WO2014026863A2 - Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur - Google Patents

Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur Download PDF

Info

Publication number
WO2014026863A2
WO2014026863A2 PCT/EP2013/066273 EP2013066273W WO2014026863A2 WO 2014026863 A2 WO2014026863 A2 WO 2014026863A2 EP 2013066273 W EP2013066273 W EP 2013066273W WO 2014026863 A2 WO2014026863 A2 WO 2014026863A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
working fluid
accumulator
heat accumulator
partial
Prior art date
Application number
PCT/EP2013/066273
Other languages
German (de)
English (en)
Other versions
WO2014026863A3 (fr
Inventor
Daniel Reznik
Henrik Stiesdal
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP13747819.4A priority Critical patent/EP2885512A2/fr
Priority to CN201380042428.6A priority patent/CN104541027A/zh
Priority to US14/420,356 priority patent/US20150218969A1/en
Priority to JP2015526926A priority patent/JP2015531844A/ja
Publication of WO2014026863A2 publication Critical patent/WO2014026863A2/fr
Publication of WO2014026863A3 publication Critical patent/WO2014026863A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K1/00Steam accumulators
    • F01K1/08Charging or discharging of accumulators with steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • F22B33/185Combinations of steam boilers with other apparatus in combination with a steam accumulator

Definitions

  • the invention relates to a method for loading and unloading a heat accumulator, in which the following steps are preferably carried out alternately.
  • the heat accumulator is warmed up by a working fluid, wherein a pressure increase in the working fluid is generated before passing through the heat accumulator by a first thermal fluid energy machine connected as a working machine and the working fluid is released after passing through the heat accumulator.
  • the heat storage is cooled by the same or another working fluid, wherein prior to passing through the heat accumulator an increase in pressure in the working fluid is generated and after passing through the heat accumulator, the working fluid via a switched as a motor second thermal fluid energy machine or as an engine switched first thermal
  • the invention relates to a system for storage and release of thermal energy with a heat storage, wherein the heat storage receive the stored heat from a charging circuit for a working fluid and to a
  • Discharge cycle for another or the same working fluid can deliver.
  • the following units are connected to one another in the stated sequence: A first thermal fluid energy machine connected as a working machine, the heat accumulator, a device for expanding the working fluid, in particular a third fluid energy machine, and a first heat exchanger, in particular a cold accumulator ,
  • the following units are interconnected by conduits in the order given: the heat accumulator, a second thermal fluid energy machine connected as an engine, or the as an engine switched first fluid energy machine, the first heat exchanger or a second heat exchanger and a pump.
  • the method specified at the outset or the system suitable for carrying out the method can be used, for example, to convert overcapacities from the electrical network into thermal energy by means of the charging cycle and to store them in the heat store. If necessary, this process is reversed, so that the heat storage in a
  • Unloading cycle is discharged and can be recovered by means of thermal energy stream and fed into the network.
  • thermal fluid energy machine used as a work machine is thus operated as a compressor or as a compressor.
  • an engine performs work, wherein a thermal fluid energy machine for performing the work converts the thermal energy available in the working gas.
  • the thermal fluid energy machine is thus operated as a motor.
  • thermal fluid energy machine is a generic term for machines that can extract thermal energy from or supply thermal energy to a working fluid Thermal energy is understood as meaning both thermal energy and refrigeration energy -
  • Machines referred to can be designed for example as piston engines. It is also possible to use hydrodynamic thermal fluid energy machines whose impellers permit a continuous flow of the working gas. Preferably, axially acting turbines or compressors are used. The principle given at the outset is described, for example, according to WO 2009/044139 A2. Here piston machines are used to carry out the method described above. According to US Pat. No. 5,436,508, it is also known that by means of the above-mentioned systems for storing thermal energy, it is also possible to temporarily store overcapacities in the use of wind energy for the production of electrical current, in order to retrieve it if necessary.
  • the object is to provide a method for charging and discharging a heat accumulator or a system for carrying out this method, with which or with which a storage and recovery of energy with relatively high efficiency can take place and thereby a comparatively low cost Components are created.
  • the discharge cycle are designed as a Rankine process, in which the following steps are performed.
  • the working fluid is first passed through a heat storage in the first power system, where it absorbs heat.
  • the working fluid via a high pressure part of the second thermal Fluidenergyma- machine (preferably a high-pressure turbine) is relaxed.
  • the working fluid is passed through a running in the heat storage second conduit system and receives heat again.
  • a reheating takes place.
