EP2698505A1 - Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé - Google Patents

Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé Download PDF

Info

Publication number
EP2698505A1
EP2698505A1 EP12180397.7A EP12180397A EP2698505A1 EP 2698505 A1 EP2698505 A1 EP 2698505A1 EP 12180397 A EP12180397 A EP 12180397A EP 2698505 A1 EP2698505 A1 EP 2698505A1
Authority
EP
European Patent Office
Prior art keywords
heat
working fluid
heat accumulator
partial
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12180397.7A
Other languages
German (de)
English (en)
Inventor
Daniel Reznik
Henrik Stiesdal
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12180397.7A priority Critical patent/EP2698505A1/fr
Priority to EP13747819.4A priority patent/EP2885512A2/fr
Priority to CN201380042428.6A priority patent/CN104541027A/zh
Priority to US14/420,356 priority patent/US20150218969A1/en
Priority to JP2015526926A priority patent/JP2015531844A/ja
Priority to PCT/EP2013/066273 priority patent/WO2014026863A2/fr
Publication of EP2698505A1 publication Critical patent/EP2698505A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/08Charging or discharging of accumulators with steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • F22B33/185Combinations of steam boilers with other apparatus in combination with a steam accumulator

Definitions

  • the invention relates to a method for loading and unloading a heat accumulator, in which the following steps are preferably carried out alternately.
  • the heat accumulator is warmed up by a working fluid, wherein prior to passing through the heat accumulator by a switched as a working machine first thermal fluid energy machine pressure increase in the working fluid is generated and after passing through the heat accumulator, the working fluid is expanded.
  • the heat storage is cooled by the same or another working fluid, wherein prior to passing through the heat accumulator an increase in pressure in the working fluid is generated and after passing through the heat accumulator, the working fluid via a connected as an engine second thermal fluid energy machine or the engine connected as the first thermal fluid energy machine is relaxed.
  • the invention relates to a system for storage and release of thermal energy with a heat storage, wherein the heat accumulator can receive the stored heat from a charging circuit for a working fluid and deliver to a Entladeniklauf for another or the same working fluid.
  • the following units are connected to one another in the stated sequence by lines: a first thermal fluid energy machine connected as a working machine, the heat accumulator, a device for expanding the working fluid, in particular a third fluid energy machine, and a first heat exchanger, in particular a cold accumulator.
  • the following units are interconnected by conduits in the order given: the heat accumulator, a second thermal fluid energy machine connected as an engine, or the as an engine switched first fluid energy machine, the first heat exchanger or a second heat exchanger and a pump.
  • the method specified at the outset or the system suitable for carrying out the method can be used, for example, to convert overcapacities from the electrical network into thermal energy by means of the charging cycle and to store them in the heat store. If necessary, this process is reversed, so that the heat storage is discharged in a discharge cycle and can be obtained by means of thermal energy stream and fed into the network.
  • thermal fluid energy machine used as a work machine is thus operated as a compressor or as a compressor.
  • an engine performs work, wherein a thermal fluid energy machine for performing the work converts the thermal energy available in the working gas.
  • the thermal fluid energy machine is thus operated as a motor.
  • thermal fluid energy machine forms a generic term for machines that can extract thermal energy from or supply thermal energy to a working fluid.
  • thermal energy is meant both thermal energy and cold energy.
  • Thermal fluid energy machines (also referred to below as shorter as fluid energy machines) can be designed, for example, as reciprocating engines.
  • hydrodynamic thermal fluid energy machines can be used, the wheels allow a continuous flow of the working gas.
  • axially acting turbines or compressors are used.
  • the object is to provide a method for charging and discharging a heat accumulator or a system for carrying out this method, with which or with the storage and recovery of energy can be done with relatively high efficiency and thereby creates a comparatively low cost of components ,
  • the discharge cycle are designed as a Rankine process, in which the following steps are performed.
  • the working fluid is first passed through a heat storage in the first power system, where it absorbs heat.
  • the working fluid is depressurized via a high pressure part of the second thermal fluid energy machine (preferably a high pressure turbine).
  • the working fluid is passed through a running in the heat storage second conduit system and receives heat again.
  • a reheating takes place.
  • the working fluid is depressurized via a low pressure part of the second thermal fluid energy machine (preferably a low pressure turbine).
