allowable skew angle, the backtracking angle (Theta2) is calculated from the above. It will be appreciated that the calculation of Figure 6 illustrates the east/west deflection of the collector frame, and the same method can be applied to calculate the north/south deflection of the intermediate support frame. Still other embodiments of this system replace the optoelectronic module with a mirror to reflect the sun rays away from a concentration point away from the chasing system. For example, the use of a mirror allows the device to be used as a heliostat in a centralized solar power (CSP) system. Still other embodiments may include a solar chase system that is designed to predict the position of the sun in the sky relative to the observation point and will be installed too The solar module moves to a position perpendicular to the sun's rays. The system accomplishes this by moving in two planes. The first moving plane is the plane orthogonal to the surface at the observation point, and the second moving plane is the plane orthogonal to the first moving plane. The combined movement in these two planes produces the desired position of the solar module.
這些具體實施例的光電模組係裝設至一支撐框體。此一支撐框體係經由腳部(在本文中也稱為支撐腳)而裝設至一中間框體。將太陽能模組支撐框體裝設至中間框體的支撐腳的數量較佳是使用兩腳部的倍數。每一支撐腳在兩端部處都具有一鉸鏈,在太陽能模組支撐框體與中間框體之間的鉸鏈連接總數為四的倍數。每一個太陽能模組支撐框體都可被製成支撐一或多個太陽能模組。中間框體可被製成支撐一或多個太陽能模組支撐框體。 The optoelectronic modules of these embodiments are mounted to a support frame. This support frame system is mounted to an intermediate frame via a foot (also referred to herein as a support foot). The number of support legs for mounting the solar module support frame to the intermediate frame is preferably a multiple of the two legs. Each support leg has a hinge at both ends, and the total number of hinge connections between the solar module support frame and the intermediate frame is a multiple of four. Each solar module support frame can be made to support one or more solar modules. The intermediate frame can be made to support one or more solar module support frames.
中間框體係可經由所謂的支撐腳之腳部而裝設至一基部框體。使中間框體裝設至基部框體的支撐腳的數量較佳是使用兩腳部的倍數,每一支撐腳在兩端部處都具有一鉸鏈,在中間框體與基部框體之間的鉸鏈連接總數為四的倍數。基部框體可製成支撐一或多個中間框體。中間框體的移動平面是與在觀測點處正交於地表之平面。觀測點是定義為此裝置安裝在地表上的地點。中間框體的移動是由一或多個線性致動器所產生。線性致動器係以其一端部連接於基部框體;在另一端部處,致動器將直接連接至中間框體、或經由腳部的配置而間接連接至中間框體。這些腳部在本文中將稱為致動腳部,致動腳部係以兩個之群組而使用。每一個致動腳部在其兩端部處都具有一鉸鏈,致動腳部的一端部係裝設至中間框體,而另一端部係裝設至一可動樑(其於本文中係稱為致動樑)。在這兩個具體實施例中,此致動器的伸展與收縮會產生中間框體之方位角的相關變化。 The intermediate frame system can be attached to a base frame via the so-called foot of the support foot. Preferably, the number of support legs for attaching the intermediate frame to the base frame is a multiple of the two legs, each support leg having a hinge at both ends, between the intermediate frame and the base frame The total number of hinge connections is a multiple of four. The base frame can be made to support one or more intermediate frames. The plane of movement of the intermediate frame is the plane orthogonal to the surface at the point of observation. The observation point is defined as the location where the device is installed on the surface. The movement of the intermediate frame is produced by one or more linear actuators. The linear actuator is attached at one end to the base frame; at the other end, the actuator will be directly connected to the intermediate frame or indirectly connected to the intermediate frame via the configuration of the foot. These feet will be referred to herein as actuating feet and the actuating feet are used in groups of two. Each of the actuating feet has a hinge at both ends thereof, one end of the actuating leg is attached to the intermediate frame, and the other end is attached to a movable beam (which is referred to herein as a movable beam) To actuate the beam). In both of these embodiments, the extension and contraction of the actuator produces a related change in the azimuth of the intermediate frame.