  • the working fluid is depressurized via a low pressure part of the second thermal fluid energy machine (preferably a low pressure turbine).
  • the fluid energy machine thus consists of a high-pressure part and a low-pressure part. Both parts together are to be understood as a fluid energy machine.
  • the use of the Rankine process for discharging the heat accumulator has the advantage that it can be operated with a comparatively high degree of efficiency.
  • the heat yield of the heat accumulator can be advantageously increased, because this can be brought by the discharge via the second conduit system to a lower temperature level before it must be recharged.
  • the second thermal fluid energy machine supplies the energy, for example, to drive a generator for generating electrical energy.
  • the charging cycle is realized by a heat pump process.
  • a heat pump process also has the great advantage of being more than 100% efficient, improving the overall efficiency of the process, which is composed of both the charging and discharging cycles. This is because the heat pump process, when charging the heat accumulator, also deprives the environment of heat available during unloading.
  • nitrogen or dried air is used in the charging cycle.
  • the air must be dried because water contained in the air would otherwise condense or even freeze in the heat pump process after the air cools down and could damage the heat pump used.
  • the discharge cycle is operated with water vapor. Nitrogen, air and water vapor are working fluids that are completely neutral when they escape into the environment and thus cause no environmental damage. Therefore, a plant can be operated with these working fluids without environmental risks. This also affects their cost-effectiveness, since no increased safety standards have to be taken into account.
  • the abovementioned object is also achieved by the abovementioned system in that the second thermal fluid energy machine has a high-pressure part and a low-pressure part, and in the heat accumulator two fluidically independent piping systems, namely a first piping system and a second piping system are provided , wherein these units are connected in the order given by lines, namely the first line system, then the high-pressure part, then the second line system and then the low-pressure part.
  • the above-mentioned method can be performed, since such an interconnection of the units for this purpose creates the condition.
  • the first line system is accommodated in a first partial store and the second line system is housed in a second partial store that is structurally separate from the first.
  • a structural separation of the two partial memory causes that they are independent of each other.
  • structurally separate partial storage can also be easily supplied by two different line systems, as they can each have independent connections for the line system.
  • a special embodiment of the system with structurally separate partial storage is obtained when the first partial storage and the second part memory are arranged in parallel in the charging circuit. This means that both the first partial reservoir and the second partial reservoir are acted upon by the working fluid at the same temperature and thus the same temperature level is set in both partial reservoirs.
  • the second partial storage which supplies the heat for the low pressure part of the second thermal fluid energy machine with heat, is brought to a lower temperature level. This is the case when the first partial memory is arranged in the charging circuit before the second partial memory, so these are connected in series.
  • the parallel connection of the partial storage has the advantage that the existing material in the partial storage is used optimally in terms of its heat capacity. Moreover, in the case of the parallel connection of the partial memories, it is particularly easy to design them in such a way that both partial memories are simultaneously completely discharged during a discharge cycle and at the same time are completely charged during a charging cycle. However, should it not come to a complete charge or discharge, which is often wind dependent happen, for example, when using the system on a wind turbine, the process can be reversed as often without the charge ratio of the two partial storage is disturbed by this.
  • the first conduit system and the second conduit system extend in the heat accumulator, which is designed as a structural unit.
  • the heat storage provides only for the supply of the first line system as well as for the supply of the second line system only a heat supply, ie structurally represents a unit.
  • the piping systems must run independently of each other in this heat storage (for example run parallel). This has the advantage that building material can be saved in the construction of the heat accumulator. As a unit can the heat storage advantageously be made more compact, ie it also has fewer interfaces over which heat can be lost in the environment.
  • the heat accumulator forms a structural unit, then it is advantageous if the first duct system is accommodated in a first partial area and the second duct system is accommodated in a second partial area spatially separated from the first. Spatial separation in the sense of the invention means the greatest possible degree of thermal separation.
  • a thermal separation in a heat accumulator designed as a structural unit is present when the heat-affected zones in the area of the two piping systems are as independent as possible from each other.