  • the fluid energy machine thus consists of a high-pressure part and a low-pressure part. Both parts together are to be understood as a fluid energy machine.
  • the use of the Rankine process for discharging the heat accumulator has the advantage that it can be operated with a comparatively high degree of efficiency.
  • the heat yield of the heat accumulator can be advantageously increased, because this can be brought by the discharge via the second conduit system to a lower temperature level before it must be recharged.
  • the second thermal fluid energy machine supplies the energy to drive, for example, a generator for generating electrical energy.
  • the charging cycle is realized by a heat pump process.
  • a heat pump process also has the great advantage of being more than 100% efficient, improving the overall efficiency of the process, which is composed of both the charging and discharging cycles. This is because the heat pump process, when charging the heat accumulator, also deprives the environment of heat available during unloading.
  • nitrogen or dried air is used in the charging cycle.
  • the air must be dried because water contained in the air would otherwise condense or even freeze in the heat pump process after cooling the air and could damage the heat pump being used.
  • the discharge cycle is operated with water vapor. Nitrogen, air and water vapor are working fluids that are completely neutral when they escape into the environment and thus cause no environmental damage. Therefore, a plant can be operated with these working fluids without environmental risks. This also affects their cost-effectiveness, since no increased safety standards have to be taken into account.
  • the above object is also achieved by the above-mentioned system in that the second thermal fluid energy machine has a high pressure part and a low pressure part and in the heat storage two fluidly independent line systems, namely a first conduit system and a second conduit system are provided, these units connected in the order given by lines, namely the first line system, then the high pressure part, then the second line system and then the low pressure part.
  • the above-mentioned method can be performed, since such an interconnection of the units for this purpose creates the condition.
  • the first line system is accommodated in a first partial store and the second line system is housed in a second partial store that is structurally separate from the first.
  • a structural separation of the two partial memory causes that they are independent of each other.
  • structurally separate partial storage can also be easily supplied by two different line systems, as they can each have independent connections for the line system.
  • a special embodiment of the system with structurally separate partial storage is obtained when the first partial storage and the second part memory are arranged in parallel in the charging circuit. This means that both the first partial reservoir and the second partial reservoir are acted upon by the working fluid at the same temperature and thus the same temperature level is set in both partial reservoirs.
  • the second partial storage which supplies the heat for the low pressure part of the second thermal fluid energy machine with heat, is brought to a lower temperature level. This is the case when the first partial memory is arranged in the charging circuit before the second partial memory, so these are connected in series.
  • the parallel connection of the partial storage has the advantage that the existing material in the partial storage is used optimally in terms of its heat capacity. Moreover, in the case of the parallel connection of the partial memories, it is particularly easy to design them in such a way that both partial memories are simultaneously completely discharged during a discharge cycle and at the same time are completely charged during a charging cycle. However, should it not come to a complete charge or discharge, which is often wind dependent happen, for example, when using the system on a wind turbine, the process can be reversed as often without the charge ratio of the two partial storage is disturbed by this.
  • the first conduit system and the second conduit system extend in the heat accumulator, which is designed as a structural unit.
  • the heat storage provides only for the supply of the first line system as well as for the supply of the second line system only a heat supply, ie structurally represents a unit.
  • the piping systems must in this case run independently of each other in this heat storage (for example, run parallel). This has the advantage that building material can be saved in the construction of the heat accumulator.
  • the heat storage advantageously be made more compact, ie it also has fewer interfaces over which heat can be lost in the environment.
  • the heat accumulator forms a structural unit, then it is advantageous if the first duct system is accommodated in a first partial area and the second duct system is accommodated in a second partial area spatially separated from the first. Spatial separation in the sense of the invention means the greatest possible degree of thermal separation.
  • a thermal separation in a heat accumulator designed as a structural unit is present when the heat-affected zones in the area of the two piping systems are as independent as possible from each other.
  • the first conduit system in the front part of the heat accumulator and the second conduit system may be located in the rear part of the heat accumulator, thus the heat accumulator has spatially two subregions, which differ from the above-mentioned partial memories only in that they are not structurally are separated, but at an interface abut each other.
  • the connections for the charging circuit can then be attached to the heat accumulator in this design so that the first portion and the second portion are arranged in parallel in the charging circuit.
  • the second line system is accommodated in a partial region of the heat accumulator together with the first line system. This means that run in this area, the second conduit system and the first conduit system in the same heat-affected zone of the heat accumulator.
  • the second line system is accommodated in several subregions of the heat accumulator together with the first line system, wherein the second line system in each of these second subregions can be short-circuited via a bypass line.
  • the second line system in each of these second subregions can be short-circuited via a bypass line.
  • the second line system is connected in one area at this stage and bypasses the other sections via the bypass lines, so that in the other sections, the high energy level for discharging to drive the High-pressure part as long as available.
  • the high desired efficiency of the system can be achieved as long as possible.
  • the ratio of the heat capacities of the first partial region to the second or to the second partial areas or the first partial memory is adapted to the second partial memory to the heat demand caused by the discharge process, such that both partial areas or partial storage are discharged in the same period of time.
  • This design of the partial storage or the partial areas is a prerequisite for the partial areas or partial storage units always being unloaded or charged at the same time.
  • this process can also be reversed if the plant is used, for example, in a wind power plant.
  • the system is advantageous then operable in as many operating conditions with the maximum possible efficiency.
  • FIG. 1 the system according to the invention with a heat storage 11 and a cold storage 12 is shown.
  • a charging circuit 13 and a discharge circuit 14th realized, these circuits are connected to non-illustrated line systems in the heat storage 11 and cold storage 12 and therefore allow loading and unloading of heat or cold in the memory.
  • a heat exchanger circuit 15 There is also a heat exchanger circuit 15.
  • the charging cycle for the heat storage 11 and the cold storage 12 will be described.
  • the charging of the heat accumulator 11 means the same
  • the charging of the cold accumulator 12 means a cooling of the same.
  • the reference for heating and cooling is the ambient temperature.
  • a wind turbine 16 produces overcapacities with which an electric motor M can be driven.
  • the motor M has a drive shaft 17 with which a first fluid energy machine 18 and a third fluid energy machine 19 are driven.
  • the first fluid energy machine is a hydrodynamic pump and the third fluid energy machine is a hydrodynamic turbine.
  • the first fluid energy machine 18 compresses the working fluid and passes it through the heat accumulator 11. This consists of a first part of memory 20 and a second part of memory 21, which are connected in series in the charging circuit 13. In the heat accumulator 11, the working medium releases the heat that has arisen due to the compaction.
  • the working medium is expanded via the third fluid energy machine 19, wherein it cools down strongly.
  • This cold can be discharged during the passage through the cold storage 12 to this.
  • the working fluid heats up by absorbing heat from the environment. Subsequently, this can be compressed again by the first fluid energy machine 18.
  • the discharge circuit 14 is set in motion.
  • the working fluid consists of water, which is compressed via a feed pump 22. Subsequently It is passed through the first portion 20 of the heat accumulator 11 and absorbs its heat energy. The resulting water vapor is released via a high pressure part HP of a second fluid energy machine 23 and then passed into the second part storage 21, where the water vapor absorbs heat again. This is sufficient to drive the low-pressure part LP of the second fluid energy machine 23.
  • the second fluid energy machine in turn drives the generator G already mentioned.
  • the working fluid After relaxation of the working fluid in the low-pressure part LP of the second fluid energy machine, the working fluid is cooled by a second heat exchanger 24 (condenser). Subsequently, the discharge cycle closes by the liquefied working fluid of the feed pump 22 is supplied again.
  • FIG. 1 it is shown that the second heat exchanger is connected via the heat exchanger circuit 15 to the cold storage 12.
  • a compressor 25 is driven by a motor M2 and keeps the circuit going.
  • the working fluid is cooled in the heat exchanger circuit 15 and therefore absorbs the heat from the second heat exchanger 24, which provides the working fluid in the discharge circuit 14.
  • the heat exchanger 24 may interact with the environment (eg, river water).
  • the cooling energy from the cold storage 12 can be used elsewhere, for. B. for air conditioning.
  • the working fluid is passed directly through the cold storage 12. This then acts as a heat exchanger, so that the working fluid can deliver the heat directly to the cold storage.
  • the states of the working fluid are shown in the charging circuit 13 and discharge circuit 14 each in circles, wherein these circles denote certain locations of the charge circuit 13 and discharge circuit 14, respectively.
  • the upper left shows the prevailing pressure in the working fluid in bar.
  • At the top right is the enthalpy in KJ / kg.
  • Bottom left is the mass flow in kg / s and bottom right the temperature in ° C.
  • An exception is the circles in the discharge circuit 14 in each case before the second heat exchanger 24 and after the feed pump 22.
  • the vapor content of the working medium is given, which is still 94% before cooling in the heat exchanger and then condensed in the second heat exchanger (this is also used as a condenser designated). Therefore, the steam content before the feed pump is 0.
  • the steam content is indicated by x.
  • FIG. 2 represents the known Rankine process in the TS diagram.
  • the reference numerals 1 to 8 refer to characteristic points of the Rankine process and are in the FIGS. 3 to 5 used at the corresponding points of the conduit system, where said states prevail.
  • the compression takes place by the feed pump 22.
  • the working fluid passes through the first part of memory 20, wherein the water vapor is overheated a first time.
  • the point 5 is reached, wherein the passage through the second partial memory 21 results in a renewed overheating 6 of the working fluid. This is relaxed in the low pressure part LP, whereby the point 7 is reached.
  • the working fluid again reaches point 8.
  • the heat storage 11 is manufactured as a structural unit.
  • a line system 26 of the charging circuit is indicated as a solid line.
  • the flow direction is indicated by an arrow.
  • the heat storage for example, has sand 27 as a storage medium.
  • the first line system extends in a first portion 30 of the heat accumulator 11.
  • This line system feeds the high pressure part HP of the second fluid energy machine.
  • the working fluid is fed into the second conduit system 29, which is located in a second portion 31 of the heat accumulator 11.
  • the partial regions 30 and 31 adjoin one another at an interface 32, so that heat exchange between the first partial region and the second partial region can take place only in this region.
  • a first heat-affected zone 33 is formed in the region of the first line system 28 and a second heat-affected zone 34 in the second section 31, which, however, are separated from one another by the interface 32, whereby only a certain heat exchange can take place between the heat-affected zones via the interface.
  • the interface is indicated by dash-dotted lines, while the heat-affected zones are indicated by dashed lines.
  • the heat storage 11 according to FIG. 4 is similar to the one according to FIG. 3 , However, instead of two sections 30, 31 according to FIG. 3 provided that the heat storage 11 consists of the first part of memory 20 and the second part of memory 21. This causes no interface 32, as in FIG. 3 shown, between the two partial stores are, but that they are structurally separated from each other. Thus, the heat-affected zones 33, 34 are completely thermally decoupled from each other. Another difference is that the sub-memories 20, 21 are connected in parallel in the charging circuit. Therefore, in this case also for charging, a first line system 35 and a second line system 36 in the first part memory 35 and second part memory 36. These can be brought simultaneously to the same temperature level when loading.
  • FIG. 5 again, a heat storage 11 is shown, which results in a structural unit.
  • the first conduit system 28 is present (of course next to the conduit system 26 for charging).
  • the second conduit system 29 also extends in the second subarea 31 of the heat accumulator 11, as a result of which both conduit systems share one and the same heat-affected zone 36.
  • the embodiment according to FIG. 5 can according to FIG. 6 be further educated.
  • the heat exchanger 11 according to FIG. 6 has a first partial area 30, a second partial area 31 and a third partial area 37.
  • the first conduit system passes through the heat accumulator 11 through all three subregions.
  • the second line system passes through the partial area 30 with a first line section 38, the second area 37 with a second line section 39 and the third section 37 with a third line section 40.
  • These line sections are interconnected in such a way that bypass lines 41 are present for each line section via valves 42, the line sections can each be traversed or bypassed.
  • bypass lines 41 are present for each line section via valves 42

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Wind Motors (AREA)
EP12180397.7A 2012-08-14 2012-08-14 Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé Withdrawn EP2698505A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12180397.7A EP2698505A1 (fr) 2012-08-14 2012-08-14 Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé
EP13747819.4A EP2885512A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur
CN201380042428.6A CN104541027A (zh) 2012-08-14 2013-08-02 热存储器的蓄能和释能方法以及适用于此方法的用于存储和释放热力学能的设备
US14/420,356 US20150218969A1 (en) 2012-08-14 2013-08-02 Method for charging and discharging a heat accumulator and system for storing and releasing thermal energy suitable for said method
JP2015526926A JP2015531844A (ja) 2012-08-14 2013-08-02 蓄熱器を蓄熱し放熱するための方法および当該方法に適した、熱エネルギーを貯蔵し放出するための設備
PCT/EP2013/066273 WO2014026863A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12180397.7A EP2698505A1 (fr) 2012-08-14 2012-08-14 Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé

Publications (1)

Publication Number Publication Date
EP2698505A1 true EP2698505A1 (fr) 2014-02-19

Family

ID=46967930

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12180397.7A Withdrawn EP2698505A1 (fr) 2012-08-14 2012-08-14 Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé
EP13747819.4A Withdrawn EP2885512A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP13747819.4A Withdrawn EP2885512A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur

Country Status (5)

Country Link
US (1) US20150218969A1 (fr)
EP (2) EP2698505A1 (fr)
JP (1) JP2015531844A (fr)
CN (1) CN104541027A (fr)
WO (1) WO2014026863A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016050367A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'évacuation à système d'échange d'énergie thermique à haute température et procédé
WO2016050368A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Centrale électrique à cycle vapeur et système d'échange d'énergie thermique à haute température et procédé de fabrication de centrale électrique
WO2016050365A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'échange d'énergie thermique à haute température à chambre d'échange de chaleur horizontal et procédé d'échange d'énergie thermique
WO2016050369A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système de charge à système d'échange d'énergie thermique à haute température et procédé correspondant
WO2016050366A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'échange d'énergie thermique à haute température et procédé d'échange d'énergie thermique à l'aide dudit système d'échange d'énergie thermique à haute température
WO2016058701A1 (fr) * 2014-10-17 2016-04-21 Carbon-Clean Technologies Gmbh Procédé permettant de compenser des pointes de charge lors de la production d'énergie et/ou de produire de l'énergie électrique et/ou de produire de l'hydrogène, et centrale d'accumulation
WO2016150461A1 (fr) * 2015-03-20 2016-09-29 Siemens Aktiengesellschaft Centrale d'accumulation thermique
DE202023000696U1 (de) 2023-03-29 2023-05-03 Thomas Seidenschnur Multi-Modul Hochtemperatur-Wärmespeicher mit serieller Be- und Entladung

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2927435T3 (pl) * 2014-04-01 2017-12-29 General Electric Technology Gmbh Układ do odwracalnego magazynowania energii elektrycznej jako energii cieplnej
GB2535181A (en) * 2015-02-11 2016-08-17 Futurebay Ltd Apparatus and method for energy storage
US10260820B2 (en) * 2016-06-07 2019-04-16 Dresser-Rand Company Pumped heat energy storage system using a conveyable solid thermal storage media
GB2552963A (en) * 2016-08-15 2018-02-21 Futurebay Ltd Thermodynamic cycle apparatus and method
WO2018178154A1 (fr) * 2017-03-28 2018-10-04 Hsl Energy Holding Aps Centrale d'accumulation d'énergie thermique
JP2019078185A (ja) * 2017-10-20 2019-05-23 松尾 栄人 蓄熱型太陽熱発電システム
JP7245131B2 (ja) * 2019-07-16 2023-03-23 株式会社日本クライメイトシステムズ 車両用蓄熱システム
DE102021112050A1 (de) 2021-05-07 2022-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betreiben einer Speicheranlage, Speicheranlage, Steuerungsprogramm und computerlesbares Medium
CN113417710B (zh) * 2021-06-02 2022-07-22 中国科学院理化技术研究所 基于紧凑式冷箱的液态空气储能装置
JP2023146726A (ja) * 2022-03-29 2023-10-12 東芝エネルギーシステムズ株式会社 蓄熱発電システムおよび蓄熱装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401334A1 (fr) * 1977-06-17 1979-03-23 Alsthom Atlantique Installation d'utilisation de l'energie solaire
US5269145A (en) * 1991-06-28 1993-12-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Heat storage system with combined heat storage device
US5436508A (en) 1991-02-12 1995-07-25 Anna-Margrethe Sorensen Wind-powered energy production and storing system
WO2009044139A2 (fr) 2007-10-03 2009-04-09 Isentropic Limited Stockage d'énergie
US20090121495A1 (en) * 2007-06-06 2009-05-14 Mills David R Combined cycle power plant

