EP2674718A2 - Plattenwärmetauscher in asymmetrischer Ausführung - Google Patents

Plattenwärmetauscher in asymmetrischer Ausführung Download PDF

Info

Publication number
EP2674718A2
EP2674718A2 EP13172071.6A EP13172071A EP2674718A2 EP 2674718 A2 EP2674718 A2 EP 2674718A2 EP 13172071 A EP13172071 A EP 13172071A EP 2674718 A2 EP2674718 A2 EP 2674718A2
Authority
EP
European Patent Office
Prior art keywords
heat transfer
transfer plates
plate
heat exchanger
truncated pyramids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13172071.6A
Other languages
English (en)
French (fr)
Other versions
EP2674718B1 (de
EP2674718A3 (de
Inventor
Matthias Funke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kelvion Brazed PHE GmbH
Original Assignee
GEA WTT GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA WTT GmbH filed Critical GEA WTT GmbH
Publication of EP2674718A2 publication Critical patent/EP2674718A2/de
Publication of EP2674718A3 publication Critical patent/EP2674718A3/de
Application granted granted Critical
Publication of EP2674718B1 publication Critical patent/EP2674718B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • the invention relates to a plate heat exchanger in asymmetric design.
  • Plate heat exchangers or transporters typically have a stack of heat transfer plates disposed between one or more restriction plates such that passageways for heat exchange fluids are formed between the heat transfer plates in the stack.
  • the passageways providing passages communicate with ports through which heat exchange fluids are supplied and removed during operation. Between the heat exchanger fluids flowing through the plate heat exchanger in operation, heat energy is transferred via the heat transfer plates for cooling and / or heating.
  • the plates have a respective profiling.
  • meandering structures can be provided. It has also been proposed to provide a profiling with truncated pyramids (cf. J. Enhanced Heat Transfer, 9: 171-179, 2002 ). With the help of the truncated pyramids concave and convex shaped flow sections were produced in the stack of heat transfer plates with special plate assembly.
  • the passages for the heat exchanger fluids produced on the stacked plates by means of a similar structure of all the truncated pyramids are designed for the same volume flows in each case. They each have the same volume and have the same flow area.
  • plate heat exchangers in asymmetric design or construction provide passages in the stack of heat transfer plates which differ in the volume or mass flows of the heat exchange fluids flowing through the plate heat exchanger. Different volumes of the passages can be produced in particular by means of differing flow cross sections.
  • the passages are contrast configured to allow the same volume or mass flows of the heat exchange fluids, which is why the passages usually have a uniform flow area exhibit.
  • Asymmetrical passages with different volume flows can be realized, for example, in that the passages have different passage areas transversely to the flow.
  • Plate heat exchangers in asymmetric design are particularly suitable to meet different application conditions when using the plate heat exchangers, in particular the fact that the volume or mass flows differ significantly in the passages.
  • the object of the invention is to provide a plate heat exchanger in asymmetric design, in which the asymmetric passages in the stack of heat transfer plates can be flexibly provided for different applications.
  • an asymmetric or plate type plate heat exchanger which includes a stack of heat transfer plates with passageways for heat exchange fluids sealed together in the stack.
  • the heat transfer plates each have a profiling, which is formed with an array of projecting from the plane of the truncated pyramidal stumps and arranged therebetween in the plane of the plate base portions.
  • the base portions comprise the area between the pyramidal stumps protruding from the plane of the plate, which in turn have a plateau or a top surface due to their stump formation on the side opposite the heat transfer plate.
  • the passageways forming passages in the stack of heat transfer plates are made asymmetrical, allowing for different volume or mass flows.
  • the base portions of an upper heat transfer plate are disposed on the truncated pyramids of an underlying heat transfer plate, preferably in the region of the top surface of the truncated pyramids. wherein a partial or complete overlap of the base sections may be provided with the associated truncated pyramids.
  • truncated pyramid in the form used here includes stump-like structures with any desired surface area, including, in particular, round, angular, oval or circular bases. Such structures are also referred to as truncated cone.
  • heat transfer plates having a first truncated pyramidal shape and a second truncated pyramidal shape different from the first truncated shape.
  • the profiling comprises truncated pyramids with one or more concave side surfaces.
  • the side surfaces of the truncated pyramid relate to the wall sections of the respective stump structure, which extends from the plane of the plate of the heat transfer plate to the plateau or to the top surface of the truncated pyramid. All the truncated pyramids of a heat transfer plate can be formed with one or more concave side surfaces.
  • the profiling comprises truncated pyramids with one or more convex side surfaces.
  • asymmetric passages can be made in the stack of heat transfer plates when heat transfer plates are alternately stacked, alternating with truncated pyramidal stumps with concave side surfaces and truncated pyramidal frustum plates with convex side surfaces. All of the truncated pyramids of a heat transfer plate can be formed with one or more convex side surfaces.
  • a concave side surface A heat transfer plate and a convex side surface of a heat transfer plate (opposite plate) adjacent thereto may be opposed to each other to form an embodiment of an asymmetrical passage.
