EP2697804B1 - Star-quad cable with shield - Google Patents

Star-quad cable with shield Download PDF

Info

Publication number
EP2697804B1
EP2697804B1 EP20120707984 EP12707984A EP2697804B1 EP 2697804 B1 EP2697804 B1 EP 2697804B1 EP 20120707984 EP20120707984 EP 20120707984 EP 12707984 A EP12707984 A EP 12707984A EP 2697804 B1 EP2697804 B1 EP 2697804B1
Authority
EP
European Patent Office
Prior art keywords
shield
conductors
cores
star
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20120707984
Other languages
German (de)
French (fr)
Other versions
EP2697804A1 (en
Inventor
Michael Wollitzer
Gunnar Armbrecht
Helmut Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosenberger Hochfrequenztechnik GmbH and Co KG
Original Assignee
Rosenberger Hochfrequenztechnik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosenberger Hochfrequenztechnik GmbH and Co KG filed Critical Rosenberger Hochfrequenztechnik GmbH and Co KG
Publication of EP2697804A1 publication Critical patent/EP2697804A1/en
Application granted granted Critical
Publication of EP2697804B1 publication Critical patent/EP2697804B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/04Cables with twisted pairs or quads with pairs or quads mutually positioned to reduce cross-talk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/005Quad constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/06Cables with twisted pairs or quads with means for reducing effects of electromagnetic or electrostatic disturbances, e.g. screens
    • H01B11/10Screens specially adapted for reducing interference from external sources
    • H01B11/1033Screens specially adapted for reducing interference from external sources composed of a wire-braided conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring

Definitions

  • the present invention relates to a star quad cable for transmitting electrical signals with at least two pairs of electrical conductors, wherein each conductor comprises a core of an electrically conductive material and a conductor surrounding the wire conductor shell of an electrically insulating material, wherein the conductors in a Cross section of the star quad cable are arranged at the corners of a square, wherein the conductors of a pair are arranged at diagonally opposite corners of the square, wherein four conductors are twisted together according to a star quad array with a predetermined stranding factor, wherein one of the two pairs of Conductors radially outwardly surrounding screen is disposed of an electrically conductive material, wherein between the conductors and the screen, an additional insulator shell of an electrically insulating material is arranged, wherein the screen is constructed of a mesh of individual shield wires, gem according to the preamble of claim 1.
  • a so-called "star quad” is a stranding element for conductors with, for example, copper wires.
  • Four conductors of pairs of conductors are twisted together to form two cross-shaped stranded double conductors. Two opposing conductors form a pair, each transmitting an electrical signal on a pair.
  • the four conductors in the cross section of the star quad are arranged at the corners of a square, wherein the conductors of a pair are arranged at diagonally opposite corners.
  • the quad-core cable is one of the balanced cables.
  • this cable four conductors are stranded with each other in a cross shape. This means that the opposite conductors each form a conductor pair. Due to the mutually perpendicular conductor pairs only very low crosstalk occurs.
  • Another advantage of the star quad stranding is, in addition to the mechanical stabilization of the arrangement of the conductors relative to one another, the higher packing density than in a pair stranding.
  • Stranding factor specifies the ratio of single-conductor length to cable length. For example, the stranding factor for telecommunication cables is about 1.02 to 1.04.
  • the stranding factor correlates with a pitch resulting from the helical arrangement of the stranded conductors. The pitch or slope or pitch indicates a thread at an axial distance of two thread notches.
  • the invention has for its object to improve a star quad cable of the type above in such a way that the electrical properties of the cable are not significantly affected by aging, nor by the load with bending and torsional stresses in a transfer of the four-wire cable.
  • At least one, in particular four shielding wires or at least one, in particular four Schirmaderbündel are stranded radially surrounding the conductors, that in each case at least one of the stranded stranded conductors or one of the Schirmaderbündel in the axial direction in each case substantially parallel to a vein a conductor runs, in each case a Schirmader or a Schirmaderbündel on the one hand and a wire on the other hand in the axial direction parallel to each other, that the Schirmader or the Schirmaderbündel and the wire lie at any point in the cross section of the four-star cable on the same diagonal of the square and the shield wire or the shield wire bundle is arranged on a side of the wire facing away from the square.
  • a particularly secure guidance of the shield wires or shielding wire bundles in parallel along a respective wire of a conductor even with bending and torsional loads of the four-wire cable is achieved in that the shield wires or Schirmaderbündel are stranded with a stranding factor, which corresponds to a stranding factor of the ladder.
  • a further improvement of the transmission characteristic of the star quad cable by enabling additional electrical compensation currents on the screen is achieved by the fact that radially outward on the screen, a second screen is arranged, which is electrically conductively connected to the screen.
  • a particularly large-scale conduction of equalizing currents across the second screen is achieved in that the second screen is formed as a sheath or foil of an electrically conductive material.
  • a particularly good preservation of the flexibility of the star quad cable despite the second screen is achieved by the fact that the second screen is constructed from a network of individual second shield wires.
  • a high number of electrical contact points between the second screen cores of the second screen and the screen cores of the radially inner screen are achieved by the second screen cores opposite to the screen cores of the screen, in particular with a stranding factor which corresponds to the stranding factor of the screen cores of the screen. are stranded.
  • a star quad cable according to the invention comprises four conductors 10, 12, 14, 16, each having a core 18 made of an electrically conductive material and a conductor shell 20 made of an electrically insulating material.
  • the conductors 10, 12, 14, 16 are twisted together to form a star quad array, ie at each point in the cross section of the four-wire cable are the conductors 10, 12, 14, 16 at a corner of a square 17.
  • Each on a diagonal 19 of the square 17 opposite conductors 10, 12 and 14, 16 form a pair, ie the conductors 10, 12 form a first pair of conductors or a first conductor pair 12, 14 and the conductors 14, 16 form a second pair of conductors or a second pair of conductors 14, 16.
  • the twist of the conductors 10, 12, 14, 16 is carried out with a predetermined stranding factor, which requires a corresponding pitch or pitch s.
  • the lay length s is in this case the axial distance at which a conductor 10, 12, 14, 16 once helically winds completely around a longitudinal axis of the four-star cable.
  • Fig. 2 a coordinate system with an x-axis 40 and a y-axis 42 is shown.
  • the coordinate system 40, 42 is arranged such that the origin 44 of the coordinate system 40, 42 lies exactly on the longitudinal axis of the star quad cable, so that this longitudinal axis forms a z-direction in space for the coordinate system 40, 42.
  • a first signal is transmitted to the first pair of conductors 10, 12, and a second signal is transmitted to the second pair of conductors 14, 16.
  • a corresponding phase shift between the first and second signal and the previously described spatial arrangement of the conductors 10, 12, 14, 16 relative to each other in a star quad array is in a known manner, a high crosstalk attenuation between the two conductor pairs 10, 12 and 14, 16 achieved.
  • the signals on the conductor pairs 10, 12 and 14, 16 have a phase shift of 180 °.
  • the stranded conductor 10, 12,14, 16 radially surrounding the outside of a screen 22 is arranged, which is constructed of discrete or individual shield wires 23.
  • a jacket 25 made of an electrically insulating material surrounds radially outside the entire structure of conductors 10, 12, 14, 16 and screen 22.
  • an additional insulating jacket 24 is made arranged an electrically insulating material. This creates an additional spatial distance in the radial direction between the wires 18 of the conductors 10, 12, 14, 16 on the one hand and the screen 22 on the other. The resulting effect will be described below with reference to FIGS Fig. 3 and 4 explained.
  • Fig. 3 a schematic sectional view of a conventional star quad cable with conductors 10, 12, 14, 16 with respective wires 18 and conductor shrouds 20 and a screen 22 is shown.
  • the screen 22 is radially outward directly on the conductor shrouds 20 of the conductors 10, 12, 14, 16, so that there is a minimum radial distance between the wires 18 and the screen 22.
  • Arrows show the distribution of an electric field when transmitting corresponding electrical signals via the conductors 10, 12, 14, 16, the greater the electric field, the larger the respective arrow is shown. It is off Fig. 3 to recognize that a strong electric field between the wires 18 of the second pair of conductors 14, 16 and the screen 22 is formed.
  • Fig. 4 shows in an analog view like Fig. 3 the distribution of the electric field for a star quad cable formed with the additional insulator jacket 24.
  • the screen 22 by the between the conductors 10, 12, 14, 16 on the one hand and the screen 22 on the other hand arranged additional Insulating jacket 24 a greater radial distance from the wires 18, as in the conventional embodiment of a star quad cable according to Fig. 3 ,
  • Fig. 4 it turns out Fig. 4 in that the electric field is now concentrated between the conductors 10, 12, 14, 16.
  • the effects described by a deterioration of the screen 22 in the star quad cable designed according to the invention accordingly have less of an influence on the electrical properties of the star quad cable in terms of signal transmission.
  • degradation is an increase in attenuation for a useful signal in the quad-core cable.
  • the transmission characteristics of the star quad cable are significantly less adversely affected.
  • the star quad cable designed according to the invention is considerably more resistant to damage or aging of the screen 22 in terms of transmission characteristics for electrical signals.
  • FIG. 5 and 6 For example, a frequency in [GHz] is plotted on a horizontal axis 26, and a transmission in [dB] is plotted on a vertical axis 28 for electrical signals.
  • a first graph 30 in FIG Fig. 5 FIG. 12 illustrates the transmission 28 versus frequency 26 in common mode signal transmission (without phase shifting between the signals on the pairs of conductors 10, 12 and 14, 16) and a second graph 32 in FIG Fig. 5 FIG. 12 illustrates the transmission 28 versus frequency 26 in a differential mode signal (with phase shifting between signals on the pairs of conductors 10, 12 and 14, 16) for a conventional quad-core cable, respectively Fig. 3 ,
  • FIG. 12 illustrates transmission 28 versus frequency 26 for common mode signal transmission (without phase shifting between the signals on the pairs of conductors 10, 12 and 14, 16) and a fourth graph 36 in FIG Fig. 6
  • Figure 4 illustrates the transmission 28 as a function of the frequency 26 in a differential mode signal (with phase shift between the signals on the conductor pairs 10, 12 and 14, 16) for a star quad cable according to the invention, respectively Fig. 4
  • the Graphs 30, 32, 34 and 36 are each from simulations for the arrangement according to the Fig. 3 and 4 won.
  • second graph 32 can be seen occurs in a conventional star quad cable break in the transmission in push-pull at about 2.9 GHz. This burglary is no longer present in a star quad cable according to the invention, as seen from Fig. 6 , fourth graph 26 can be seen.
  • This simulation result impressively shows the resounding and unexpected improvement in the electrical properties of the star quad cable according to the invention in the transmission of electrical signals. This improvement is already given here before damage or aging of the screen.
  • a further improvement of the electrical properties or the transmission characteristics of the star quad cable for electrical signals is achieved by at least individual shield wires 23 each following one of the conductors 10, 12, 14, 16 in parallel.
  • at least individual shield conductors 23 are stranded with the same lay length s or the same stranding factor as the conductors 10, 12, 14, 16.
  • the shield core 23a helically winds around the conductors 10, 12, 14, 16 through the stranding such that the shield core 23a extends parallel to the conductor 14.
  • the exact relative arrangement between the shield wire 23a and the conductor 14 is off Fig. 2 seen.
  • the shield core 23a winds around the conductors 10, 12, 14, 16 such that at each location in the cross-section of the quad-core cable the conductors 14 and the shield core 23a are on a common diagonal 19 and the shield core 23a on one side of the conductor 14 is arranged, which faces away from the square 17.
  • a shield current assigned to the conductor 14 can follow the conductor 14 without transition to another shield core 23.
  • the electrical conduction of the shielding current across the shield 22 improves and overall the electrical properties and / or the transfer characteristic of the four-core cable for the transmission of electrical signals is improved. In particular, for example, results in a low Damping for the electrical useful signal transmitted by the star quad cable according to the invention.
  • the square 17 has, for example, a side length a 48 of 0.83 mm.
  • This side length a corresponds to the distance of the centers of two adjacent conductors 10, 12, 14, 16.
  • n a 2 ⁇ cos 2 ⁇ ⁇ ⁇ t + n - 1 ⁇ ⁇ 2 a 2 ⁇ sin 2 ⁇ ⁇ ⁇ t + n - 1 ⁇ ⁇ 2 s ⁇ t
  • 0 °.
  • the shield core 23a is preferred for guiding the shield current associated with the conductor 14, this shield current of the conductor 14 may also be guided by one of the two shield conductors 23 adjacent to the shield core 23a. Thus, should the shield core 23a be damaged due to bending or torsional loading, the shield current may still flow substantially parallel to the conductor 14 across the shield 22 along the shield conductors 23a without having to make a change to another shield core 23.
  • a lay length s 46 is for example 40 mm.
  • a second screen (not shown) made of an electrically conductive material is additionally arranged radially on the outside of the screen 22.
  • This second screen is thereby electrically conductively connected to the screen 22 on its radially inner side, so that electrical compensation currents can flow over the second screen.
  • manufacturing tolerances can be compensated which, for example, lead to the shield core 23a not being exactly parallel to the associated conductor 14 (FIG. Fig. 2 ) runs.
  • the equalizing currents over the second screen By means of the equalizing currents over the second screen, aging phenomena or damage to the screen 22 can be compensated accordingly.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Communication Cables (AREA)
  • Insulated Conductors (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

