EP2699536A1 - Procédé de préparation de composés insaturés - Google Patents

Procédé de préparation de composés insaturés

Info

Publication number
EP2699536A1
EP2699536A1 EP12706477.2A EP12706477A EP2699536A1 EP 2699536 A1 EP2699536 A1 EP 2699536A1 EP 12706477 A EP12706477 A EP 12706477A EP 2699536 A1 EP2699536 A1 EP 2699536A1
Authority
EP
European Patent Office
Prior art keywords
compounds
catalyst
reaction
acid
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12706477.2A
Other languages
German (de)
English (en)
Inventor
Lukas J. Goossen
Dominik Ohlmann
Markus Dierker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis IP Management GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis IP Management GmbH filed Critical Cognis IP Management GmbH
Priority to EP12706477.2A priority Critical patent/EP2699536A1/fr
Publication of EP2699536A1 publication Critical patent/EP2699536A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2217At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/475Preparation of carboxylic acid esters by splitting of carbon-to-carbon bonds and redistribution, e.g. disproportionation or migration of groups between different molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/593Dicarboxylic acid esters having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • B01J2231/543Metathesis reactions, e.g. olefin metathesis alkene metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0216Bi- or polynuclear complexes, i.e. comprising two or more metal coordination centres, without metal-metal bonds, e.g. Cp(Lx)Zr-imidazole-Zr(Lx)Cp
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/24Phosphines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • the present invention relates to a process for the preparation of unsaturated compounds.
  • This process is a tandem isomerization / metathesis using a catalyst system containing on the one hand a specific palladium catalyst and on the other hand a ruthenium catalyst.
  • WO 2010/020368 describes a process for the preparation of unsaturated alpha, omega-dicarboxylic acids and alpha, omega-dicarboxylic acid diesters in which unsaturated carboxylic acids and / or esters of unsaturated carboxylic acids are reacted in the presence of two special ruthenium catalysts.
  • the process according to the invention represents a tandem isomerization / metathesis and has numerous advantages:
  • the catalysts do not require any chemical activation of any kind.
  • (A) uses oleic acid. Then it is not necessary that this oleic acid has an extremely high purity, but you can also use technical grade oleic acid, such as those containing about 80% oleic acid and 20% linoleic acid.
  • the catalyst system suppresses the formation of lactones (which are expected to occur when, for example, unsaturated fatty acids such as oleic acid are treated with an isomerization catalyst).
  • the process according to the invention can be carried out solvent-free.
  • the method according to the invention requires only very mild temperatures.
  • the educts (A) are obligatory for the process according to the invention.
  • the compounds (A) are unsaturated monocarboxylic acids having 10 to 24 carbon atoms or esters of these monocarboxylic acids.
  • the monocarboxylic acids may optionally be branched.
  • unsaturated monocarboxylic acids compounds of the formula R'-COOH wherein the radical R 1 comprises 9 to 23 carbon atoms.
  • the radical R 1 may be cyclic or acyclic (non-cyclic), preferably the radical R 1 is aeyclic, wherein it may be branched or unbranched.
  • Monocarboxylic acids with an unbranched radical R 1 are preferred.
  • the short notation for oleic acid is 18: 1 (9). If the double bond is in the trans configuration, this is indicated by the abbreviation "tr.” Thus, the short notation for elaidic acid is 18: 1 (tr9).
  • functionalized monounsaturated monocarboxylic acids are suitable, for example ricinoleic acid, furan fatty acids, methoxy fatty acids, Keto fatty acids and epoxy fatty acids such as vernolic acid (cw-12,13-epoxy-octadec-cw-9-enoic acid), and finally branched monocarboxylic acids such as phytanic acid.