下一個移動平面是太陽能模組支撐框體的移動。支撐框體的移動平面係正交、且獨立於中間框體的移動平面。支撐框體的移動是由一或多個線性致動器所產生。線性致動器係以其一端部處連接至中間框體;在另一端部處,致動器將直接連接至、或經由腳部配置而間接連接至支撐框體。這些腳部在本文中稱為致動腳部。致動腳部是以兩個之群組作為使用,每一個致動腳部在其兩端部處都具有一鉸鏈。致動腳部的一端部係裝設至支撐框體,而另一端部係裝設至一可動樑(其於本文中係稱為致動樑)。在兩個具體實施中,致動器的伸展與收縮都導致支撐框體的方位角之相關變化。致動器的伸展與收縮是由來自一控制系統之訊號所產生,該控制系統係以數值計算結果產生這些訊號。 The next moving plane is the movement of the solar module support frame. The plane of movement of the support frame is orthogonal and independent of the plane of movement of the intermediate frame. The movement of the support frame is produced by one or more linear actuators. The linear actuator is connected at its one end to the intermediate frame; at the other end, the actuator will be directly connected to, or indirectly connected to, the support frame via the foot configuration. These feet are referred to herein as actuating feet. The actuating foot is used in groups of two, each actuating foot having a hinge at both ends thereof. One end of the actuation foot is attached to the support frame and the other end is attached to a movable beam (which is referred to herein as an actuation beam). In both implementations, both the extension and contraction of the actuator result in a related change in the azimuth of the support frame. The extension and contraction of the actuator are generated by signals from a control system that produces these signals as a result of numerical calculations.
在需要藉由較小的所需傾斜角度範圍以降低系統整體高度、以及在介於北緯45°和南緯45°之間的位置處使用該系統之具體實施例中,收集器的長邊(假設為一般矩形形狀之收集器)較佳是定為北/南方向。在高於緯度45°時,收集器的長邊較佳是定為東/西方向。然而,若系統設計為不具有限制傾斜角度範圍之高度限制,則該領域技術人士將理解不需一定要是特定的羅盤方向,只要設有控制系統,系統的實際方向即可定位。 In the specific embodiment where the system is required to reduce the overall height of the system by a smaller desired tilt angle range and between 45 latitude and 45 latitude south, the long side of the collector (hypothesis) The collector of a generally rectangular shape is preferably set to the north/south direction. At 45° above latitude, the long side of the collector is preferably set to the east/west direction. However, if the system is designed not to have a height limit that limits the range of tilt angles, those skilled in the art will understand that there is no need to be a particular compass direction, as long as a control system is provided, the actual orientation of the system can be located.
上述具體實施例係藉由調整中間框體與太陽能模組支撐框體兩者的傾斜角度而運作,但其他具體實施例係可藉由使中間框體相對於地面呈一固定角度、僅由控制系統以一傾斜角度來調整所設之太陽能模組框體而運作。中間框體的角度稱為「固定」,因其不會由控制系統進行自動調整。因此,「固定」可表示是建構為一個永久的角度,但「固定」也可代表是可由使用者隨時間而手動調整中間框體的傾斜角度之系統。 The above specific embodiment operates by adjusting the inclination angle of both the intermediate frame and the solar module supporting frame, but other specific embodiments can be controlled only by making the intermediate frame at a fixed angle with respect to the ground. The system operates by adjusting the solar module frame provided at an oblique angle. The angle of the middle frame is called "fixed" because it is not automatically adjusted by the control system. Therefore, "fixed" can mean that it is constructed as a permanent angle, but "fixed" can also represent a system that can be manually adjusted by the user over time to adjust the tilt angle of the intermediate frame.
在此一具體實施例中,基部結構與中間框體可實際建構為任何方式,其係固定這兩個結構以避免兩個結構之間的相對移動。在此一具體實施例的許多實例中,模組支撐框體將藉由至少兩個中間支撐腳連接置中間框體,其中(i)中間框體支撐腳的數量是二的倍數;且(ii)每一個中間支撐腳都具有對模組支撐框體之一鉸鏈連接以及對中間框體之一鉸鏈連接。線性致動器係連接於中間框體與模組支撐框體之間,以對模組支撐框體產生相對於中間框體之旋轉。 In this particular embodiment, the base structure and the intermediate frame can be physically constructed in any manner that secures the two structures to avoid relative movement between the two structures. In many examples of this embodiment, the module support frame will be coupled to the intermediate frame by at least two intermediate support legs, wherein (i) the number of intermediate frame support legs is a multiple of two; and (ii Each of the intermediate support legs has a hinged connection to one of the module support frames and a hinged connection to one of the intermediate frames. The linear actuator is coupled between the intermediate frame and the module support frame to rotate the module support frame relative to the intermediate frame.