Die vorliegende Erfindung betrifft ein Sternvierer-Kabel zum Übertragen von elektrischen Signalen mit mindestens zwei Paaren von elektrischen Leitern, wobei jeder Leiter eine Ader aus einem elektrisch leitenden Werkstoff und einen die Ader radial umgebenden Leitermantel aus einem elektrisch isolierenden Werkstoff aufweist, wobei die Leiter in einem Querschnitt des Sternvierer-Kabels an den Ecken eines Quadrates angeordnet sind, wobei die Leiter eines Paares an diagonal gegenüberliegenden Ecken des Quadrats angeordnet sind, wobei jeweils vier Leiter gemäß einer Sternvierer-Anordnung mit einem vorbestimmten Verseilungsfaktor miteinander verdrillt sind, wobei ein die zwei Paare von Leitern radial außen umgebender Schirm aus einem elektrisch leitenden Werkstoff angeordnet ist, wobei zwischen den Leitern und dem Schirm ein zusätzlicher Isolatormantel aus einem elektrisch isolierenden Werkstoff angeordnet ist, wobei der Schirm aus einem Geflecht einzelner Schirmadern aufgebaut ist, gemäß dem Oberbegriff des Anspruchs 1.The present invention relates to a star quad cable for transmitting electrical signals with at least two pairs of electrical conductors, wherein each conductor comprises a core of an electrically conductive material and a conductor surrounding the wire conductor shell of an electrically insulating material, wherein the conductors in a Cross section of the star quad cable are arranged at the corners of a square, wherein the conductors of a pair are arranged at diagonally opposite corners of the square, wherein four conductors are twisted together according to a star quad array with a predetermined stranding factor, wherein one of the two pairs of Conductors radially outwardly surrounding screen is disposed of an electrically conductive material, wherein between the conductors and the screen, an additional insulator shell of an electrically insulating material is arranged, wherein the screen is constructed of a mesh of individual shield wires, gem according to the preamble of claim 1.

Ein sogenannter "Sternvierer" ist ein Verseilelement für Leiter mit beispielsweise Kupferadern. Vier Leiter von Paaren von Leitern werden miteinander verdrillt und bilden dann zwei kreuzförmig verseilte Doppelleiter. Zwei gegenüberliegende Leiter bilden ein Paar, wobei auf einem Paar jeweils ein elektrisches Signal übertragen wird. Mit anderen Worten sind die vier Leiter im Querschnitt des Sternvierers an den Ecken eines Quadrates angeordnet, wobei die Leiter eines Paares an diagonal gegenüberliegenden Ecken angeordnet sind. Durch die hierdurch senkrecht zueinander stehenden Leiterpaare ergibt sich eine gewünschte hohe Übersprechdämpfung von einem Paar zu dem anderen Paar.A so-called "star quad" is a stranding element for conductors with, for example, copper wires. Four conductors of pairs of conductors are twisted together to form two cross-shaped stranded double conductors. Two opposing conductors form a pair, each transmitting an electrical signal on a pair. In other words, the four conductors in the cross section of the star quad are arranged at the corners of a square, wherein the conductors of a pair are arranged at diagonally opposite corners. By doing this vertically mutually standing conductor pairs results in a desired high crosstalk attenuation from one pair to the other pair.