  • the first conduit system in the front part of the heat accumulator and the second conduit system may be located in the rear part of the heat accumulator, thus the heat accumulator has spatially two subregions, which differ from the above-mentioned partial memories only in that they are not structurally are separated, but at an interface abut each other.
  • the connections for the charging circuit can then be attached to the heat accumulator in this design so that the first portion and the second portion are arranged in parallel in the charging circuit.
  • the second line system is accommodated in a partial region of the heat accumulator together with the first line system. This means that run in this area, the second conduit system and the first conduit system in the same heat-affected zone of the heat accumulator.
  • the ratio of the heat capacities of the first partial region to the second or to the second partial areas or the first partial memory is adapted to the second partial memory to the heat demand caused by the discharge process, such that both partial areas or partial storage are discharged in the same period of time.
  • This design of the partial storage or the partial areas is a prerequisite for the partial areas or partial storage units always being unloaded or charged at the same time.
  • this process can also be reversed if the plant is used, for example, in a wind power plant.
  • the system is advantageous then operable in as many operating conditions with the maximum possible efficiency.
  • FIG. 1 shows a circuit diagram of an embodiment of the system according to the invention with state variables of the working fluids according to an embodiment of the method according to the invention
  • FIG. 2 schematically shows a discharge process as an exemplary embodiment of the method according to the invention with reheating in the T-S diagram (that is to say temperature T as a function of enthalpy) and FIG
  • FIGs 3 to 6 different embodiments of a heat storage, as it can be used in a system according to Figure 1.
  • FIG. 1 the system according to the invention with a heat storage 11 and a cold storage 12 is shown.
  • a charging circuit 13 and a discharge circuit 14th realized, these circuits are connected to non-illustrated line systems in the heat storage 11 and cold storage 12 and therefore allow loading and unloading of heat or cold in the memory.
  • a heat exchanger circuit 15 there is a heat exchanger circuit 15.
  • the charging cycle for the heat storage 11 and the cold storage 12 will be described.
  • the charging of the heat accumulator 11 means a warming up of the same
  • the charging of the cold accumulator 12 means a cooling down of the same.
  • the reference for heating and cooling is the ambient temperature.
  • a wind turbine 16 produces overcapacities with which an electric motor M can be driven.
  • the motor M has a drive shaft 17 with which a first fluid energy machine 18 and a third fluid energy machine 19 are driven.
  • the first fluid energy machine is a hydrodynamic pump and the third fluid energy machine is a hydrodynamic turbine.
  • the first fluid energy machine 18 compresses the working fluid and passes it through the heat accumulator 11. This consists of a first part of memory 20 and a second part of memory 21, which are connected in series in the charging circuit 13. In the heat accumulator 11, the working medium releases the heat that has arisen due to the compaction.
  • the working medium is expanded via the third fluid energy machine 19, wherein it cools down strongly.
  • This cold can be delivered during the passage through the cold storage 12 to this.
  • the working fluid heats up by absorbing heat from the environment. Subsequently, this can be compressed again by the first fluid energy machine 18.
  • a power demand is to be generated via a generator G power.
  • To drive the generator G is the
  • Discharge circuit 14 set in motion.
  • the working fluid consists of water, which is compressed via a feed pump 22. Subsequently, it is passed through the first portion 20 of the heat accumulator 11 and absorbs its heat energy. The resulting water vapor is released via a high-pressure part HP of a second fluid energy machine 23 and then passed into the second part storage 21, where the water vapor absorbs heat again. This is sufficient to drive the low-pressure part LP of the second fluid energy machine 23.
  • the second fluid energy machine in turn drives the generator G already mentioned.
  • the working fluid After relaxation of the working fluid in the low-pressure part LP of the second fluid energy machine, the working fluid is cooled by a second heat exchanger 24 (condenser). Subsequently, the Entladeniklauf by the liquefied working fluid of the feed pump 22 is fed back.
  • FIG. 1 it is shown that the second heat exchanger is connected via the heat exchanger circuit 15 to the cold storage 12.
  • a compressor 25 is driven by a motor M2 and keeps the circuit going.
  • the working fluid is cooled in the heat exchanger circuit 15 and therefore absorbs the heat from the second heat exchanger 24, which provides the working fluid in the discharge circuit 14.
  • the heat exchanger 24 may interact with the environment (for example, with river water).
  • the cooling energy from the cold storage 12 can be used elsewhere, for. B. for air conditioning.
  • the working fluid is passed directly through the cold storage 12. This then acts as a heat exchanger, so that the working fluid can deliver the heat directly to the cold storage.