  • Suitable polyunsaturated monocarboxylic acids are, for example, linoleic acid [18: 2 (9,12); (9Z, 12Z) - octadeca-9,12-dienoic acid], alpha-linolenic acid [18: 3 (9,12,15); (9Z, 12Z, 15Z) - octadeca-9,12,15-trienoic acid], gamma-linolenic acid [18: 3 (6,9,12); (6Z, 9Z, 12Z) octadeca-6,9,12-trienoic acid], calendulic acid [18: 3 (8, 10, 12); (8 £, 10E, 12Z) - octadeca-8,10,12-trienoic acid], punicic acid [18: 3 (9,11,13); (9Z, 1E, 13Z) octadeca-9,11,13-trienoic acid], alpha-eleostearic acid [18: 3 (9
  • Suitable starting materials (A) are also esters of the monounsaturated or polyunsaturated monocarboxylic acids mentioned. Particularly suitable esters are esters of these monocarboxylic acids with alcohols R 2 -OH, where R 2 is an alkyl radical having 1 to 8 C atoms.
  • radicals R 2 are: methyl, ethyl, propyl, isopropyl, butyl, 2-methylpropyl, pentyl, 2,2-dimethylpropyl, 2-methylbutyl, 3-methylbutyl, hexyl , 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1-ethylbutyl, 2-ethylbutyl, heptyl, and octyl radicals.
  • the unsaturated monocarboxylic acids or the esters of the unsaturated monocarboxylic acids can be present both individually and in mixtures with one another. If exclusively an unsaturated monocarboxylic acid or the ester of only one unsaturated monocarboxylic acid is used, a reaction takes place in the context of the process according to the invention which can be classified as isomerizing autocatheatment. Be different When unsaturated monocarboxylic acids or esters of various unsaturated monocarboxylic acids are used, a reaction takes place within the scope of the process according to the invention which can be classified as isomerizing cross-metathesis.
  • monounsaturated monocarboxylic acids and / or esters of monounsaturated monocarboxylic acids and / or mixtures of monounsaturated monocarboxylic acids or mixtures of esters of monounsaturated monocarboxylic acids are used.
  • the isomerization / metathesis tandem reaction is a homo- or self-metathesis with respect to the metathesis substep.
  • the educts (B) are optional for the process according to the invention.
  • the starting materials (B) preferably contain 2 to 24 C atoms per molecule.
  • the compounds (B) may contain other functional groups that are inert under the reaction conditions.
  • suitable starting materials (B) are in particular unsaturated dicarboxylic acid derivatives (for example maleic acid esters), furthermore mono-, di- or polyolefins having 2-20 C atoms (which may be linear, branched, alicyclic or aromatic, such as 1-hexene or styrene ,
  • the metathesis substep of the tandem isomerization / methathesis reaction is a cross metathesis, the special case of so-called ethenolysis being present.
  • the molar ratio of (A): (B) is preferably set to a value in the range of 1: 0.05 to 1: 5.
  • ethylene is used as starting material (B), it is preferably such that one works at a partial pressure of ethylene in the range between 1 and 50 bar and in particular 1 to 10 bar.
  • the process according to the invention is carried out in the presence in the presence of a special palladium catalyst and a ruthenium catalyst.
  • the palladium catalysts used are compounds containing at least one structural element of Pd-P (R 1 R 2 R 3), wherein the radicals R 1 to R 3 - independently of one another - in each case 2 to 10 C have atoms, each of which is aliphatic, alicyclic, aromatic, or heterocyclic, with the proviso that at least one of the radicals R 1 bi * s R 3 contains a beta hydrogen, wherein the palladium catalyst is used such or generated in situ.
  • Aliphatic radicals may be linear or branched, they may also be in cyclic form; said structural elements may also be present in combination. Aromatic radicals may also have alkyl substituents.
  • a beta hydrogen is present when the constellation Pd-P-C-C-H is present in the palladium catalyst.
  • the palladium catalyst is used in such a way or generates it in situ.
  • the palladium catalysts to be used according to the invention function on their own, which means that they do not require a chemical activation by an additional activating substance.
  • the palladium catalysts may be mononuclear or polynuclear.
  • palladium catalysts containing two Pd atoms per molecule are used. In one embodiment, palladium catalysts are used which contain two Pd atoms per molecule, wherein the two Pd atoms are connected to one another via a spacer X.
  • these palladium catalysts contain the structural element Pd-X-Pd.
  • Suitable spacers X are, for example, halogen, oxygen, O-alkyl, sulfur, sulfur alkyl, disubstit. Nitrogen, carbon monoxide, nitrile, diolefin.