Das Sternvierer-Kabel gehört zu den symmetrischen Kabeln. Bei diesem Kabel sind vier Leiter miteinander kreuzförmig verseilt. Das bedeutet, dass die gegenüberliegenden Leiter jeweils ein Leiterpaar bilden. Durch die senkrecht zueinander stehenden Leiterpaare findet nur sehr geringes Übersprechen statt. Ein weiterer Vorteil der Sternviererverseilung ist neben der mechanischen Stabilisierung der Anordnung der Leiter relativ zueinander die höhere Packdichte als bei einer Paarverseilung.The quad-core cable is one of the balanced cables. In this cable four conductors are stranded with each other in a cross shape. This means that the opposite conductors each form a conductor pair. Due to the mutually perpendicular conductor pairs only very low crosstalk occurs. Another advantage of the star quad stranding is, in addition to the mechanical stabilization of the arrangement of the conductors relative to one another, the higher packing density than in a pair stranding.

Durch die Verseilung werden die Leiter bzw. Einzeladern länger als das Kabel selbst. Der sogen. Verseilungsfaktor gibt das Verhältnis Einzelleiterlänge zu Kabellänge an. Der Verseilungsfaktor beträgt bei Fernmeldekabeln beispielsweise etwa 1,02 bis 1,04. Der Verseilungsfaktor korreliert mit einer Teilung bzw. Steigung bzw. Ganghöhe, die sich aus der schraubenartigen Anordnung der miteinander verseilten Leiter ergibt. Die Teilung bzw. Steigung bzw. Ganghöhe gibt bei einem Gewinde einen axialen Abstand von zwei Gewindekerben an.Due to the stranding, the conductors or individual cores become longer than the cable itself. Stranding factor specifies the ratio of single-conductor length to cable length. For example, the stranding factor for telecommunication cables is about 1.02 to 1.04. The stranding factor correlates with a pitch resulting from the helical arrangement of the stranded conductors. The pitch or slope or pitch indicates a thread at an axial distance of two thread notches.

Aus der gattungsgemäßen Druckschrift DE 14 90 692 A1 ist ein Trägerfrequenzkabel mit einem zentralen Verseilelement in Form eines Sternvierers bekannt. Vier polyäthylenisolierte Litzen sind mit einer Schlaglänge s verseilt und von eine Polyäthylenisolierung umgeben. Die Polyäthylenisolierung ist von einem Abschirmgeflecht aus Kupferdrähten umhüllt. Auf dem Abschirmgeflecht ist ein PVC-Mantel aufgebracht.From the generic document DE 14 90 692 A1 is a carrier frequency cable with a central stranding element in the form of a star quad known. Four polythene insulated strands are stranded with a lay length and surrounded by a polyethylene insulation. The polyethylene insulation is covered by a shielding braid made of copper wires. On the shield braid a PVC jacket is applied.

Der Erfindung liegt die Aufgabe zugrunde, ein Sternvierer-Kabel der o.g. Art dahingehend zu verbessern, dass die elektrischen Eigenschaften des Kabels weder durch Alterung noch durch die Belastung mit Biege- und Torsionsspannungen bei einer Verlegung des Sternvierer-Kabels wesentlich negativ beeinflusst werden.The invention has for its object to improve a star quad cable of the type above in such a way that the electrical properties of the cable are not significantly affected by aging, nor by the load with bending and torsional stresses in a transfer of the four-wire cable.

Diese Aufgabe wird erfindungsgemäß durch ein Sternvierer-Kabel der o.g. Art mit den in Anspruch 1 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen beschrieben.This object is achieved by a star quad cable og. Art solved with the features characterized in claim 1. Advantageous embodiments of the invention are described in the further claims.

Bei einem Sternvierer-Kabel der o.g. Art ist es erfindungsgemäß vorgesehen, dass mindestens eine, insbesondere vier Schirmadern oder mindestens ein, insbesondere vier Schirmaderbündel derart radial die Leiter umgebend verseilt sind, dass jeweils mindestens eine der verseilten Schirmadern bzw. eines der Schirmaderbündel in axialer Richtung jeweils im Wesentlichen parallel zu einer Ader eines Leiters verläuft, wobei jeweils eine Schirmader bzw. ein Schirmaderbündel einerseits und eine Ader andererseits in axialer Richtung derart parallel zueinander verlaufen, dass die Schirmader bzw. das Schirmaderbündel und die Ader an jeder Stelle im Querschnitt des Sternvierer-Kabels auf derselben Diagonale des Quadrats liegen und die Schirmader bzw. das Schirmaderbündel auf einer von dem Quadrat abgewandten Seite der Ader angeordnet ist.For a four-wire cable, the o.g. It is inventively provided that at least one, in particular four shielding wires or at least one, in particular four Schirmaderbündel are stranded radially surrounding the conductors, that in each case at least one of the stranded stranded conductors or one of the Schirmaderbündel in the axial direction in each case substantially parallel to a vein a conductor runs, in each case a Schirmader or a Schirmaderbündel on the one hand and a wire on the other hand in the axial direction parallel to each other, that the Schirmader or the Schirmaderbündel and the wire lie at any point in the cross section of the four-star cable on the same diagonal of the square and the shield wire or the shield wire bundle is arranged on a side of the wire facing away from the square.

Dies hat den Vorteil, dass Schirmströme reduziert und dadurch die übertragungstechnischen Eigenschaften des Sternvierer-Kabels auch bei Biege- und Torsionsbelastungen, die den Schirm mechanisch beeinflussen, erhalten bleiben. Setzungserscheinungen im Sternvierer-Kabel sind vermieden und ein Abisolieren des Sternvierer-Kabels ist vereinfacht, da eine Gefahr der Beschädigung der Adern beim Aufschneiden eines äußeren Isolationsmantels reduziert ist. Zusätzlich erzeugt der zusätzliche Isolatormantel eine radial Vorspannung auf die Leitermäntel der Adern, wodurch eine mechanische Stabilität der Sternviereranordnung bei Biege- und Torsionsbelastungen erhöht ist. Es wird weiterhin eine Verbesserung der Leitung von elektrischen Schirmströmen mit dementsprechender Verbesserung der elektrischen Eigenschaften des Sternvierer-Kabels erzielt, wobei gleichzeitig eine besonders gute Leitung von jeweils einer Ader zugeordneten Schirmströmen erreicht wird. Eine hohe mechanische Flexibilität des Sternvierer-Kabels mit im Wesentlichen unveränderter Anordnung der Leiter relativ zueinander auch bei Biege- und Torsionsbelastungen auf das Sternvierer-Kabel erzielt man dadurch, dass der Schirm aus einem Geflecht einzelner Schirmadern aufgebaut ist.This has the advantage that shield currents are reduced, thereby preserving the transfer characteristics of the quad-core cable, even under bending and torsion loads that mechanically influence the shield. Settling phenomena in the quad-core cable are avoided and stripping of the quad-core cable is simplified since there is a reduced risk of damaging the wires when cutting an outer insulation jacket. In addition, the additional insulator jacket generates a radial bias on the conductor sheaths of the cores, whereby a mechanical stability of the star quad assembly is increased in bending and torsional loads. It is further achieved an improvement in the management of electrical shielding currents with corresponding improvement in the electrical properties of the star quad cable, at the same time a particularly good line is achieved by each one core associated shielding currents. A high mechanical flexibility of the star quad cable with substantially unchanged arrangement of the conductors relative to each other even with bending and torsional stresses on the four-wire cable is achieved by the fact that the screen is constructed of a network of individual shield wires.

Eine besonders sichere Führung der Schirmadern bzw. Schirmaderbündel parallel entlang einer jeweiligen Ader eines Leiters auch bei Biege- und Torsionsbelastungen des Sternvierer-Kabels erzielt man dadurch, dass die Schirmadern bzw. Schirmaderbündel mit einem Verseilungsfaktor verseilt sind, welcher einem Verseilungsfaktor der Leiter entspricht.A particularly secure guidance of the shield wires or shielding wire bundles in parallel along a respective wire of a conductor even with bending and torsional loads of the four-wire cable is achieved in that the shield wires or Schirmaderbündel are stranded with a stranding factor, which corresponds to a stranding factor of the ladder.

Eine gute elektrische Leitfähigkeit bei gleichzeitig niedrigen Herstellungskosten erzielt man dadurch, dass die Adern aus Kupfer hergestellt sind.Good electrical conductivity coupled with low manufacturing costs is achieved by making the wires from copper.