  • An embodiment provides that in at least one of the heat transfer plates, the truncated pyramids all have the same truncated pyramid shape.
  • the truncated pyramid shape is determined in particular by means of the following parameters: height, base surface shape and formation of the side surfaces, for example concave or convex.
  • the truncated pyramids are formed with at least two different truncated pyramidal shapes.
  • At least two heat transfer plates, which are arranged adjacent in the stack of heat transfer plates, have the same profiling.
  • heat transfer plates arranged adjacent to one another in the stack are rotated relative to one another by 180 °.
  • a development may provide that the adjacent heat transfer plates are joined together in the region of the support of the base sections on the truncated pyramids.
  • the joining of the heat transfer plates is carried out for example by means of soldering or welding.
  • plate heat exchangers are formed in brazed or welded design or construction.
  • the truncated pyramids have a base area selected from the following group of base areas: polygon or polygon, square, square, triangle, circle and ellipse.
  • the bases of the truncated pyramids of a heat transfer plate can all be the same.
  • a heat transfer plate may have bases of different shapes. In a stack of heat transfer plates, all plates may have truncated cones of the same footprint. It can also be provided that truncated cones with different base surface shapes are arranged in the plates of a stack.
  • An embodiment provides that in at least one of the heat transfer plates, the profiling is designed as a regular arrangement of truncated pyramids.
  • a further embodiment provides that in at least one of the heat transfer plates, a plateau width of the truncated pyramids is substantially equal to the width of the base sections between the truncated pyramids. If the truncated pyramids have a round shape in the area of the top surface, the diameter of the round top surface can be substantially equal to the width of the overlying base sections.
  • An embodiment may provide that in at least one of the heat transfer plates profiling has a meandering profiling.
  • the at least one heat transfer plate one or more profiling sections with truncated cones on the one hand and one or more profiling sections with meandering or herringbone profiling on the other hand combined, the latter can be provided, for example, in inflow and / or distribution areas of the plate stack.
  • the profiling of the heat transfer plates is designed as an embossing pattern.
  • the profiling is hereby produced by embossing, in particular using a stamping die, for example in heat transfer plates made of metal.
  • Fig. 1 shows a perspective view of a stack of heat transfer plates 1 for a plate heat exchanger or transformer, which are provided with a profiling 2, such that truncated pyramids 3 protrude from a plane of the plate 4.
  • Base sections 5 extend between the truncated pyramids 3 in the plane of the plate 4.
  • Breakthroughs 6 serve in the stack of heat transfer plates 1 in forming a plate heat exchanger for connecting a line system, via which heat exchange fluids are supplied and removed.
  • the profiling 2 is formed with a regular arrangement of the truncated pyramids 3.
  • at least the truncated pyramids 3 of the heat transfer plate arranged at the top of the stack are of similar design.
  • the truncated pyramids 3 have convex or concave side surfaces 7, 8, as shown in the perspective views of a respective truncated pyramid in the 3 and 4 demonstrate.
  • the convex and concave side surfaces 7, 8 extend from the bottom 9 a to the top surface (plateau) 9 b of the truncated pyramid 3.
  • asymmetric passages can be made in the stack of heat transfer plates 1, as exemplified by the schematic representation in FIG Fig. 5 shows.
  • a heat transfer plate 11 with concave truncated pyramids 11a is arranged on a lower heat transfer plate 10 with convex truncated pyramids 10a.
  • a heat transfer plate 12 with convex truncated pyramids 12a is then followed again by a heat transfer plate 12 with convex truncated pyramids 12a, followed by a heat transfer plate 13 with concave truncated pyramids 13a.
  • a profiling with different shapes of truncated pyramids on the same heat transfer plate 1 in particular to make inflow and / or distribution areas of the passageways in the stack of heat transfer plates so that a uniform flow distribution as possible Passage is achieved, in particular to use the heat transfer surfaces in the stack of heat transfer plates 1 optimized.
  • a heat transfer plate 1 can also be provided to use on a heat transfer plate 1 one or more profiling areas with truncated pyramids of the same or different shape and one or more other profiling areas in which maander-shaped or fishbone-shaped profilings are formed.
  • the combination of the different profilings makes it possible, for example, to form as uniform as possible a flow distribution in the passage in the inflow and / or distribution regions of the passages in the stack of heat transfer plates. In this way, the heat transfer surfaces in the stack of heat transfer plates 1 can be used optimally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Anmeldung betrifft einen Plattenwärmetauscher in asymmetrischer Ausführung, mit einem Stapel von Wärmeübertragungsplatten, mit denen gegeneinander abgeschlossene Durchgänge für Wärmetauscherfluide gebildet sind, wobei die Wärmeübertragungsplatten eine Profilierung (2) aufweisen, die mit einer Anordnung von aus der Plattenebene (4) hervorstehenden Pyramidenstümpfen (3) und hierzwischen in der Plattenebene (4) angeordneten Basisabschnitten (5) gebildet ist, und die Durchgänge asymmetrisch, nämlich unterschiedliche Volumenströme zulassend ausgeführt sind, indem bei benachbarten Wärmeübertragungsplatten in dem Stapel von Wärmeübertragungsplatten die Basisabschnitte (5) einer oberen Wärmeübertragungsplatte auf den Pyramidenstümpfen (3) einer darunter liegenden Wärmeübertragungsplatte angeordnet sind.