  • the states of the working fluid are shown in the charging circuit 13 and discharge circuit 14 each in circles, wherein these circles denote certain locations of the charge circuit 13 and discharge circuit 14, respectively.
  • the upper left shows the prevailing pressure in the working fluid in bar.
  • At the top right is the enthalpy in KJ / kg.
  • Bottom left is the mass flow in kg / s and bottom right the temperature in ° C.
  • An exception are the circles in the
  • FIG. 2 shows the known Rankine process in the TS diagram.
  • the reference symbols 1 to 8 refer to characteristic points of the Rankine process and are used in FIGS. 3 to 5 at the corresponding points of the line system where said states to rule. From 8 to 1, the compression is done by the feed pump
  • the working fluid passes through the first reservoir 20, the water vapor being overheated a first time. After passing through the high-pressure part HP, the point 5 is reached, wherein the passage through the second partial memory 21 results in a renewed overheating 6 of the working fluid. This is relaxed in the low pressure part LP, whereby the point 7 is reached.
  • the working fluid again reaches point 8.
  • the heat accumulator 11 is made as a structural unit.
  • a line system 26 of the charging circuit is indicated as a solid line.
  • the flow direction is indicated by an arrow.
  • the heat storage for example, has sand 27 as a storage medium.
  • the flow direction which is opposite to the flow direction of the conduit system 26, shown by an arrow.
  • the first line system runs in a first subregion 30 of the heat accumulator 11.
  • This line system feeds the high pressure part HP of the second fluid energy machine.
  • the working fluid is fed into the second conduit system 29, which is located in a second portion 31 of the heat accumulator 11.
  • the partial regions 30 and 31 adjoin one another at an interface 32, so that heat exchange between the first partial region and the second partial region can take place only in this region.
  • a first heat-affected zone 33 is formed in the region of the first line system 28 and a second heat-affected zone 34 in the second section 31, which, however, are separated from one another by the interface 32, whereby only a certain heat exchange can take place between the heat-affected zones via the interface.
  • the interface is indicated by dash-dotted lines, while the heat-affected zones are indicated by dashed lines.
  • the heat accumulator 11 according to FIG. 4 has a similar structure to that according to FIG. 3. However, instead of two subregions 30, 31 according to FIG. 3, the heat accumulator 11 consists of the first accumulator 20 and the second accumulator 21.
  • the embodiment according to FIG. 5 can be developed according to FIG.
  • the heat exchanger 11 according to FIG. 6 has a first partial area 30, a second partial area 31 and a third partial area 37.
  • the first conduit system passes through the heat accumulator 11 through all three subregions.
  • the second line system passes through the partial area 30 with a first line section 38, the second area 37 with a second line section 39 and the third section 37 with a third line section 40.
  • These line sections are interconnected in such a way that bypass lines 41 are present for each line section via valves 42, the line sections can each flow or be bypassed.
  • the heat accumulator can be individually brought to the temperature level in each of the sections 30, 31, 37, which is necessary for overheating of the working medium before the low-pressure section LP of the second thermal fluid energy machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne un procédé de charge et de décharge d'un accumulateur de chaleur (11) au cours d'un cycle de charge (13) et au cours d'un cycle de décharge (14). Selon l'invention, la décharge s'effectue au moyen d'une turbine à vapeur (23) qui présente une partie haute pression (HP) et une partie basse pression (LP). Afin d'alimenter les deux parties de la turbine en chaleur, l'accumulateur de chaleur (11) est divisé selon l'invention en une partie (20) pour la haute pression (HP) et en une partie (21) pour la basse pression (LP) (cette division ne doit pas s'effectuer au niveau de la construction). L'invention concerne par ailleurs une installation, dans laquelle l'accumulateur de chaleur (11) est divisé en deux parties (20, 21). Le fait que la turbine fonctionne avec une partie haute pression (HP) et une partie basse pression (LP) permet d'obtenir de manière avantageuse l'augmentation avantageuse du rendement de chaleur provenant de l'accumulateur de chaleur (11). Il est par exemple possible de tirer parti de l'installation pour l'accumulation temporaire des productions excédentaires d'une éolienne (16).
PCT/EP2013/066273 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur WO2014026863A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP13747819.4A EP2885512A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur
CN201380042428.6A CN104541027A (zh) 2012-08-14 2013-08-02 热存储器的蓄能和释能方法以及适用于此方法的用于存储和释放热力学能的设备
US14/420,356 US20150218969A1 (en) 2012-08-14 2013-08-02 Method for charging and discharging a heat accumulator and system for storing and releasing thermal energy suitable for said method
JP2015526926A JP2015531844A (ja) 2012-08-14 2013-08-02 蓄熱器を蓄熱し放熱するための方法および当該方法に適した、熱エネルギーを貯蔵し放出するための設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12180397.7 2012-08-14
EP12180397.7A EP2698505A1 (fr) 2012-08-14 2012-08-14 Procédé de chargement et de déchargement d'un accumulateur thermique et installation pour le stockage et le dépôt d'énergie thermique appropriée à ce procédé

