EP2701906A1 - Verwendung einer mehrschichtigen pvc/fluorierten polymerstruktur zum schutz der rückseite von solarmodulen - Google Patents
Verwendung einer mehrschichtigen pvc/fluorierten polymerstruktur zum schutz der rückseite von solarmodulenInfo
- Publication number
- EP2701906A1 EP2701906A1 EP12725066.0A EP12725066A EP2701906A1 EP 2701906 A1 EP2701906 A1 EP 2701906A1 EP 12725066 A EP12725066 A EP 12725066A EP 2701906 A1 EP2701906 A1 EP 2701906A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pvc
- layer
- use according
- fluoropolymer
- vdf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 229920002313 fluoropolymer Polymers 0.000 title claims abstract description 41
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 77
- 239000004800 polyvinyl chloride Substances 0.000 claims description 76
- 239000004811 fluoropolymer Substances 0.000 claims description 36
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical group FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 23
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 claims description 22
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229920001577 copolymer Polymers 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 18
- 229920001519 homopolymer Polymers 0.000 claims description 14
- 235000014692 zinc oxide Nutrition 0.000 claims description 14
- 239000004814 polyurethane Substances 0.000 claims description 10
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- 238000003475 lamination Methods 0.000 claims description 8
- -1 trifluoroethylene, chlorotrifluoroethylene, 1,2-difluoroethylene, tetrafluoroethylene, hexafluoropropylene Chemical group 0.000 claims description 7
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 claims description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims description 6
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 6
- 239000010954 inorganic particle Substances 0.000 claims description 6
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 claims description 5
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 claims description 4
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 claims description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 claims description 4
- 238000007765 extrusion coating Methods 0.000 claims description 4
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 claims description 4
- 229920002635 polyurethane Polymers 0.000 claims description 4
- 229920002554 vinyl polymer Polymers 0.000 claims description 4
- BLTXWCKMNMYXEA-UHFFFAOYSA-N 1,1,2-trifluoro-2-(trifluoromethoxy)ethene Chemical compound FC(F)=C(F)OC(F)(F)F BLTXWCKMNMYXEA-UHFFFAOYSA-N 0.000 claims description 3
- YSYRISKCBOPJRG-UHFFFAOYSA-N 4,5-difluoro-2,2-bis(trifluoromethyl)-1,3-dioxole Chemical compound FC1=C(F)OC(C(F)(F)F)(C(F)(F)F)O1 YSYRISKCBOPJRG-UHFFFAOYSA-N 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 239000011230 binding agent Substances 0.000 claims description 3
- 238000007334 copolymerization reaction Methods 0.000 claims description 3
- 125000005395 methacrylic acid group Chemical class 0.000 claims description 3
- 239000000377 silicon dioxide Substances 0.000 claims description 3
- 239000000454 talc Substances 0.000 claims description 3
- 229910052623 talc Inorganic materials 0.000 claims description 3
- 239000004408 titanium dioxide Substances 0.000 claims description 3
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical class [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 claims description 3
- HFNSTEOEZJBXIF-UHFFFAOYSA-N 2,2,4,5-tetrafluoro-1,3-dioxole Chemical compound FC1=C(F)OC(F)(F)O1 HFNSTEOEZJBXIF-UHFFFAOYSA-N 0.000 claims description 2
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 claims description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 claims description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 claims description 2
- FGEGZNORXGGFML-UHFFFAOYSA-N C(C)C=COF Chemical compound C(C)C=COF FGEGZNORXGGFML-UHFFFAOYSA-N 0.000 claims description 2
- 239000004801 Chlorinated PVC Substances 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000005977 Ethylene Substances 0.000 claims description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 claims description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 claims description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 2
- 239000010459 dolomite Substances 0.000 claims description 2
- 229910000514 dolomite Inorganic materials 0.000 claims description 2
- MEGHWIAOTJPCHQ-UHFFFAOYSA-N ethenyl butanoate Chemical compound CCCC(=O)OC=C MEGHWIAOTJPCHQ-UHFFFAOYSA-N 0.000 claims description 2
- UIWXSTHGICQLQT-UHFFFAOYSA-N ethenyl propanoate Chemical compound CCC(=O)OC=C UIWXSTHGICQLQT-UHFFFAOYSA-N 0.000 claims description 2
- 150000002170 ethers Chemical class 0.000 claims description 2
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 claims description 2
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 claims description 2
- 239000010445 mica Substances 0.000 claims description 2
- 229910052618 mica group Inorganic materials 0.000 claims description 2
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 2
- 150000002825 nitriles Chemical class 0.000 claims description 2
- FOKCKXCUQFKNLD-UHFFFAOYSA-N pent-1-enyl hypofluorite Chemical compound C(CC)C=COF FOKCKXCUQFKNLD-UHFFFAOYSA-N 0.000 claims description 2
- 239000010453 quartz Substances 0.000 claims description 2
- RNWHGQJWIACOKP-UHFFFAOYSA-N zinc;oxygen(2-) Chemical class [O-2].[Zn+2] RNWHGQJWIACOKP-UHFFFAOYSA-N 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 11
- 238000009413 insulation Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 72
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 29
- 239000004926 polymethyl methacrylate Substances 0.000 description 29
- 229920007478 Kynar® 740 Polymers 0.000 description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 17
- 238000001125 extrusion Methods 0.000 description 15
- 229920000139 polyethylene terephthalate Polymers 0.000 description 14
- 239000005020 polyethylene terephthalate Substances 0.000 description 14
- 229920006370 Kynar Polymers 0.000 description 13
- 229910010413 TiO 2 Inorganic materials 0.000 description 13
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 13
- 239000000654 additive Substances 0.000 description 12
- 239000011787 zinc oxide Substances 0.000 description 12
- 239000003292 glue Substances 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 9
- 229920006347 Elastollan Polymers 0.000 description 8
- 239000000853 adhesive Substances 0.000 description 8
- 230000001070 adhesive effect Effects 0.000 description 8
- 238000013329 compounding Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 8