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151493A (en) * 1975-06-19 1976-12-25 Mitsubishi Heavy Ind Ltd Nuclear power plant superheater s team temperature control system
US4164849A (en) * 1976-09-30 1979-08-21 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for thermal power generation
FR2373758A1 (fr) * 1976-12-13 1978-07-07 Rigollot Georges Procede et installation de recuperation d'energie par revalorisation des rejets thermiques a basse temperature
JPS5599555A (en) * 1979-01-25 1980-07-29 Mitsubishi Heavy Ind Ltd Coldness storage type cooler
JPS63255502A (ja) * 1987-04-10 1988-10-21 Mitsubishi Heavy Ind Ltd 発電プラント
JPH01273804A (ja) * 1988-04-26 1989-11-01 Toshiba Corp タービンバイパス装置を有する二段再熱式蒸気タービンプラント
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
JPH0814676A (ja) * 1994-06-28 1996-01-19 Daikin Ind Ltd 空気調和機
JPH08285386A (ja) * 1995-04-11 1996-11-01 Kubota Corp ヒートポンプ式潜熱蓄冷装置
DE10260993A1 (de) * 2002-12-24 2004-07-08 Riedel, Erik, Dr.-Ing. Verfahren zur Stromerzeugung sowie nach diesen Verfahren betriebene Kraftwerke
EP1577548A1 (fr) * 2004-03-16 2005-09-21 Abb Research Ltd. Dispositif et procédé de stockage d'énergie thermale et de génération d'électricité
EP2275649B1 (fr) * 2009-06-18 2012-09-05 ABB Research Ltd. Système de stockage d'énergie thermoélectrique avec un réservoir de stockage intermédiaire et procédé de stockage d'énergie thermoélectrique
US20130104549A1 (en) * 2010-07-12 2013-05-02 Henrik Stiesdal Thermal energy storage and recovery with a heat exchanger arrangement having an extended thermal interaction region
DK2561299T3 (en) * 2010-07-12 2017-08-28 Siemens Ag STORAGE AND RECOVERY OF HEAT ENERGY BASED ON THE PRINCIPLE PRINCIPLE OF TRANSPORT OF HEAT TRANSFER MEDIUM
WO2012007196A2 (fr) * 2010-07-12 2012-01-19 Siemens Aktiengesellschaft Système et dispositif de stockage et de récupération d'énergie thermique comportant un aménagement d'échangeur de chaleur utilisant un gaz comprimé

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2401334A1 (fr) * 1977-06-17 1979-03-23 Alsthom Atlantique Installation d'utilisation de l'energie solaire
US5436508A (en) 1991-02-12 1995-07-25 Anna-Margrethe Sorensen Wind-powered energy production and storing system
US5269145A (en) * 1991-06-28 1993-12-14 Deutsche Forschungsanstalt Fuer Luft- Und Raumfahrt E.V. Heat storage system with combined heat storage device
US20090121495A1 (en) * 2007-06-06 2009-05-14 Mills David R Combined cycle power plant
WO2009044139A2 (fr) 2007-10-03 2009-04-09 Isentropic Limited Stockage d'énergie
US20100251711A1 (en) * 2007-10-03 2010-10-07 Isentropic Limited Energy Storage