Eine weitere Verbesserung der Übertragungscharakteristik des Sternvierer-Kabels durch die Ermöglichung von zusätzlichen elektrischen Ausgleichsströmen am Schirm erzielt man dadurch, dass radial außen auf dem Schirm ein zweiter Schirm angeordnet ist, welcher elektrisch leitend mit dem Schirm verbunden ist. Diese Ausgleichsströme ermöglichten einen Ausgleich von Fertigungstoleranzen, die ggf. dazu führen, dass Schirmadern und zugeordnete Leitung nicht exakt parallel zueinander verlaufen.A further improvement of the transmission characteristic of the star quad cable by enabling additional electrical compensation currents on the screen is achieved by the fact that radially outward on the screen, a second screen is arranged, which is electrically conductively connected to the screen. These equalizing currents made it possible to compensate for manufacturing tolerances which possibly lead to shielding wires and associated line not being exactly parallel to one another.

Eine besonders großflächige Leitung von Ausgleichsströmen über den zweiten Schirm wird dadurch erzielt, dass der zweite Schirm als Mantel oder Folie aus einem elektrisch leitenden Werkstoff ausgebildet ist.A particularly large-scale conduction of equalizing currents across the second screen is achieved in that the second screen is formed as a sheath or foil of an electrically conductive material.

Eine besonders gute Erhaltung der Flexibilität des Sternvierer-Kabels trotz des zweiten Schirmes erzielt man dadurch, dass der zweite Schirm aus einem Geflecht einzelner zweiter Schirmadern aufgebaut ist.A particularly good preservation of the flexibility of the star quad cable despite the second screen is achieved by the fact that the second screen is constructed from a network of individual second shield wires.

Eine hohe Anzahl von elektrischen Kontaktpunkten zwischen den zweiten Schirmadern des zweiten Schirmes und den Schirmadern des radial innen liegenden Schirmes erzielt man dadurch, dass die zweiten Schirmadern gegenläufig zu den Schirmadern des Schirms, insbesondere mit einem Verseilungsfaktor, welcher dem Verseilungsfaktor der Schirmadern des Schirmes entspricht, verseilt sind.A high number of electrical contact points between the second screen cores of the second screen and the screen cores of the radially inner screen are achieved by the second screen cores opposite to the screen cores of the screen, in particular with a stranding factor which corresponds to the stranding factor of the screen cores of the screen. are stranded.

Die Erfindung wird im Folgenden anhand der Zeichnung näher erläutert. Diese zeigt in:

Fig. 1
eine bespielhafte Ausführungsform eines erfindungsgemäßen Sternvierer-Kabels perspektivischer Ansicht,
Fig. 2
das Sternvierer-Kabel gemäß Fig. 1 in schematischer Schnittansicht,
Fig. 3
eine schematische Schnittansicht eines herkömmlichen Sternvierer-Kabels mit einer graphischen Darstellung der Verteilung eines elektrischen Feldes,
Fig. 4
eine schematische Schnittansicht eines erfindungsgemäßen Sternvierer-Kabels mit einer graphischen Darstellung der Verteilung eines elektrischen Feldes,
Fig. 5
eine graphische Darstellung einer Transmission eines elektrischen Signals in Abhängigkeit von einer Frequenz für das herkömmliche Sternvierer-Kabel gemäß Fig. 3,
Fig. 6
eine graphische Darstellung einer Transmission eines elektrischen Signals in Abhängigkeit von einer Frequenz für das erfindungsgemäße Sternvierer-Kabel gemäß Fig. 4 und
Fig. 7
eine vereinfachte schematische Darstellung von miteinander verseilten Leitern und einer Schirmader der beispielhaften Ausführungsform des Sternvierer-Kabels gemäß Fig. 1 und 2.
The invention will be explained in more detail below with reference to the drawing. This shows in:
Fig. 1
an exemplary embodiment of a star quad cable according to the invention perspective view,
Fig. 2
the star quad cable according to Fig. 1 in a schematic sectional view,
Fig. 3
a schematic sectional view of a conventional star quad cable with a graphical representation of the distribution of an electric field,
Fig. 4
a schematic sectional view of a star quad cable according to the invention with a graphical representation of the distribution of an electric field,
Fig. 5
a graphical representation of a transmission of an electrical signal in response to a frequency for the conventional star quad cable according to Fig. 3 .
Fig. 6
a graphical representation of a transmission of an electrical signal as a function of a frequency for the star quad cable according to the invention according to Fig. 4 and
Fig. 7
a simplified schematic representation of stranded conductors and a shield wire of the exemplary embodiment of the star quad cable according to Fig. 1 and 2 ,

Die in den Fig. 1 und 2 dargestellte, bevorzugte Ausführungsform eines erfindungsgemäßen Sternvierer-Kabels umfasst vier Leiter 10, 12, 14, 16, die jeweils eine Ader 18 aus einem elektrisch leitenden Werkstoff und einen Leitermantel 20 aus einem elektrisch isolierenden Werkstoff aufweisen. Die Leiter 10, 12, 14, 16 sind miteinander zu einer Sternvierer-Anordnung verdrillt, d.h. an jeder Stelle im Querschnitt des Sternvierer-Kabels befinden sich die Leiter 10, 12, 14, 16 an einem Eck eines Quadrates 17. Jeweils auf einer Diagonale 19 des Quadrates 17 gegenüberliegende Leiter 10, 12 und 14, 16 bilden ein Paar aus, d.h. die Leiter 10, 12 bilden eine erstes Paar Leiter bzw. ein erstes Leiterpaar 12, 14 und die Leiter 14, 16 bilden ein zweites Paar Leiter bzw. ein zweites Leiterpaar 14, 16 aus. Die Verdrillung der Leiter 10, 12, 14, 16 ist mit einem vorbestimmten Verseilungsfaktor ausgeführt, was eine entsprechen Teilung bzw. Steigung bzw. Ganghöhe bzw. Schlaglänge s bedingt. Die Schlaglänge s ist hierbei derjenige axiale Abstand, auf dem sich ein Leiter 10, 12, 14, 16 einmal schraubenförmig vollständig um eine Längsachse des Sternvierer-Kabels windet. In Fig. 2 ist ein Koordinatensystem mit einer x-Achse 40 und einer y-Achse 42 dargestellt. Das Koordinatensystem 40, 42 ist derart angeordnet, dass der Ursprung 44 des Koordinatensystems 40, 42 genau auf der Längsachse des Sternvierer-Kabels liegt, so dass diese Längsachse eine z-Richtung im Raum für das Koordinatensystem 40, 42 bildet.The in the Fig. 1 and 2 illustrated, preferred embodiment of a star quad cable according to the invention comprises four conductors 10, 12, 14, 16, each having a core 18 made of an electrically conductive material and a conductor shell 20 made of an electrically insulating material. The conductors 10, 12, 14, 16 are twisted together to form a star quad array, ie at each point in the cross section of the four-wire cable are the conductors 10, 12, 14, 16 at a corner of a square 17. Each on a diagonal 19 of the square 17 opposite conductors 10, 12 and 14, 16 form a pair, ie the conductors 10, 12 form a first pair of conductors or a first conductor pair 12, 14 and the conductors 14, 16 form a second pair of conductors or a second pair of conductors 14, 16. The twist of the conductors 10, 12, 14, 16 is carried out with a predetermined stranding factor, which requires a corresponding pitch or pitch s. The lay length s is in this case the axial distance at which a conductor 10, 12, 14, 16 once helically winds completely around a longitudinal axis of the four-star cable. In Fig. 2 a coordinate system with an x-axis 40 and a y-axis 42 is shown. The coordinate system 40, 42 is arranged such that the origin 44 of the coordinate system 40, 42 lies exactly on the longitudinal axis of the star quad cable, so that this longitudinal axis forms a z-direction in space for the coordinate system 40, 42.

Bei der Signalübertragung wird mit dem ersten Leiterpaar 10, 12 ein erstes Signal und mit dem zweiten Leiterpaar 14, 16 ein zweites Signal übertragen. Durch eine entsprechende Phasenverschiebung zwischen dem ersten und zweiten Signal und die zuvor beschriebene räumliche Anordnung der Leiter 10, 12, 14, 16 relativ zueinander in einer Sternvierer-Anordnung wird in bekannter Weise eine hohe Übersprechdämpfung zwischen den beiden Leiterpaaren 10, 12 und 14, 16 erzielt. Bei einem sogenannten Differentiellen Mode haben die Signale auf den Leiterpaaren 10, 12 und 14, 16 eine Phasenverschiebung von 180°.In the signal transmission, a first signal is transmitted to the first pair of conductors 10, 12, and a second signal is transmitted to the second pair of conductors 14, 16. By a corresponding phase shift between the first and second signal and the previously described spatial arrangement of the conductors 10, 12, 14, 16 relative to each other in a star quad array is in a known manner, a high crosstalk attenuation between the two conductor pairs 10, 12 and 14, 16 achieved. In a so-called differential mode, the signals on the conductor pairs 10, 12 and 14, 16 have a phase shift of 180 °.

Die verseilten Leiter 10, 12,14, 16 radial außen umgebend ist ein Schirm 22 angeordnet, welcher aus diskreten bzw. einzelnen Schirmadern 23 aufgebaut ist. Ein Mantel 25 aus einem elektrisch isolierenden Werkstoff umgibt radial außen den gesamten Aufbau aus Leitern 10, 12, 14, 16 und Schirm 22. Zwischen den verseilten Leiterpaaren 10, 12 und 14, 16 einerseits und dem Schirm 22 andererseits ist ein zusätzlicher Isoliermantel 24 aus einem elektrisch isolierenden Werkstoff angeordnet. Dieser schafft einen zusätzlichen räumlichen Abstand in radialer Richtung zwischen den Adern 18 der Leiter 10, 12, 14, 16 einerseits und dem Schirm 22 andererseits. Der sich hierdurch ergebende Effekt wird nachfolgend unter Bezugnahme auf die Fig. 3 und 4 erläutert.The stranded conductor 10, 12,14, 16 radially surrounding the outside of a screen 22 is arranged, which is constructed of discrete or individual shield wires 23. A jacket 25 made of an electrically insulating material surrounds radially outside the entire structure of conductors 10, 12, 14, 16 and screen 22. Between the stranded conductor pairs 10, 12 and 14, 16 on the one hand and the screen 22 on the other hand, an additional insulating jacket 24 is made arranged an electrically insulating material. This creates an additional spatial distance in the radial direction between the wires 18 of the conductors 10, 12, 14, 16 on the one hand and the screen 22 on the other. The resulting effect will be described below with reference to FIGS Fig. 3 and 4 explained.

In Fig. 3 ist eine schematische Schnittansicht eines herkömmlichen Sternvierer-Kabels mit Leitern 10, 12, 14, 16 mit jeweiligen Adern 18 und Leitermänteln 20 sowie einem Schirm 22 dargestellt. Der Schirm 22 liegt dabei radial außen direkt auf den Leitermänteln 20 der Leiter 10, 12, 14, 16 auf, so dass sich ein minimaler radialer Abstand zwischen den Adern 18 und dem Schirm 22 ergibt. Mit Pfeilen ist die Verteilung eines elektrischen Feldes bei Übertragung entsprechender elektrischer Signale über die Leiter 10, 12, 14, 16 dargestellt, wobei das elektrische Feld um so stärker ist, je größer der jeweilige Pfeil dargestellt ist. Es ist aus Fig. 3 zu erkennen, dass sich ein starkes elektrisches Feld zwischen den Adern 18 des zweiten Leiterpaares 14, 16 und dem Schirm 22 ausbildet. Dies zeigt entsprechend hohe elektrische Ströme entlang des Schirmes 22 an, die nachfolgend kurz als "Schirmströme" bezeichnet werden. Hohe Schirmströme führen dazu, dass alle Einflüsse, die sich auf den Schirm 22 auswirken, eine hohe Beeinflussung der elektrischen Eigenschaften bzw. der Übertragungscharakteristik des Sternvierer-Kabels zur Folge haben. So führen beispielsweise Biege- und Torsionsbelastungen des Sternvierer-Kabels, die eine mechanische Verformung oder ggf. sogar Beschädigung des Schirms 22 zur Folge haben, zu einer starken Verschlechterung der elektrischen Eigenschaften bzw. der Übertragungscharakteristik des Sternvierer-Kabels, obwohl die Adern 18 des Sternvierer-Kabels von mechanischen Veränderungen bzw. Beschädigungen ggf. nicht betroffen sind. Weiterhin wird der Schirm 22 üblicherweise als Geflecht aus einzelnen Schirmadern 23 ausgebildet und Schirmströme müssen, um beispielsweise einer Ader 18 zu folgen, an Kontaktstellen von Schirmadern 23 von einer Schirmader 23 zu einer anderen Wechseln. Falls im Laufe der Zeit diese Kontaktstellen altern, kommt es zu einer sprechenden Behinderung des Stromflusses der Schirmströme und dadurch zu einer entsprechenden Verschlechterung der Übertragung von elektrischen Signalen durch das gesamte Sternvierer-Kabel, obwohl sich bei den Adern 18 selbst keine altersbedingte mechanische Verschlechterung eingestellt hat.In Fig. 3 a schematic sectional view of a conventional star quad cable with conductors 10, 12, 14, 16 with respective wires 18 and conductor shrouds 20 and a screen 22 is shown. The screen 22 is radially outward directly on the conductor shrouds 20 of the conductors 10, 12, 14, 16, so that there is a minimum radial distance between the wires 18 and the screen 22. Arrows show the distribution of an electric field when transmitting corresponding electrical signals via the conductors 10, 12, 14, 16, the greater the electric field, the larger the respective arrow is shown. It is off Fig. 3 to recognize that a strong electric field between the wires 18 of the second pair of conductors 14, 16 and the screen 22 is formed. This indicates correspondingly high electrical currents along the screen 22, which are referred to below as "screen currents". High shield currents lead to all the effects that affect the screen 22, a high influence on the electrical properties or the transmission characteristics of the quad-core cable result. For example, bending and torsional stresses of the star quad cable, which result in mechanical deformation or even damage to the screen 22, lead to a severe deterioration in the electrical characteristics of the four-wire cable, although the cores of the star quad Cable may not be affected by mechanical changes or damage. Furthermore, the screen 22 is usually formed as a mesh of individual shield wires 23 and shield currents must, for example, to follow a wire 18 at contact points of shield wires 23 from a shield wire 23 to another switch. If, over time, these contact points age, there is a meaningful impediment to the current flow of the shield currents and thereby a concomitant deterioration in the transmission of electrical signals throughout the entire quad-core cable, although no age-related mechanical degradation has occurred in the conductors 18 themselves ,

Fig. 4 zeigt in einer analogen Ansicht wie Fig. 3 die Verteilung des elektrischen Feldes für ein mit dem zusätzlichen Isolatormantel 24 ausgebildetes Sternvierer-Kabel. Hierbei hat der Schirm 22 durch den zwischen den Leitern 10, 12, 14, 16 einerseits und dem Schirm 22 andererseits angeordneten zusätzlichen Isoliermantel 24 einen größeren radialen Abstand von den Adern 18, als bei der herkömmlichen Ausführungsform eines Sternvierer-Kabels gemäß Fig. 3. Es zeigt sich aus Fig. 4, dass das elektrische Feld nunmehr zwischen den Leitern 10, 12, 14, 16 konzentriert ist. Dies bedeutet, dass sich bei einem erfindungsgemäßen Sternvierer-Kabel bei der Signalübertragung deutlich weniger Schirmströme ergeben. Dies hat zur Folge, dass die zuvor in Bezug auf Fig. 3 beschriebenen Effekte durch eine Verschlechterung des Schirms 22 bei dem erfindungsgemäß ausgebildeten Sternvierer-Kabel dementsprechend einen geringeren Einfluss auf die elektrischen Eigenschaften des Sternvierer-Kabels hinsichtlich der Signalübertragung haben. Eine Verschlechterung ist beispielsweise eine Erhöhung einer Dämpfung für ein Nutzsignal im Sternvierer-Kabel. Auch bei beschädigtem oder gealtertem Schirm 22 werden die Übertragungseigenschaften des Sternvierer-Kabels deutlich schwächer negativ beeinflusst. Mit anderen Worten ist das erfindungsgemäß ausgebildete Sternvierer-Kabel hinsichtlich der Übertragungseigenschaften für elektrische Signale erheblich resistenter gegen Beschädigung oder Alterung des Schirms 22. Fig. 4 shows in an analog view like Fig. 3 the distribution of the electric field for a star quad cable formed with the additional insulator jacket 24. Here, the screen 22 by the between the conductors 10, 12, 14, 16 on the one hand and the screen 22 on the other hand arranged additional Insulating jacket 24 a greater radial distance from the wires 18, as in the conventional embodiment of a star quad cable according to Fig. 3 , It turns out Fig. 4 in that the electric field is now concentrated between the conductors 10, 12, 14, 16. This means that with a star quad cable according to the invention significantly less screen currents result in the signal transmission. As a result, the previously with respect to Fig. 3 Accordingly, the effects described by a deterioration of the screen 22 in the star quad cable designed according to the invention accordingly have less of an influence on the electrical properties of the star quad cable in terms of signal transmission. For example, degradation is an increase in attenuation for a useful signal in the quad-core cable. Even if the screen 22 is damaged or aged, the transmission characteristics of the star quad cable are significantly less adversely affected. In other words, the star quad cable designed according to the invention is considerably more resistant to damage or aging of the screen 22 in terms of transmission characteristics for electrical signals.