- 150000002148 esters Chemical class 0.000 description 7
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229920000728 polyester Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 6
- 230000005855 radiation Effects 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 5
- 230000000930 thermomechanical effect Effects 0.000 description 5
- 229920001169 thermoplastic Polymers 0.000 description 5
- 239000004416 thermosoftening plastic Substances 0.000 description 5
- 239000004594 Masterbatch (MB) Substances 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- UUAGAQFQZIEFAH-UHFFFAOYSA-N chlorotrifluoroethylene Chemical group FC(F)=C(F)Cl UUAGAQFQZIEFAH-UHFFFAOYSA-N 0.000 description 4
- 239000005038 ethylene vinyl acetate Substances 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 4
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 229920012299 Kynar Flex® 3120-50 Polymers 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 3
- 239000011258 core-shell material Substances 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 239000008393 encapsulating agent Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- MIZLGWKEZAPEFJ-UHFFFAOYSA-N 1,1,2-trifluoroethene Chemical group FC=C(F)F MIZLGWKEZAPEFJ-UHFFFAOYSA-N 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 2
- 239000004609 Impact Modifier Substances 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 239000004952 Polyamide Substances 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012965 benzophenone Substances 0.000 description 2
- 150000008366 benzophenones Chemical class 0.000 description 2
- 150000001565 benzotriazoles Chemical class 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 235000010216 calcium carbonate Nutrition 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000012764 mineral filler Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 235000012771 pancakes Nutrition 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 229920002647 polyamide Polymers 0.000 description 2
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- WFLOTYSKFUPZQB-OWOJBTEDSA-N (e)-1,2-difluoroethene Chemical group F\C=C\F WFLOTYSKFUPZQB-OWOJBTEDSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- 229920005449 Altuglas® BS 550 Polymers 0.000 description 1
- 229920002799 BoPET Polymers 0.000 description 1
- YAAQEISEHDUIFO-UHFFFAOYSA-N C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 Chemical compound C=CC#N.OC(=O)C=CC=CC1=CC=CC=C1 YAAQEISEHDUIFO-UHFFFAOYSA-N 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 235000012766 Cannabis sativa ssp. sativa var. sativa Nutrition 0.000 description 1
- 235000012765 Cannabis sativa ssp. sativa var. spontanea Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical group [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920012485 Plasticized Polyvinyl chloride Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 206010047289 Ventricular extrasystoles Diseases 0.000 description 1
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 229920002877 acrylic styrene acrylonitrile Polymers 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000005907 alkyl ester group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001558 benzoic acid derivatives Chemical class 0.000 description 1
- 238000013084 building-integrated photovoltaic technology Methods 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 150000001860 citric acid derivatives Chemical class 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000003750 conditioning effect Effects 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006225 ethylene-methyl acrylate Polymers 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical class OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- FTWUXYZHDFCGSV-UHFFFAOYSA-N n,n'-diphenyloxamide Chemical class C=1C=CC=CC=1NC(=O)C(=O)NC1=CC=CC=C1 FTWUXYZHDFCGSV-UHFFFAOYSA-N 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 150000002942 palmitic acid derivatives Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 239000002530 phenolic antioxidant Substances 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 125000005498 phthalate group Chemical class 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920005594 polymer fiber Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical class OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000003549 soybean oil Substances 0.000 description 1
- 235000012424 soybean oil Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000000475 sunscreen effect Effects 0.000 description 1
- 239000000516 sunscreening agent Substances 0.000 description 1
- 239000012815 thermoplastic material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/042—PV modules or arrays of single PV cells
- H01L31/048—Encapsulation of modules
- H01L31/049—Protective back sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/08—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/304—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/30—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
- B32B27/308—Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/40—Layered products comprising a layer of synthetic resin comprising polyurethanes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/04—Interconnection of layers
- B32B7/12—Interconnection of layers using interposed adhesives or interposed materials with bonding properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2262/00—Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
- B32B2262/10—Inorganic fibres
- B32B2262/101—Glass fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2270/00—Resin or rubber layer containing a blend of at least two different polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/20—Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
- B32B2307/206—Insulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/30—Properties of the layers or laminate having particular thermal properties
- B32B2307/308—Heat stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/712—Weather resistant
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2307/00—Properties of the layers or laminate
- B32B2307/70—Other properties
- B32B2307/732—Dimensional properties
- B32B2307/734—Dimensional stability
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B2457/00—Electrical equipment
- B32B2457/12—Photovoltaic modules
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/3154—Of fluorinated addition polymer from unsaturated monomers
- Y10T428/31544—Addition polymer is perhalogenated
Definitions
- the present invention relates generally to the field of multilayer films, and in particular to multilayer structures based on fluoropolymers and PVC.