  • the compounds (I) in the structural element Pd-Yl contains at least one beta hydrogen.
  • the structural element Pd-Y2 does not necessarily contain a beta hydrogen.
  • X is a spacer selected from halogen, oxygen, and O-alkyl
  • Y 1 is a group P (R R 2 R 3!) wherein R 1, R 2 and R 3 have the abovementioned meaning
  • Y 2 a Group P (R 4 R 5 R 6 ), wherein R 4 , R 5 and R 6 - independently of one another - each have 2 to 10 C atoms, which may each be aliphatic, alicyclic, aromatic, or heterocyclic.
  • the palladium catalyst is used in such a way or generates it in situ.
  • In situ generation can, for example, for a palladium catalyst of the type (I) or (Ia), mean that a compound L 3 -Pd-X-Pd-L 3 , where L is phosphine ligands without beta-hydrogen, used and converted by ligand exchange in situ in a compound (I) or (Ia).
  • the palladium catalyst is a homogeneous catalyst.
  • the palladium catalyst is a heterogeneous catalyst.
  • a palladium catalyst of the formula (I) is immobilized via the group Y 1 and / or Y 2 on a solid substrate or in an ionic liquid.
  • the palladium catalyst is preferably used in an amount in the range of 0.01 to 2.0 mol%, based on the amount of starting material (A) used; In this case, the range of 0.1 to 1.0 mol% is particularly preferred.
  • the chemical nature of the ruthenium catalyst is not critical per se.
  • Suitable ruthenium catalysts are:
  • This catalyst is dichloro- [1,3-bis (mesityl) -2-imidazolidinylidene] - (3-phenyl-1H-inden-1-ylidene) (tricyclohexylphosphine) ruthenium (II), CAS # 536724- 67-1. It is commercially available, for example, under the name Neolyst TM M2 from Umicore.
  • This catalyst is [l, 3-bis (2,4,6-trimethylphenyl) -2-imidazolidinylidene] - [2- [[(4-methylphenyl) imino] methyl] 4-nitrophenolyl] - [ 3-phenyl-1H-inden-1-ylidene] ruthenium (II) chloride, CAS No. 934538-04-2. It is commercially available, for example, under the name Neolyst TM M41 from Umicore.
  • This catalyst is 3-bis (mesityl) -2-imidazolidinylidene] - [2 - [[(2-methylphenyl) imino] methyl] phenolyl] - [3-phenyl-IH-inden-1-ylidene] ruthenium (II) chloride. CAS No. 1031262-76-6. It is commercially available, for example, under the name Neolyst TM M31.
  • This catalyst is 3-bis (mesityl) -2-imidazolidinylidene] - [2- [[(2-methylphenyl) imino] methyl] phenolyl] - [3-phenyl-1H-indenyl-1-ylidene ] ruthenium (II) chloride. CAS No. 934538-12-2. It is commercially available, for example, under the name Neolyst TM M42 from Umicore.
  • This catalyst is dichloro (o-isopropoxyphenylmethylene) (tricyclohexylphosphine) ruthenium (II). CAS No. 203714-71-0. It is commercially available, for example, under the name Hoveyda-Grubb's first generation catalyst.
  • This catalyst is l, 3-bis (2,4,6-trimethylphenyl) -2-imidazolidinylidene- [2- [[(4-meth-ylphenyl) imino] methyl] -4-nitrophenolyl] - [3 -phenyl-1H-inden-1-ylidene] ruthenium (II) chloride. CAS-No. 934538-04-2. It is commercially available, for example, under the name Neolyst TM M41 from Umicore.
  • This catalyst is l, 3-bis (2,4,6-trimethylphenyl) -2-imidazolidinylidene) dichloro (o-iso-propoxyphenylmethylene) ruthenium (II).
  • CAS-No The chemical name for this catalyst is l, 3-bis (2,4,6-trimethylphenyl) -2-imidazolidinylidene) dichloro (o-iso-propoxyphenylmethylene) ruthenium (II).
  • CAS-No It is commercially available, for example, under the name Hoveyda-Grubbs second generation catalyst.
  • the ruthenium catalyst is preferably used in an amount in the range of 0.01 to 5 mol% - based on the amount of starting material (A) used -; In this case, the range of 0.3 to 1, 5 mol% is particularly preferred.
  • the process according to the invention is preferably carried out at temperatures in the range from 25 to 90.degree. C. and in particular from 40 to 80.degree. A range of 50 to 70 ° C is particularly preferred.
  • the process can be carried out in customary organic solvents in which the starting materials (A) or the starting materials (A) and (B) and also the catalysts used-insofar as the catalysts are used in the form of homogeneous catalysts-are dissolved.
  • aprotic solvents are used, such as hydrocarbons (e.g., hexane or tetrahydrofuran).
  • the process is carried out solvent-free.
  • the reaction is carried out in the absence of acids having a pKa of 3 or less.