Publications (2)

Publication Number Publication Date
WO2014026863A2 true WO2014026863A2 (fr) 2014-02-20
WO2014026863A3 WO2014026863A3 (fr) 2014-06-05

Family

ID=46967930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/066273 WO2014026863A2 (fr) 2012-08-14 2013-08-02 Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur

Country Status (5)

Country Link
US (1) US20150218969A1 (fr)
EP (2) EP2698505A1 (fr)
JP (1) JP2015531844A (fr)
CN (1) CN104541027A (fr)
WO (1) WO2014026863A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021112050A1 (de) 2021-05-07 2022-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betreiben einer Speicheranlage, Speicheranlage, Steuerungsprogramm und computerlesbares Medium

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2927435T3 (pl) * 2014-04-01 2017-12-29 General Electric Technology Gmbh Układ do odwracalnego magazynowania energii elektrycznej jako energii cieplnej
WO2016050367A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'évacuation à système d'échange d'énergie thermique à haute température et procédé
US10724805B2 (en) 2014-09-30 2020-07-28 Siemens Gamesa Renewable Energy A/S Charging system with a high temperature thermal energy exchange system and method for charging heat storage material of the high temperature thermal energy exchange system with thermal energy
US10563927B2 (en) 2014-09-30 2020-02-18 Siemens Gamesa Renewable Energy A/S High temperature thermal energy exchange system with horizontal heat exchange chamber and method for exchanging thermal energy by using the high temperature thermal energy exchange system
WO2016050366A1 (fr) * 2014-09-30 2016-04-07 Siemens Aktiengesellschaft Système d'échange d'énergie thermique à haute température et procédé d'échange d'énergie thermique à l'aide dudit système d'échange d'énergie thermique à haute température
PL3172413T3 (pl) * 2014-09-30 2022-05-23 Siemens Gamesa Renewable Energy A/S Elektrownia z obiegiem parowym oraz z wysokotemperaturowym systemem wymiany energii termicznej i sposób wytwarzania elektrowni
DE102014017346A1 (de) 2014-10-17 2016-04-21 Carbon-Clean Technologies Gmbh Verfahren und Speicherkraftwerk zum Ausgleich von Lastspitzen bei der Energieerzeugung und/oder zur Erzeugung von elektrischer Energie
GB2535181A (en) * 2015-02-11 2016-08-17 Futurebay Ltd Apparatus and method for energy storage
CN107429578B (zh) * 2015-03-20 2020-06-23 西门子歌美飒可再生能源公司 热能存储设备
US10260820B2 (en) * 2016-06-07 2019-04-16 Dresser-Rand Company Pumped heat energy storage system using a conveyable solid thermal storage media
GB2552963A (en) * 2016-08-15 2018-02-21 Futurebay Ltd Thermodynamic cycle apparatus and method
WO2018178154A1 (fr) * 2017-03-28 2018-10-04 Hsl Energy Holding Aps Centrale d'accumulation d'énergie thermique
JP2019078185A (ja) * 2017-10-20 2019-05-23 松尾 栄人 蓄熱型太陽熱発電システム
JP7245131B2 (ja) * 2019-07-16 2023-03-23 株式会社日本クライメイトシステムズ 車両用蓄熱システム
CN113417710B (zh) * 2021-06-02 2022-07-22 中国科学院理化技术研究所 基于紧凑式冷箱的液态空气储能装置
JP2023146726A (ja) * 2022-03-29 2023-10-12 東芝エネルギーシステムズ株式会社 蓄熱発電システムおよび蓄熱装置
DE202023000696U1 (de) 2023-03-29 2023-05-03 Thomas Seidenschnur Multi-Modul Hochtemperatur-Wärmespeicher mit serieller Be- und Entladung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436508A (en) 1991-02-12 1995-07-25 Anna-Margrethe Sorensen Wind-powered energy production and storing system
WO2009044139A2 (fr) 2007-10-03 2009-04-09 Isentropic Limited Stockage d'énergie

