EP2686746B1 - Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows - Google Patents
Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows Download PDFInfo
- Publication number
- EP2686746B1 EP2686746B1 EP20120709635 EP12709635A EP2686746B1 EP 2686746 B1 EP2686746 B1 EP 2686746B1 EP 20120709635 EP20120709635 EP 20120709635 EP 12709635 A EP12709635 A EP 12709635A EP 2686746 B1 EP2686746 B1 EP 2686746B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- core
- regulator
- coil
- air gap
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims description 39
- 230000004907 flux Effects 0.000 claims description 22
- 230000001939 inductive effect Effects 0.000 claims description 6
- 230000000295 complement effect Effects 0.000 claims description 4
- 238000009738 saturating Methods 0.000 claims description 4
- 239000003638 chemical reducing agent Substances 0.000 claims 1
- 230000001052 transient effect Effects 0.000 description 21
- 230000033228 biological regulation Effects 0.000 description 9
- 230000004224 protection Effects 0.000 description 8
- 230000007547 defect Effects 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 7
- 230000008901 benefit Effects 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 235000021590 normal diet Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/12—Regulating voltage or current wherein the variable actually regulated by the final control device is ac
- G05F1/32—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/10—Regulating voltage or current
- G05F1/12—Regulating voltage or current wherein the variable actually regulated by the final control device is ac
- G05F1/32—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices
- G05F1/325—Regulating voltage or current wherein the variable actually regulated by the final control device is ac using magnetic devices having a controllable degree of saturation as final control devices with specific core structure, e.g. gap, aperture, slot, permanent magnet
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F29/00—Variable transformers or inductances not covered by group H01F21/00
- H01F29/14—Variable transformers or inductances not covered by group H01F21/00 with variable magnetic bias
Definitions
- the present invention relates to a voltage regulator adapted to be connected in series between, on the one hand, an alternating source and, on the other hand, a load, comprising a magnetic circuit comprising a first core and a second core parallel to each other, at least one first inductive coil wound around the first core and connected on the one hand to the alternative source and on the other hand to the load, and at least one voltage converter having a second coil wound around the second core.
- FIG. 1 there are known alternative electrical networks (for example of high voltage transport, medium and low voltage distribution, as well as the industrial internal supply networks of the factories) which comprise at least one voltage regulator 10, adapted to be connected in series between an alternative S source and a C load.
- at least one voltage regulator 10 adapted to be connected in series between an alternative S source and a C load.
- the voltage of the networks is frequently degraded, especially as one moves away from the source (such as for example a mean voltage drop, a flicker, a generation of harmonics or voltage dips), and the known regulator 10 allows voltage regulation, in order to correct the voltage of the connected loads at the end of the network.
- the known regulator 10 comprises a magnetic circuit 2 comprising a first core 21 and a second core 22, parallel to each other. It also comprises at least a first inductive coil 1 wound around the first core 21 and connected on the one hand to the source S and on the other hand to the load C. Finally, it comprises at least one electronic voltage converter 4 comprising a second coil 7 wound around the second core 22.
- a magnetic circuit 2 comprising a first core 21 and a second core 22, parallel to each other. It also comprises at least a first inductive coil 1 wound around the first core 21 and connected on the one hand to the source S and on the other hand to the load C. Finally, it comprises at least one electronic voltage converter 4 comprising a second coil 7 wound around the second core 22.
- the converter 4 makes it possible to regulate the voltage at the terminals Bc of the load when it is coupled, via the second coil 7, to the first coil 1 which has an inductance L.
- the magnetic flux F A of the first coil 1 closes in the circuit 2 on the first core 21 and the second core 22.
- the assembly formed by the first coil 1, the circuit 2 and the second coil 7 constitutes a voltage transformer which couples the converter 4 with the first coil 1 in series and upstream of the load C.
- the converter 4 can therefore regulate the voltage at the terminals Bc of the load C.
- the aforementioned electrical networks are inevitably subject to defects D (accident, equipment failure, lightning ... and in general any overcurrent (short-circuit) that can cross the regulator), especially since a dozen years, the risks of default increase due to aging networks.
- the connection to the networks of new types of installations increases the power of the short circuits in the networks in the event of a fault.
- the amplitude of the short-circuit currents is thus of the order of a few kA up to several tens or hundreds of kA, depending on the types of networks. Currents of high amplitude can damage the networks, and in particular the converter 4.
- a known solution consists in providing an electromechanical decoupling device for the converter 4 and the first coil 1.
- the converter must therefore be decoupled by switches.
- the nominal current corresponding to a three-phase load C of 1 MVA is of the order of 30A, while the amplitude of the short-circuit can reach several hundred amperes (10 times the rated current), or even several thousand amperes .
- a voltage regulation of plus or minus 10% corresponds to a single-phase voltage variation of the order of 1 kV, a permanent power of the converter 4 of the order of 30kVA.
- the characteristics of the switches of the converter must be such that they can convey a single-phase power of the order 300kVA, or more in case of short circuits of several thousand amperes. Such switches are consequently very expensive.
- the invention proposes to overcome at least one of these disadvantages.
- the invention has many advantages.
- the invention provides a voltage regulator for regulating a voltage across a load on the grid in normal operation, and for decoupling a regulator converter from the mains and a control source of the regulator, to protect them from voltage currents. short circuit in the event of a fault.
- the regulator of the invention finds its voltage regulation function, without any maintenance, while network returns to its normal regime.
- the high performance of the regulator of the invention makes it possible to reduce correspondingly the performance of the cut-off devices associated with it in the network.
- the invention therefore makes it possible to provide an inexpensive network protection device, especially since it may not comprise superconducting material.
- the controller can include a passive or active control, even intelligent, depending on the type of network, the type of protection device and the amplitude of the normal, transient and fault currents. This control is performed from a direct current injected into a specific winding for magnetically saturating, locally, the magnetic circuit.
- the invention is such that the continuous ampere-turns supplying the saturation coil of the magnetic circuit of the regulator are small, since the local saturation of the magnetic circuit (to form a virtual gap V E) is obtained easily (the perimeter of the holes on which the winding is coiled is weak).
- a superconducting material may be used for the auxiliary winding, but it is not essential.
- the saturation auxiliary winding time constant may be low to quickly shut off the DC current and change the state of the Virtual Gap quickly.
- the advantage of the invention is that the voltage converter and the DC source of the air gap EV are magnetically decoupled, as long as the fault lasts.
- FIGS. 2A, 2B , 2C , 3A and 3B schematically represent a possible embodiment of a voltage regulator 10 according to the invention.
- the regulator 10 is adapted to be connected in series between, on the one hand, an alternating source S and, on the other hand, a load C.
- the assembly formed by the source S, the regulator 10 and the load C thus forms an electrical network.
- the return of the current (normal or fault) to the source S is not shown in the simplified diagrams.
- the present invention thus relates to an alternating network, powered by a source S of voltage regulated power.
- the voltage regulator 10 adapted to be connected in series, makes it possible to correct the voltage of the load C connected at the end of the network.
- the regulator 10 which is the subject of the invention is located between an upstream network which comprises the source S of power (and which may comprise charges not represented on the figures) and a downstream network that includes charge C.
- the regulator 10 serves to regulate the voltage downstream, that is to say and for simplicity, at the terminals Bc of a load C.
- the regulator 10 comprises a magnetic circuit 2 embodied by a plate.
- the plate may be one-piece, or may comprise a superposition of magnetic sheets 28.
- the plate has external peripheral outlines, and includes a first window 23 defining internal peripheral contours 26 of the plate, and a second window 24 defining internal peripheral contours 27 of the plate.
- the circuit 2 also comprises a first core 21, delimited by the contours 26 and 27 of the plate, and a second core 22, delimited by the contours 25 and 26 of the plate, the first core 21 and the second core 22 being preferentially but not limitatively parallel to each other.
- It also comprises at least a first inductive coil 1 wound around the first core 21 and connected on the one hand to the source S and on the other hand to the load C.
- At least one electronic voltage converter 4 comprising a second coil 7 wound around the second core 22.
- the converter 4 is known to those skilled in the art and is not described in detail later in this description.
- the converter 4 is preferably an electronic switching converter, with components supporting a large power (including insulated gate bipolar transistors or "IGBT insulated gate bipolar transistors" in the terminology of the art) and switching frequencies greater than 1 kHz.
- the circuit 2 comprises a third decoupling core 3.
- the third core 3 extends at least partially on a side opposite to the second core 22 relative to the first core 21.
- the first core 21 is located between the second core 22 and the second core 22. the third decoupling core 3.
- the third core 3 may however be located in any way with respect to the first core 21 and the second core 22.
- Circuit 2 also has a virtual gap EV.
- the auxiliary winding 6 can create a magnetomotive force FAt c corresponding to continuous ampere-turns.
- the magnetomotive force FAt c is equal to the product of the number of turns of the winding 6 by the continuous current in amperes which passes through them.
- the magnetomotive force FAt c thus created by the winding 6 can magnetically saturate the third core 3, locally at the air gap EV.