此一具體實施例的一個實例可見於第8B圖。在基部框體2與中間框體之間的旋轉係由錨定連桿133予以固定,錨定連桿133的一端部係連接至連接連桿33,而另一端部係藉由一接腳接合支架135與接腳孔洞136而固定於基部框體構件9A。如第8B圖所教示,錨定連桿133可固定於不同位置,藉此使連接連桿33(以及中間框體4的傾斜角度)固定於不同位置中。然而,上謝比雪夫連桿組30B係位於中間框體4與收集器支撐框體6之間,其由一線性致動器加以運作,其自動調整收集器支撐框體6的傾斜角度。在第8B圖中,中間框體4係固定於一北/南向傾斜角度,且收集器支撐框體6係移動於一自動調整之東/西向傾斜角間。在本說明書中,「北/南向傾斜角度」(或「東/西向傾斜角度」)並不需要代表精確或絕對的北/南(東/西)方向,而是包含僅主要在方向上為大致北/南(東/西)向之方向。 An example of such a specific embodiment can be found in Figure 8B. The rotation between the base frame 2 and the intermediate frame is fixed by the anchor link 133, one end of the anchor link 133 is connected to the connecting link 33, and the other end is joined by a pin. The bracket 135 and the pin hole 136 are fixed to the base frame member 9A. As taught in Fig. 8B, the anchor link 133 can be fixed at different positions, whereby the connecting link 33 (and the angle of inclination of the intermediate frame 4) are fixed in different positions. However, the upper Chebyshev linkage 30B is located between the intermediate frame 4 and the collector support frame 6, which is operated by a linear actuator that automatically adjusts the angle of inclination of the collector support frame 6. In Fig. 8B, the intermediate frame 4 is fixed at a north/south tilt angle, and the collector support frame 6 is moved between an automatically adjusted east/west tilt angle. In this specification, the "North/Southward tilt angle" (or "East/Westward tilt angle") does not need to represent the exact or absolute North/South (East/West) direction, but includes only the main direction. It is roughly north/south (east/west) in the direction.
第17圖教示了本發明的另外一個具體實施例,可傳輸式太陽能收集器定位裝置200。在大部分的一般用語中,可傳輸式太陽能收集器定位裝置200包含具有一托架框體之一輪式托架。在第17圖的具體實施例中,輪式托架為一傳統兩輪曳引拖車,其具有托架框體201與輪件205。然而,托架框體並不限於曳引拖車,且可包含自推進 之車輛,例如卡車。同樣的,輪式托架也不限於具有輪胎的車輛,也可包含軌道式車輛,其軌道是由一系列的輪件所驅動。 Figure 17 illustrates another embodiment of the present invention, a transportable solar collector positioning device 200. In most general terms, the transportable solar collector positioning device 200 includes a wheeled carriage having a bracket housing. In the particular embodiment of Figure 17, the wheeled carrier is a conventional two-wheeled towed trailer having a carrier frame 201 and a wheel member 205. However, the bracket frame is not limited to the traction trailer and may include self-propelled Vehicles, such as trucks. Similarly, wheeled brackets are not limited to vehicles with tires, but may also include rail vehicles whose tracks are driven by a series of wheels.
第17圖中所示的定位裝置係類似於第1圖所示者,其包含基部框體2、中間框體4、以及太陽能收集器支撐框體6。在此一具體實施例中,傾斜控制結構為四連桿之連桿組,其由同樣為第1圖所示之線性致動器19所致動之鉸接的支撐腳11、13所形成。然而,也可在替代例中使用不使用四連桿之連桿組的傾斜控制結構。同樣的,並非所有的具體實施例都可以在兩個平面中自動調整傾斜角度,且替代具體實施例可僅於一單一平面中自動調整傾斜角度,如關於第8B圖之上述說明中所說明者。 The positioning device shown in Fig. 17 is similar to that shown in Fig. 1, and includes a base frame 2, an intermediate frame 4, and a solar collector support frame 6. In this embodiment, the tilt control structure is a four-link linkage set formed by the articulated support legs 11, 13 that are also actuated by the linear actuator 19 shown in FIG. However, it is also possible to use a tilt control structure that does not use a four-link linkage set in an alternative. Similarly, not all embodiments may automatically adjust the tilt angle in two planes, and instead of a particular embodiment, the tilt angle may be automatically adjusted in only a single plane, as described in the above description with respect to FIG. 8B. .
雖未繪示於第17圖中,但與第12圖所示類似的控制系統將可控制線性致動器以對太陽能收集器支撐框體施加一傾斜角度,其可基於一目前太陽向量而使發電達最大化。在僅自動調整一個傾斜角度的具體實施例中,發電是代表調整傾斜角度以使收集器面板保持為盡量接近正交於太陽向量,因為定位系統係可機械式達到僅自動調整一個傾斜角度。在自動調整兩個傾斜角度的具體實施例中,使發電達最大化是表示將收集器面板保持為正交於(或實質正交於)太陽向量,因為兩個傾斜角度的調整可使控制器面板的控制更精確許多。 Although not shown in FIG. 17, a control system similar to that shown in FIG. 12 will control the linear actuator to apply an oblique angle to the solar collector support frame, which may be based on a current sun vector. Maximize power generation. In a particular embodiment where only one tilt angle is automatically adjusted, power generation is representative of adjusting the tilt angle to maintain the collector panel as close as possible to the solar vector, as the positioning system can mechanically achieve only one tilt angle automatically adjusted. In a particular embodiment that automatically adjusts the two tilt angles, maximizing power generation means maintaining the collector panel orthogonal (or substantially orthogonal) to the sun vector, as the adjustment of the two tilt angles allows the controller The control of the panel is much more precise.
本申請係藉由引用形式而將2011年11月22日所申請之PCT申請號第US 2011/061831號之內容整體併入。 The contents of PCT Application No. US 2011/061831, filed on Nov. 22, 2011, are hereby incorporated by reference in its entirety in its entirety.
前述說明係針對特定具體實施例而行,然該領域技術人士將理解也可對這些具體實施例進行多種顯知改變與修飾。舉例而言,其他具體實施例係包含了裝設於一可移動車輛(例如拖車)上以提供可攜性的太陽能收集器裝置。在描述兩個元件之間的關係時(例如,一太陽能收 集器模組與太陽向量呈正交),此關係係包含了所記載之精確關係的合理變化。舉例而言,太陽能收集器模組與太陽向量「呈正交」係包含了「實質上呈正交」,其與完美正交間係具有適度誤差(例如,在任何方向中達1%、5%、10%、15%、或甚至20%之誤差)。同樣的,「大約」或「概呈」係指與所給定之量值間具有達1%、5%、10%、15%、或甚至20%之誤差或變化。所有的這類變化例與修飾例皆落於如附申請專利範圍的範疇內。 The foregoing description is directed to specific embodiments, and it will be understood that For example, other embodiments include a solar collector device that is mounted on a mobile vehicle, such as a trailer, to provide portability. When describing the relationship between two components (for example, a solar harvest) The collector module is orthogonal to the sun vector, and this relationship contains reasonable changes in the exact relationships recorded. For example, the solar collector module and the solar vector "orthogonal" contain "substantially orthogonal", which has a moderate error with the perfect orthogonal system (for example, 1%, 5 in any direction) %, 10%, 15%, or even 20% error). Similarly, "about" or "general" refers to an error or change of up to 1%, 5%, 10%, 15%, or even 20% from a given amount. All such variations and modifications are intended to fall within the scope of the appended claims.