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51151493A (en) * 1975-06-19 1976-12-25 Mitsubishi Heavy Ind Ltd Nuclear power plant superheater s team temperature control system
US4164849A (en) * 1976-09-30 1979-08-21 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for thermal power generation
FR2373758A1 (fr) * 1976-12-13 1978-07-07 Rigollot Georges Procede et installation de recuperation d'energie par revalorisation des rejets thermiques a basse temperature
FR2401334A1 (fr) * 1977-06-17 1979-03-23 Alsthom Atlantique Installation d'utilisation de l'energie solaire
JPS5599555A (en) * 1979-01-25 1980-07-29 Mitsubishi Heavy Ind Ltd Coldness storage type cooler
JPS63255502A (ja) * 1987-04-10 1988-10-21 Mitsubishi Heavy Ind Ltd 発電プラント
JPH01273804A (ja) * 1988-04-26 1989-11-01 Toshiba Corp タービンバイパス装置を有する二段再熱式蒸気タービンプラント
DE4121460A1 (de) * 1991-06-28 1993-01-14 Deutsche Forsch Luft Raumfahrt Waermespeichersystem mit kombiniertem waermespeicher
US5384489A (en) * 1994-02-07 1995-01-24 Bellac; Alphonse H. Wind-powered electricity generating system including wind energy storage
JPH0814676A (ja) * 1994-06-28 1996-01-19 Daikin Ind Ltd 空気調和機
JPH08285386A (ja) * 1995-04-11 1996-11-01 Kubota Corp ヒートポンプ式潜熱蓄冷装置
DE10260993A1 (de) * 2002-12-24 2004-07-08 Riedel, Erik, Dr.-Ing. Verfahren zur Stromerzeugung sowie nach diesen Verfahren betriebene Kraftwerke
EP1577548A1 (fr) * 2004-03-16 2005-09-21 Abb Research Ltd. Dispositif et procédé de stockage d'énergie thermale et de génération d'électricité
EP2331792A2 (fr) * 2007-06-06 2011-06-15 Areva Solar, Inc Centrale à cycle combiné
EP2275649B1 (fr) * 2009-06-18 2012-09-05 ABB Research Ltd. Système de stockage d'énergie thermoélectrique avec un réservoir de stockage intermédiaire et procédé de stockage d'énergie thermoélectrique
US20130104549A1 (en) * 2010-07-12 2013-05-02 Henrik Stiesdal Thermal energy storage and recovery with a heat exchanger arrangement having an extended thermal interaction region
DK2561299T3 (en) * 2010-07-12 2017-08-28 Siemens Ag STORAGE AND RECOVERY OF HEAT ENERGY BASED ON THE PRINCIPLE PRINCIPLE OF TRANSPORT OF HEAT TRANSFER MEDIUM
WO2012007196A2 (fr) * 2010-07-12 2012-01-19 Siemens Aktiengesellschaft Système et dispositif de stockage et de récupération d'énergie thermique comportant un aménagement d'échangeur de chaleur utilisant un gaz comprimé