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10563927B2 (en) 2014-09-30 2020-02-18 Siemens Gamesa Renewable Energy A/S High temperature thermal energy exchange system with horizontal heat exchange chamber and method for exchanging thermal energy by using the high temperature thermal energy exchange system
US10724805B2 (en) 2014-09-30 2020-07-28 Siemens Gamesa Renewable Energy A/S Charging system with a high temperature thermal energy exchange system and method for charging heat storage material of the high temperature thermal energy exchange system with thermal energy
EP3998399A1 (fr) * 2014-09-30 2022-05-18 Siemens Gamesa Renewable Energy A/S Centrale électrique à cycle vapeur et système d'échange d'énergie thermique à haute température et procédé de fabrication de centrale électrique
WO2016050369A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système de charge à système d'échange d'énergie thermique à haute température et procédé correspondant
US10247044B2 (en) 2014-09-30 2019-04-02 Siemens Aktiengesellschaft Power plant with steam cycle and with a high temperature thermal energy exchange system and method for manufacturing the power plant
EP3172413B1 (fr) 2014-09-30 2022-02-09 Siemens Gamesa Renewable Energy A/S Centrale électrique à cycle vapeur et système d'échange d'énergie thermique à haute température et procédé de fabrication de centrale électrique
WO2016050368A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Centrale électrique à cycle vapeur et système d'échange d'énergie thermique à haute température et procédé de fabrication de centrale électrique
WO2016050367A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'évacuation à système d'échange d'énergie thermique à haute température et procédé
WO2016050365A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'échange d'énergie thermique à haute température à chambre d'échange de chaleur horizontal et procédé d'échange d'énergie thermique
WO2016050366A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'échange d'énergie thermique à haute température et procédé d'échange d'énergie thermique à l'aide dudit système d'échange d'énergie thermique à haute température
US10309258B2 (en) 2014-10-17 2019-06-04 Carbon-Clean Technologies Gmbh Method for compensating load peaks during energy generation and/or for generating electrical energy and/or for generating hydrogen, and a storage power plant
WO2016058701A1 (fr) * 2014-10-17 2016-04-21 Carbon-Clean Technologies Gmbh Procédé permettant de compenser des pointes de charge lors de la production d'énergie et/ou de produire de l'énergie électrique et/ou de produire de l'hydrogène, et centrale d'accumulation
CN107429578A (zh) * 2015-03-20 2017-12-01 西门子公司 热能存储设备
US10371013B2 (en) 2015-03-20 2019-08-06 Siemens Gamesa Renewable Energy A/S Thermal energy storage plant
WO2016150461A1 (fr) * 2015-03-20 2016-09-29 Siemens Aktiengesellschaft Centrale d'accumulation thermique
US20180106165A1 (en) * 2015-03-20 2018-04-19 Siemens Aktiengesellschaft Thermal energy storage plant
DE202023000696U1 (de) 2023-03-29 2023-05-03 Thomas Seidenschnur Multi-Modul Hochtemperatur-Wärmespeicher mit serieller Be- und Entladung

Also Published As

Publication number Publication date
CN104541027A (zh) 2015-04-22
WO2014026863A2 (fr) 2014-02-20
WO2014026863A3 (fr) 2014-06-05
EP2885512A2 (fr) 2015-06-24
JP2015531844A (ja) 2015-11-05
US20150218969A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2698505A1 (fr) Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé
EP2748434B1 (fr) Installation de stockage d'énergie thermique
EP2823156B1 (fr) Installation pour le stockage et le dépôt d'énergie thermique
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
EP2574739A1 (fr) Installation de stockage d'énergie thermique et son procédé de fonctionnement
DE102007021063A1 (de) Hydraulisch-pneumatischer Antrieb
DE102013009351B3 (de) Anlage und Verfahren zur Rückgewinnung von Energie aus Wärme in einem thermodynamischen Kreisprozess
WO2012040864A1 (fr) Pompe à chaleur
DE202005003611U1 (de) Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
WO2013156284A1 (fr) Installation d'accumulation et de distribution d'énergie thermique au moyen d'un accumulateur de chaleur et d'un accumulateur de froid et procédé de fonctionnement de ladite installation
DE102014118466B4 (de) Vorrichtung und Verfahren zum vorübergehenden Speichern von Gas und Wärme
EP1759116A1 (fr) Machine thermique
EP1861587A2 (fr) Procedes et dispositifs destines a ameliorer le rendement de systemes de conversion d'energie
DE102012217142A1 (de) Verfahren zum Laden und Entladen eines Speichermediums in einem Wärmespeicher und Anlage zur Durchführung dieses Verfahrens
EP2574738A1 (fr) Installation de stockage d'énergie thermique
DE102020131706A1 (de) System und Verfahren zur Speicherung und Abgabe von elektrischer Energie mit deren Speicherung als Wärmeenergie
WO2015086588A1 (fr) Accumulation d'énergie au moyen d'un accumulateur de chaleur et d'un thermocompresseur de vapeur
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
DE102011052776A1 (de) Verfahren zum Erwärmen von Wärmeübertragungsmedien und überkritische Wärmepumpe
DE102017223705A1 (de) Kraftwerk
DE102014201751A1 (de) Anlage zur Kraftwärmekopplung und Verfahren zum Betreiben einer solchen Anlage
WO2023011997A1 (fr) Moteur thermique
DE102019219066A1 (de) Anlage zur Kälteerzeugung

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140820