  • acids having a Pka value of 3 or less are, for example, mineral acids, p-toluenesulfonic acid, methanesulfonic acid.
  • the process according to the invention is preferably carried out in the absence of oxygen, for example in an inert gas stream (for example under nitrogen or argon or by passing nitrogen or argon through) or in vacuo.
  • component (B) itself if it is used and under the reaction conditions in gaseous state, serve as an inert gas.
  • the mixtures may be subjected to separation by conventional methods, for example by distillation, by fractional crystallisation or by extraction.
  • products obtained by the process of the present invention may be subjected to hydrogenation or re-cross-metathesis.
  • the latter (renewed cross-metathesis) may then be a desired option if one wishes to convert the monocarboxylates contained in the product mixture into dicarboxylates).
  • mixtures of olefins, mono- and dicarboxylates obtainable according to the invention from olefins, mono- and dicarboxylates are similar to the fuel used under the name "metathetized biodiesel", but if desired they can also be split into a monoester and a diester fraction, each of which has its own application possibilities: monocarboxylate mixtures
  • monocarboxylate mixtures Unsaturated dicarboxylates can not be obtained from petroleum, but play an important role in the production of fragrances, adhesives and specialty antibiotics, while at the same time allowing for further modification due to the presence of the double bond, such as novel bio -based polyesters, polyamides, polyurethanes, resins, fibers, coatings and adhesives. Examples
  • Catalyst (A) (1.2 mg, 1.5 ⁇ ), and catalyst (Bl) (2.3 mg, 3 ⁇ ) were placed in a 20 mL reaction vessel with bead and stirring bars, the vessel sealed with a septum and rinsed three times with argon. Hexane (0.5 mL) and oleic acid (90%, 1.5 mmol, 471 mg) were added via syringe and the mixture was stirred at 70 ° C for 4 h.
  • Catalyst (A) (5.8 mg, 7.5 ⁇ ), and catalyst (B2) (12.7 mg, 15 ⁇ ) were placed in a 20 mL reaction vessel with bead and stirrer, the vessel with a septum closed and rinsed three times with argon.
  • By syringe were THF (3 mL) and oleic acid (90%, 1.0 mmol, 314 mg) were added and the mixture was stirred at 70 ° C for 16 h.
  • the reaction according to Example 2 opens for the first time access to product mixtures of mono- and dicarboxylates with broad chain length distribution. Such a mixture can only be achieved by the tandem reaction of isomerizing cross-metathesis described herein but not by sequential isomerization cross metathesis or cross metathesis isomerization.
  • the reaction according to Example 2 exemplifies a wide range of isomerizing cross-metathesis reactions in which one or more starting materials (A) and starting materials (B) can be used.
  • Reaction Catalyst (A) (11 mg, 14.2 ⁇ ), and catalyst (B1) (11 mg, 15 ⁇ ) were placed in a 20 mL reaction vessel with beaded edge and stirring bars, the vessel was sealed with a septum and thrice with argon rinsed. Oleic acid (90%, 3 mmol, 942 mg) was added via syringe and the mixture was stirred at 70 ° C for 20 h.
  • Catalyst (A) (5.8 mg, 7.5 ⁇ ), and catalyst (B1) (9.4 mg, 12.5 ⁇ ) were placed in a 20 mL reaction vessel with bead and stirring bars, the vessel with closed with a septum and rinsed three times with argon. Methyloleate (90%, 2.66 mmol, 876 mg) was added via syringe and the mixture was stirred at 70 ° C for 20 h.
  • Catalyst (A) (5.8 mg, 7.5 ⁇ ), and catalyst (B2) (10.5 mg, 12.5 ⁇ ) were placed in a 20 mL reaction vessel with bead and stirring bars, the vessel with closed with a septum and rinsed three times with argon. Methyloleate (90%, 2.66 mmol, 876 mg) was added via syringe and the mixture was stirred at 70 ° C for 20 h.
  • Catalyst (A) (5.8 mg, 7.5 ⁇ ), and catalyst (B3) (7.6 mg, 12.5 ⁇ ) were placed in a 20 mL reaction vessel with bead and stirring bars, the vessel with closed with a septum and rinsed three times with argon. Methyloleate (90%, 2.66 mmol, 876 mg) was added via syringe and the mixture was stirred at 70 ° C for 20 h.
  • Comparative Example 2 The reaction of Comparative Example 2 showed only metathesis activity, but the isomerization was almost completely inhibited. No broad and balanced product distribution was achieved as in Example 1. Comparative Example 3

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

La présente invention concerne un procédé de préparation de compositions contenant des composés insaturés, dans lequel on soumet (A) un ou plusieurs acides monocarboxyliques insaturés présentant 10 à 24 atomes C ou des esters de ces acides monocarboxyliques et le cas échéant (B) un ou plusieurs composés présentant au moins une double liaison C=C (les composés (B) étant différents des composés (A)) à une réaction tandem d'isomérisation et de métathèse en présence d'un catalyseur au palladium et d'un catalyseur au ruthénium, dans laquelle on utilise comme catalyseur au palladium des composés contenant au moins un motif constitutif Pd-P(R1R2R3), les radicaux R1 à R3 présentant respectivement, indépendamment les uns des autres, 2 à 10 atomes C, pouvant être aliphatiques, alicycliques, aromatiques ou hétérocycliques, à condition qu'au moins l'un des radicaux R1 à R3 contienne un hydrogène bêta, le catalyseur au palladium étant mis en œuvre tel quel ou produit in situ à condition que le procédé ait lieu en absence de substances présentant un pKa de 3 ou inférieur.
EP12706477.2A 2011-04-20 2012-02-25 Procédé de préparation de composés insaturés Withdrawn EP2699536A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12706477.2A EP2699536A1 (fr) 2011-04-20 2012-02-25 Procédé de préparation de composés insaturés

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11003305 2011-04-20
EP12706477.2A EP2699536A1 (fr) 2011-04-20 2012-02-25 Procédé de préparation de composés insaturés
PCT/EP2012/000823 WO2012143067A1 (fr) 2011-04-20 2012-02-25 Procédé de préparation de composés insaturés

Publications (1)

Publication Number Publication Date
EP2699536A1 true EP2699536A1 (fr) 2014-02-26

Family

ID=44308429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12706477.2A Withdrawn EP2699536A1 (fr) 2011-04-20 2012-02-25 Procédé de préparation de composés insaturés

Country Status (6)

Country Link
US (1) US9120736B2 (fr)
EP (1) EP2699536A1 (fr)
JP (1) JP2014516932A (fr)
KR (1) KR20140029452A (fr)
CN (1) CN103492357A (fr)
WO (1) WO2012143067A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201204715D0 (en) 2012-03-18 2012-05-02 Croda Int Plc Metathesis of olefins using ruthenium-based catalytic complexes
KR20150024396A (ko) * 2012-06-26 2015-03-06 바스프 에스이 불포화 화합물의 제조 방법
CN104926656A (zh) * 2015-04-28 2015-09-23 武汉理工大学 一种钌希夫碱茚基叶立德催化剂用于顺式油酸甲酯的自我复分解反应的方法
DE102016010503A1 (de) 2016-08-30 2018-03-01 Baden-Württemberg Stiftung Ggmbh Ketten-Vervielfachung ungesättigter Fettsäuren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352812A (en) * 1993-07-08 1994-10-04 E. I. Du Pont De Nemours And Company Metathesis of acyclic olefins using an iridium/silver catalyst composition