- the invention also relates to the various methods of manufacturing such structures, in particular by coextrusion or by coating, and to their use for the rear protection of solar panels.
- a solar module comprises a set of photovoltaic cells consisting of optoelectronic components (usually based on crystalline silicon), which generate an electrical voltage upon exposure to light.
- the photovoltaic cells are placed between a transparent cover material, which is a glass or plastic plate, and a protective material at the back, often a plastic film.
- the protective film which is positioned at the rear of the photovoltaic solar panel, called the back-sheet, is exposed to an environment comprising factors as diverse as water, oxygen and / or UV radiation.
- the first function of a back-sheet is therefore to provide the solar panel with good electrical insulation, reduced transmission of water vapor, protection against UV radiation and oxygen barrier properties.
- EVA ethylene-vinyl acetate
- another function of the back-sheet is to provide good adhesion to the EVA or thermoplastic encapsulant material. when these different materials are rolled together.
- the protective film must have a thermal stability in volume or size to avoid thermal expansion and in particular a shrinkage during assembly of the cells.
- Metal back-sheets are known in the form of steel or aluminum sheets. More recently, back-sheets have been made of polymeric materials, such as PET or TEDLAR ® (polyvinyl chloride-based material). The back-sheets are generally composed of a polyester layer protected by two fluoropolymer outer layers. The most common multilayer is assembled using solvent-deposited polyurethane glues: fluoropolymer / glue / bioriented PET / glue / fluoropolymer.
- the bioriented PET is a sheet with a thickness of 75 to 350 microns while the fluorinated film UV barrier (PET protection) has a thickness of 10 to 40 microns.
- PET films have the advantage of being dimensionally stable and have excellent electrical insulation characteristics. However, these films are susceptible to degradation following exposure to environmental factors such as UV radiation and moisture. It has been found that the use of PET does not make it possible to obtain back-sheets with good durability properties in an external environment.
- PET layer with another polymer which confers more resistance to moisture and radiation, that is, which has improved weatherability when it is used. in combination with a fluoropolymer layer.
- a polymer is represented by PVC, which is an inexpensive, easily extrudable thermoplastic material which has better hydrolysis resistance and better UV radiation stability than PET.
- the present invention proposes to provide a new use of a multilayer structure combining fluorinated polymers and PVC, as protection on the back of a photovoltaic solar panel, which has improved durability in external environment, while keeping the others properties of a back-sheet ie good electrical insulation, thermal stability in volume or dimensional and good adhesion to the encapsulating material.
- the invention relates to the use for the rear protection of a solar panel of a multilayer structure comprising at least one fluoropolymer layer and a PVC layer.
- said multilayer structure consists of two layers, namely an outer layer comprising a fluoropolymer and an inner layer of PVC.
- said multilayer structure consists of three layers, namely an outer layer of fluoropolymer, an intermediate layer of PVC and an inner layer of fluoropolymer.
- a binder of acrylic, fluorinated or polyurethane type can be used between the fluoropolymer layer and the PVC layer.
- said fluoropolymer layer may consist of one or more fluoropolymer films.
- the PVC layer may consist of one or more PVC films.
- the present invention relates to the use for the rear protection of a solar panel of a multilayer structure comprising at least one fluoropolymer layer and a PVC layer, wherein each fluoropolymer layer contains a homopolymer of VDF or a copolymer of VDF and a fluorinated comonomer copolymerizable with VDF.
- the fluoropolymer is a homopolymer or copolymer of VDF and a fluorinated comonomer copolymerizable with VDF.
- Each fluoropolymer layer thus consists of a VDF-based polymer.
- the fluorinated comonomer copolymerizable with VDF is chosen for example from vinyl fluoride; trifluoroethylene (VF3); chlorotrifluoroethylene (CTFE); 1,2-difluoroethylene; tetrafluoroethylene (TFE); hexafluoropropylene (HFP); perfluoro (alkyl vinyl) ethers such as perfluoro (methyl vinyl) ether (PMVE), perfluoro (ethyl vinyl) ether (PEVE) and perfluoro (propyl vinyl) ether (PPVE); perfluoro (1,3-dioxole); perfluoro (2,2-dimethyl-1,3-dioxole) (PDD), and mixtures thereof.
- VF3 trifluoroethylene
- CTFE chlorotrifluoroethylene
- TFE tetrafluoroethylene
- HFP hexafluoropropylene
- perfluoro (alkyl vinyl) ethers
- the fluorinated comonomer is chosen from chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), trifluoroethylene (VF3) and tetrafluoroethylene (TFE), and mixtures thereof.
- CTFE chlorotrifluoroethylene
- HFP hexafluoropropylene
- VF3 trifluoroethylene
- TFE tetrafluoroethylene
- the comonomer is advantageously HFP because it copolymerizes well with VDF and provides good thermomechanical properties.
- the copolymer comprises only VDF and HFP.
- the fluoropolymer is a homopolymer of VDF (PVDF) or a VDF copolymer such as VDF-HFP containing at least 50% by weight of VDF, advantageously at least 75% by weight of VDF and preferably at least 90% by weight. mass of VDF.
- VDF VDF
- VDF copolymer such as VDF-HFP containing at least 50% by weight of VDF, advantageously at least 75% by weight of VDF and preferably at least 90% by weight. mass of VDF.
- HFP HFP
- the homopolymer or a copolymer of VDF have a viscosity ranging from 100 Pa.s to 3000 Pa.s, the viscosity being measured at 230 ° C., at a shear rate of 100 s -1 using a
- this type of polymer is well suited to extrusion, preferably the polymer has a viscosity ranging from 500 Pa.s to 2900 Pa.s, the viscosity being measured at 230.degree. shear rate of 100 sec -1 using a capillary rheometer.
- the fluoropolymer comprises at least one additive in the form of an additional polymer which may be a homopolymer or copolymer of methyl methacrylate (MMA), optionally supplemented with inorganic particles.
- an additional polymer which may be a homopolymer or copolymer of methyl methacrylate (MMA), optionally supplemented with inorganic particles.
- MMA methyl methacrylate
- the fluoropolymer layer may comprise one or more inorganic and / or organic particle shaped charges, in addition to the presence of the additional MMA polymer.
- MMA polymer homopolymers of methyl methacrylate (MMA) and copolymers containing at least 50% by weight of MMA and at least one other monomer copolymerizable with MMA are advantageously used.
- alkyl (meth) acrylates As an example of comonomer copolymerizable with MMA, there may be mentioned alkyl (meth) acrylates, acrylonitrile, butadiene, styrene, isoprene. Examples of alkyl (meth) acrylates are described in Kirk-Othmer, Encyclopedia of Chemical Technology, 4 th edition (1991) in Vol. 1 pages 292-293 and in Vol. 16 pages 475-478.
- the polymer (homopolymer or copolymer) of MMA comprises, by weight, from 0 to 20% and preferably 5 to 15% of a (C 1 -C 8) alkyl (meth) acrylate, which is preferably methyl acrylate. and / or ethyl acrylate.
- the polymer (homopolymer or copolymer) of MMA can be functionalized, that is to say it contains functions acid, acid chloride, alcohol, anhydride. These functions can be introduced by grafting or by copolymerization.
- the functionality is in particular the acid function provided by the acrylic acid comonomer. It is also possible to use a neighboring two-functional acrylic acid monomer which can dehydrate to form an anhydride.
- the proportion of functionality may be from 0 to 15% by weight of the MMA polymer, preferably from 0 to 10% by weight.
- the MMA polymer may advantageously contain at least one impact modifying additive.
- impact-resistant MMA polymer which contain an acrylic impact modifying additive in the form of multilayer particles.
- the impact modifying additive is then present in the MMA polymer as it is marketed (that is to say introduced into the MMA resin during the manufacturing process) but it can also be added during manufacture. of the film.
- the proportion of impact modifying additive ranges from 0 to 30 parts per 70 to 100 parts of MMA polymer, the total being 100 parts.
- Multilayer particle impact modifier additives also commonly referred to as core-shell, comprise at least one elastomeric (or soft) layer, ie a layer formed of a polymer having a temperature of vitreous transition (Tg) less than -5 ° C and at least one rigid (or hard) layer, that is to say formed of a polymer having a Tg greater than 25 ° C.
- Tg temperature of vitreous transition
- the size of the particles is generally less than ⁇ and advantageously between 50 and 300 nm.
- Examples of impact modifier additive in the form of core-shell type multi-layer particles can be found in the following documents: EP 1061 100 A1, US 2004/0030046 A1, FR-A-2446296 or US 2005/0124761 A1. Core-shell type particles having at least 80% by weight of soft elastomeric phase are preferred.
- the MVI (melt volume index or melt volume index in the molten state) of the MMA polymer may be between 2 and 25 cm 3/10 min, measured at 230 ° C under a load of 3.8 kg.
- the content of MMA polymer in the fluoropolymer layer is between 1 and 55% by weight, advantageously between 2 and 40% by weight, preferably between 3 and 25% by weight.
- a metal oxide such as, for example, titanium dioxide (TiO 2 ), zinc oxides or zinc sulphides, silica, quartz, alumina, a carbonate, for example calcium carbonate, talc, mica, dolomite (CaC0 3 'MgC0 3), montmorillonite (aluminosilicate), Basu 4, ZrSi0 4, Fe 3 C> 4, and mixtures thereof.
- TiO 2 titanium dioxide
- zinc oxides or zinc sulphides silica, quartz, alumina
- a carbonate for example calcium carbonate, talc, mica, dolomite (CaC0 3 'MgC0 3), montmorillonite (aluminosilicate), Basu 4, ZrSi0 4, Fe 3 C> 4, and mixtures thereof.
- These particles have the function of opacifying the composition in the UV / visible range.
- a charge of Ti0 2 is particularly preferred from this point of view.
- the mineral filler for example of the TiO 2 type, acts as a sunscreen to obtain an opaque film, mainly by diffusion / reflection of the UV rays, but also by visible light.
- an organic UV absorber with inorganic particles to enhance protection against UV radiation, for example benzophenones or benzotriazoles.
- Tinuvin ® 234 is particularly preferred.
- Black pigmented particles may also be added. It is carbon black or carbon nanotubes, used at rates below their percolation threshold.
- These particles have a size expressed in average diameter generally between 0.05 and 20 microns, advantageously between 0.1 ⁇ and ⁇ , preferably between 0.2 ⁇ and 5 ⁇ .
- the content of inorganic particles in the fluoropolymer layer is between 0.1 and 30% by weight, advantageously between 5 and 28% by weight, preferably between 10 and 27% by weight and even more preferably between 15 and 25% by weight.
- the composition of the fluoropolymer layer may be prepared by any method which makes it possible to obtain a homogeneous mixture of the polymers and any additives and / or fillers which form part of the fluoropolymer layer.
- composition according to the invention is prepared by melt blending all the polymers and any additives and fibers and then is transformed, for example in the form of granules, by compounding on a tool known to those skilled in the art. art as a twin-screw extruder, a co-kneader or a mixer. This composition may be coextruded with another material or extruded into a film.
- the thickness of the fluoropolymer layer ranges from 10 to 150 microns, preferably from 15 to 40 microns, inclusive.
- the PVC layer consists of rigid, semi-rigid or plasticized PVC.
- the PVC may be any vinyl chloride polymer or copolymer: optionally superchlorinated vinyl chloride homopolymer (CPVC), and optionally crosslinked copolymers resulting from the copolymerization of vinyl chloride with one or more unsaturated ethylenic comonomers.
- CPVC superchlorinated vinyl chloride homopolymer
- the latter are chosen from: vinylidene chloride or fluoride, vinyl carboxylates, such as vinyl acetate, vinyl propionate or vinyl butyrate, acrylic and methacrylic acids, nitriles, amides and alkyl esters derived from acrylic and methacrylic acids, especially acrylonitrile, acrylamide, methacrylamide, methyl methacrylate, methyl acrylate, butyl acrylate, ethyl acrylate, 2-ethylhexyl acrylate, vinyl aromatic derivatives, such as styrene or olefins such as ethylene, propene or 1-butene.
- Fillers in particular mineral fillers, may also be added to the PVC to improve the thermomechanical behavior of the composition.
- Non-limiting examples are silica, alumina or calcium carbonates or carbon nanotubes or glass fibers.
- Preferred PVCs are homo- and copolymers of vinyl chloride.
- these have a thermal transmission coefficient U of approximately 65 W / m 2 K.
- the PVC layer, CPVC or PVC / CPVC may comprise by weight:
- the coefficient U of the PVC resin may be between 50 and 100 W / m 2 K.
- Such a resin is obtained by a slurry, bulk, emulsion or microsuspension polymerization process.
- the coefficient U of the resin CPVC obtained by a chlorination process of a PVC resin mass, can be between 60 and 70 W / m 2 K;
- additives chosen from stabilizers, processing additives, lubricants or flame retardants.
- opacifying filler such as titanium dioxide, zinc oxide, zinc sulfide
- thermoplastic compound based on acrylonitrile or acrylate
- the plasticizer (s) used in the PVC, CPVC or PVC / CPVC layer is (are) chosen from the group comprising azelates, trimellitates, sebacates, adipates, phthalates, citrates, benzoates and tallates. , glutarates, fumarates, maleates, oleates, palmitates, acetates, epoxidized soybean oil and mixtures thereof.
- one or more woven or non-woven substrates may be used in combination therewith. These substrates may consist of fiberglass, carbon, polymer fibers (such as polyester, polyamide, etc.), natural fibers (flax, hemp, etc.).
- the PVC layer is formed of the PVC-substrate assembly.
- thermoplastic compound used in the PVC, CPVC or PVC / CPVC layer is preferably a thermoplastic compound based on acrylonitrile or acrylate. It can be obtained from compounds chosen from styrene-acrylonitrile, acrylonitrile-styrene-acrylate and ethylene-methyl acrylate copolymers.
- the PVC, CPVC or PVC / CPVC layer makes it possible to ensure good thermomechanical behavior retention up to the solar panel lamination temperature (120-150 ° C, 5-
- PVC / CPVC is preferably extrusion in a temperature range between 100 ° C and 180 ° C or 220 ° C.
- the thickness of the PVC, CPVC or PVC / CPVC layer thus obtained varies from 150 to 450 microns, preferably from 200 to 30 microns, inclusive.
- An example of a PVC composition is given in Table 1 below:
- thermomechanical properties up to the lamination temperature of the solar panel (120 ° C-150 ° C);
- composition 300 ⁇ thick The samples were prepared from a mixture of the various raw materials worked, in proportions as defined in the table below on a twin-cylinder mixer at 205 ° C for 5 minutes. Then the material was press-packed at 185 ° C under a pressure of 200 bar for 240 seconds.
- the test consists of a measurement of the withdrawal. Before measurements, the sample should be allowed to stand at room temperature for a minimum of 2 hours. On a plate of 140x140 mm, a mark is drawn in the longitudinal direction as well as in the direction transversal to 20mm of the edges. We mark the middle of the square thus obtained. We mark and measure the longitudinal and transverse distances (respectively L0 and T0) obtained at the center of the square.
- the sample is placed on a wooden board of appropriate size and then an oven at the specified temperature for a given time. Once the time has elapsed, the sample is removed from the oven and allowed to rest for a minimum of 30 minutes under the same conditions used for conditioning the sample before the test. Then we remeasure the longitudinal and transverse distances (respectively L and T).
- the PVC, CPVC or PVC / CPVCC layer according to the invention makes it possible to obtain shrinkage values between 0.85 and 2.7%, as indicated in Table 2 below:
- Kynar 740 homopolymer of vinylidene fluoride having a melting temperature
- Kynar Flex 3120-50 having a melting temperature of 165 ° C and an elastic modulus of 690 MPa.
- Tf were measured by DSC or differential scanning calorimetry.
- the elastic modules were measured according to ISO 527.
- the PMMA used in the compositions below is PMMA ALTUGLAS BS 550 (copolymer of methyl methacrylate and ethyl acrylate - MFR 17-20 g / 10 min (230 ° C., 3.8 kg)).
- Elastollan C85 is a polyester-based polyurethane.
- the multilayer films were made by calendering (CAST) on an AMUT extrusion line.
- This line consists of 3 extruders:
- the line is also equipped with a Verbugren "multimanifold" 500mm die.
- the system is also equipped with a Verbugren "multimanifold" 500mm die.
- Multimanifold allows the production of a film or a 3-layer sheet (layer 1 / layer 21 layer 3) with a variable thickness distribution (example: 30/30/350 microns).
- the process parameters have been set as shown below:
- the line speed is 3 m / min.
- the inner layer is made by dry mixing at the bottom of the machine at the time of production.
- the inner layer is made by dry mixing at the bottom of the machine at the time of production.
- the PVDF outer layer containing TiO 2 is produced by compounding in a co-kneader at a temperature not exceeding 240 ° C. At first, the preparation is carried out a PMMA / Ti02 masterbatch on twin-screw extruder; it is then mixed with the PVDF in the co-kneader or in the twin-screw extruder.
- the inner layer containing TiO 2 is produced by compounding as described for Example 1.2.
- the inner layer containing S2001 modifier is made by compounding in a twin-screw extruder.
- the outer layer containing TiO 2 is compounded as described above for 1.2.
- the outer layer containing Ti0 2 and ZnO is produced by compounding.
- the introduction Ti0 2 in the PVDF requires the preparation of a masterbatch PMMA / Ti0 2 on twin-screw extruder beforehand; it is then mixed with the PVDF in the co-kneader or in the twin-screw extruder.