Description

  • Die Erfindung betrifft einen Plattenwärmetauscher in asymmetrischer Ausführung.
  • Hintergrund
  • Plattenwärmetauscher oder -übertrager verfügen üblicherweise über einen Stapel von Wärmeübertragungsplatten, die zwischen einer oder mehreren Begrenzungsplatten angeordnet sind, derart, dass zwischen den Wärmeübertragungsplatten in dem Stapel gegeneinander abgeschlossene Durchgänge für Wärmetauscherfluide gebildet sind. Die Durchflusskanäle bereitstellenden Durchgänge stehen mit Anschlüssen in Verbindung, über die im Betrieb Wärmetauscherfluide zugeführt und abgeführt werden. Zwischen den den Plattenwärmetauscher im Betrieb durchströmenden Wärmetauscherfluide wird über die Wärmeübertragungsplatten Wärmeenergie übertragen zum Kühlen und / oder Erwärmen.
  • Zum Ausbilden der Durchgänge im Stapel von Wärmeübertragungsplatten verfügen die Platten über eine jeweilige Profilierung. Hierbei können mäandrierende Strukturen vorgesehen sein. Auch wurde vorgeschlagen, eine Profilierung mit Pyramidenstümpfen vorzusehen (vgl. J. Enhanced Heat Transfer, 9:171-179, 2002). Mit Hilfe der Pyramidenstümpfe wurden bei spezieller Plattenanordnung konkav und konvex geformte Strömungsabschnitte in dem Stapel von Wärmeübertragungsplatten erzeugt. Die mittels gleichartiger Struktur aller Pyramidenstümpfe auf den gestapelten Platten hergestellten Durchgänge für die Wärmetauscherfluide sind für jeweils gleiche Volumenströme ausgeführt. Sie verfügen über den jeweils gleichen Rauminhalt und weisen dieselbe Durchströmquerschnittsfläche auf.
  • Plattenwärmetauscher in asymmetrischer Ausführung oder Bauweise sehen im Unterschied zu solchen symmetrischen Plattenwärmetauschem Durchgänge in dem Stapel von Wärmeübertragungsplatten vor, die sich durch unterschiedliche Volumen- oder Massenströme der den Plattenwärmetauscher durchströmende Wärmetauscherfluide unterscheiden. Unterschiedliche Volumina der Durchgänge sind insbesondere mittels sich unterscheidender Durchströmquerschnitte herstellbar. Bei den Plattenwärmetauschem in symmetrischer Ausführung sind die Durchgänge demgegenüber konfiguriert, gleiche Volumen- oder Massenströme der Wärmetauscherfluide zuzulassen, weshalb die Durchgänge üblicherweise einen einheitlichen Durchströmquerschnitt aufweisen. Asymmetrische Durchgänge mit unterschiedlichen Volumenströmen können beispielsweise dadurch realisiert werden, dass die Durchgänge quer zur Strömung unterschiedliche Durchgangsflächen aufweisen. Plattenwärmetauscher in asymmetrischer Ausführung sind besonders geeignet, unterschiedlichen Anwendungsbedingungen beim Einsatz der Plattenwärmetauscher gerecht zu werden, insbesondere dadurch, dass sich die Volumen- oder Massenströme in den Durchgängen deutlich unterscheiden.
  • Zusammenfassung
  • Aufgabe der Erfindung ist es, einen Plattenwärmetauscher in asymmetrischer Ausführung zu schaffen, bei dem die asymmetrischen Durchgänge im Stapel von Wärmeübertragungsplatten flexibel für unterschiedliche Anwendungszwecke bereitgestellt werden können.
  • Diese Aufgabe wird erfindungsgemäß durch einen Plattenwärmetauscher in asymmetrischer Ausführung nach dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand von abhängigen Unteransprüchen.
  • Nach einem Aspekt ist ein Plattenwärmetauscher in asymmetrischer Ausführung oder Bauweise geschaffen, welcher einen Stapel von Wärmeübertragungsplatten aufweist, mit denen im Stapel gegeneinander abgeschlossene Durchgänge für Wärmetauscherfluide gebildet sind. Die Wärmeübertragungsplatten weisen jeweils eine Profilierung auf, die mit einer Anordnung von aus der Plattenebene hervorstehenden Pyramidenstümpfen und hierzwischen in der Plattenebene angeordneten Basisabschnitten gebildet ist. Die Basisabschnitte umfassen den Bereich zwischen den aus der Plattenebene hervorstehenden Pyramidenstümpfen, welche ihrerseits aufgrund ihrer Stumpfausbildung auf der gegenüber der Wärmeübertragungsplatte distalen Seite ein Plateau oder eine Deckfläche aufweisen. Die Durchflusskanäle bildenden Durchgänge in dem Stapel von Wärmeübertragungsplatten sind asymmetrisch ausgeführt, nämlich unterschiedliche Volumen- oder Massenströme zulassend. Bei benachbarten Wärmeübertragungsplatten sind in dem Stapel von Wärmeübertragungsplatten die Basisabschnitte einer oberen Wärmeübertragungsplatte auf den Pyramidenstümpfen einer darunterliegenden Wärmeübertragungsplatte angeordnet, vorzugsweise im Bereich der Deckfläche der Pyramidenstümpfe, wobei eine teilweise oder vollständige Überlappung der Basisabschnitte mit den zugeordneten Pyramidenstümpfen vorgesehen sein kann.
  • Der Begriff Pyramidenstumpf in der hier verwendeten Form umfasst stumpfartige Strukturen mit beliebiger Grundfläche, wozu insbesondere auch runde, eckige, ovale oder kreisförmige Grundflächen gehören. Derartige Strukturen werden auch als Kegelstumpf bezeichnet.
  • Das Vorsehen der Profilierung mit den Pyramidenstümpfen und hierzwischen angeordneten Basisabschnitten sowie deren Anordnung, derart, dass die Basisabschnitte der oberen Wärmeübertragungsplatte auf den Pyramidenstümpfen der darunterliegenden Wärmeübertragungsplatte angeordnet sind, ermöglicht eine flexible und vielgestaltige Ausbildung asymmetrischer Durchgänge in dem Stapel von Wärmeübertragungsplatten. Flexibel kann so auf unterschiedliche Einsatzanforderungen für den jeweiligen Plattenwärmetauscher reagiert werden.
  • Es kann vorgesehen sein, abwechselnd Wärmeübertragungsplatten zu stapeln, die eine erste Pyramidenstumpfform und eine zweite Pyramidenstumpfform, die von der ersten Stumpfform verschieden ist, aufweisen.
  • Eine Weiterbildung sieht vor, dass die Profilierung Pyramidenstümpfe mit einer oder mehreren konkaven Seitenflächen umfasst. Die Seitenflächen des Pyramidenstumpfes betreffen die Wandabschnitte der jeweiligen Stumpfstruktur, welche sich von der Plattenebene der Wärmeübertragungsplatte zum Plateau oder zur Deckfläche des Pyramidenstumpfes erstreckt. Es können alle Pyramidenstümpfe einer Wärmeübertragungsplatte mit einer oder mehreren konkaven Seitenflächen gebildet sein.
  • Bei einer Ausgestaltung kann vorgesehen sein, dass die Profilierung Pyramidenstümpfe mit einer oder mehreren konvexen Seitenflächen umfasst. Auf effiziente Art und Weise sind asymmetrische Durchgänge in dem Stapel von Wärmeübertragungsplatten herstellbar, wenn Wärmeübertragungsplatten wechselweise gestapelt werden, bei denen sich Platten mit Pyramidenstümpfen mit konkaven Seitenflächen und Platten mit Pyramidenstümpfen mit konvexen Seitenflächen abwechseln. Es können alle Pyramidenstümpfe einer Wärmeübertragungsplatte mit einer oder mehreren konvexen Seitenflächen gebildet sein. Eine konkave Seitenfläche einer Wärmeübertragungsplatte und eine konvexe Seitenflächen einer hierzu benachbarten Wärmeübertragungsplatte (gegenüberliegende Platte) können zur Ausbildung einer Ausführungsform eines asymmetrischen Durchgangs einander gegenüberliegend angeordnet sein.
  • Eine Ausführungsform sieht vor, dass bei zumindest einer der Wärmeübertragungsplatten die Pyramidenstümpfe alle dieselbe Pyramidenstumpfform aufweisen. Die Pyramidenstumpfform wird insbesondere mittels der folgenden Parameter bestimmt: Höhe, Grundflächenform sowie Ausbildung der Seitenflächen, zum Beispiel konkav oder konvex.
  • Bevorzugt sieht eine Fortbildung vor, dass bei zumindest einer der Wärmeübertragungsplatten die Pyramidenstümpfe mit wenigstens zwei unterschiedlichen Pyramidenstumpfformen gebildet sind.
  • Bei einer Ausgestaltung kann vorgesehen sein, dass zumindest zwei Wärmeübertragungsplatten, die in dem Stapel von Wärmeübertragungsplatten benachbart angeordnet sind, dieselbe Profilierung aufweisen. Bei dieser Ausführungsform kann vorgesehen sein, dass im Stapel benachbart angeordnete Wärmeübertragungsplatten zueinander um 180° gedreht sind.
  • Eine Weiterbildung kann vorsehen, dass die benachbarten Wärmeübertragungsplatten im Bereich der Auflage der Basisabschnitte auf den Pyramidenstümpfen miteinander gefügt sind. Das Fügen der Wärmeübertragungsplatten ist beispielsweise mittels Löten oder Schweißen ausgeführt. Auf diese Weise sind Plattenwärmetauscher in gelöteter oder geschweißter Ausführung oder Bauweise gebildet.
  • Bei einer Ausgestaltung kann vorgesehen sein, dass die Pyramidenstümpfe eine Grundfläche ausgewählt aus der folgenden Gruppe von Grundflächen aufweisen: Mehr- oder Vieleck, Viereck, Quadrat, Dreieck, Kreis und Ellipse. Die Grundflächen der Pyramidenstümpfe einer Wärmeübertragungsplatte können alle gleich sein. Auch kann eine Wärmeübertragungsplatte Grundflächen unterschiedlicher Form aufweisen. In einem Stapel von Wärmeübertragungsplatten können alle Platten Kegelstümpfe gleicher Grundfläche aufweisen. Auch kann vorgesehen sein, dass in den Platten eines Stapels Kegelstümpfe mit unterschiedlichen Grundflächenformen angeordnet sind.
  • Eine Ausführungsform sieht vor, dass bei zumindest einer der Wärmeübertragungsplatten die Profilierung als regelmäßige Anordnung von Pyramidenstümpfen ausgeführt ist.
  • Bevorzugt sieht eine Fortbildung vor, dass bei zumindest einer der Wärmeübertragungsplatten eine Plateaubreite der Pyramidenstümpfe im Wesentlichen gleich der Breite der Basisabschnitte zwischen den Pyramidenstümpfen ist. Weisen die Pyramidenstümpfe im Bereich der Deckfläche eine runde Form auf, kann der Durchmesser der runden Deckfläche im Wesentlichen gleich der Breite der aufliegenden Basisabschnitte sein.
  • Eine Ausgestaltung kann vorsehen, dass bei zumindest einer der Wärmeübertragungsplatten die Profilierung eine mäanderförmige Profilierung aufweist. Hier sind bei der zumindest einen Wärmeübertragungsplatte ein oder mehrere Profilierungsabschnitte mit Kegelstümpfen einerseits und ein oder mehrere Profilierungsabschnitte mit mäanderförmiger oder fischgrätenförmiger Profilierung andererseits kombiniert, wobei letztere zum Beispiel in Einström- und / oder Verteilbereichen des Plattenstapels vorgesehen sein kann.
  • Bei einer Ausgestaltung kann vorgesehen sein, dass die Profilierung der Wärmeübertragungsplatten als Prägemuster ausgeführt ist. Die Profilierung wird hierbei mittels Prägeverfahren hergestellt, insbesondere unter Nutzung eines Prägestempels, zum Beispiel bei Wärmeübertragungsplatten aus Metall.
  • Beschreibung bevorzugter Ausführungsbeispiele
  • Im Folgenden werden weiter Ausführungsbeispiele unter Bezugnahme auf Figuren einer Zeichnung näher erläutert. Hierbei zeigen:
  • Fig. 1
    eine perspektivische Darstellung eines Abschnitts eines Stapels von Wärmeübertragungsplatten für einen Plattenwärmetauscher,
    Fig. 2
    eine schematische Darstellung zur Anordnung von Pyramidenstümpfen mit quadratischer Grundfläche in einem Stapel von Wärmeübertragungsplatten,
    Fig. 3
    eine perspektivische Darstellung eines Pyramidenstumpfes mit konvexen Seitenflächen,
    Fig. 4
    eine perspektivische Darstellung eines Pyramidenstumpfes mit konkaven Seitenflächen und
    Fig. 5
    eine schematische Darstellung von asymmetrischen Durchgängen in einem Stapel von Wärmeübertragungsplatten, die mit Pyramidenstümpfen gebildet sind, welche abwechselnd konkave und konvexe Seitenflächen aufweisen.
  • Fig. 1 zeigt eine perspektivische Darstellung eines Stapels von Wärmeübertragungsplatten 1 für einen Plattenwärmetauscher oder -übertrager, die mit einer Profilierung 2 versehen sind, derart, dass Pyramidenstümpfe 3 aus einer Plattenebene 4 hervorstehen. Zwischen den Pyramidenstümpfen 3 verlaufen in der Plattenebene 4 Basisabschnitte 5. Durchbrüche 6 dienen in dem Stapel von Wärmeübertragungsplatten 1 beim Ausbilden eines Plattenwärmetauschers zum Anschließen eines Leitungssystems, über welches Wärmetauscherfluide zu- und abgeführt werden.
  • Bei der gezeigten Ausführungsform ist die Profilierung 2 mit einer regelmäßigen Anordnung der Pyramidenstümpfe 3 gebildet. In dem dargestellten Beispiel sind zumindest die Pyramidenstümpfe 3 der im Stapel oben angeordneten Wärmeübertragungsplatte gleichartig ausgeführt.
  • In dem Stapel von Wärmeübertragungsplatten 1 sind zueinander benachbart angeordnete Wärmeübertragungsplatten zueinander um 180° gedreht, sodass die Basisabschnitte 5 einer oberen Wärmeübertragungsplatte auf den Pyramidenstümpfen 3 der darunter befindlichen Wärmeübertragungsplatte angeordnet sind. Dieses zeigt schematisch Fig. 2, in welcher die Pyramidenstümpfe 3 für zwei übereinander angeordnete Wärmeübertragungsplatten gezeigt sind.
  • Es kann nun vorgesehen sein, dass die Pyramidenstümpfe 3 über konvexe oder konkave Seitenflächen 7, 8 verfügen, wie dies die perspektivischen Darstellungen eines jeweiligen Pyramidenstumpfes in den Fig. 3 und 4 zeigen. Die konvexen und die konkaven Seitenflächen 7, 8 erstrecken sich vom Boden 9a zur Deckfläche (Plateau) 9b des Pyramidenstumpfes 3.
  • Bei Verwendung derartiger Profilierungen mit Pyramidenstümpfen 3 mit konkaver und konvexer Seitenflächenausbildung 7, 8 können asymmetrische Durchgänge in dem Stapel von Wärmeübertragungsplatten 1 hergestellt werden, wie sie beispielhaft die schematische Darstellung in Fig. 5 zeigt. Dort ist auf einer unteren Wärmeübertragungsplatte 10 mit konvexen Pyramidenstümpfen 10a eine Wärmeübertragungsplatte 11 mit konkaven Pyramidenstümpfen 11a angeordnet. Hierauf folgt dann wieder eine Wärmeübertragungsplatte 12 mit konvexen Pyramidenstümpfen 12a, worauf eine Wärmeübertragungsplatte 13 mit konkaven Pyramidenstümpfen 13a folgt. Hierauf sind dann in dem gezeigten Beispiel schließlich zwei weitere Wärmeübertragungsplatten 14, 15 angeordnet, die über konvexe und konkave Pyramidenstümpfe 14a, 15a verfügen. Es entstehen so größere und kleinere Kanäle 16, 17, die aufgrund der asymmetrischen Ausbildung einen optimierten Betrieb erlauben, insbesondere bei unterschiedlichen Massen- oder Volumenstrom der Wärmetauscherfluide.
  • Unabhängig von den vorgenannten Ausführungsbeispielen kann vorgesehen sein, ein Profilierung mit unterschiedlichen Formen von Pyramidenstümpfen auf ein und derselben Wärmeübertragungsplatte 1 zu nutzen, um insbesondere Einström- und / oder Verteilbereiche der Durchgangskanäle in dem Stapel von Wärmeübertragungsplatten so zu gestalten, dass eine möglichst gleichmäßige Strömungsverteilung im Durchgang erreicht wird, insbesondere um die wärmeübertragenden Flächen im Stapel von Wärmeübertragungsplatten 1 optimiert zu nutzen.
  • Auch kann vorgesehen sein, auf einer Wärmeübertragungsplatte 1 einen oder mehrere Profilierungsbereiche mit Pyramidenstümpfen gleicher oder unterschiedlicher Form und einen oder mehrere andere Profilierungsbereiche zu nutzen, in denen maänderförmige oder fischgrätenförmige Profilierungen gebildet sind. Die Kombination der unterschiedlichen Profilierungen ermöglicht es zum Beispiel, in Einström- und / oder Verteilbereichen der Durchgänge in dem Stapel von Wärmeübertragungsplatten eine möglichst gleichmäßige Strömungsverteilung im Durchgang auszubilden. Auf diese Weise können die wärmeübertragenden Flächen im Stapel von Wärmeübertragungsplatten 1 optimiert genutzt werden.
  • Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungen von Bedeutung sein.