In Fig. 5 und 6 ist jeweils auf einer horizontalen Achse 26 eine Frequenz in [GHz] und auf einer vertikalen Achse 28 eine Transmission in [dB] für elektrische Signale aufgetragen. Ein erster Graph 30 in Fig. 5 veranschaulicht die Transmission 28 in Abhängigkeit von der Frequenz 26 bei einer Signalübertragung im Gleichtakt ("common mode" - ohne Phasenverschiebung zwischen den Signalen auf den Leiterpaaren 10, 12 und 14, 16) und ein zweiter Graph 32 in Fig. 5 veranschaulicht die Transmission 28 in Abhängigkeit von der Frequenz 26 bei einer Signalübertragung im Gegentakt ("differential mode" - mit Phasenverschiebung zwischen Signalen auf den Leiterpaaren 10, 12 und 14, 16) jeweils für ein herkömmliches Sternvierer-Kabel gemäß Fig. 3. Ein dritter Graph 34 in Fig. 6 veranschaulicht die Transmission 28 in Abhängigkeit von der Frequenz 26 bei einer Signalübertragung im Gleichtakt ("common mode" - ohne Phasenverschiebung zwischen den Signalen auf den Leiterpaaren 10, 12 und 14, 16) und ein vierter Graph 36 in Fig. 6 veranschaulicht die Transmission 28 in Abhängigkeit von der Frequenz 26 bei einer Signalübertragung im Gegentakt ("differential mode" - mit Phasenverschiebung zwischen den Signalen auf den Leiterpaaren 10, 12 und 14, 16) jeweils für ein erfindungsgemäßes Sternvierer-Kabel gemäß Fig. 4. Die Graphen 30, 32, 34 und 36 sind jeweils aus Simulationen für die Anordnung gemäß der Fig. 3 und 4 gewonnen.In Fig. 5 and 6 For example, a frequency in [GHz] is plotted on a horizontal axis 26, and a transmission in [dB] is plotted on a vertical axis 28 for electrical signals. A first graph 30 in FIG Fig. 5 FIG. 12 illustrates the transmission 28 versus frequency 26 in common mode signal transmission (without phase shifting between the signals on the pairs of conductors 10, 12 and 14, 16) and a second graph 32 in FIG Fig. 5 FIG. 12 illustrates the transmission 28 versus frequency 26 in a differential mode signal (with phase shifting between signals on the pairs of conductors 10, 12 and 14, 16) for a conventional quad-core cable, respectively Fig. 3 , A third graph 34 in Fig. 6 FIG. 12 illustrates transmission 28 versus frequency 26 for common mode signal transmission (without phase shifting between the signals on the pairs of conductors 10, 12 and 14, 16) and a fourth graph 36 in FIG Fig. 6 Figure 4 illustrates the transmission 28 as a function of the frequency 26 in a differential mode signal (with phase shift between the signals on the conductor pairs 10, 12 and 14, 16) for a star quad cable according to the invention, respectively Fig. 4 , The Graphs 30, 32, 34 and 36 are each from simulations for the arrangement according to the Fig. 3 and 4 won.

Wie aus Fig. 5, zweiter Graph 32 ersichtlich ist, tritt bei einem herkömmlichen Sternvierer-Kabel ein Einbruch der Transmission im Gegentakt bei ca. 2,9 GHz auf. Dieser Einbruch ist bei einem erfindungsgemäßen Sternvierer-Kabel nicht mehr vorhanden, wie aus Fig. 6, vierter Graph 26 ersichtlich ist. Dieses Simulationsergebnis zeigt eindrucksvoll die durchschlagende und unerwartete Verbesserung der elektrischen Eigenschaften des erfindungsgemäßen Sternvierer-Kabels bei der Übertragung elektrischer Signale. Diese Verbesserung ist hier bereits vor eine Beschädigung oder Alterung des Schirmes gegeben.How out Fig. 5 , second graph 32 can be seen occurs in a conventional star quad cable break in the transmission in push-pull at about 2.9 GHz. This burglary is no longer present in a star quad cable according to the invention, as seen from Fig. 6 , fourth graph 26 can be seen. This simulation result impressively shows the resounding and unexpected improvement in the electrical properties of the star quad cable according to the invention in the transmission of electrical signals. This improvement is already given here before damage or aging of the screen.

Eine weitere Verbesserung der elektrischen Eigenschaften bzw. der Übertragungseigenschaften des Sternvierer-Kabeis für elektrische Signale wird dadurch erzielt, dass mindestens einzelne Schirmadern 23 jeweils einem der Leiter 10, 12, 14, 16 parallel folgen. Mit anderen Worten sind mindestens einzelne Schirmadern 23 mit derselben Schlaglänge s bzw. demselben Verseilungsfaktor verseilt, wie die Leiter 10, 12, 14, 16. Dies ist beispielhaft für eine Schirmader 23a in Fig. 7 dargestellt. In Fig. 7 ist auch die Schlaglänge s 46 veranschaulicht. Die Schirmader 23a windet sich durch die Verseilung schraubenartig derart radial um die Leiter 10, 12, 14, 16, dass die Schirmader 23a parallel zu dem Leiter 14 verläuft. Die genaue relative Anordnung zwischen der Schirmader 23a und dem Leiter 14 ist aus Fig. 2 ersichtlich. Die Schirmader 23a windet sich derart um die Leiter 10, 12, 14, 16, dass sich an jeder Stelle im Querschnitt des Sternvierer-Kabels der Leiter 14 und die Schirmader 23a auf einer gemeinsamen Diagonalen 19 befinden und die Schirmader 23a an einer Seite des Leiters 14 angeordnet ist, die von dem Quadrat 17 abgewandt ist. Durch diese Anordnung der Schirmader 23a kann ein dem Leiter 14 zugeordneter Schirmstrom ohne Übergang auf eine andere Schirmader 23 dem Leiter 14 folgen. Durch die Vermeidung von Übergangen des Schirmstromes von einer Schirmader 23 auf eine andere verbessert sich die elektrische Leitung des Schirmstromes über den Schirm 22 und damit verbessern sich insgesamt die elektrischen Eigenschaften bzw. die Übertragungscharakteristik des Sternvierer-Kabels für die Übertragung von elektrischen Signalen. Insbesondere ergibt sich beispielsweise eine geringe Dämpfung für das von dem erfindungsgemäßen Sternvierer-Kabel übertragenen elektrischen Nutzsignals.A further improvement of the electrical properties or the transmission characteristics of the star quad cable for electrical signals is achieved by at least individual shield wires 23 each following one of the conductors 10, 12, 14, 16 in parallel. In other words, at least individual shield conductors 23 are stranded with the same lay length s or the same stranding factor as the conductors 10, 12, 14, 16. This is exemplary of a shield core 23a in FIG Fig. 7 shown. In Fig. 7 also the stroke length s 46 is illustrated. The shield core 23a helically winds around the conductors 10, 12, 14, 16 through the stranding such that the shield core 23a extends parallel to the conductor 14. The exact relative arrangement between the shield wire 23a and the conductor 14 is off Fig. 2 seen. The shield core 23a winds around the conductors 10, 12, 14, 16 such that at each location in the cross-section of the quad-core cable the conductors 14 and the shield core 23a are on a common diagonal 19 and the shield core 23a on one side of the conductor 14 is arranged, which faces away from the square 17. By virtue of this arrangement of the shield core 23a, a shield current assigned to the conductor 14 can follow the conductor 14 without transition to another shield core 23. By avoiding transitions of the shielding current from one shielding core 23 to another, the electrical conduction of the shielding current across the shield 22 improves and overall the electrical properties and / or the transfer characteristic of the four-core cable for the transmission of electrical signals is improved. In particular, for example, results in a low Damping for the electrical useful signal transmitted by the star quad cable according to the invention.