1‧‧‧太陽能收集器模組定位裝置 1‧‧‧Solar collector module positioning device
2‧‧‧基部框體 2‧‧‧ base frame
4‧‧‧中間框體 4‧‧‧Intermediate frame
6‧‧‧支撐框體 6‧‧‧Support frame
8‧‧‧太陽能收集器裝置 8‧‧‧Solar collector device
9A/9B/12/15‧‧‧框體構件 9A/9B/12/15‧‧‧ frame components
11A/11B/11C/11D‧‧‧支撐腳 11A/11B/11C/11D‧‧‧ Support feet
16‧‧‧交叉構件 16‧‧‧cross members
17‧‧‧鉸鏈連接 17‧‧‧Hinged connection
19‧‧‧致動器 19‧‧‧Actuator
Claims (20)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2011/061831 WO2012071404A1 (en) | 2010-11-24 | 2011-11-22 | Solar collector positioning apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201321690A TW201321690A (en) | 2013-06-01 |
TWI493148B true TWI493148B (en) | 2015-07-21 |
Family
ID=49032767
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101115325A TWI493148B (en) | 2011-11-22 | 2012-04-30 | Solar collector positioning apparatus |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI493148B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI575182B (en) * | 2015-10-16 | 2017-03-21 | Atomic Energy Council- Inst Of Nuclear Energy Res | Trajectory chasing method |
CN105743419A (en) * | 2016-05-12 | 2016-07-06 | 崔永祥 | Combined grating type intelligent photovoltaic power generation system |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5195504A (en) * | 1990-10-29 | 1993-03-23 | Bert Lane | Portable solar oven |
US20040244525A1 (en) * | 2001-05-31 | 2004-12-09 | Jean Pierre Gaechter | Method for orienting a hexapod turret |
TW200623512A (en) * | 2004-08-13 | 2006-07-01 | Data Technology International Llc | Nomadic storable satellite antenna system |
KR100900210B1 (en) * | 2008-01-17 | 2009-06-02 | (주)썬트랙 | Double shaft type of a solar energy tracker |
TWM379172U (en) * | 2009-09-29 | 2010-04-21 | Everphoton Energy Corp | Solar power supply device and the power supply module |
TWM387980U (en) * | 2010-04-21 | 2010-09-01 | Fung Gin Da Energy Science And Technology Co Ltd | Electrical energy generation device with sun-tracking and light-focusing functions |
US20110023864A1 (en) * | 2009-07-28 | 2011-02-03 | Andretich Micah F | Solar collector support system for efficient storage, transport, and deployment of an expandable array of rotatable solar collectors |
-
2012
- 2012-04-30 TW TW101115325A patent/TWI493148B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5195504A (en) * | 1990-10-29 | 1993-03-23 | Bert Lane | Portable solar oven |
US20040244525A1 (en) * | 2001-05-31 | 2004-12-09 | Jean Pierre Gaechter | Method for orienting a hexapod turret |
TW200623512A (en) * | 2004-08-13 | 2006-07-01 | Data Technology International Llc | Nomadic storable satellite antenna system |
KR100900210B1 (en) * | 2008-01-17 | 2009-06-02 | (주)썬트랙 | Double shaft type of a solar energy tracker |
US20110023864A1 (en) * | 2009-07-28 | 2011-02-03 | Andretich Micah F | Solar collector support system for efficient storage, transport, and deployment of an expandable array of rotatable solar collectors |
TWM379172U (en) * | 2009-09-29 | 2010-04-21 | Everphoton Energy Corp | Solar power supply device and the power supply module |
TWM387980U (en) * | 2010-04-21 | 2010-09-01 | Fung Gin Da Energy Science And Technology Co Ltd | Electrical energy generation device with sun-tracking and light-focusing functions |
Also Published As
Publication number | Publication date |
---|---|
TW201321690A (en) | 2013-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9027545B2 (en) | Solar collector positioning apparatus | |
US8119963B2 (en) | High efficiency counterbalanced dual axis solar tracking array frame system | |
US7252083B2 (en) | Structure for supporting energy conversion modules and solar energy collection system | |
US7647924B2 (en) | System for supporting energy conversion modules | |
US7923624B2 (en) | Solar concentrator system | |
US9960730B2 (en) | Self-ballasted apparatus for solar tracking | |
US20130118099A1 (en) | High efficiency conterbalanced dual axis solar tracking array frame system | |
US8188413B2 (en) | Terrestrial concentrator solar tracking photovoltaic array | |
US8835747B2 (en) | Components of a two-axis tracking assembly in a concentrated photovoltaic system | |
US9074797B2 (en) | Assembling and aligning a two-axis tracker assembly in a concentrated photovoltaic system | |
JP2010535426A (en) | Variable tilt tracker for photovoltaic arrays. | |
CN102027298B (en) | Sun tracker device | |
BR112017027598B1 (en) | CONTROL METHOD TO CONTROL THE ORIENTATION OF A SOLAR TRACKER, AND, SOLAR TRACKER | |
US20100059045A1 (en) | Two-axis hydraulic solar tracker | |
US20140150774A1 (en) | Solar tracking apparatus and field arrangements thereof | |
KR20110121686A (en) | Actuated feedforward controlled solar tracking system | |
TWI493148B (en) | Solar collector positioning apparatus | |
Hubach | Solar Tracking Using a Parallel Manipulator Mechanism to Achieve Two-Axis Position Tracking | |
GB2579361A (en) | Apparatus for solar tracking | |
BR202020014745U2 (en) | Arrangement applied in solar tracker for mounting photovoltaic panels in residential and small installations |