Claims (12)

  1. Plattenwärmetauscher in asymmetrischer Ausführung, mit einem Stapel von Wärmeübertragungsplatten, mit denen gegeneinander abgeschlossene Durchgänge für Wärmetauscherfluide gebildet sind, wobei
    - die Wärmeübertragungsplatten eine Profilierung (2) aufweisen, die mit einer Anordnung von aus der Plattenebene (4) hervorstehenden Pyramidenstümpfen (3) und hierzwischen in der Plattenebene (4) angeordneten Basisabschnitten (5) gebildet ist, und
    - die Durchgänge asymmetrisch, nämlich unterschiedliche Volumenströme zulassend ausgeführt sind, indem bei benachbarten Wärmeübertragungsplatten in dem Stapel von Wärmeübertragungsplatten die Basisabschnitte (5) einer oberen Wärmeübertragungsplatte auf den Pyramidenstümpfen (3) einer darunter liegenden Wärmeübertragungsplatte angeordnet sind.
  2. Plattenwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Profilierung (2) Pyramidenstümpfe mit einer oder mehreren konkaven Seitenflächen (8) umfasst.
  3. Plattenwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Profilierung (2) Pyramidenstümpfe mit einer oder mehreren konvexen Seitenflächen (7) umfasst.
  4. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei zumindest einer der Wärmeübertragungsplatten die Pyramidenstümpfe (3) alle dieselbe Pyramidenstumpfform aufweisen.
  5. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei zumindest einer der Wärmeübertragungsplatten die Pyramidenstümpfe (3) mit wenigstens zwei unterschiedlichen Pyramidenstumpfformen gebildet sind.
  6. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass zumindest zwei Wärmeübertragungsplatten, die in dem Stapel von Wärmeübertragungsplatten benachbart angeordnet sind, dieselbe Profilierung (2) aufweisen.
  7. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die benachbarten Wärmeübertragungsplatten im Bereich der Auflage der Basisabschnitte (5) auf den Pyramidenstümpfen (3) miteinander gefügt sind.
  8. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Pyramidenstümpfe (3) eine Grundfläche ausgewählt aus der folgenden Gruppe von Grundflächen aufweisen: Mehreck, Viereck, Quadrat, Dreieck, Kreis und Ellipse.
  9. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei zumindest einer der Wärmeübertragungsplatten die Profilierung (2) als regelmäßige Anordnung von Pyramidenstümpfe (3) ausgeführt ist.
  10. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei zumindest einer der Wärmeübertragungsplatten eine Plateaubreite der Pyramidenstümpfe (3) im Wesentlichen gleich der Breite der Basisabschnitte (5) zwischen den Pyramidenstümpfen (3) ist.
  11. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass bei zumindest einer der Wärmeübertragungsplatten die Profilierung (2) eine mäanderförmige Profilierung aufweist.
  12. Plattenwärmetauscher nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Profilierung (2) der Wärmeübertragungsplatten als Prägemuster ausgeführt ist.
EP13172071.6A 2012-06-14 2013-06-14 Plattenwärmetauscher in asymmetrischer Ausführung Active EP2674718B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012105144.5A DE102012105144B4 (de) 2012-06-14 2012-06-14 Plattenwärmetauscher in asymmetrischer Ausführung

Publications (3)

Publication Number Publication Date
EP2674718A2 true EP2674718A2 (de) 2013-12-18
EP2674718A3 EP2674718A3 (de) 2015-08-26
EP2674718B1 EP2674718B1 (de) 2018-10-03

Family

ID=48672402

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13172071.6A Active EP2674718B1 (de) 2012-06-14 2013-06-14 Plattenwärmetauscher in asymmetrischer Ausführung

Country Status (4)

Country Link
EP (1) EP2674718B1 (de)
DE (1) DE102012105144B4 (de)
DK (1) DK2674718T3 (de)
ES (1) ES2705226T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005109A1 (de) * 2014-07-09 2016-01-14 Khs Gmbh Wärmebehandlungsvorrichtung sowie verfahren zur wärmebehandlung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019008914A1 (de) * 2019-12-20 2021-06-24 Stiebel Eltron Gmbh & Co. Kg Wärmepumpe mit optimiertem Kältemittelkreislauf

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI47141C (fi) 1960-03-16 1973-09-10 Rosenblad Lämmönvaihtojärjestelmä kahta keskenään eripaineista lämpöä vaihtavaa väliainetta varten.
GB1197933A (en) 1967-09-18 1970-07-08 Apv Co Ltd Improvements in or relating to Plate Type Heat Exchangers
US4084635A (en) 1976-08-18 1978-04-18 Midland-Ross Corporation Heat recovery and heat distributing apparatus
JPH0612222B2 (ja) 1985-08-12 1994-02-16 三菱重工業株式会社 内壁に交差溝を有する伝熱管
WO2000016029A1 (fr) 1998-09-16 2000-03-23 Hitachi, Ltd. Echangeur de chaleur et systeme de conditionnement d'air refrigerant
JP2000193390A (ja) * 1998-12-25 2000-07-14 Daikin Ind Ltd プレ―ト式熱交換器
JP2004028385A (ja) * 2002-06-24 2004-01-29 Hitachi Ltd プレート式熱交換器
SE528629C2 (sv) 2004-09-08 2007-01-09 Ep Technology Ab Rillmönster för värmeväxlare
JP4666463B2 (ja) 2005-01-25 2011-04-06 株式会社ゼネシス 熱交換用プレート
JP2007010202A (ja) 2005-06-29 2007-01-18 Xenesys Inc 熱交換ユニット
DE102009060395A1 (de) 2009-12-22 2011-06-30 Wieland-Werke AG, 89079 Wärmeübertragerrohr und Verfahren zur Herstellung eines Wämeübertragerrohrs
RU2511779C2 (ru) * 2010-11-19 2014-04-10 Данфосс А/С Теплообменник

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016005109A1 (de) * 2014-07-09 2016-01-14 Khs Gmbh Wärmebehandlungsvorrichtung sowie verfahren zur wärmebehandlung
US10321703B2 (en) 2014-07-09 2019-06-18 Khs Gmbh Thermal treatment device and a thermal treatment method

Also Published As

Publication number Publication date
EP2674718B1 (de) 2018-10-03
DK2674718T3 (en) 2019-01-28
DE102012105144A1 (de) 2013-12-19
ES2705226T3 (es) 2019-03-22
EP2674718A3 (de) 2015-08-26
DE102012105144B4 (de) 2021-12-02

Similar Documents

Publication Publication Date Title
EP1571407B1 (de) Plattenwärmeübertrager
EP3265739B1 (de) 3d-gedrucktes heizflächenelement für einen plattenwärmeübertrager
DE19528116B4 (de) Wärmeübertrager mit Platten-Sandwichstruktur
EP1654508B2 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
EP1910764B1 (de) Plattenelement für einen plattenkühler
EP1725824B1 (de) Stapelscheiben-wärmetauscher
DE102009015849A1 (de) Wärmetauscher
DE19528117A1 (de) Wärmeübertrager mit Plattenstapelaufbau
DE112014003010T5 (de) Fluidkanäle mit Leistungsverbesserungsmerkmalen und diese enthaltende Vorrichtungen
DE112018004787T5 (de) Multi-fluid wärmetauscher
DE102012109346A1 (de) Interner Wärmetauscher mit externen Sammelrohren
DE19628561C1 (de) Plattenwärmetauscher
EP2250457B1 (de) Plattenwärmetauscher, wärmetauscherplatte und verfahren zu deren herstellung
DE19858652A1 (de) Plattenwärmeaustauscher
EP2669027B1 (de) Verfahren und Presswerkzeug zur Herstellung eines Plattenwärmetäuschers
DE102005002063A1 (de) Stapelscheiben -Wärmetauscher
EP2674718B1 (de) Plattenwärmetauscher in asymmetrischer Ausführung
DE102005002005B4 (de) Kühlvorrichtung insbesondere für einen elektrischen Transformator
AT411397B (de) Turbulenzerzeuger für einen wärmetauscher
EP3239641A1 (de) Flachrohr für einen wärmeübertrager
EP1788320B1 (de) Wärmetauschereinsatz
DE19846347C2 (de) Wärmeaustauscher aus Aluminium oder einer Aluminium-Legierung
DE102020000274A1 (de) Verfahren zur Herstellung eines Rippen-Platten-Wärmetauschers
DE102006058384A1 (de) Wärmetauscher
EP2899487B1 (de) Stapelscheibenwärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F28D 9/00 20060101ALI20150721BHEP

Ipc: F28F 3/04 20060101AFI20150721BHEP

17P Request for examination filed

Effective date: 20160216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180517

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KELVION BRAZED PHE GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1049060

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013011215

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190122

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2705226

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013011215

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

26N No opposition filed

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190614

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210629

Year of fee payment: 9

Ref country code: NL

Payment date: 20210629

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210623

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210708

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210723

Year of fee payment: 9

Ref country code: HU

Payment date: 20210705

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220614

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20220701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220615

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20230627

Year of fee payment: 11

Ref country code: DE

Payment date: 20230630

Year of fee payment: 11

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230801

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230623

Year of fee payment: 11

Ref country code: SE

Payment date: 20230626

Year of fee payment: 11

Ref country code: AT

Payment date: 20230626

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220615

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230627

Year of fee payment: 11

Ref country code: CH

Payment date: 20230702

Year of fee payment: 11