Das Quadrat 17 hat beispielsweise eine Seitenlänge a 48 von 0,83 mm. Diese Seitenlänge a entspricht dem Abstand der Mittelpunkte von zwei benachbarten Leitern 10, 12, 14, 16. Ein Ortsvektor r Ader,n in dem Koordinatensystem 40, 42 mit der Längsachse des Sternvierer-Kabels als z-Richtung für die n-te Ader mit n = [1...4] lautet dann mit einem freien Parameter t = [0...1] für die z-Richtung und über eine Schlaglänge s r Ader , n = a 2 cos 2 π t + n - 1 π 2 a 2 sin 2 π t + n - 1 π 2 s t

Figure imgb0001
The square 17 has, for example, a side length a 48 of 0.83 mm. This side length a corresponds to the distance of the centers of two adjacent conductors 10, 12, 14, 16. A location vector r Ader, n in the coordinate system 40, 42 with the longitudinal axis of the star quad cable as z-direction for the n-th wire with n = [1 ... 4] is then given a free parameter t = [0 ... 1 ] for the z direction and over a strike length s r Vein . n = a 2 cos 2 π t + n - 1 π 2 a 2 sin 2 π t + n - 1 π 2 s t
Figure imgb0001

Ein entsprechender Ortsvektor r n Schirm

Figure imgb0002
in dem Koordinatensystem 40, 42 mit der Längsachse des Sternvierer-Kabels als z-Richtung für eine nSchirm-te Schirmader 23 bzw. 23a lautet dann mit einem freien Parameter t = [0... 1] für die z-Richtung und über eine Schlaglänge s r n Schirm = d Schirm 2 cos 2 π t + n Schirm - 1 Δ ϕ d Schirm 2 sin 2 π t + n Schirm - 1 Δ ϕ s t
Figure imgb0003

wobei dSchirm ein Durchmesser 50 einer Schirmader 23, 23a, nSchirm = [1...NSchirm], wobei NSchrim eine Gesamtzahl der Schirmadern ist, und Δ ϕ = N Schirm
Figure imgb0004
ein Winkel 52 zwischen der Diagonalen 19 des zugeordneten Leiters, in dem dargestellten Beispiel des Leiters 14, und einer Geraden 60 durch den Ursprung 44 ist, auf der die jeweilige Schirmader 23 liegt. Für die Schirmader 23a ist beispielsweise Δϕ = O°. Mit Δ ϕ = N Schirm
Figure imgb0005
eingesetzt ergibt sich r n Schirm = d Schirm 2 cos 2 π t + n Schirm - 1 N Schirm d Schirm 2 sin 2 π t + n Schirm - 1 N Schirm s t
Figure imgb0006
A corresponding location vector r n umbrella
Figure imgb0002
in the coordinate system 40, 42 with the longitudinal axis of the star quad cable as z-direction for a n screen -th screen wire 23 or 23a is then with a free parameter t = [0 ... 1] for the z-direction and over a strike length s r n umbrella = d umbrella 2 cos 2 π t + n umbrella - 1 Δ φ d umbrella 2 sin 2 π t + n umbrella - 1 Δ φ s t
Figure imgb0003

where d screen is a diameter 50 of a screen wire 23, 23a, n screen = [1 ... N screen ], where N scrim is a total number of screen wires, and Δ φ = N umbrella
Figure imgb0004
an angle 52 between the diagonal 19 of the associated conductor, in the illustrated example of the conductor 14, and a straight line 60 through the origin 44 on which the respective shield wire 23 lies. For the shield core 23a, for example, Δφ = 0 °. With Δ φ = N umbrella
Figure imgb0005
used results r n umbrella = d umbrella 2 cos 2 π t + n umbrella - 1 N umbrella d umbrella 2 sin 2 π t + n umbrella - 1 N umbrella s t
Figure imgb0006

Obwohl die Schirmader 23a bevorzugt für die Führung des dem Leiter 14 zugeordneten Schirmstromes ist, kann dieser Schirmstrom des Leiters 14 auch ggf. von einem der beiden zur Schirmader 23a benachbarten Schirmadern 23 geführt werden. Sollte also aufgrund einer Biege- oder Torsionsbelastung die Schirmader 23a beschädigt sein, kann der Schirmstrom trotzdem immer noch im wesentlichen parallel zum Leiter 14 über den Schirm 22 entlang der Schirmadern 23a fließen, ohne dabei einen Wechsel auf eine anderen Schirmader 23 durchführen zu müssen.Although the shield core 23a is preferred for guiding the shield current associated with the conductor 14, this shield current of the conductor 14 may also be guided by one of the two shield conductors 23 adjacent to the shield core 23a. Thus, should the shield core 23a be damaged due to bending or torsional loading, the shield current may still flow substantially parallel to the conductor 14 across the shield 22 along the shield conductors 23a without having to make a change to another shield core 23.

Eine Schlaglänge s 46 beträgt beispielsweise 40 mm. Ein Radius 54 des Schirmes 22 beträgt beispielsweise rSchirm = 1,5 mm. Ein Durchmesser 56 einer Ader 18 beträgt beispielsweise dAder = 0,48 mm. Ein Durchmesser 58 eines Leitermantels 20 beträgt beispielsweise dAderiso = a = 0,83 mm. Der Durchmesser 50 einer Schirmader 23, 23a beträgt beispielsweise dSchirm = 0,1 mm.A lay length s 46 is for example 40 mm. A radius 54 of the screen 22 is, for example, r screen = 1.5 mm. A diameter 56 of a wire 18 is for example d wire = 0.48 mm. A diameter 58 of a conductor shell 20 is for example d Aderiso = a = 0.83 mm. The diameter 50 of a shield core 23, 23a is, for example, d shield = 0.1 mm.

Optional ist zusätzlich radial außen auf dem Schirm 22 ein zweiter Schirm (nicht dargestellt) aus einem elektrisch leitenden Werkstoff angeordnet. Dieser zweite Schirm ist dadurch an seiner radial innen liegenden Seite elektrisch leitend mit dem Schirm 22 verbunden, so dass über den zweiten Schirm elektrische Ausgleichsströme fließen können. Hierdurch können mittels der Ausgleichsströme ggf. Fertigungstoleranzen ausgeglichen werden, die beispielsweise dazu führen, dass die Schirmader 23a nicht exakt parallel zu dem zugeordneten Leiter 14 (Fig. 2) verläuft. Es können mittels der Ausgleichsströme über den zweiten Schirm auch Alterungserscheinungen oder Beschädigungen des Schirms 22 entsprechend ausgeglichen werden.Optionally, a second screen (not shown) made of an electrically conductive material is additionally arranged radially on the outside of the screen 22. This second screen is thereby electrically conductively connected to the screen 22 on its radially inner side, so that electrical compensation currents can flow over the second screen. As a result, by means of the compensation currents, if necessary, manufacturing tolerances can be compensated which, for example, lead to the shield core 23a not being exactly parallel to the associated conductor 14 (FIG. Fig. 2 ) runs. By means of the equalizing currents over the second screen, aging phenomena or damage to the screen 22 can be compensated accordingly.

Claims (8)

  1. Star-quad cable for transmitting electrical signals which has at least two pairs of electrical conductors (10, 12, 14, 16), each conductor (10, 12, 14, 16) having a core (18) made of an electrically conductive material and a conductor sheath (20) made of an electrically insulating material which surrounds the core (18) in a radial position, the conductors (10, 12, 14, 16) being arranged at the corners of a square in a cross-section of the star-quad cable, the conductors (10, 12, 14, 16) making up a pair being arranged at diagonally opposed corners of the square, four conductors (10, 12, 14, 16) at a time being twisted together in a star-quad arrangement with a predetermined lay factor, a shield (22) made of a electrically conductive material which surrounds the two pairs of conductors (10, 12, 14, 16) on the outside radially being placed in position, an additional insulator sheath (24) made of an electrically insulating material being arranged between the conductors (10, 12, 14, 16) and the shield (22), and the shield (22) being constructed from a mesh of individual shield cores, characterised in that at least one, and in particular four, shield cores or at least one, and in particular four, bundles of shield cores are twisted to surround the conductors (10, 12, 14, 16) in a radial position in such a way that at least one of the twisted shield cores or at least one of the bundles of shield cores extends substantially parallel to a respective core (18) of a conductor (10, 12, 14, 16) in the axial direction, a shield core or a bundle of shield cores on the one hand and a respective core (18) on the other hand extending in parallel to one another in the axial direction in such a way that the shield core or the bundle of shield cores and the core (18) lie on the same diagonal of the square at all points along the cross-section of the cable and the shield core or the bundle of shield cores is arranged on a side of the core (18) which is remote from the square.
  2. Star-quad cable according to claim 1, characterised in that the shield cores or the bundles of shield cores are twisted with a lay factor which corresponds to a lay factor of the conductors (10, 12, 14, 16).
  3. Star-quad cable according to at least one of the preceding claims, characterised in that the cores (18) are made of copper.
  4. Star-quad cable according to at least one of the preceding claims, characterised in that a second shield which is conductively connected to the shield (22) electrically is arranged on the shield (22) outside it radially.
  5. Star-quad cable according to claim 4, characterised in that the second shield takes the form of a sheath or foil made of an electrically conductive material.
  6. Star-quad cable according to claim 4, characterised in that the second shield is constructed as a mesh of individual second shield cores.
  7. Star-quad cable according to claim 6, characterised in that the second shield cores are twisted in the opposite direction to the cores of the shield (22).
  8. Star-quad cable according to claim 7, characterised in that the second shield cores are twisted with a lay factor which corresponds to the lay factor of the cores of the shield.
EP20120707984 2011-04-14 2012-03-05 Star-quad cable with shield Not-in-force EP2697804B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202011005273U DE202011005273U1 (en) 2011-04-14 2011-04-14 Star quad cable with screen
PCT/EP2012/000981 WO2012139685A1 (en) 2011-04-14 2012-03-05 Star-quad cable with shield