- the continuous ampere-turns (At) supplying the winding 6 are relatively small. They are between 500 At and several thousand At, depending on the diameter of the holes 5 and according to the characteristic of variation of the magnetic induction B as a function of the magnetic field H in the circuit 2.
- the winding 6 may be of superconductive material, but this is not essential.
- the virtual dimension of the air gap EV increases with the value of ampere-turns.
- the core 3 may in particular comprise a plurality of virtual gaps EV), and, within each pair 50, to modify the shape, the diameter, and the position of the holes 5.
- the increase in the number of holes does not significantly modify the impedance values of the coil 1 or the coil 6, nor the order of magnitude of the total number of At necessary to saturate the air gap EV during normal operation.
- the preference may respond to manufacturing facilities of circuit 2 or coil 1 or winding 6 or control functions of source 8.
- Rectangular shapes of holes tend to increase harmonic currents. Here again, preference will be able to respond to manufacturing facilities.
- the regulator 10 according to the invention operates between at least two states.
- a first state is schematically represented on the Figures 2A and 3A , and is a state in which the virtual air gap EV is open and magnetically opens the magnetic circuit 2 by magnetically saturating the third decoupling core 3 locally.
- the magnetic flux in the third core 3 is low (leak flow) because it is interrupted by the virtual gap EV.
- the auxiliary winding 6 is supplied with direct current to saturate the periphery of the holes 5 arranged inside the third core 3. This local saturation is equivalent to the opening of the core 3 by a mechanical gap.
- the magnetic flux F A in the second core 22 is important: the converter 4 is then magnetically coupled to the first coil 1, via the second coil 7, so that the regulator 10 can regulate a voltage in the load C.
- a second state is schematically represented on the Figures 2B and 3B , and is a state in which the virtual gap EV is closed and magnetically closes the magnetic circuit 2 at the third decoupling core 3.
- the magnetic flux Fc in the third core 3 is important because the virtual gap EV is closed, while the flux embraced by the coil 6 is negligible, due to the symmetrical arrangement of the holes 5.
- the magnetic flux (leakage flux) in the second core 22 is small: as shown in FIG. figure 3B the converter 4 is then decoupled from the first coil 1, so that the regulator 10 no longer regulates the voltage in the load C, but is not damaged by a fault in the network.
- the second coil 7 is short-circuited to obtain equivalence to the opening 70 of the core 22.
- the regulator 10 is then adapted to the needs of the network (transmission network, distribution network or industrial network) and the variety of power ranges (normal and short-circuit power).
- the third state corresponds to an intermediate regime of the network, in which the alternating current is slightly greater than the current nominal load.
- the intermediate regime we therefore have the following condition: Has at > Has vs .
- the circuit 2 is then partially desaturated at the gap VE of the third core 3, and a part of the alternating magnetic flux F A (imposed by FAt a ) flows in the third core 3 in combination with the continuous flow Fc (imposed by FAt c ). All the windings are then magnetically coupled.
- the opening of the air gap EV in normal network or the closing of the air gap EV during a fault on the network can be passive or active or so-called intelligent.
- the limiter 10 comprises a passive control 60 of the opening and closing of the air gap EV.
- the passive control 60 comprises a permanent connection between the source 8 and the winding 6, in accordance with the Figures 2A, 2B and 2C .
- the passive control 60 uses the closing of the air gap EV, by desaturation of the circuit 2 at the air gap EV due to the fact that the force FAt a is very high compared to the force FAt c , because of the defect at the the network and the strong current flowing through the coil 1.
- the intensity of the direct current flowing through the coil 6, fixed prior to the fault, is the only parameter for adjusting the level of desaturation of the third core 3 .
- the source 8 is in a manner known to those skilled in the art protected against overcurrents and overvoltages that develop during transient network conditions and during defects.
- an active command 60 for opening and closing the air gap EV shown in FIG. figure 4 .
- the regulator 10 comprises an active control 60 of the opening and closing of the air gap EV.
- the active control 60 comprises a switch 61 between the source 8 and the coil 6.
- the detector 62 compares the amplitude of the fault current with that of a setting threshold.
- the switch 61 opens and the regulator 10 passes in a few milliseconds in its second state (closed EV).
- the detector 62 closes the switch 61.
- the active control 60 advantageously comprises an inductive current cutout overvoltage limiter 63, connected in parallel with the source 8, for example a zinc oxide arrester (ZnO), and / or a freewheeling diode in series with a resistor both known to those skilled in the art.
- an inductive current cutout overvoltage limiter 63 connected in parallel with the source 8, for example a zinc oxide arrester (ZnO), and / or a freewheeling diode in series with a resistor both known to those skilled in the art.
- control 60 is connected to a source 8 comprising a variator 81 of the intensity of the current in the winding 6.
- the drive 81 is an electronic power converter, known to those skilled in the art, which delivers a current comprising a component continuous, but may also include alternative components, especially at twice the network frequency.
- the command 60 controls the drive 81 which then makes the regulator 10 pass through.
- the magnetic operating state 1, 2 or 3 most adapted to the context.
- the command 60 can also be remotely controlled to take into account the operation of the protection devices of the network, or even modify its adjustment thresholds as needed.
- the drive 81 is advantageously provided with protection devices, known to those skilled in the art, against overcurrents and overvoltages.
- the Figures 6A and 6B schematically represent functions of a regulator according to the invention, with reference to the three magnetic states of the airgap EV.
- the winding 7 of the converter 4 can remain open for the duration of the fault or, preferably, be short-circuited to help push the magnetic flux to the air gap EV.
- This short-circuiting is equivalent to an opening of the magnetic circuit 70, as shown in FIG. figure 3B . It can be provided by the converter 4 itself or by complementary components, including converter protections known to those skilled in the art.
- the converter 4 is also in an intermediate state of partial decoupling during the normal transient period.
- Table 1 summarizes the magnetic states of the air gap EV and those of the voltage converter 4.
- Table 1 Amplitude of the alternating current of the network Normal diet (In) Normal transient regime (2 to 3 In) Default (5 to 10 In or more)
- Two operating modes with the EV air gap in active order Regulated voltage Open air gap EV Totally decoupled converter Air gap EV closed
- Two operating modes with the EV air gap in passive control Regulated voltage Open air gap EV Partially regulated voltage, according to converter design and control Partially decoupled converter VE gap in intermediate state
- Three operating regimes with the EV gap in three possible magnetic states Regulated voltage Open air gap EV Partially regulated voltage, according to the design and control of the converter Partially decoupled converter VE gap in intermediate state Totally decoupled converter Air gap EV closed
- the three-speed device is desirable.
- control 60 controls the DC source 8 and the voltage converter 4 in a coordinated manner.
- the command 60 sends a voltage regulation setpoint 601 to the electronic converter 4, and a regulation setpoint 602 to the source 8.
- the control of the intermediate state of the air gap EV is done by the current variation in the winding 6, the current comprising a DC component and harmonic components.
- the source 8 may also advantageously comprise a current converter.
- the converter 4 must be decoupled quickly from the network when a fault arises.
- the Figure 8B shows indeed that it can be a normal transient regime (network operation, load variation, etc.), and in this case there is a return to a normal regime in a time typically of the order of a few milliseconds.
- Figure 8C shows that the intensity can be extreme (from 5 to 10 In or more) and alternative with a period corresponding to the period of the network voltage, for example 20ms, and therefore correspond to a defect.
- One of the advantages of a regulator 10 according to the invention is to size the power of the voltage converter for the purpose of regulation only, whatever the amplitude and the duration of the defects, in particular to reduce the fluctuations of voltages, the distortions harmonics, the effects of "flicker", and even offset all or part of the voltage dips.
- the source 8 is sized to provide the permanent ohmic losses of the winding 6 and to hold the transient fast switching of the air gap EV transient situation which is also represented on the Figure 2C .
- the choice of the ratio of the number of turns of the first coil 1 to the number of turns of the second coil 7 makes it possible to optimize the cost of the voltage converter 4 by adapting to the performance of the electronic equipment on the market, but also by benefiting from advances in switching speed (> kHz), withstand voltage (> kV) and withstand current (> kA).
- the number of turns of the winding 6 is related to the characteristics of the circuit 2 to obtain a speed of control of the air gap EV of the order of one millisecond for a 50 Hz or 60 Hz industrial network.
- the first core 21, a possible section reduction 210 and the second core 22 must not be magnetically saturated.
- the magnetic circuit 2 must be closed to ensure good coupling between the second coil 7 of the converter 4 and the first coil 1. It is therefore necessary to avoid the mechanical gaps along the flow path F A (as also represented on the Figure 2A ).
- the first core 21 may be saturated in order to limit the magnetic flux.
- the first core 21 may include a section reduction 210.
- the excess flow following the transient or fault can be channeled by a complementary core 220 connected by at least one gap 221 to the magnetic circuit 2.
- the first coil 1 then surrounds the cores 21 and 220.
- the figure 10A represents an equivalent circuit diagram of the regulator 10, with impedances L NEV , L NU and L NR respectively representative of the nuclei N EV (3), N U (22) and N R (21) of the Figure 9A .
- the air gap EV is open, the inductance L NEV of the third core 3 is of low value.
- the voltage converter 4 regulates the voltage U by compensating for the voltage drop in the inductance L NEV .
- the air gap EV is not completely closed.
- the current of the network (of intensity between 1 to 3 In) flows partly by the saturable inductance L NR and partly in the branch composed of the inductance L NEV (controlled by the source 8 of direct current I ), in series with the converter 4 delivering the voltage U (for an intensity of 0 to 2 In, depending on the performance of the source 8 and the converter 4).
- the air gap EV is closed and the inductance L NEV limits the current in the voltage converter 4. This current is then lower than In, or very low, depending on the sizing and operating choices of the regulator.
- the second coil is short-circuited to contribute to the opening 70 of the core 22 (as shown schematically on the figure 3B ): the voltage U represented on the figure 10D is then zero.
- the regulator 10 thus comprises a function for limiting the fault current.
- the figure 12 shows that according to a first embodiment, the first coil 1 consists of a first part 1a, wrapping around the first core 21, and a second part 1b, winding in the same winding direction, around a part of the circuit 2, called the yoke, between the first core 21 and the third core 3, for example in the vicinity of the holes 5.
- the third core 3 is opened by the air gap EV, and the inductance L1b of the second part 1b of the first coil 1 is of low value. It introduces a low voltage drop ⁇ Vcc which can be compensated by the voltage converter 4.
- the inductances L1a and L1b of the parts 1a and 1b of the coil 1 are traversed by the same flux F C which closes by the third core 3.
- the voltage drops ⁇ Vcc depend on the number of turns of the parts 1a and 1b of the first coil 1 and are added in parts 1a and 1b according to the square of the numbers N1a and N1b of turns, namely NOT ⁇ 1 ⁇ at + NOT ⁇ 1 ⁇ b 2 .
- the figure 13 showing a longitudinal section, seen from above, of the circuit 2, shows that according to a second embodiment, to increase the voltage drop ⁇ Vcc without changing the number of turns, it is necessary to increase the flow F C , in particular by increasing the section of the first core 21.
- the circuit 2 comprises an auxiliary magnetic circuit 200 comprising a frame comprising a core 212 and a core NF, parallel to each other and to the first core 21, and a mechanical air gap EM.
- the increase in flux F C in the first coil 1 does not therefore require increasing the section of the first core.
- the voltage drop ⁇ Vcc1, due to the first core 21, is increased by ⁇ Vcc2, due to the auxiliary circuit 200 ( ⁇ Vcc2 is adjustable by the mechanical gap EM).
- Another embodiment also making it possible to limit the fault current consists in adding in series with the regulator a separate inductance of the latter.
- the voltage regulator can compensate for the voltage drop in this series inductance.
- the figure 15 shows the relation between the effective voltage across the load and the effective current of the regulator, when a limiting function is provided by the regulator or by a separate inductance. It is understood that to optimize the construction of the regulator, the skilled person may prefer another arrangement of the windows 23 and 24 made with the cores and yokes, to facilitate for example the connection to the output terminals, or to meet the requirement of resistance to dielectric tests (lightning shock).
- a multiphase regulator or regulator-limiter and in particular three-phase, can be based on the grouping of several identical single-phase units or on the design of a multiphase magnetic circuit, in the rules of the art known to those skilled in the art.
- One of the aims of such an embodiment is to reduce the mass and bulk of the magnetic circuit.
- Another goal it may be to obtain different performances in direct mode and in zero sequence mode, especially when the sources of voltage disturbances and / or faults are different in these modes, in particular because of the types of grounding of the AC network.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Dc-Dc Converters (AREA)
- Ac-Ac Conversion (AREA)
- Emergency Protection Circuit Devices (AREA)
Description
La présente invention concerne un régulateur de tension, adapté pour être branché en série entre d'une part une source alternative et d'autre part une charge, comportant un circuit magnétique comportant un premier noyau et un deuxième noyau parallèles entre eux, au moins une première bobine inductive bobinée autour du premier noyau et reliée d'une part à la source alternative et d'autre part à la charge, et au moins un convertisseur de tension comportant une deuxième bobine bobinée autour du deuxième noyau.The present invention relates to a voltage regulator adapted to be connected in series between, on the one hand, an alternating source and, on the other hand, a load, comprising a magnetic circuit comprising a first core and a second core parallel to each other, at least one first inductive coil wound around the first core and connected on the one hand to the alternative source and on the other hand to the load, and at least one voltage converter having a second coil wound around the second core.
Comme le montre la
En effet, la tension des réseaux est fréquemment dégradée, d'autant plus que l'on s'éloigne de la source (comme par exemple une chute de tension moyenne, un papillotement (« flicker » en anglais), une génération d'harmoniques ou des creux de tension), et le régulateur 10 connu permet une régulation de tension, afin de corriger la tension des charges raccordées en bout de réseau.Indeed, the voltage of the networks is frequently degraded, especially as one moves away from the source (such as for example a mean voltage drop, a flicker, a generation of harmonics or voltage dips), and the
A cet effet, le régulateur 10 connu comporte un circuit magnétique 2 comportant un premier noyau 21 et un deuxième noyau 22, parallèles entre eux. Il comporte également au moins une première bobine 1 inductive bobinée autour du premier noyau 21 et reliée d'une part à la source S et d'autre part à la charge C. Il comporte enfin au moins un convertisseur 4 électronique de tension comportant une deuxième bobine 7 bobinée autour du deuxième noyau 22. Un tel régulateur est décrit dans le document
Le convertisseur 4 permet de réguler la tension aux bornes Bc de la charge lorsqu'il est couplé, via la deuxième bobine 7, à la première bobine 1 qui présente une inductance L.The
En régime normal, c'est-à-dire sans défaut dans le réseau, le flux magnétique FA de la première bobine 1 se ferme dans le circuit 2 sur le premier noyau 21 et le deuxième noyau 22.Under normal conditions, that is to say without faults in the network, the magnetic flux F A of the
Dans ce cas, l'ensemble formé par la première bobine 1, le circuit 2 et la deuxième bobine 7 constitue un transformateur de tension qui couple le convertisseur 4 avec la première bobine 1 en série et en amont de la charge C.In this case, the assembly formed by the
Le convertisseur 4 peut donc réguler la tension aux bornes Bc de la charge C.The
Les réseaux électriques précités sont inévitablement l'objet de défauts D (accident, défaillance de matériel, foudre... et d'une manière générale toute surintensité (court-circuit) qui peut traverser le régulateur), d'autant que depuis une dizaine d'années, les risques de défaut augmentent du fait du vieillissement des réseaux.The aforementioned electrical networks are inevitably subject to defects D (accident, equipment failure, lightning ... and in general any overcurrent (short-circuit) that can cross the regulator), especially since a dozen years, the risks of default increase due to aging networks.
Simultanément, le raccordement aux réseaux de nouveaux types d'installations, comme des installations décentralisées de production d'énergie (les fermes éoliennes par exemple), fait augmenter la puissance des courts-circuits dans les réseaux en cas de défaut. L'amplitude des courants de court-circuit est ainsi de l'ordre de quelques kA jusqu'à plusieurs dizaines ou centaines de kA, selon les types de réseaux. Les courants de forte amplitude peuvent endommager les réseaux, et notamment le convertisseur 4.At the same time, the connection to the networks of new types of installations, such as decentralized energy production installations (eg wind farms), increases the power of the short circuits in the networks in the event of a fault. The amplitude of the short-circuit currents is thus of the order of a few kA up to several tens or hundreds of kA, depending on the types of networks. Currents of high amplitude can damage the networks, and in particular the
Une solution connue consiste à prévoir un dispositif de découplage électromécanique du convertisseur 4 et de la première bobine 1.A known solution consists in providing an electromechanical decoupling device for the
Cette solution n'est cependant pas optimale. En effet dans le cas d'un convertisseur de tension raccordé en série à l'aide d'un transformateur connu, la pleine tension de défaut apparaît très rapidement à ses bornes, en cas de défaut, ce qui peut l'endommager.This solution is not optimal, however. Indeed, in the case of a voltage converter connected in series using a known transformer, the full fault voltage appears very quickly at its terminals, in the event of a fault, which can damage it.
Le convertisseur doit donc être découplé par des interrupteurs.The converter must therefore be decoupled by switches.
Prenons, à titre d'exemple, un réseau connu triphasé de 20 kV, avec une tension monophasée de l'ordre de 11,5 kV. Le courant nominal correspondant à une charge C triphasée de 1 MVA est de l'ordre de 30A, tandis que l'amplitude du court-circuit peut atteindre plusieurs centaines d'Ampères (10 fois le courant nominal), voire plusieurs milliers d'Ampères.Take, for example, a known three-phase network of 20 kV, with a single-phase voltage of the order of 11.5 kV. The nominal current corresponding to a three-phase load C of 1 MVA is of the order of 30A, while the amplitude of the short-circuit can reach several hundred amperes (10 times the rated current), or even several thousand amperes .
Or une régulation de tension de plus ou moins 10% correspond à une variation de tension monophasée de l'ordre de 1 kV, soit une puissance permanente du convertisseur 4 de l'ordre de 30kVA.Or a voltage regulation of plus or minus 10% corresponds to a single-phase voltage variation of the order of 1 kV, a permanent power of the
Pour être opérationnels pendant toute la durée d'un défaut de l'ordre de dix fois le courant nominal, les caractéristiques des interrupteurs du convertisseur doivent être telles qu'ils puissent véhiculer une puissance monophasée de l'ordre 300kVA, voire plus en cas de courts-circuits de plusieurs milliers d'Ampères. De tels interrupteurs sont par conséquents très onéreux.To be operational during the entire duration of a fault of the order of ten times the nominal current, the characteristics of the switches of the converter must be such that they can convey a single-phase power of the order 300kVA, or more in case of short circuits of several thousand amperes. Such switches are consequently very expensive.
L'invention propose de pallier au moins un de ces inconvénients.The invention proposes to overcome at least one of these disadvantages.
A cet effet, l'invention propose un régulateur de tension, adapté pour être branché en série entre d'une part une source alternative et d'autre part une charge, comportant
un circuit magnétique comportant un premier noyau et un deuxième noyau,
au moins une première bobine inductive bobinée au moins partiellement autour du premier noyau et reliée d'une part à la source alternative et d'autre part à la charge, et
au moins un convertisseur de tension comportant une deuxième bobine bobinée autour du deuxième noyau,
le régulateur étant caractérisé en ce que
le circuit comporte
un troisième noyau de découplage, et
un entrefer virtuel, l'entrefer virtuel comportant
- au moins une paire de trous dans le troisième noyau de découplage, et
- un bobinage se bobinant entre les trous de chaque paire de trous, et relié à une source de courant continu,
- un premier état dans lequel l'entrefer virtuel est ouvert en saturant magnétiquement le troisième noyau de découplage, le flux magnétique dans le troisième noyau étant faible, et la deuxième bobine du convertisseur étant couplée à la première bobine, de sorte que le régulateur puisse réguler une tension dans la charge, et
- un deuxième état dans lequel l'entrefer virtuel est fermé, le flux magnétique dans l'entrefer virtuel du troisième noyau étant important, de sorte que le convertisseur soit découplé de la première bobine.
a magnetic circuit comprising a first core and a second core,
at least a first inductive coil wound at least partially around the first core and connected on the one hand to the alternative source and on the other hand to the load, and
at least one voltage converter having a second coil wound around the second core,
the regulator being characterized in that
the circuit comprises
a third decoupling core, and
a virtual gap, the virtual gap including
- at least one pair of holes in the third decoupling core, and
- a coil winding between the holes of each pair of holes, and connected to a direct current source,
- a first state in which the virtual gap is open by magnetically saturating the third decoupling core, the magnetic flux in the third core being low, and the second coil of the converter being coupled to the first coil, so that the regulator can regulate a voltage in the load, and
- a second state in which the virtual gap is closed, the magnetic flux in the virtual gap of the third core being important, so that the converter is decoupled from the first coil.
L'invention est avantageusement complétée par les caractéristiques suivantes, prises seules ou en une quelconque de leur combinaison techniquement possible :
- le régulateur est en outre adapté pour fonctionner selon un troisième état dans lequel l'entrefer virtuel est partiellement ouvert en désaturant partiellement le troisième noyau, de sorte que le convertisseur soit partiellement découplé de la première bobine ;
- il comporte une commande passive ou active ou intelligente de l'ouverture, totale ou partielle, ou de la fermeture, totale ou partielle, de l'entrefer virtuel ;
- la commande passive comporte une liaison permanente entre la source de courant continu et le bobinage ;
- la commande active comporte un interrupteur commandé par un détecteur entre la source de courant continu et le bobinage ;
- la commande intelligente commande une source de courant continu comportant un variateur relié au bobinage ;
- le premier noyau comporte
- une réduction de section, ou
- un noyau complémentaire relié par un entrefer mécanique au circuit magnétique ;
- la première bobine se compose d'une première partie, s'enroulant autour du premier noyau, et d'une deuxième partie, s'enroulant autour d'une partie du circuit comprise entre le premier noyau et le troisième noyau, le régulateur présentant ainsi également une fonction de limiteur de courant ;
- le circuit comporte un circuit magnétique auxiliaire comportant un cadre comportant au moins un noyau et un entrefer mécanique, la première bobine s'enroulant autour du premier noyau et du noyau du cadre, le régulateur présentant ainsi également une fonction de limiteur de courant,
- le régulateur est adapté pour être mis en série avec une bobine limitatrice de courant.
- the regulator is further adapted to operate in a third state in which the virtual gap is partially open by partially desaturating the third core, so that the converter is partially decoupled from the first coil;
- it comprises a passive or active or intelligent control of the opening, total or partial, or the closure, total or partial, of the virtual gap;
- the passive control comprises a permanent connection between the DC power source and the winding;
- the active control comprises a switch controlled by a detector between the DC power source and the winding;
- the intelligent control controls a DC power source having a dimmer connected to the winding;
- the first core comprises
- a section reduction, or
- a complementary core connected by a mechanical gap to the magnetic circuit;
- the first coil consists of a first part, wrapping around the first core, and a second part, wrapping around a part the circuit between the first core and the third core, the controller thus also having a current limiting function;
- the circuit comprises an auxiliary magnetic circuit comprising a frame comprising at least one core and a mechanical air gap, the first coil winding around the first core and the core of the frame, the regulator thus also having a current limiting function,
- the regulator is adapted to be put in series with a current limiting coil.
L'invention présente de nombreux avantages.The invention has many advantages.
L'invention fournit un régulateur de tension permettant de réguler une tension aux bornes d'une charge sur le réseau en régime normal, et permettant de découpler du réseau un convertisseur du régulateur et une source de commande du régulateur, pour les protéger des courants de court-circuit en cas de défaut. Le régulateur de l'invention retrouve cependant sa fonction de régulation de tension, sans aucune maintenance, alors que réseau revient à son régime normal.The invention provides a voltage regulator for regulating a voltage across a load on the grid in normal operation, and for decoupling a regulator converter from the mains and a control source of the regulator, to protect them from voltage currents. short circuit in the event of a fault. The regulator of the invention, however, finds its voltage regulation function, without any maintenance, while network returns to its normal regime.
Dans le cas où il comporte de plus une fonction de limitation de courant de défaut, les grandes performances du régulateur de l'invention permettent de réduire d'autant les performances des organes de coupure qui lui sont associés dans le réseau. L'invention permet donc de fournir un dispositif de protection des réseaux peu onéreux, notamment car il peut ne pas comporter de matériau supraconducteur.In the case where it also comprises a fault current limiting function, the high performance of the regulator of the invention makes it possible to reduce correspondingly the performance of the cut-off devices associated with it in the network. The invention therefore makes it possible to provide an inexpensive network protection device, especially since it may not comprise superconducting material.
Le régulateur peut comporter une commande passive ou active, voire intelligente, selon le type de réseau, le type de dispositif de protection et l'amplitude des courants alternatifs normaux, transitoires et de défauts. Cette commande est réalisée à partir d'un courant continu injecté dans un bobinage spécifique destiné à saturer magnétiquement, de manière locale, le circuit magnétique.The controller can include a passive or active control, even intelligent, depending on the type of network, the type of protection device and the amplitude of the normal, transient and fault currents. This control is performed from a direct current injected into a specific winding for magnetically saturating, locally, the magnetic circuit.
L'invention est telle que les ampères-tours continus alimentant le bobinage de saturation du circuit magnétique du régulateur soient faibles, puisque la saturation locale du circuit magnétique (pour former un Entrefer Virtuel EV) est obtenue facilement (le périmètre des trous sur lesquels le bobinage est bobiné est faible). A cet égard, un matériau supraconducteur peut être utilisé pour le bobinage auxiliaire, mais il n'est pas indispensable.The invention is such that the continuous ampere-turns supplying the saturation coil of the magnetic circuit of the regulator are small, since the local saturation of the magnetic circuit (to form a virtual gap V E) is obtained easily (the perimeter of the holes on which the winding is coiled is weak). In this respect, a superconducting material may be used for the auxiliary winding, but it is not essential.
La constante de temps du bobinage auxiliaire de saturation peut être faible pour couper rapidement le courant continu et changer l'état de l'Entrefer Virtuel rapidement.The saturation auxiliary winding time constant may be low to quickly shut off the DC current and change the state of the Virtual Gap quickly.
L'avantage de l'invention est que le convertisseur de tension et la source de courant continu de l'entrefer EV sont magnétiquement découplés, aussi longtemps que dure le défaut.The advantage of the invention is that the voltage converter and the DC source of the air gap EV are magnetically decoupled, as long as the fault lasts.
Lorsque l'Entrefer Virtuel est dans son état intermédiaire, tous les bobinages sont couplés.When the Virtual Airlock is in its intermediate state, all the windings are coupled.
D'autres caractéristiques, buts et avantages de l'invention ressortiront de la description qui suit, qui est purement illustrative et non limitative, et qui doit être lue en regard des dessins annexés sur lesquels :
- la
figure 1 , déjà commentée, représente schématiquement un réseau connu comportant un régulateur de tension ; - les
figures 2A, 2B et2C représentent schématiquement un mode de réalisation possible d'un régulateur selon l'invention, dans un réseau, avec les flux magnétiques correspondants aux différents états de l'entrefer EV ; - les
figures 3A et 3B représentent schématiquement les principes de couplage d'un mode de réalisation possible d'un régulateur selon l'invention, dans un réseau ; - la
figure 4 représente schématiquement une commande active d'un régulateur selon l'invention ; - la
figure 5 représente schématiquement une commande intelligente d'un régulateur selon l'invention ; - la
figure 6A représente l'évolution de la tension efficace du réseau côté source en fonction du temps ; - la
figure 6B représente l'évolution de la tension efficace du réseau côté charge en fonction du courant efficace de réseau ; - la
figure 7 représente schématiquement une commande d'un régulateur selon l'invention ; - les
figures 8A à 8C représentent schématiquement différents cas de variation du courant instantané en fonction du temps ; - les
figures 9A et 9B représentent schématiquement des circuits magnétiques selon l'invention ; - les
figures 10A à 10D représentent schématiquement des schémas équivalents d'un régulateur selon l'invention, en fonction du courant dans le réseau ; - la
figure 11 représente schématiquement un circuit selon l'invention composé par une superposition de tôles magnétiques ; - la
figure 12 représente schématiquement une première variante d'un mode de réalisation d'un régulateur selon l'invention, présentant ainsi une fonction de limitation du courant ; - la
figure 13 représente schématiquement une deuxième variante d'un mode de réalisation d'un régulateur selon l'invention, présentant ainsi une fonction de limitation du courant ; - la
figure 14 représente schématiquement un régulateur de tension comportant également un limiteur de courant ; et - la
figure 15 représente la limitation du courant sur une courbe de l'évolution de la tension efficace du réseau côté charge en fonction du courant efficace de réseau.
- the
figure 1 , already commented, schematically shows a known network comprising a voltage regulator; - the
Figures 2A, 2B and2C schematically represent a possible embodiment of a regulator according to the invention, in a network, with the magnetic flux corresponding to the different states of the air gap EV; - the
Figures 3A and 3B schematically represent the coupling principles of a possible embodiment of a regulator according to the invention, in a network; - the
figure 4 schematically represents an active control of a regulator according to the invention; - the
figure 5 schematically represents an intelligent control of a regulator according to the invention; - the
Figure 6A represents the evolution of the effective voltage of the source-side network as a function of time; - the
Figure 6B represents the evolution of the RMS voltage on the load side as a function of the RMS current; - the
figure 7 schematically represents a control of a regulator according to the invention; - the
Figures 8A to 8C schematically represent different cases of variation of the instantaneous current as a function of time; - the
Figures 9A and 9B schematically represent magnetic circuits according to the invention; - the
Figures 10A to 10D schematically represent equivalent diagrams of a regulator according to the invention, as a function of the current in the network; - the
figure 11 schematically represents a circuit according to the invention composed by a superposition of magnetic sheets; - the
figure 12 schematically represents a first variant of an embodiment of a regulator according to the invention, thus having a function of limiting the current; - the
figure 13 schematically represents a second variant of an embodiment of a regulator according to the invention, thus having a function of limiting the current; - the
figure 14 schematically represents a voltage regulator also comprising a current limiter; and - the
figure 15 represents the limitation of the current on a curve of the evolution of the effective voltage of the network on the load side as a function of the network rms current.
Sur l'ensemble des figures, les éléments similaires portent des références numériques identiques.In all the figures, similar elements bear identical reference numerals.
Les
Le régulateur 10 est adapté pour être branché en série entre d'une part une source S alternative et d'autre part une charge C.The
L'ensemble formé par la source S, le régulateur 10 et la charge C forme donc un réseau électrique. Le retour du courant (normal ou de défaut) vers la source S n'est pas représenté sur les schémas simplifiés. La présente invention concerne donc un réseau alternatif, alimenté par une source S de puissance régulée en tension.The assembly formed by the source S, the
Le régulateur 10 de tension, adapté pour être branché en série, permet de corriger la tension de la charge C raccordée en bout de réseau.The
Dans les développements qui suivent, pour des raisons de clarté et de simplicité d'explication, le régulateur 10 objet de l'invention se trouve entre un réseau amont qui comporte la source S de puissance (et qui peut comporter des charges non représentées sur les figures) et un réseau aval qui comporte la charge C.In the following developments, for the sake of clarity and simplicity of explanation, the
Le régulateur 10 a pour fonction de réguler la tension en aval, c'est à dire et pour simplifier, aux bornes Bc d'une charge C.The
On comprend que l'invention s'applique bien entendu à des réseaux réels, et notamment triphasés, où les défauts (toute surintensité ou court-circuit pouvant traverser le régulateur) se produisent entre phases et/ou entre phase et terre.It will be understood that the invention naturally applies to real networks, and in particular three-phase networks, where the faults (any over-current or short-circuit that can cross the regulator) occur between phases and / or between phase and earth.
De manière classique, le régulateur 10 comporte un circuit magnétique 2 matérialisé par une plaque. La plaque peut être monobloc, ou peut comporter une superposition de tôles 28 magnétiques.In a conventional manner, the
La plaque comporte des contours 25 périphériques externes, et comporte une première fenêtre 23 délimitant des contours 26 périphériques internes de la plaque, et une deuxième fenêtre 24 délimitant des contours 27 périphériques internes de la plaque.The plate has external peripheral outlines, and includes a
Le circuit 2 comporte également un premier noyau 21, délimité par les contours 26 et 27 de la plaque, et un deuxième noyau 22, délimité par les contours 25 et 26 de la plaque, le premier noyau 21 et le deuxième noyau 22 étant préférentiellement mais non limitativement parallèles entre eux.The
Il comporte également au moins une première bobine 1 inductive bobinée autour du premier noyau 21 et reliée d'une part à la source S et d'autre part à la charge C.It also comprises at least a first
Enfin il comporte au moins un convertisseur 4 électronique de tension comportant une deuxième bobine 7 bobinée autour du deuxième noyau 22.Finally, it comprises at least one
Le convertisseur 4 est connu de l'homme du métier et n'est pas décrit en détail dans la suite de la présente description.The
On précise cependant que le convertisseur 4 est préférentiellement un convertisseur électronique à découpage, avec des composants supportant une grande puissance (notamment des transistors bipolaires à porte isolée ou « IGBT, insulated gate bipolar transistors » selon la terminologie de l'homme du métier) et des fréquences de découpage supérieures à 1 kHz.It is specified however that the
Le circuit 2 comporte un troisième noyau 3 de découplage.The
Sur un mode de réalisation particulier mais non limitatif, le troisième noyau 3 s'étend au moins partiellement d'un côté opposé au deuxième noyau 22 par rapport au premier noyau 21. Ainsi, le premier noyau 21 est situé entre le deuxième noyau 22 et le troisième noyau 3 de découplage.In a particular but nonlimiting embodiment, the
Le troisième noyau 3 peut cependant se situer de manière quelconque par rapport au premier noyau 21 et au deuxième noyau 22.The
Le circuit 2 comporte également un entrefer virtuel EV.
L'entrefer virtuel EV comporte
- au moins une paire 50 de trous 5 dans le troisième noyau 3 de découplage, et
un bobinage 6 auxiliaire se bobinant entre les trous 5 de chaque paire 50 de trous 5, et relié à unesource 8 de courant continu.
- at least one
pair 50 ofholes 5 in thethird decoupling core 3, and - an auxiliary winding 6 wound between the
holes 5 of eachpair 50 ofholes 5, and connected to asource 8 of direct current.
De même, du fait de son bobinage autour du troisième noyau 3 entre les trous 5 et du fait qu'il peut être parcouru par un courant continu, le bobinage 6 auxiliaire peut créer une force magnétomotrice FAtc correspondant à des ampères-tours continus. La force magnétomotrice FAtc est égale au produit du nombre de spires du bobinage 6 par le courant continu en ampères qui les parcourt. La force magnétomotrice FAtc ainsi créée par le bobinage 6 peut saturer magnétiquement le troisième noyau 3, localement au niveau de l'entrefer EV.Similarly, because of its winding around the
Les ampères-tours (At) continus alimentant le bobinage 6 sont relativement faibles. Ils sont compris entre 500 At et plusieurs milliers d'At, selon le diamètre des trous 5 et en fonction de la caractéristique de variation de l'induction magnétique B en fonction du champ magnétique H dans le circuit 2.The continuous ampere-turns (At) supplying the winding 6 are relatively small. They are between 500 At and several thousand At, depending on the diameter of the
Il y a donc des pertes et des échauffements relativement faibles dans le bobinage 6. Si des courants beaucoup plus importants sont souhaités, le bobinage 6 peut être en matériau supraconducteur, mais cela n'est pas indispensable.There are therefore losses and relatively low temperatures in the winding 6. If much larger currents are desired, the winding 6 may be of superconductive material, but this is not essential.
La dimension virtuelle de l'entrefer EV augmente avec la valeur des ampères-tours.The virtual dimension of the air gap EV increases with the value of ampere-turns.
D'une manière générale, il est possible de modifier le nombre de paires 50 sur le noyau 3 (le noyau 3 peut notamment comporter une pluralité d'entrefers virtuels EV), et, au sein de chaque paire 50, de modifier la forme, le diamètre, et la position des trous 5.In general, it is possible to modify the number of
L'augmentation du nombre de trous ne modifie pas considérablement les valeurs des impédances de la bobine 1 ou du bobinage 6, ni l'ordre de grandeur du nombre d'At total nécessaire à la saturation de l'entrefer EV en fonctionnement normal. La préférence pourra répondre à des facilités de fabrication du circuit 2 ou de la bobine 1 ou du bobinage 6 ou des fonctionnalités de commande de la source 8.The increase in the number of holes does not significantly modify the impedance values of the
Des formes rectangulaires des trous ont tendance à augmenter les courants harmoniques. Là encore, la préférence pourra répondre à des facilités de fabrication.Rectangular shapes of holes tend to increase harmonic currents. Here again, preference will be able to respond to manufacturing facilities.
Le régulateur 10 selon l'invention fonctionne entre au moins deux états.The
Un premier état est représenté schématiquement sur les
Comme le montre la
Pour réaliser la saturation locale, le bobinage auxiliaire 6 est alimenté en courant continu pour saturer le pourtour des trous 5 aménagés à l'intérieur du troisième noyau 3. Cette saturation locale est équivalente à l'ouverture du noyau 3 par un entrefer mécanique.To achieve local saturation, the auxiliary winding 6 is supplied with direct current to saturate the periphery of the
Au contraire, le flux magnétique FA dans le deuxième noyau 22 est important: le convertisseur 4 est alors magnétiquement couplé à la première bobine 1, via la deuxième bobine 7, de sorte que le régulateur 10 puisse réguler une tension dans la charge C.On the contrary, the magnetic flux F A in the
Dans le premier état, on a donc :
Un deuxième état est représenté schématiquement sur les
Comme le montre la
Au contraire, le flux magnétique (flux de fuites) dans le deuxième noyau 22 est faible : comme le montre la
Dans le deuxième état, on a donc :
Pour avoir cette situation, il faut
- qu'il y ait un courant de court-circuit de grande amplitude dans le réseau (FAta est donc très importante), et/ou
- que le courant traversant le bobinage 6 soit nul (on a alors FAtc égale à 0).
- there is a short-circuit current of great amplitude in the network (FAt a is therefore very important), and / or
- that the current flowing through the winding 6 is zero (then FAt c is equal to 0).
Dans une conception optimale du régulateur, le découplage du convertisseur 4 et de la bobine 1 peut s'effectuer en un temps de l'ordre de 1 ms, ce qui permet :
- de mettre en sécurité le convertisseur 4 et
la source 8 de l'entrefer EV (découplage magnétique), - de réduire l'énergie des courants transitoires de commutation du convertisseur et des dispositifs de commande et de protection,
- de revenir rapidement en mode de régulation normal, si la variation de courant est due à un transitoire comme, par exemple, une impulsion haute fréquence.
- à l'enclenchement sur le réseau de transformateurs,
- au démarrage de moteurs sur le réseau,
- etc.
- to secure the
converter 4 and thesource 8 of the air gap EV (magnetic decoupling), - to reduce the energy of the transient switching currents of the converter and the control and protection devices,
- to return quickly to normal regulation mode, if the current variation is due to a transient such as, for example, a high frequency pulse.
- when switching on the transformer network,
- when starting engines on the network,
- etc.
Le régulateur 10 est alors adapté aux besoins du réseau (réseau de transport, réseau de distribution ou réseau industriel) et à la variété des gammes de puissance (régime normal et puissance de court-circuit).The
C'est pour cette raison qu'il existe un troisième état de fonctionnement, en variante optionnelle.It is for this reason that there is a third state of operation, as an optional variant.
Le troisième état correspond à un régime intermédiaire du réseau, dans lequel le courant alternatif est légèrement supérieur au courant nominal de la charge. Dans le régime intermédiaire, on a donc la condition suivante :
Comme le montre la
L'ouverture de l'entrefer EV en régime normal du réseau ou la fermeture de l'entrefer EV lors d'un défaut sur le réseau peut être passive ou active ou dite intelligente.As shown in
The opening of the air gap EV in normal network or the closing of the air gap EV during a fault on the network can be passive or active or so-called intelligent.
On décrit dans un premier temps une commande passive de l'ouverture et de la fermeture de l'entrefer EV.Initially described a passive control of the opening and closing of the air gap EV.
Dans ce cas, le limiteur 10 comporte une commande 60 passive de l'ouverture et de la fermeture de l'entrefer EV.In this case, the
La commande 60 passive comporte une liaison permanente entre la source 8 et le bobinage 6, conforme aux
La commande passive 60 utilise la fermeture de l'entrefer EV, par désaturation du circuit 2 au niveau de l'entrefer EV due au fait que la force FAta est très élevée par rapport à la force FAtc, en raison du défaut au niveau du réseau et du fort courant qui traverse la bobine 1.The
Il s'agit d'un fonctionnement passif, sans besoin de contrôle de la commande passive 60. L'intensité du courant continu traversant le bobinage 6, fixée préalablement au défaut, est le seul paramètre de réglage du niveau de désaturation du troisième noyau 3.This is a passive operation, without the need for control of the
La source 8 est de manière connue de l'homme du métier protégée contre les surintensités et les surtensions qui se développent pendant les régimes transitoires du réseau et pendant les défauts.The
On décrit dans un deuxième temps une commande 60 active de l'ouverture et de la fermeture de l'entrefer EV, représentée sur la
Dans ce cas, le régulateur 10 comporte une commande 60 active de l'ouverture et de la fermeture de l'entrefer EV.In this case, the
La commande 60 active comporte un interrupteur 61 entre la source 8 et le bobinage 6.The
L'interrupteur 61 peut
- jouer le rôle d'une liaison entre
la source 8 et le bobinage 6 (on est alors dans premier état de fonctionnement du régulateur), ou - annuler le courant continu dans le bobinage 6 (FAtc est alors d'intensité nulle, et on est alors dans le deuxième état de fonctionnement du régulateur par exemple).
- acting as a link between the
source 8 and the winding 6 (it is then in the first operating state of the regulator), or - cancel the DC current in the winding 6 (FAt c is then zero intensity, and it is then in the second operating state of the regulator for example).
Le détecteur 62 compare l'amplitude du courant de défaut à celui d'un seuil de réglage.The
Il est ainsi possible de faire fonctionner le régulateur 10 dans le troisième état, dans une plage de courant de défaut légèrement supérieur au courant en régime normal, mais inférieur au seuil. Au-delà du seuil, l'interrupteur 61 s'ouvre et le régulateur 10 passe en quelques millisecondes dans son deuxième état (EV fermé).It is thus possible to operate the
Lorsque le défaut est éliminé, le détecteur 62 referme l'interrupteur 61.When the fault is eliminated, the
La commande 60 active comporte avantageusement un limiteur 63 de surtension de coupure de courant inductif, branché en parallèle de la source 8, par exemple un parafoudre à oxyde de zinc (ZnO), et/ou une diode de roue libre en série avec une résistance, tous deux connus de l'homme du métier.The
On décrit dans un troisième temps une commande intelligente, représentée schématiquement sur la
Le variateur 81 est un variateur électronique de puissance, connu de l'homme du métier, qui délivre un courant comportant une composante continue, mais peut aussi comporter des composantes alternatives, notamment au double de la fréquence du réseau.The
Selon la valeur du courant du réseau mesurée par la commande 60 (régime normal, ou intensité du courant légèrement supérieure au courant en régime normal, ou enfin court-circuit), la commande 60 commande le variateur 81 qui fait alors passer le régulateur 10 dans l'état magnétique de fonctionnement 1, 2 ou 3 le plus adapté au contexte.Depending on the value of the mains current measured by the command 60 (normal speed, or intensity of the current slightly higher than the current in normal mode, or finally short circuit), the
La commande 60 peut aussi être télécommandée pour prendre en compte le fonctionnement des dispositifs de protection du réseau, voire modifier ses seuils de réglage selon les besoins.The
Le variateur 81 est avantageusement pourvu de dispositifs de protection, connu de l'homme du métier, contre les surintensités et surtensions.
Les
The
Pour les défauts d'amplitude extrême (ici très élevé, typiquement de 5 à 10 fois le courant nominal dans le réseau, référencé par In), il faut découpler rapidement le convertisseur 4 de tension en fermant magnétiquement l'entrefer EV. Le flux généré par le courant de défaut se referme principalement par le troisième noyau 3 au niveau de l'entrefer EV.For extreme amplitude faults (here very high, typically 5 to 10 times the rated current in the network, referenced by I n ), it is necessary to decouple the
Le bobinage 7 du convertisseur 4 peut rester ouvert pendant la durée du défaut ou, de préférence, être mis en court-circuit pour contribuer à repousser le flux magnétique vers l'entrefer EV. Cette mise en court-circuit est équivalente à une ouverture du circuit magnétique 70, comme le montre la
Pour les régimes transitoires normaux (avec un courant légèrement supérieur à un courant nominal, typiquement de 2 à 3 fois le courant nominal In dans le réseau) deux options sont possibles :
- découpler totalement et rapidement le convertisseur 4 comme dans le cas des courants de court-circuit, référencés par Icc, extrêmes,
- maintenir l'entrefer EV dans un état intermédiaire.
- completely and quickly decoupling the
converter 4 as in the case of short-circuit currents, referenced by I cc , extremes, - maintain the air gap EV in an intermediate state.
Le flux généré par le courant transitoire se referme alors en partie du côté de l'entrefer EV (proportion X%) et pour l'autre partie (proportion 100-X%) du côté du convertisseur 4.The flux generated by the transient current then closes partly on the side of the air gap EV (proportion X%) and for the other part (proportion 100-X%) on the side of the
Ceci demande des performances sensiblement supérieures pour le convertisseur 4 et pour la source 8, mais la régulation présente alors l'avantage de répondre aux régimes transitoires normaux sans de brusques sauts de tension. Le convertisseur 4 se trouve aussi dans un état intermédiaire de découplage partiel pendant la durée du régime transitoire normal.This requires significantly higher performance for the
Le tableau 1 ci-dessous résume les états magnétiques de l'entrefer EV et ceux du convertisseur 4 de tension.
Le choix de réalisation d'un régulateur à deux ou trois régimes de fonctionnement dépend du contexte.The choice of embodiment of a regulator with two or three operating regimes depends on the context.
Ainsi, pour un réseau affecté de régimes transitoires normaux très fréquents et dont la charge est sensible aux variations de tension, le dispositif à trois régimes est souhaitable.Thus, for a network affected by normal transient regimes that are very frequent and whose load is sensitive to voltage variations, the three-speed device is desirable.
Inversement, si les régimes transitoires sont rares, le surcoût de conception du régulateur n'est pas justifié.Conversely, if the transient regimes are rare, the additional design cost of the regulator is not justified.
De même, dans le cas où les défauts extrêmes n'existent pas, en raison de la faiblesse du réseau, une commande 60 passive de l'entrefer EV peut être intéressante.Similarly, in the case where the extreme defects do not exist, because of the weakness of the network, a
De manière préférentielle, la commande 60 commande la source continue 8 et le convertisseur 4 de tension de manière coordonnée.Preferably, the
Comme le montre schématiquement la
Le contrôle de l'état intermédiaire de l'entrefer EV se fait par la variation de courant dans le bobinage 6, le courant comportant une composante continue et des composantes harmoniques. La source 8 peut également comporter avantageusement un convertisseur de courant.The control of the intermediate state of the air gap EV is done by the current variation in the winding 6, the current comprising a DC component and harmonic components. The
Le cas de la réalisation du dispositif par un ensemble ayant trois régimes de fonctionnement peut donc se faire avec une commande 60 intelligente qui gère les fonctionnements d'un convertisseur de tension et d'un convertisseur de courant.The case of the embodiment of the device by an assembly having three operating speeds can therefore be done with an
Dans tous les cas, il faut découpler rapidement le convertisseur 4 du réseau à l'apparition d'un défaut.In any case, the
Comme le montre la
La
Au contraire, la
Un des avantages d'un régulateur 10 selon l'invention est de dimensionner la puissance du convertisseur de tension pour les besoins de régulation uniquement, quelles que soient l'amplitude et la durée des défauts, notamment pour réduire les fluctuations de tensions, les distorsions harmoniques, les effets du "flicker", et voire compenser en tout ou partie les creux de tension.One of the advantages of a
La source 8 est dimensionnée pour fournir les pertes ohmiques permanentes du bobinage 6 et pour tenir le transitoire de commutation rapide de l'entrefer EV, situation transitoire qui est également représentée sur la
Le choix du rapport du nombre de spires de la première bobine 1 sur le nombre de spires de la deuxième bobine 7, permet d'optimiser le coût du convertisseur 4 de tension en s'adaptant aux performances des matériels électroniques du marché, mais aussi en bénéficiant des progrès en matière de rapidité de commutation (>kHz), de tenue en tension (>kV) et de tenue en courant (>kA).The choice of the ratio of the number of turns of the
Le nombre de spires du bobinage 6 est lié aux caractéristiques du circuit 2 pour obtenir une rapidité de commande de l'entrefer EV de l'ordre de la milliseconde pour un réseau industriel 50 Hz ou 60 Hz.The number of turns of the winding 6 is related to the characteristics of the
A titre d'exemple :For exemple :
La
The
Comme le montre la
Le circuit magnétique 2 doit être fermé pour assurer un bon couplage entre la deuxième bobine 7 du convertisseur 4 et la première bobine 1. Il faut donc éviter les entrefers mécaniques le long du trajet de flux FA (comme représenté également sur la
En régime transitoire, et a fortiori pendant les défauts extrêmes, il faut absolument éviter les entrefers mécaniques le long du trajet de flux FC (comme représenté sur la
Cependant, en régime transitoire et a fortiori pendant les défauts extrêmes, le premier noyau 21 peut être saturé afin de limiter le flux magnétique. A cet effet, le premier noyau 21 peut comporter une réduction 210 de section.However, under transient conditions, and even more so during extreme faults, the
Dans un autre mode de réalisation représenté sur la
La
The
Comme le montre la
Comme le montre la
Comme le montre la
Comme le montre la
On présente ici deux modes de réalisation pour obtenir ce résultat.Two embodiments are presented here to obtain this result.
La
En régime normal, le troisième noyau 3 est ouvert par l'entrefer EV, et l'inductance L1b de la deuxième partie 1 b de la première bobine 1 est de faible valeur. Elle introduit une chute ΔVcc de tension faible qui peut être compensée par le convertisseur 4 de tension.In normal operation, the
En régime de défaut, les inductances L1a et L1b des parties 1 a et 1 b de la bobine 1 sont parcourues par le même flux FC qui se referme par le troisième noyau 3. Les chutes ΔVcc de tension dépendent du nombre de spires des parties 1 a et 1 b de la première bobine 1 et s'ajoutent dans les parties 1 a et 1 b selon le carré des nombres N1 a et N1b de spires, à savoir
La
A cet effet, le circuit 2 comporte un circuit 200 magnétique auxiliaire comportant un cadre comportant un noyau 212 et un noyau NF, parallèles entre eux et au premier noyau 21, et un entrefer mécanique EM.For this purpose, the
La première bobine 1 s'enroule autour
- du
premier noyau 21, de section similaire aupremier noyau 21 décrit jusqu'à présent, et - du
noyau 212.
- the
first core 21, similar in section to thefirst core 21 described so far, and - of the
core 212.
L'augmentation de flux FC dans la première bobine 1 ne demande donc pas d'augmenter la section du premier noyau.The increase in flux F C in the
En régime normal, le flux FA est négligeable dans le circuit 200, en raison de l'entrefer mécanique EM.Under normal conditions, the flow F A is negligible in the
En régime de défaut, le flux FC en dépassement du niveau de saturation du premier noyau 21 se referme dans le circuit 200.In the fault mode, the flux F C in excess of the saturation level of the
La chute de tension ΔVcc1, due au premier noyau 21, est augmentée de ΔVcc2, due au circuit auxiliaire 200 (ΔVcc2 est ajustable par l'entrefer mécanique EM).The voltage drop ΔVcc1, due to the
Un autre mode de réalisation permettant également de limiter le courant de défaut consiste à ajouter en série avec le régulateur une inductance séparée de celui-ci.Another embodiment also making it possible to limit the fault current consists in adding in series with the regulator a separate inductance of the latter.
Comme le montre la
La
On comprend que pour optimiser la construction du régulateur, l'homme du métier peut préférer une autre disposition des fenêtres 23 et 24 réalisées avec les noyaux et culasses, afin de faciliter par exemple le raccordement aux bornes de sortie, ou encore répondre à l'exigence de tenue aux essais diélectriques (choc de foudre).The
It is understood that to optimize the construction of the regulator, the skilled person may prefer another arrangement of the
De même, le choix d'une isolation sèche (par exemple par une résine époxy) ou d'une isolation à huile (par papier imprégné) peut conduire à disposer les fenêtres 23 ou 24 d'une autre manière que celle présentée schématiquement dans les figures.Similarly, the choice of a dry insulation (for example by an epoxy resin) or of an oil insulation (by impregnated paper) can lead to arrange the
Enfin, on comprend que la réalisation d'un régulateur ou d'un régulateur-limiteur multiphasé, et notamment triphasé, peut être basée sur le regroupement de plusieurs unités monophasées identiques ou sur la conception d'un circuit magnétique multiphasé, dans les règles de l'art connues de l'homme du métier. Un des buts d'une telle réalisation est de réduire la masse et l'encombrement du circuit magnétique. Un autre but peut être d'obtenir des performances différentes en mode direct et en mode homopolaire, notamment quand les sources de perturbations de tension et/ou les défauts sont différents selon ces modes, notamment en raison des types de mise à la terre du réseau alternatif.Finally, it is understood that the realization of a multiphase regulator or regulator-limiter, and in particular three-phase, can be based on the grouping of several identical single-phase units or on the design of a multiphase magnetic circuit, in the rules of the art known to those skilled in the art. One of the aims of such an embodiment is to reduce the mass and bulk of the magnetic circuit. Another goal it may be to obtain different performances in direct mode and in zero sequence mode, especially when the sources of voltage disturbances and / or faults are different in these modes, in particular because of the types of grounding of the AC network.
Claims (10)
- Voltage regulator (10) adapted to be connected in series between firstly an alternating source (S) and secondly a load (C) comprising
a magnetic circuit (2) comprising a first core (21) and a second core (22),
at least a first inductive coil (1) wound at least partially around the first core (21) and connected firstly to the alternating source (S) and secondly to the load (C), and
at least one voltage converter (4) comprising a second coil (7) wound around the second core (22),
the regulator (10) being characterised in that the circuit (2) comprises
a third decoupling core (3) and
a virtual air gap (EV), the virtual air gap (EV) comprising- at least one pair (50) of holes (5) in the third decoupling core (3), and- a winding (6) being wound between the holes (5) in each pair (50) of holes (5) and connected to a DC source (8),the regulator (10) operating between at least two states, namely:a first state in which the virtual air gap (EV) is open by magnetically saturating the third decoupling core (3), the magnetic flux in the third core (3) being low and the second coil (7) of the converter (4) being coupled to the first coil (1), such that the regulator can regulate a voltage in the load (C), anda second state in which the virtual air gap (EV) is closed, the magnetic flux in the virtual air gap (EV) of the third core (3) being high, such that the converter (4) is decoupled from the first coil (1). - Regulator according to claim 1, also being adapted to operate in a third state in which the virtual air gap (EV) is partially opened by partially desaturating the third core (3) such that the converter (4) is partially decoupled from the first coil (1).
- Regulator according to one of claims 1 and 2, comprising a passive or active or smart control (60) of complete or partial opening or complete or partial closing of the virtual air gap (EV).
- Regulator according to claim 3, in which the passive control (60) comprises a permanent connection between the DC current source (8) and the winding (6).
- Regulator according to claim 3, in which the active control (60) comprises a switch (61) controlled by a detector (62) between the DC source (8) and the winding (6).
- Regulator according to claim 3, in which the smart control (60) controls a DC current source (8) comprising a variator (81) connected to the winding (6).
- Regulator according to one of claims 1 to 6, in which the first core (21) comprises- a cross-section reducer (210) or- a complementary core (220) connected by a mechanical air gap (221) to the magnetic circuit (2).
- Regulator according to one of claims 1 to 7, in which the first coil (1) is composed of a first part (1a) being wound around the first core (21), and a second part (1b) being wound around a part of the circuit (2) between the first core (21) and the third core (3), the regulator thus performing a current limitation function.
- Regulator according to one of claims 1 to 7, in which the circuit (2) comprises an auxiliary magnetic circuit (200) comprising a frame comprising at least one core (212) and a mechanical air gap (EM), the first coil (1) being wound around the first core (21) and the core (212) of the frame, the regulator thus performing a current limitation function.
- Regulator according to one of claims 1 to 9, adapted to be put into series with a current limiting coil.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12709635T PL2686746T3 (en) | 2011-03-18 | 2012-03-19 | Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1152235A FR2972865B1 (en) | 2011-03-18 | 2011-03-18 | ELECTRONIC SERIES VOLTAGE REGULATOR PROTECTED FROM SHORT CIRCUITS BY MAGNETIC CIRCUIT DENYAGE WITH HOLES AND WINDOWS |
PCT/EP2012/054806 WO2012126884A2 (en) | 2011-03-18 | 2012-03-19 | Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2686746A2 EP2686746A2 (en) | 2014-01-22 |
EP2686746B1 true EP2686746B1 (en) | 2015-04-22 |
Family
ID=45855795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20120709635 Active EP2686746B1 (en) | 2011-03-18 | 2012-03-19 | Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2686746B1 (en) |
ES (1) | ES2543310T3 (en) |
FR (1) | FR2972865B1 (en) |
PL (1) | PL2686746T3 (en) |
WO (1) | WO2012126884A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022258278A1 (en) * | 2021-06-09 | 2022-12-15 | Siemens Aktiengesellschaft | Charging station for a vehicle that can be electrically driven |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104505238B (en) * | 2015-01-14 | 2017-06-23 | 东南大学 | A kind of effective air gap REgulatable reactor |
CN114974830B (en) * | 2022-06-10 | 2024-05-14 | 武汉大学 | High-voltage magnetic saturation current limiter of magnetic integrated decoupling winding and winding inductance calculation method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523673A (en) * | 1994-03-04 | 1996-06-04 | Marelco Power Systems, Inc. | Electrically controllable inductor |
US6933822B2 (en) * | 2000-05-24 | 2005-08-23 | Magtech As | Magnetically influenced current or voltage regulator and a magnetically influenced converter |
-
2011
- 2011-03-18 FR FR1152235A patent/FR2972865B1/en active Active
-
2012
- 2012-03-19 PL PL12709635T patent/PL2686746T3/en unknown
- 2012-03-19 WO PCT/EP2012/054806 patent/WO2012126884A2/en active Application Filing
- 2012-03-19 ES ES12709635.2T patent/ES2543310T3/en active Active
- 2012-03-19 EP EP20120709635 patent/EP2686746B1/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022258278A1 (en) * | 2021-06-09 | 2022-12-15 | Siemens Aktiengesellschaft | Charging station for a vehicle that can be electrically driven |
Also Published As
Publication number | Publication date |
---|---|
ES2543310T3 (en) | 2015-08-18 |
WO2012126884A3 (en) | 2013-07-25 |
WO2012126884A2 (en) | 2012-09-27 |
PL2686746T3 (en) | 2015-10-30 |
EP2686746A2 (en) | 2014-01-22 |
FR2972865A1 (en) | 2012-09-21 |
FR2972865B1 (en) | 2013-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3230999B1 (en) | High voltage dc current tripout device | |
EP3942585B1 (en) | Current cut-off device for high-voltage direct current with resonator and switching | |
EP3232526A1 (en) | Device for detecting a fault current | |
EP2686746B1 (en) | Series voltage regulator with electronics protected against short-circuits by magnetic circuit-based decoupling using holes and windows | |
EP3903333B1 (en) | Current breaker device for high-voltage direct current with capacitive buffer circuit, and control method | |
EP3903334B1 (en) | Current breaker device for high-voltage direct current with adaptive oscillatory circuit, and control method | |
FR3062512A1 (en) | HIGH VOLTAGE CONTINUOUS CURRENT CUTTING DEVICE | |
FR2618276A1 (en) | ELECTRONIC SWITCHING DEVICE. | |
EP1974362A1 (en) | Generator isolator with inserted resistor | |
EP2686931B1 (en) | Series current limiter with magnetic circuit having holes and windows | |
EP3437115B1 (en) | Hybridisation system for high voltage direct current | |
EP3378083B1 (en) | Circuit breaker for a high-voltage dc network, with forced oscillation of current | |
EP2842151B1 (en) | Driver circuit for a circuit breaker | |
WO2014064000A1 (en) | Test circuit for a high-voltage direct current circuit breaker | |
FR2898213A1 (en) | Earth leakage-circuit breaker for detecting residual current of three-phase circuit, has power supply unit including two constant voltage circuits, where one of voltage circuits includes logic unit with field-effect transistor | |
EP3682521B1 (en) | Protecting system for limiting the impact of perturbations of an external electrical power network on an electrical local power network connected to said external electrical power network | |
EP4078755B1 (en) | Dc/dc voltage converter provided with a circuit-breaker device | |
EP3297112B1 (en) | Current limiter for ac charge | |
EP3251190B1 (en) | Device for dynamically adjusting the voltage of an electrical network, assembly and electrical grid comprising such a device | |
EP4385107A1 (en) | Device and method for disconnecting a high-voltage direct electric current with a fuse, and oscillating-current overload system | |
EP3148041A1 (en) | Electronic connection/disconnection device for a high-voltage battery and associated method | |
EP1176692A1 (en) | Device for smoothing voltage and current transients when connecting or disconnecting a battery | |
BE506729A (en) | ||
BE380109A (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131018 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20141107 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 723585 Country of ref document: AT Kind code of ref document: T Effective date: 20150515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012006877 Country of ref document: DE Effective date: 20150603 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012006877 Country of ref document: DE Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2543310 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150818 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150722 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150824 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150822 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150723 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012006877 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: RO Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150422 |
|
26N | No opposition filed |
Effective date: 20160125 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160319 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160319 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 723585 Country of ref document: AT Kind code of ref document: T Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120319 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150422 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 602012006877 Country of ref document: DE Representative=s name: HOEGER, STELLRECHT & PARTNER PATENTANWAELTE MB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20210216 Year of fee payment: 10 Ref country code: AT Payment date: 20210217 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20210412 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 723585 Country of ref document: AT Kind code of ref document: T Effective date: 20220319 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220319 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20230529 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220319 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20231018 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240307 Year of fee payment: 13 Ref country code: GB Payment date: 20240325 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240311 Year of fee payment: 13 Ref country code: FR Payment date: 20240215 Year of fee payment: 13 |