- the outer layer containing TiO 2 is compounded as described for 1.2.
- the outer layer containing ZnO is made by compounding in a twin-screw extruder.
- the outer layer containing TiO 2 is compounded as described for 1.2.
- PVDF 1.9 - CPVC or PVC / Elastollan C85 / Kynar 740 73.3% - PMMA 4.7% - ZnO 15% - 7% TiO2 Introduction Ti0 2 in PVDF requires the preparation of a PMMA / TiO 2 masterbatch beforehand on twin-screw extruder; it is then mixed with the PVDF in the co-kneader or in the twin-screw extruder.
- the outer layer containing TiO 2 is made by compounding as described for 1.2. 1.1 1 - PVDF 73.3% - PMMA 4.7% - ZnO 15% - 7% Ti0 2 /
- Ti0 2 in the PVDF requires the preparation of a masterbatch PMMA / Ti0 2 on twin-screw extruder beforehand; it is then mixed with the PVDF in the co-mixer or in the twin-screw extruder.
- extrusion line of the Dr Collin brand.
- This line consists of three extruders fitted with a standard polyolefin screw profile, a variable coextrusion block, and a coat hanger die.
- the coextrusion block allows the production of a film of 1 to 5 layers with a variable thickness distribution (example: 30/250 microns).
- a system of reels allows to unroll various supports including a PVDF film.
- the process parameters have been set as shown below:
- T extrusion layer 1 200 ° C.
- T ° coextrusion box and die 200 ° C.
- the line speed is 2 m / min.
- the multilayer structures can also be assembled by solvent adhesives in two steps according to the following protocol:
- Kynar film 1 30 micron multilayer film (PVDF / Kynar 740 60% - PMMA 24% -
- Kynar film 2 monolayer film 18 ⁇ (Kynar 740 73.3% - PMMA 4.7% - ZnO 15% - 7% TiO 2).
- the films 1 and 2 are made beforehand by blowing the sheath on a Dr Collin 5-layer sheath line equipped with a "pancake" type die.
- the target structure (PVC sheet (350 microns) / glue / PVDF film (film 1 or 2) is produced as follows:
- a spiral applicator (“barcoater”) is used to apply a layer of 30 microns of glue (not dried) to the PVC sheet.
- the formulation of the glue used is as follows (Bostick supplier): HBTS ESP 877 (100 parts) + hardener Biscodur 1621 (9 parts). The PVC sheet coated with glue is then left for one minute at room temperature and then for 5 minutes at 50.degree.
- the structure is then pressed at 80 ° C., 5 minutes, 3 bars.
- the structure Before being tested or used, the structure is then left for 3 days in an oven at 60 ° C in order to completely crosslink the glue.
- a PVC / fiberglass / PVC multilayer structure (150 ⁇ / 50 ⁇ / 150 ⁇ ) is produced by hot thermolamination of 2 PVC sheets on the glass weave using a calender line.
- the PVC sheet is preheated on thermostatically controlled rolls, then is thermolaminated in a calender.
- the temperatures, calender closing force and line speed are adjusted according to the PVC formulation and the glass fabric used.
- PVC - a generic term encompassing polyvinyl chloride and its especially chlorinated derivatives, such as CPVC
- PVDF polyvinylidene fluoride
- melt volume index or melt volume melt index
- melt fiow rate or melt index expressed in g / min
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Laminated Bodies (AREA)
- Photovoltaic Devices (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1153585A FR2974535A1 (fr) | 2011-04-27 | 2011-04-27 | Utilisations d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires |
PCT/FR2012/050944 WO2012146880A1 (fr) | 2011-04-27 | 2012-04-27 | Utilisation d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2701906A1 true EP2701906A1 (de) | 2014-03-05 |
Family
ID=46201690
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12725066.0A Withdrawn EP2701906A1 (de) | 2011-04-27 | 2012-04-27 | Verwendung einer mehrschichtigen pvc/fluorierten polymerstruktur zum schutz der rückseite von solarmodulen |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140044976A1 (de) |
EP (1) | EP2701906A1 (de) |
CN (1) | CN103619585A (de) |
FR (1) | FR2974535A1 (de) |
WO (1) | WO2012146880A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9492988B2 (en) * | 2013-03-14 | 2016-11-15 | Schneller Llc | Soft touch laminates constructed with improved fire retardant properties for transportation |
JP6611642B2 (ja) * | 2016-03-04 | 2019-11-27 | ダイヤプラスフィルム株式会社 | ポリ塩化ビニル系樹脂組成物および反射フィルム |
WO2019097033A1 (en) * | 2017-11-16 | 2019-05-23 | Argotec, LLC | Polyvinylidene fluoride-acrylate and thermoplastic polyurethane multilayer protective film |
CN112863336B (zh) * | 2021-01-11 | 2022-07-12 | 武汉华星光电半导体显示技术有限公司 | 显示模组及显示装置 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2039496B (en) | 1979-01-12 | 1982-11-10 | Du Pont | Cored acrylic polymers |
US4860509A (en) * | 1987-05-18 | 1989-08-29 | Laaly Heshmat O | Photovoltaic cells in combination with single ply roofing membranes |
JPH07228848A (ja) * | 1994-02-22 | 1995-08-29 | Asahi Glass Co Ltd | 耐候性接着剤組成物 |
CN1325524C (zh) * | 1997-06-23 | 2007-07-11 | 大金工业株式会社 | 四氟乙烯共聚物及其用途 |
TWI228137B (en) | 1999-06-17 | 2005-02-21 | Rohm & Haas | Capstock composition and process providing weatherability, reduced gloss, and high impact |
DE10043868A1 (de) | 2000-09-04 | 2002-04-04 | Roehm Gmbh | PMMA Formmassen mit verbesserter Schlagzähigkeit |
DE10236240A1 (de) | 2002-02-06 | 2003-08-14 | Roehm Gmbh | Silicon-Pfropfcopolymerisate mit Kern-Hülle-Struktur, schlagzähmodifizierte Formmassen und Formkörper sowie Verfahren zu deren Herstellung |
FR2842530B1 (fr) * | 2002-07-17 | 2004-09-03 | Atofina | Composition coextrudable avec le pvdf |
US20040202866A1 (en) * | 2003-04-11 | 2004-10-14 | Kernander Carl P. | Bright white protective laminates |
US8071176B2 (en) * | 2004-09-24 | 2011-12-06 | Arkema Inc. | Process for forming a weatherable polyvinyl chloride or polyolefin article |
FR2896445B1 (fr) * | 2006-01-25 | 2010-08-20 | Arkema | Film flexible a base de polymere fluore |
US20070295388A1 (en) * | 2006-05-05 | 2007-12-27 | Nanosolar, Inc. | Solar assembly with a multi-ply barrier layer and individually encapsulated solar cells or solar cell strings |
CN101681946B (zh) * | 2007-06-15 | 2012-10-24 | 阿科玛股份有限公司 | 具有聚偏二氟乙烯背板的光伏打模块 |
CN102067327A (zh) * | 2008-06-23 | 2011-05-18 | 旭硝子株式会社 | 太阳能电池模块用背板及太阳能电池模块 |
-
2011
- 2011-04-27 FR FR1153585A patent/FR2974535A1/fr active Pending
-
2012
- 2012-04-27 EP EP12725066.0A patent/EP2701906A1/de not_active Withdrawn
- 2012-04-27 CN CN201280031550.9A patent/CN103619585A/zh active Pending
- 2012-04-27 WO PCT/FR2012/050944 patent/WO2012146880A1/fr active Application Filing
- 2012-04-27 US US14/113,034 patent/US20140044976A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2012146880A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2974535A1 (fr) | 2012-11-02 |
WO2012146880A1 (fr) | 2012-11-01 |
CN103619585A (zh) | 2014-03-05 |
US20140044976A1 (en) | 2014-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2237950B1 (de) | Dreischichtiger film für eine photovoltaische zelle | |
US7867604B2 (en) | Composition coextrudable with PVDF and having no stress-whitening effect | |
FR2842530A1 (fr) | Composition coextrudable avec le pvdf | |
EP3055357A1 (de) | Fluorinierte zusammensetzung mit einem uv-absorber und verwendung davon als transparente deckschicht | |
JP5937075B2 (ja) | フッ化ビニリデン系樹脂組成物、樹脂フィルム、太陽電池用バックシート及び太陽電池モジュール | |
KR20100040864A (ko) | 풍화 안정성이 특히 높고 uv 보호 작용이 높은 pmma/pvdf 필름 | |
WO2012146880A1 (fr) | Utilisation d'une structure multicouche pvc/polymere fluore pour la protection arriere des panneaux solaires | |
JP4809614B2 (ja) | 応力下で白化しないpvdfと一緒に共押出し可能な組成物 | |
FR2966158A1 (fr) | Film a base de polymere fluore pour application photovoltaique | |
EP3083780A1 (de) | Nicht entzündbarer, bei niedrigen temperaturen reissfester pvdf-film | |
KR101399422B1 (ko) | 단층 PVdF 필름 및 이의 제조방법 | |
KR101275850B1 (ko) | 단층 PVdF 필름 및 이의 제조방법 | |
FR2955117A1 (fr) | Film a base de polymere fluore sans odeur acrylique pour application photovoltaique | |
FR2982796A1 (fr) | Procede de fabrication d'un film fluore mat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131008 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20151103 |