Publications (2)

Publication Number Publication Date
EP2697804A1 EP2697804A1 (en) 2014-02-19
EP2697804B1 true EP2697804B1 (en) 2015-05-06

Family

ID=44658362

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20120707984 Not-in-force EP2697804B1 (en) 2011-04-14 2012-03-05 Star-quad cable with shield

Country Status (10)

Country Link
US (1) US9257215B2 (en)
EP (1) EP2697804B1 (en)
JP (1) JP5865481B2 (en)
KR (1) KR20140027209A (en)
CN (1) CN103534764B (en)
CA (1) CA2825672A1 (en)
DE (1) DE202011005273U1 (en)
HK (1) HK1192055A1 (en)
TW (1) TWM438689U (en)
WO (1) WO2012139685A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595099A1 (en) 2018-07-13 2020-01-15 Rosenberger Hochfrequenztechnik GmbH & Co. KG Conductor crosser

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202011004949U1 (en) * 2011-04-06 2012-07-09 Coroplast Fritz Müller Gmbh & Co. Kg Electrical line for transmitting data signals
DE202011005272U1 (en) * 2011-04-14 2011-12-20 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Star quad cable with screen
DE102013209224A1 (en) * 2013-05-17 2014-11-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. DEVICE WITH A DIFFERENTIAL AMPLIFIER CIRCUIT AND EXTRACTION CIRCUIT
DE102013019588A1 (en) * 2013-11-21 2015-05-21 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Method for transmitting a USB signal and USB transmission system
DE112015003073T5 (en) * 2014-06-30 2017-03-30 Yazaki Corporation Multiple cable
DE202015000753U1 (en) * 2015-01-30 2015-02-16 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Connector arrangement with sleeve part
KR101783865B1 (en) 2015-04-30 2017-10-10 주식회사 유라코퍼레이션 High voltage cable and method of Manufacturing the same
DE102016003134A1 (en) * 2016-03-15 2017-09-21 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Cable for transmitting electrical signals
JP2019079609A (en) * 2017-10-20 2019-05-23 株式会社オートネットワーク技術研究所 Utp cable, and connector
IT201800010156A1 (en) * 2018-11-08 2020-05-08 Prysmian Spa Fire resistant railway signaling cable
JP7279422B2 (en) * 2019-03-07 2023-05-23 株式会社プロテリアル Composite cable and composite harness
JP7192624B2 (en) * 2019-04-01 2022-12-20 日立金属株式会社 Rotation speed sensor
JP7487625B2 (en) 2020-09-25 2024-05-21 株式会社プロテリアル Composite cables and harnesses
TWI773440B (en) * 2021-07-15 2022-08-01 柯遵毅 Cable

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1725372U (en) * 1952-03-06 1956-07-05 Norddeutsche Kabelwerke A G SHIELDING FOR HIGH FREQUENCY CABLES AND LINES.
DE1019727B (en) * 1952-05-07 1957-11-21 Siemens Ag Symmetrical high-frequency cable with a shield made of metallic braiding
DE1490692A1 (en) * 1964-10-27 1969-07-03 Siemens Ag A symmetrical cable consisting of a single stranding element with a single twist length, in particular a flexible carrier frequency cable
NO174488C (en) * 1992-02-12 1994-05-11 Alcatel Stk As Cable for transmitting power and signals
DE9218768U1 (en) * 1992-04-28 1995-10-26 Daetwyler Ag electric wire
JPH11144532A (en) * 1997-11-11 1999-05-28 Furukawa Electric Co Ltd:The Telecommunication cable
DE20016527U1 (en) * 2000-09-23 2000-11-30 Alcatel Sa Electrical installation line
JP4228172B2 (en) * 2001-10-25 2009-02-25 住友電気工業株式会社 Signal transmission cable, terminal device, and data transmission method using the same
JP2006019080A (en) * 2004-06-30 2006-01-19 Hitachi Cable Ltd Differential signal transmission cable
WO2008041708A1 (en) * 2006-10-02 2008-04-10 Oki Electric Cable Co., Ltd. Motor drive cable with high frequency leak current return wire, nonshield cable with low inductance return wire, and motor drive control system using that cable
CN201327733Y (en) * 2008-12-19 2009-10-14 常熟泓淋电线电缆有限公司 High-speed parallel symmetrical data cable
JP5351642B2 (en) * 2009-02-27 2013-11-27 日立電線株式会社 cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3595099A1 (en) 2018-07-13 2020-01-15 Rosenberger Hochfrequenztechnik GmbH & Co. KG Conductor crosser

Also Published As

Publication number Publication date
CN103534764B (en) 2016-03-30
EP2697804A1 (en) 2014-02-19
US9257215B2 (en) 2016-02-09
DE202011005273U1 (en) 2011-08-23
US20140014393A1 (en) 2014-01-16
TWM438689U (en) 2012-10-01
WO2012139685A1 (en) 2012-10-18
JP5865481B2 (en) 2016-02-17
CA2825672A1 (en) 2012-10-18
KR20140027209A (en) 2014-03-06
HK1192055A1 (en) 2014-08-08
JP2014515162A (en) 2014-06-26
CN103534764A (en) 2014-01-22

Similar Documents

Publication Publication Date Title
EP2697804B1 (en) Star-quad cable with shield
EP3224838B1 (en) Cable comprising braided pairs of strands
EP3430633B1 (en) Cable for transmitting electrical signals
WO2007045345A1 (en) Three-core cable
DE102014223119B4 (en) Data cable and method for producing a data cable
EP3285266B1 (en) Cable with adapted stranding
EP2697803B1 (en) Star-quad cable having a shield
WO2017076984A1 (en) Data cable and use of the data cable in a motor vehicle
DE202011105000U1 (en) Electro-optical cable
DE102018104117A1 (en) Plug connections with high frequency applications
EP2989641B1 (en) High-speed data cable
DE112012001687T5 (en) harness
EP0825620A2 (en) Flexible electrical power line
WO2012110072A1 (en) Cable with stranded conductor pairs
DE10152166C2 (en) Electrical line
EP3595099B1 (en) Conductor crosser
EP2124232B1 (en) Electrical cable for connecting to mobile consumer loads
WO2020193162A1 (en) Cable for electrical data transmission and production method for a cable
DE102020110370A1 (en) Cable for electrical data transmission
DE4307807A1 (en) Electrical data transmission element
DD290737A5 (en) HIGH FREQUENCY MULTIPLE LINE
EP1028435A2 (en) Data cable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130724

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141104

RIC1 Information provided on ipc code assigned before grant

Ipc: H01B 11/00 20060101AFI20141017BHEP

Ipc: H01B 11/10 20060101ALN20141017BHEP

Ipc: H01B 7/18 20060101ALN20141017BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 726195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003061

Country of ref document: DE

Effective date: 20150618

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150506

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150907

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150807

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003061

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150506

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20160209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160305

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160305

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170530

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180327

Year of fee payment: 7

Ref country code: CH

Payment date: 20180328

Year of fee payment: 7

Ref country code: FI

Payment date: 20180328

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 726195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120305

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180326

Year of fee payment: 7

Ref country code: IT

Payment date: 20180322

Year of fee payment: 7

Ref country code: SE

Payment date: 20180328

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170305

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012003061

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190306

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190305

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230524