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040138512A1 (en) * 2001-04-12 2004-07-15 Michael Roper Method for the production of propene
DE10136048A1 (de) * 2001-07-25 2003-02-13 Basf Ag Verfahren zur Synthese von terminalen Olefinen durch Kombination von isomerisierender Metathese und isomerisierender Transalkylierung
BRPI0406756A (pt) * 2003-01-13 2005-12-20 Cargill Inc Método para fabricação de agentes quìmicos industriais
US7074976B2 (en) * 2003-08-19 2006-07-11 Equistar Chemicals, Lp Propylene production
FR2896498B1 (fr) * 2006-01-24 2008-08-29 Inst Francais Du Petrole Procede de co-production d'olefines et de diesters ou de diacides a partir de corps gras insatures.
WO2008048522A1 (fr) * 2006-10-13 2008-04-24 Elevance Renewable Sciences, Inc. Procédés de fabrication de composés d'alcène fonctionnalisés monoinsaturés par métathèse
EP2121546B1 (fr) * 2006-10-13 2017-12-13 Elevance Renewable Sciences, Inc. Methodes de preparation de derives d'alkene alpha, omega-acide dicarboxylique par metathese
US8178737B2 (en) * 2007-06-14 2012-05-15 Lyondell Chemical Technology, L.P. Propylene production
EP2157076A1 (fr) 2008-08-21 2010-02-24 Cognis IP Management GmbH Procédé de fabrication de diesters d'acides alpha, oméga dicarboxyliques non saturés
US8440874B2 (en) * 2008-09-04 2013-05-14 Lummus Technology Inc. Olefin isomerization and metathesis catalyst
US8586813B2 (en) * 2009-07-21 2013-11-19 Lummus Technology Inc. Catalyst for metathesis of ethylene and 2-butene and/or double bond isomerization
WO2011035445A1 (fr) * 2009-09-28 2011-03-31 The Governors Of The University Of Alberta Catalyseurs métalliques hétérogènes au rhodium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352812A (en) * 1993-07-08 1994-10-04 E. I. Du Pont De Nemours And Company Metathesis of acyclic olefins using an iridium/silver catalyst composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012143067A1 *

Also Published As

Publication number Publication date
US9120736B2 (en) 2015-09-01
CN103492357A (zh) 2014-01-01
WO2012143067A1 (fr) 2012-10-26
KR20140029452A (ko) 2014-03-10
JP2014516932A (ja) 2014-07-17
US20140046081A1 (en) 2014-02-13

Similar Documents

Publication Publication Date Title
DK2121546T3 (en) Process for preparing omega-dicarboxylic acid olefin derivative by metathesis
US8895771B2 (en) Methods of making organic compounds by metathesis and hydrocyanation
EP1676828B1 (fr) Procédé de préparation d'acides carboxyliques alicycliques ou de leur derivés
EP2157076A1 (fr) Procédé de fabrication de diesters d'acides alpha, oméga dicarboxyliques non saturés
WO2008048522A1 (fr) Procédés de fabrication de composés d'alcène fonctionnalisés monoinsaturés par métathèse
JP7143289B2 (ja) 再生可能に得られたポリアミド、およびその製造方法
DE102010002809A1 (de) Verfahren zur Herstellung von linearen alpha,omega-Dicarbonsäurediestern
EP2699536A1 (fr) Procédé de préparation de composés insaturés
DE10147776A1 (de) Verfahren zur Herstellung von alicyclischen Polycarbonsäureestern aus Partialestern aromatischer Polycarbonsäuren
US9604903B2 (en) Metathesis process
WO2014001101A1 (fr) Procédé de production de composés insaturés
US10017447B2 (en) Processes for making azelaic acid and derivatives thereof
EP0576477A1 (fr) Procede de preparation d'acides gras mono-insatures ou de leurs derives.
DE112008002440T5 (de) Verfahren zur Herstellung von Alkoholestern aus Triglyceriden und Alkoholen mittels heterogener Katalysatoren auf der Basis eines hybriden Feststoffs mit organisch-anorganischer Mischmatrix
US20130340327A1 (en) Process For Preparing Unsaturated Compounds
Malacea et al. Alkene metathesis and renewable materials: selective transformations of plant oils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151201

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160412