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5436508A (en) 1991-02-12 1995-07-25 Anna-Margrethe Sorensen Wind-powered energy production and storing system
WO2009044139A2 (fr) 2007-10-03 2009-04-09 Isentropic Limited Stockage d'énergie

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021112050A1 (de) 2021-05-07 2022-11-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Betreiben einer Speicheranlage, Speicheranlage, Steuerungsprogramm und computerlesbares Medium

Also Published As

Publication number Publication date
CN104541027A (zh) 2015-04-22
WO2014026863A3 (fr) 2014-06-05
EP2885512A2 (fr) 2015-06-24
JP2015531844A (ja) 2015-11-05
EP2698505A1 (fr) 2014-02-19
US20150218969A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
EP2885512A2 (fr) Procédé de charge et de décharge d'un accumulateur de chaleur et installation permettant l'accumulation et la distribution d'énergie thermique, adaptée au procédé de charge et de décharge d'un accumulateur de chaleur
EP2748434B1 (fr) Installation de stockage d'énergie thermique
EP2823156B1 (fr) Installation pour le stockage et le dépôt d'énergie thermique
DE68926220T2 (de) Verfahren und Vorrichtung zur Dampfkrafterzeugung
EP2574739A1 (fr) Installation de stockage d'énergie thermique et son procédé de fonctionnement
EP2808500A1 (fr) Pompe à chaleur dotée d'une première machine thermique à énergie fluidique et d'une seconde machine thermique à énergie fluidique
DE102007021063A1 (de) Hydraulisch-pneumatischer Antrieb
WO2012040864A1 (fr) Pompe à chaleur
DE102015109898A1 (de) Dampfkraftwerk und Verfahren zu dessen Betrieb
DE202005003611U1 (de) Wärmekraftwerk mit Druckluftspeichervorrichtung zum Ausgleich fluktuierender Energieeinspeisung aus regenerativen Energiequellen
WO2013156284A1 (fr) Installation d'accumulation et de distribution d'énergie thermique au moyen d'un accumulateur de chaleur et d'un accumulateur de froid et procédé de fonctionnement de ladite installation
DE102014118466B4 (de) Vorrichtung und Verfahren zum vorübergehenden Speichern von Gas und Wärme
EP1759116A1 (fr) Machine thermique
EP2574738A1 (fr) Installation de stockage d'énergie thermique
DE102012217142A1 (de) Verfahren zum Laden und Entladen eines Speichermediums in einem Wärmespeicher und Anlage zur Durchführung dieses Verfahrens
DE102004041108B3 (de) Vorrichtung und Verfahren zum Ausführen eines verbesserten ORC-Prozesses
DE102020131706A1 (de) System und Verfahren zur Speicherung und Abgabe von elektrischer Energie mit deren Speicherung als Wärmeenergie
EP3080407A1 (fr) Accumulation d'énergie au moyen d'un accumulateur de chaleur et d'un thermocompresseur de vapeur
DE102012110579B4 (de) Anlage und Verfahren zur Erzeugung von Prozessdampf
DE102005049215A1 (de) Verfahren und Vorrichtung zur Gewinnung von mechanischer oder elektrischer Energie aus Wärme
EP3559564B1 (fr) Procédé et dispositif de production de froid de processus et de vapeur de processus
WO2018029371A1 (fr) Échangeur de chaleur destiné à être utilisé dans une partie chaude d'une centrale de stockage d'énergie par air liquide, partie chaude et procédé permettant de faire fonctionner ledit échangeur de chaleur dans ladite partie chaude
DE102011052776A1 (de) Verfahren zum Erwärmen von Wärmeübertragungsmedien und überkritische Wärmepumpe
DE102017223705A1 (de) Kraftwerk
DE102019219066A1 (de) Anlage zur Kälteerzeugung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13747819

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2013747819

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14420356

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015526926

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE