EP2662662A1 - Device and method for measuring shape, position and dimension features of machine elements - Google Patents
Device and method for measuring shape, position and dimension features of machine elements Download PDFInfo
- Publication number
- EP2662662A1 EP2662662A1 EP13166608.3A EP13166608A EP2662662A1 EP 2662662 A1 EP2662662 A1 EP 2662662A1 EP 13166608 A EP13166608 A EP 13166608A EP 2662662 A1 EP2662662 A1 EP 2662662A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- measuring unit
- machine element
- rotation
- axis
- tactile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 230000003287 optical effect Effects 0.000 claims abstract description 84
- 239000000523 sample Substances 0.000 claims abstract description 84
- 238000005259 measurement Methods 0.000 claims description 44
- 238000005286 illumination Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 3
- REYFJDPCWQRWAA-UHFFFAOYSA-N antazoline Chemical compound N=1CCNC=1CN(C=1C=CC=CC=1)CC1=CC=CC=C1 REYFJDPCWQRWAA-UHFFFAOYSA-N 0.000 description 5
- 230000005693 optoelectronics Effects 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011326 mechanical measurement Methods 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/02—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/08—Measuring arrangements characterised by the use of optical techniques for measuring diameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/2433—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/16—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring distance of clearance between spaced objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/20—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/004—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points
- G01B5/008—Measuring arrangements characterised by the use of mechanical techniques for measuring coordinates of points using coordinate measuring machines
- G01B5/012—Contact-making feeler heads therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/28—Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces
- G01B5/285—Measuring arrangements characterised by the use of mechanical techniques for measuring roughness or irregularity of surfaces for controlling eveness
Definitions
- the invention relates to an apparatus and a method for measuring shape, position and dimension features on rotatable machine elements, such as engine and transmission shafts, push rods, valves, pistons, screws, turbine parts, etc.
- tactile measuring methods For an accurate measurement of waves, tactile measuring methods have been established, in which surfaces can be touched with mechanical scanning elements and measured very accurately.
- tactile measuring methods usually require a high conversion effort when changing the measuring task.
- optical measuring methods are suitable. These create a shadow image of the wave on which the outer contour can be measured. Due to the non-contact measurement, the machine element can be detected faster and measured with high precision. Switching between different measuring tasks is quick and easy.
- a disadvantage of the optical measuring devices is that, for example, concave partial surfaces and undercuts which are not visible in the shadow image can not be measured.
- the device has a measuring system in which a mechanical-electrical measuring unit is integrated in an opto-electronic measuring unit for measuring the shaft and, if necessary, can be extended linearly.
- a shaft is clamped at its axis of rotation in the device.
- the measuring system has a U-shaped opto-electronic measuring unit whose free-standing ends are arranged in a first measuring position on both sides of the clamped shaft.
- the measured value recording takes place perpendicular to the axis of rotation of the shaft within the axial plane, so that the peripheral surfaces are detected tactfully with a high accuracy with the probe element. But it allows only the exact mechanical probing of peripheral surfaces. Surfaces which are arranged substantially orthogonal to the axis of rotation of the shaft can be detected only optically. Since mechanically stable, and therefore solid, components are used to maintain a high measuring accuracy of the device, it can be assumed that an increased constructive effort is required to realize a precise adjustment of the movably mounted U-shaped carrier between the two measuring positions.
- the object of the invention is to find a way to measure shape, position or dimension characteristics of a rotatable machine element, which allows with low design complexity and high precision at the same time to measure surfaces with a high accuracy, compared to the axis of rotation have a substantial inclination to the orthogonal orientation to the rotation axis and hidden areas, such as undercuts, inclines, bumps, etc., may have.
- the object in a device for measuring shape, position or dimension features of a rotatable machine element comprising a mechanically stable machine bed with a linear guide arranged along the machine bed and a linear guide system arranged parallel thereto, a workpiece holder for rotatably receiving the machine element about an axis of rotation of the machine element, wherein the workpiece holder has at least one clamping means accommodated in the linear guide, about which the machine element is rotatable about the axis of rotation is, an optical measuring unit with a lighting module and a camera module, which is arranged movably on a linear guide system and with the rotatable between the lighting module and the opposite camera module arranged machine element two-dimensional shadow images of the machine element can be accommodated, achieved in that the optical measuring unit an additional mechanical measuring unit with a tactile measuring probe for measuring the machine element in the axial direction, wherein the mechanical measuring unit is fixed to the optical measuring unit and has a pivoting device for pivoting the tactile probe in an orthogonal plane to the axi
- the tactile probe has a one-dimensional, in two directions parallel to the axis of rotation of the machine element measuring transducer with a probe and at least one probe element, the probe is so long that the at least one probe element when swinging the tactile probe describes a circular arc that at least traverses the axis of rotation of the machine element.
- the tactile probe has a probe arm with two in the direction parallel to the axis of rotation of the machine element spaced Tastkugeln, so that covered by surrounding material surfaces are axially measurable.
- the pivoting device for positioning the at least one probe ball of the tactile probe in a radius related to the axis of rotation is infinitely adjustable.
- the tactile probe is advantageously positioned by movement of the optical measuring unit along the linear guide system in each axial position of the machine element and thereby a probing movement on axially engageable surfaces can be realized.
- a calibration body for calibrating the tactile probe in the axial direction of the axis of rotation has at least two orthogonal to the axis of rotation and axially opposite reference surfaces and on the Workpiece holder is fixed, wherein at least one of the reference surfaces are scanned by the optical measuring unit and by the mechanical measuring unit.
- the calibration body may be a U-profile having two parallel inner surfaces which are arranged as reference surfaces orthogonal to the axis of rotation.
- the calibration body may be a rotation body concentrically arranged with respect to the rotation axis with a circumferential rectangular groove, in which the parallel opposite inner surfaces of the rectangular groove are orthogonal to the axis of rotation arranged reference surfaces, wherein the rotation body is concentrically fixed to a clamping means.
- the temperature of the calibration body can be detected with the aid of a temperature sensor and a measured length standard between the reference surfaces can be corrected taking into account the temperature dependence of the calibration body, taking into account its thermal expansion coefficient to a reference temperature.
- tactile measurement of axially opposed surfaces separated from each other by air is performed such that points of axially opposed surfaces having equal radial distances from the axis of rotation are alternately probed with the tactile probe and represent a length measurement for each radial distance selected the tactile probe is calibrated beforehand on a calibrated length standard with two reference surfaces aligned parallel to one another and orthogonal to the axis of rotation.
- the tactile measuring unit and the mechanical measuring unit be determined by an offset value between the measuring positions of the optical measuring unit and the mechanical measuring unit on a reference surface.
- measured values of the tactile measuring probe prefferably be recorded in one or more tracks concentric with the axis of rotation and to be used for calculating shape features, with the machine element being rotated about the axis of rotation.
- the calibrated length standard is used for at least one calibration step at least prior to the beginning of the optical measurement.
- the device is basically as in Fig. 1 shown constructed.
- the device comprises a mechanically stable machine bed 1, on which a workpiece holder 2 and an optical measuring unit 3 are movably arranged.
- the workpiece holder 2 has, forming a rotation axis 6, a driven centering tip 22 and a follower centering tip 24, between which a machine element 5 on the rotation axis 6 can be accommodated.
- the machine element 5 on both sides of the axis of rotation 6 opposite is the optical measuring unit 3 is arranged.
- the optical measuring unit 3 On one side of the axis of rotation 6, a lighting module 31 and on opposite side of the axis of rotation 6, a camera module 33.
- a pivoting device 41 is fixedly arranged.
- the pivoting device 41 has an orthogonal to the axis of rotation 6 pivotable mechanical measuring unit 4.
- the workpiece holder 2 consists of a fixedly arranged at one end of the machine bed 1 headstock 21 and a movably arranged on the machine bed 1 tailstock 23.
- To move the tailstock 23 is a machine along the edge of the machine bed 1 1 mounted linear guide 11 is attached.
- the tailstock 23 can be moved relative to the headstock 21 and firmly clamped in any position in the linear guide 11.
- the headstock 21 is provided with a rotatable and driven centering tip 22 and the tailstock 23 with a rotatable and revolving centering tip 24.
- the axes of the driven centering tip 22 and the revolving centering tip 24 are aligned coaxially with each other.
- the driven centering tip 22 and the revolving centering tip 24 face each other, so that between them, the machine element 5 can be rotatably received at corresponding centering holes of the machine element 5.
- a frictional connection is formed. Due to the frictional connection, the machine element 5 can be set in rotation by the driven centering tip 22.
- the driven centering tip 22 is connected to a precise angle measuring system (not shown).
- the device may also be sufficient to receive the machine element 5 on one side only on the headstock 21.
- the headstock 21 is on the headstock 21 as in Fig. 7 shown a jaw chuck or a collet mounted in which the machine element 5 is clamped and, if necessary, can also be rotated about the axis of rotation 6.
- optical measuring unit 3 is U-shaped and is attached to the surface at the bottom of the U-shape movable on the machine bed 1, so that the parallel legs of the optical measuring unit 3 are oriented on both sides and perpendicular from the machine bed 1 projecting ,
- the linear guide system 12 may consist of two parallel, highly accurate slide rails.
- a lighting module 31 and in the other leg end of the optical measuring unit 3 are integrated.
- the illumination module 31 and the camera module 33 face each other on a static optical axis 34 so that a light bundle 32 emitted by the illumination module 31 can be detected by the camera module 33.
- the illumination module 31 and the camera module 33 are orthogonal and arranged on both sides of the workpiece holder 2, so that the axis of rotation 6 of the workpiece holder 2, as in a plan view Fig. 2b represented, is positioned approximately centrally in the light beam 32.
- the light bundle 32 of the optical measuring unit 3 can be moved along the axis of rotation 6 of the workpiece holder 2.
- the recorded in the workpiece holder 2 machine element 5 can thus be completely detected.
- the machine element 5 is illuminated with the illumination module 31 and a resulting shadow image is recorded with the camera module 33. From the shadow image, a two-dimensional contour of the machine element 5 can be generated, which is used for the calculation of metrological Sizes of the machine element 5 such as lengths, diameters, parallelisms, straights, angles or radii can be used.
- the device has the mechanical measuring unit 4.
- the mechanical measuring unit 4 consists of the pivoting device 41, which is connected via a stable base plate 40 fixed to one of the legs of the optical measuring unit 3.
- a tactile probe 42 is attached, which is constructed from a transducer 421 with a sensing arm 422 and the sensing arm 422 final probe element 423.
- the pivoting device 41 together with the tactile probe 42 can perform a stepless pivoting movement about a pivot axis 43 arranged parallel to the axis of rotation 6.
- the tactile probe 42 is arranged with its sensing arm 422 orthogonal to the pivot axis 43 so that it can assume any intermediate position between a position outside and within the machine element 5 position.
- the mechanical measuring unit 4 is designed exclusively for measuring axially engageable surfaces of the machine element 5.
- the tactile probe 42 is therefore designed as a one-dimensional probe, the sensing arm 422 can be parallel to the axis of rotation 6 deflect in both directions.
- axially engageable surfaces in both directions of the rotation axis 6 can be touched and be measured.
- the attachment of the pivoting device 41 can be carried out at different points of the optical measuring unit 3.
- the pivoting device 41 can be attached both to the headstock 21, and to the tailstock 23 side facing the legs of the optical measuring unit 3.
- the position of the mechanical measuring unit 4 is not important for carrying out the measurement. The aforementioned restriction ensures that with the tactile measuring probe 42, any radial position of the machine element 5 clamped in the workpiece holder 2 can be achieved.
- the geometry of the probe elements used 423 can be adjusted.
- a probe ball attached to the end of the probe arm 422 can be used, with which a large number of measurement tasks can already be carried out on surfaces which can be touched axially.
- other feeler elements 423 such as, for example, cylinders, tips or sheaths, with which hard-to-reach areas can be better reached.
- a special embodiment of the probe arm 422 can be used. This has two feeler elements 423 in the form of Tastkugeln which are arranged at a distance from one another, in the direction parallel to the axis of rotation 6, at the end of the sensing arm 422.
- a corresponding machine element 5 is clamped in a rotatable workpiece holder 2 in a first method step.
- a rotatable workpiece holder 2 one-sided clamping means, such as three-, four- or six-jaw chuck or collets, can be used in addition to two centering.
- the machine elements 5 may be motor and gear shafts, push rods, valves, pistons, screws, turbine parts or the like, which are firmly received in the workpiece holder 2, so that they can be rotated about their axis of rotation 6.
- the machine element 5 can be optically measured.
- 3 silhouettes of the machine element 5 are detected with an optical measuring unit.
- the shadow images are generated in the beam path of the optical measuring unit 3 oriented orthogonally to the axis of rotation 6.
- both contours by the rotation axis 6 is stationary and the measuring unit 3 is moved parallel to the axis of rotation 6 and by the machine element 5 is rotated about the axis of rotation 6, while the measuring unit 3 is at a position. In this way, very quickly form, location and dimensional characteristics of the machine element can be detected.
- a mechanical measuring unit 4 can be positioned with a tactile measuring probe 42 for measuring these surfaces. The positioning takes place via a movement of the optical measuring unit 3 along the linear guide system 12 (only in Fig. 6 shown). The optical measuring unit 3 is positioned so that the tactile measuring probe 42 of the mechanical measuring unit 4 can be pivoted into the machine element 5 without collision in an orthogonal plane opposite the surface to be measured.
- the tactile measurement of the axially probable surfaces takes place.
- the tactile probe 42 is pivoted from an out of the machine element 5 starting position in the machine element 5 (see Fig. 2b . 2c ), until a desired radial position with respect to the axis of rotation 6 is reached, in which, by a movement of the optical measuring unit 3, the contacting of the surface to be measured with the tactile measuring probe 42 takes place.
- the measurement of a distance value M takes place on two opposite surfaces, which are separated from one another by material of the machine element 5.
- the measurement can be based on the Fig. 2a to Fig. 2d be explained and carried out by a combined application of the optical and the tactile measurement method.
- the relevant section of the machine element 5 (in Fig. 2a to 2d the area of the machine element 5 with the larger diameter and the two orthogonal to the rotation axis 6 oriented planar surfaces of this section) is first detected completely with the optical measuring unit 3. From the recorded shadow image, the positions of the two axially engageable surfaces ( Fig. 2a ) detected.
- the tactile measuring probe 42 is first moved by means of the optical measuring unit 3 into the orthogonal plane known from the optical measurement, which lies opposite one of the axially engageable surfaces (in FIG Fig. 2a the area above the portion of the machine element 5 to be measured) and the tactile probe 42, as in FIG Fig. 2b shown pivoted into the region of the machine element 5.
- the tactile measuring probe 42 has reached a desired radial position with respect to the axis of rotation 6, as shown in FIG Fig. 2c shown
- the probing movement is continued until the tactile probe 42 sits on the axially engageable surface and as in Fig. 2d shown reached a deflection required for detecting the measured value.
- axial positions can be measured, which can be measured due to hidden areas in the shadow image or non-visible elements or not sufficiently accurate.
- the measurement of the distance value M of the two surfaces from the above example can also be done by tactively detecting the axial position of one surface and optically detecting the axial position of the other surface.
- FIG. 5 A second example is in Fig. 5 shown.
- the axially probable surfaces to be measured face each other here and are separated from each other only by air.
- a fast optical measurement can also be carried out in advance.
- the tactile probe 42 can now be pivoted into an arbitrary orthogonal plane between the two surfaces of the machine element 5.
- the measurement of both surfaces takes place by a movement of the optical measuring unit 3 in both directions parallel to the axis of rotation 6, so that at this radial position, one surface can be touched from below and the other surface from above and a distance value M is determined for this radial position.
- the tactile probe 42 since the tactile probe 42 remains in an unchanged radial position during this measurement, measurement errors that could arise due to pivotal movements of the tactile probe 42 can be excluded, so that a very accurate measurement result is expected.
- the process may be different as described below.
- the measuring units 3 and 4 are moved to the subsequent section and this section is measured until the machine element 5 is completely gripped.
- an exact offset value O is determined which corresponds to the distance value between the optical axis 34 of the optical measuring unit 3 and the probe element 423 of the tactile probe 42 corresponds.
- a reference surface R is required, which can be engaged with both measuring units 3 and 4.
- the reference surface R is integrated into the headstock 21. The distance value measurement should be done by the reference surface R is detected both optically and tactile. The offset value O can then be determined from the difference between the two measured values.
- the reference surface R can be engaged both with the optical measuring unit 3 and with the mechanical measuring unit 4, the position of the reference surface R is not important. That's why she can, as in Fig. 6 shown in a dashed line on the tailstock 23, alternatively also be arranged at other positions of the workpiece holder 2 or on fixedly related surfaces.
- the calibration required at least prior to the measurement must be carried out in another way. Since in this distance value measurement, the probing of the two opposing axially engageable surfaces can be done exclusively tactile, a length standard is required which has two reference surfaces, which are also separated only by air.
- FIG Fig. 7 One embodiment of the length standard is as in FIG Fig. 7 shown, on one side of the tailstock 23, a U-profile 7 is mounted, whose inner parallel surfaces embody the reference surfaces R1 and R2.
- offset values O (only in Fig. 6 plotted) between the optical measuring unit 3 and the mechanical measuring unit 4 are determined for both Antastraumen.
- the two reference surfaces R1 and R2 are sequentially scanned with the tactile measuring probe 42 and the measured values determined are stored as a length standard and used to normalize the axial distance measured values of the machine element 5 touched by the tactile measuring probe 42. Immediately thereafter, the fairness measurement can be performed with maximum accuracy. The normalization can, if necessary, also be repeated as often as desired during the measurement.
- Fig. 8 Another embodiment of the length standard is in Fig. 8 shown. This is the same principle as the one in Fig. 7 In this case, it is designed as a rotary body 8, which is mounted concentrically to the rotation axis 6 on the headstock 21 or on the tailstock 23 circumferentially.
- the two parallel reference surfaces R1 and R2 of the rectangular groove form the length standard.
- a further increase in accuracy can be achieved by adjusting the measured length standard between the reference surfaces R1 and R2 as a function of a determined temperature difference of the U-profile 7 or the rotational body 8.
- the temperature of U-profile 7 or Rotation body 8 by means of a temperature sensor (not shown) continuously detected and the measured length normal between the reference surfaces R1 and R2 is corrected by a factor which takes into account the thermal expansion coefficient corresponding to the temperature change.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
- Length Measuring Devices By Optical Means (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
Abstract
Description
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Messen von Form-, Lage- und Dimensionsmerkmalen an rotierbaren Maschinenelementen, wie beispielsweise Motor- und Getriebewellen, Schubstangen, Ventilen, Kolben, Schrauben, Turbinenteilen etc.The invention relates to an apparatus and a method for measuring shape, position and dimension features on rotatable machine elements, such as engine and transmission shafts, push rods, valves, pistons, screws, turbine parts, etc.
Für eine genaue Messung von Wellen haben sich taktile Messverfahren etabliert, bei denen Flächen mit mechanischen Tastelementen angetastet und sehr genau gemessen werden können. Taktile Messverfahren erfordern jedoch in der Regel einen hohen Umrüstaufwand bei einem Wechsel der Messaufgabe.For an accurate measurement of waves, tactile measuring methods have been established, in which surfaces can be touched with mechanical scanning elements and measured very accurately. However, tactile measuring methods usually require a high conversion effort when changing the measuring task.
Für diesen Fall bieten sich optische Messverfahren an. Diese erzeugen ein Schattenbild der Welle, an dem der äußere Umriss gemessen werden kann. Aufgrund der berührungslosen Messung kann das Maschinenelement schneller erfasst und hochgenau vermessen werden. Ein Wechsel zwischen verschiedenen Messaufgaben ist einfach und schnell möglich. Ein Nachteil der optischen Messvorrichtungen ist es, dass beispielsweise konkave Teilflächen und Hinterschneidungen, die im Schattenbild nicht sichtbar sind, nicht gemessen werden können.In this case, optical measuring methods are suitable. These create a shadow image of the wave on which the outer contour can be measured. Due to the non-contact measurement, the machine element can be detected faster and measured with high precision. Switching between different measuring tasks is quick and easy. A disadvantage of the optical measuring devices is that, for example, concave partial surfaces and undercuts which are not visible in the shadow image can not be measured.
Aus diesen Gründen bietet es sich an, ein optisches und ein taktiles Messverfahren in einer Vorrichtung zu kombinieren. In der Patentschrift
Aufgabe der Erfindung ist es, eine Möglichkeit zum Messen von Form-, Lage- oder Dimensionsmerkmalen eines rotierbaren Maschinenelements zu finden, , die es mit geringem konstruktiven Aufwand und gleichzeitig hoher Präzision ermöglicht, auch Flächen mit einer hohen Messgenauigkeit zu messen, die gegenüber der Rotationsachse eine wesentliche Neigung bis hin zur orthogonalen Ausrichtung zur Rotationsachse aufweisen und verdeckte Bereiche, wie Hinterschneidungen, Steigungen, Unebenheiten usw., aufweisen können.The object of the invention is to find a way to measure shape, position or dimension characteristics of a rotatable machine element, which allows with low design complexity and high precision at the same time to measure surfaces with a high accuracy, compared to the axis of rotation have a substantial inclination to the orthogonal orientation to the rotation axis and hidden areas, such as undercuts, inclines, bumps, etc., may have.
Erfindungsgemäß wird die Aufgabe bei einer Vorrichtung zum Messen von Form-, Lage- oder Dimensionsmerkmalen eines rotierbaren Maschinenelements, enthaltend ein mechanisch stabiles Maschinenbett mit einer entlang des Maschinenbetts angeordneten Linearführung und einem parallel dazu angeordneten Linearführungssystem, eine Werkstückhalterung zur drehbaren Aufnahme des Maschinenelements um eine Rotationsachse des Maschinenelements, wobei die Werkstückhalterung mindestens ein in der Linearführung aufgenommenes Spannmittel aufweist, um die das Maschinenelement um die Rotationsachse drehbar ist, eine optische Messeinheit mit einem Beleuchtungsmodul und einem Kameramodul, die an einem Linearführungssystem beweglich angeordnet ist und mit der von dem drehbar zwischen Beleuchtungsmodul und gegenüberliegendem Kameramodul angeordneten Maschinenelement zweidimensionale Schattenbilder des Maschinenelements aufnehmbar sind, dadurch gelöst, dass die optische Messeinheit eine zusätzliche mechanische Messeinheit mit einem taktilen Messtaster zum Messen des Maschinenelements in axialer Richtung aufweist, wobei die mechanische Messeinheit an der optischen Messeinheit fixiert ist und eine Schwenkeinrichtung zum Einschwenken des taktilen Messtasters in einer Orthogonalebene zur Rotationsachse des Maschinenelements aufweist.According to the invention, the object in a device for measuring shape, position or dimension features of a rotatable machine element, comprising a mechanically stable machine bed with a linear guide arranged along the machine bed and a linear guide system arranged parallel thereto, a workpiece holder for rotatably receiving the machine element about an axis of rotation of the machine element, wherein the workpiece holder has at least one clamping means accommodated in the linear guide, about which the machine element is rotatable about the axis of rotation is, an optical measuring unit with a lighting module and a camera module, which is arranged movably on a linear guide system and with the rotatable between the lighting module and the opposite camera module arranged machine element two-dimensional shadow images of the machine element can be accommodated, achieved in that the optical measuring unit an additional mechanical measuring unit with a tactile measuring probe for measuring the machine element in the axial direction, wherein the mechanical measuring unit is fixed to the optical measuring unit and has a pivoting device for pivoting the tactile probe in an orthogonal plane to the axis of rotation of the machine element.
Vorteilhaft weist der taktile Messtaster einen eindimensionalen, in zwei Richtungen parallel zur Rotationsachse des Maschinenelements messenden Messwertaufnehmer mit einem Tastarm und mindestens einem Tastelement auf, wobei der Tastarm so lang ist, dass das mindestens eine Tastelement beim Einschwenken des taktilen Messtasters einen Kreisbogen beschreibt, der mindestens die Rotationsachse des Maschinenelements durchquert.Advantageously, the tactile probe has a one-dimensional, in two directions parallel to the axis of rotation of the machine element measuring transducer with a probe and at least one probe element, the probe is so long that the at least one probe element when swinging the tactile probe describes a circular arc that at least traverses the axis of rotation of the machine element.
Es erweist sich als zweckmäßig, dass der taktile Messtaster einen Tastarm mit zwei in Parallelrichtung zur Rotationsachse des Maschinenelements beabstandeten Tastkugeln aufweist, sodass von umgebendem Material verdeckte Flächen axial messbar sind.It proves to be expedient that the tactile probe has a probe arm with two in the direction parallel to the axis of rotation of the machine element spaced Tastkugeln, so that covered by surrounding material surfaces are axially measurable.
Vorzugsweise ist die Schwenkeinrichtung zur Positionierung der mindestens einen Tastkugel des taktilen Messtasters in einem auf die Rotationsachse bezogenen Radius stufenlos einstellbar.Preferably, the pivoting device for positioning the at least one probe ball of the tactile probe in a radius related to the axis of rotation is infinitely adjustable.
Der taktile Messtaster ist vorteilhaft durch Bewegung der optischen Messeinheit entlang dem Linearführungssystem in jeder axialer Position des Maschinenelements positionierbar und dadurch ist eine Antastbewegung an axial antastbaren Flächen realisierbar.The tactile probe is advantageously positioned by movement of the optical measuring unit along the linear guide system in each axial position of the machine element and thereby a probing movement on axially engageable surfaces can be realized.
Es ist vorteilhaft, wenn ein Kalibrierkörper zur Kalibrierung des taktilen Messtasters in axialer Richtung der Rotationsachse mindestens zwei zur Rotationsachse orthogonale und sich axial gegenüberliegende Referenzflächen aufweist und an der Werkstückhalterung befestigt ist, wobei von dessen Referenzflächen jeweils mindestens eine durch die optische Messeinheit und durch die mechanische Messeinheit abtastbar sind.It is advantageous if a calibration body for calibrating the tactile probe in the axial direction of the axis of rotation has at least two orthogonal to the axis of rotation and axially opposite reference surfaces and on the Workpiece holder is fixed, wherein at least one of the reference surfaces are scanned by the optical measuring unit and by the mechanical measuring unit.
Der Kalibrierkörper kann ein U-Profil sein, das zwei parallele Innenflächen aufweist, die als Referenzflächen orthogonal zur Rotationsachse angeordnet sind.The calibration body may be a U-profile having two parallel inner surfaces which are arranged as reference surfaces orthogonal to the axis of rotation.
In einer weiteren vorteilhaften Variante kann der Kalibrierkörper ein zur Rotationsachse konzentrisch angeordneter Rotationskörper mit einer umlaufenden Rechtecknut sein, bei dem die sich parallel gegenüberliegenden Innenflächen der Rechtecknut die orthogonal zur Rotationsachse angeordneten Referenzflächen sind, wobei der Rotationskörper konzentrisch an einem Spannmittel fixiert ist.In a further advantageous variant, the calibration body may be a rotation body concentrically arranged with respect to the rotation axis with a circumferential rectangular groove, in which the parallel opposite inner surfaces of the rectangular groove are orthogonal to the axis of rotation arranged reference surfaces, wherein the rotation body is concentrically fixed to a clamping means.
Vorteilhaft kann die Temperatur des Kalibierkörpers mit Hilfe eines Temperatursensors erfasst und ein gemessenes Längennormal zwischen den Referenzflächen unter Berücksichtigung der Temperaturabhängigkeit des Kalibrierkörpers unter Berücksichtigung seines Wärmeausdehnungskoeffizienten auf eine Bezugstemperatur korrigiert werden.Advantageously, the temperature of the calibration body can be detected with the aid of a temperature sensor and a measured length standard between the reference surfaces can be corrected taking into account the temperature dependence of the calibration body, taking into account its thermal expansion coefficient to a reference temperature.
Des Weiteren wird die Aufgabe bei einem Verfahren zum Messen von Form-, Lage und Dimensionsmerkmalen an rotierbaren Maschinenelementen, gelöst durch die Schritte:
- a) Einspannen eines Maschinenelements in mindestens einem drehbaren Spannmittel einer Werkstückhalterung zur Drehung des Maschinenelements um eine Rotationsachse;
- b) optisches Messen von Abschnitten des Maschinenelements durch Erfassen von Schattenbildern in einem orthogonal zur Rotationsachse gerichteten Strahlengang einer optischen Messeinheit unter Rotation des Maschinenelements um die Rotationsachse zum Ermitteln von Form-, Lage-, und Dimensionsmerkmalen und von Positionen axial antastbarer Flächen aus den Schattenbildern;
- c) Bewegen der optischen Messeinheit zu den von der optischen Messeinheit ermittelten Positionen axial antastbarerer Flächen des Maschinenelements zum Positionieren einer mechanischen Messeinheit mit taktilem Messtaster entsprechend den optisch ermittelten Positionen von axial antastbaren Flächen;
- d) taktiles Messen axialer Abstandswerte von sich axial gegenüberliegenden Flächen des Maschinenelements durch Einschwenken eines an die optische Messeinheit gekoppelten taktilen Messtasters in Orthogonalebenen, die den anzutastenden Flächen jeweils gegenüber liegen, durch Antasten dieser Flächen mit dem taktilen Messtaster.
- a) clamping a machine element in at least one rotatable clamping means of a workpiece holder for rotation of the machine element about an axis of rotation;
- b) optically measuring portions of the machine element by detecting shadow images in a beam path of an optical measuring unit directed orthogonal to the axis of rotation, rotating the machine element about the axis of rotation to determine shape, location, and dimension features and positions of axially detectable surfaces from the shadow images;
- c) moving the optical measuring unit to the determined by the optical measuring unit positions axially abradable surfaces of the machine element for positioning a mechanical measuring unit with a tactile probe in accordance with the optically determined positions of axially engageable surfaces;
- d) tactile measurement of axial distance values of axially opposing surfaces of the machine element by pivoting a coupled to the optical measuring unit tactile probe in orthogonal planes, which are opposite to the surfaces to be touched by probing these surfaces with the tactile probe.
Vorzugsweise erfolgt das taktile Messen sich axial gegenüberliegender und durch Luft voneinander separierter Flächen derart, dass Punkte der sich axial gegenüberliegenden Flächen, welche gleiche radiale Abstände von der Rotationsachse aufweisen mit dem taktilen Messtaster abwechselnd angetastet werden und für jeden gewählten radialen Abstand einen Längenmesswert darstellen, wobei der taktile Messtaster zuvor an einem kalibrierten Längennormal mit zwei sich parallel gegenüberliegenden, orthogonal zur Rotationsachse ausgerichteten Referenzflächen kalibriert wird.Preferably, tactile measurement of axially opposed surfaces separated from each other by air is performed such that points of axially opposed surfaces having equal radial distances from the axis of rotation are alternately probed with the tactile probe and represent a length measurement for each radial distance selected the tactile probe is calibrated beforehand on a calibrated length standard with two reference surfaces aligned parallel to one another and orthogonal to the axis of rotation.
Des Weiteren ist es möglich, das taktile Messen sich axial gegenüberliegender Flächen derart durchzuführen, dass die axiale Position einer der Flächen mit der optischen Messeinheit erfasst wird und die der anderen Fläche mit dem taktilen Messtaster, wobei zuvor die optische Messeinheit und die mechanische Messeinheit zueinander kalibriert werden, indem an einer Referenzfläche ein Offset-Wert zwischen den Messpositionen der optischen Messeinheit und der mechanischen Messeinheit bestimmt wird.Furthermore, it is possible to perform the tactile measurement of axially opposing surfaces such that the axial position of one of the surfaces is detected with the optical measuring unit and the other surface with the tactile probe, previously calibrated to each other, the optical measuring unit and the mechanical measuring unit be determined by an offset value between the measuring positions of the optical measuring unit and the mechanical measuring unit on a reference surface.
Zweckmäßig ist außerdem, dass in einer oder mehreren zur Rotationsachse konzentrischen Spuren Messwerte des taktilen Messtasters aufgenommen und zur Berechnung von Formmerkmalen verwendet werden, wobei das Maschinenelement um die Rotationsachse gedreht wird.It is also expedient for measured values of the tactile measuring probe to be recorded in one or more tracks concentric with the axis of rotation and to be used for calculating shape features, with the machine element being rotated about the axis of rotation.
Vorzugsweise wird das kalibrierte Längennormal für wenigstens einen Kalibrierschritt mindestens vor Beginn des optischen Messens verwendet.Preferably, the calibrated length standard is used for at least one calibration step at least prior to the beginning of the optical measurement.
Nachfolgend soll die Erfindung anhand von Ausführungsbeispielen näher erläutert werden. In den zugehörigen Zeichnungen zeigen:
- Fig. 1
- eine Darstellung des prinzipiellen Aufbaus der erfindungsgemäßen Vorrichtung in einer Gesamtansicht der Messmaschine;
- Fig. 2a
- eine geschnittenen Vorderansicht der optischen Messeinheit kombiniert mit einer mechanischen Messeinheit in Form eines einschwenkbaren taktilen Messtasters;
- Fig. 2b
- die kombinierte Messeinheit in einer Draufsicht mit dem taktilen Messtaster während der Einschwenkbewegung;
- Fig. 2c
- die kombinierte Messeinheit mit eingeschwenktem taktilen Messtaster in einer Antastbewegung;
- Fig. 2d
- die kombinierte Messeinheit mit eingeschwenktem Messtaster beim Antasten einer axial antastbaren Fläche von oben;
- Fig. 3a
- das Antasten einer axial antastbaren Fläche mittels des taktilen Messtasters von unten;
- Fig. 3b
- das Antasten einer axial antastbaren Fläche von unten mit einem an anderer Stelle der optischen Messeinheit befestigten taktilen Messtaster;
- Fig. 4
- ein erstes Beispiel für das Antasten einer schwer zugänglichen axial antastbaren Fläche mit angepasstem Tastelement des taktilen Messtasters;
- Fig. 5
- ein zweites Beispiel für das taktile Messen eines axialen Abstandswerts zwischen zwei axial antastbaren Flächen;
- Fig. 6
- eine mögliche Variante für die Bestimmung des Offset-Werts zwischen taktilen Messtaster und optischer Messeinheit (Kalibrierung) in einer Vorderansicht und einer Draufsicht der Vorrichtung;
- Fig. 7
- eine weitere Variante für das Einmessen des taktilen Messtasters (Kalibrierung) an einem statischen Längennormal;
- Fig. 8
- eine weitere Realisierungsform für das Einmessen des taktilen Messtasters (Kalibrierung) an einem rotierenden Längennormal.
- Fig. 1
- a representation of the basic structure of the device according to the invention in an overall view of the measuring machine;
- Fig. 2a
- a sectional front view of the optical measuring unit combined with a mechanical measuring unit in the form of a swivel tactile probe;
- Fig. 2b
- the combined measuring unit in a plan view with the tactile probe during Einschwenkbewegung;
- Fig. 2c
- the combined measuring unit with swiveled tactile probe in a probing movement;
- Fig. 2d
- the combined measuring unit with swung-in probe when touching an axially engageable surface from above;
- Fig. 3a
- the probing of an axially palpable surface by means of the tactile probe from below;
- Fig. 3b
- the probing of an axially engageable surface from below with a tactile measuring probe mounted elsewhere on the optical measuring unit;
- Fig. 4
- a first example of probing a hard to reach axially engageable surface with adapted probe element of the tactile probe;
- Fig. 5
- a second example of the tactile measurement of an axial distance value between two axially engageable surfaces;
- Fig. 6
- a possible variant for the determination of the offset value between tactile probe and optical measuring unit (calibration) in a front view and a top view of the device;
- Fig. 7
- Another variant for calibrating the tactile probe (calibration) on a static length standard;
- Fig. 8
- Another form of implementation for measuring the tactile probe (calibration) on a rotating length standard.
Die Vorrichtung ist grundsätzlich wie in
Die Werkstückhalterung 2 besteht aus einem fest an einem Ende des Maschinenbetts 1 angeordneten Spindelstock 21 und einem beweglich am Maschinenbett 1 angeordneten Reitstock 23. Zur Bewegung des Reitstocks 23 ist am Maschinenbett 1 eine entlang des Maschinenbetts 1 verlaufende Linearführung 11 angebracht. An der Linearführung 11 kann der Reitstock 23 relativ zum Spindelstock 21 bewegt und in einer beliebigen Position fest in der Linearführung 11 verspannt werden. Der Spindelstock 21 ist mit einer drehbaren und angetriebenen Zentrierspitze 22 und der Reitstock 23 mit einer drehbaren und mitlaufenden Zentrierspitze 24 versehen. Die Achsen der angetriebenen Zentrierspitze 22 und der mitlaufenden Zentrierspitze 24 sind koaxial zueinander ausgerichtet. Die angetriebene Zentrierspitze 22 und die mitlaufenden Zentrierspitze 24 weisen zueinander, sodass zwischen ihnen das Maschinenelement 5 an entsprechenden Zentrierbohrungen des Maschinenelements 5 drehbar aufgenommen werden kann. Durch die mitlaufende Zentrierspitze 24 wird eine definierte Kraft auf das Maschinenelement 5 ausgeübt, sodass zwischen der angetriebenen Zentrierspitze 22 und der Zentrierbohrung des Maschinenelements 5 ein Kraftschluss entsteht. Durch den Kraftschluss kann das Maschinenelement 5 von der angetriebenen Zentrierspitze 22 in Rotation versetzt werden. Zur genauen Erfassung der Winkelposition des rotierenden Maschinenelements 5, ist die angetriebenen Zentrierspitze 22 mit einem präzisen Winkelmesssystem (nicht dargestellt) verbunden.The
In einer Ausführung der Vorrichtung, kann es auch ausreichend sein, das Maschinenelement 5 nur einseitig am Spindelstock 21 aufzunehmen. Zur Aufnahme ist am Spindelstock 21 wie in
Die ebenfalls am Maschinenbett 1 aufgenommene optische Messeinheit 3 ist U-förmig ausgebildet und wird an der Fläche am Grund der U-Form beweglich am Maschinenbett 1 befestigt, sodass die parallelen Schenkel der optischen Messeinheit 3 zu beiden Seiten und senkrecht vom Maschinenbett 1 abstehend orientiert sind. Zur Aufnahme der optischen Messeinheit 3 ist parallel zur Linearführung 11 verlaufend ein Linearführungssystem 12 (in
Wie in der
Durch die Bewegung der optischen Messeinheit 3 entlang des Linearführungssystems 12 kann das Lichtbündel 32 der optischen Messeinheit 3 entlang der Rotationsachse 6 der Werkstückhalterung 2 bewegt werden. Das in der Werkstückhalterung 2 aufgenommene Maschinenelement 5 kann somit vollständig erfasst werden. Dazu wird das Maschinenelement 5 mit dem Beleuchtungsmodul 31 beleuchtet und ein entstehendes Schattenbild mit dem Kameramodul 33 aufgenommen. Aus dem Schattenbild kann eine zweidimensionale Kontur des Maschinenelements 5 erzeugt werden, die zur Berechnung von messtechnischen Größen des Maschinenelements 5 wie beispielsweise Längen, Durchmesser, Parallelitäten, Geradheiten, Winkeln oder Radien verwendet werden kann.As a result of the movement of the
Es ist auch möglich die optische Messeinheit 3 unbewegt zu belassen und das Maschinenelement 5 um die Rotationsachse 6 zu bewegen. Unter gleichzeitigem Erfassen der Winkelposition des um die Rotationsachse 6 drehenden Maschinenelements 5 kann eine Kontur des Maschinenelements 5 in einer zur Rotationsachse 6 parallelen Schnittebene erfasst und daraus verschiedenen messtechnische Größen wie rotationswinkelabhängige Position, Rundlauf und Rundheit berechnet werden. Aus der Kombination mehrerer solcher Konturen können weitere messtechnische Größen wie beispielsweise Zylinderform, Koaxialität und Gesamtrundlauf berechnet werden.It is also possible to leave the
Zusätzlich zur optischen Messeinheit 3 weist die Vorrichtung die mechanische Messeinheit 4 auf. Wie in
Wie in den
Wie in
Je nach Form und Lage der zu messenden, axial antastbaren Flächen kann die Geometrie der verwendeten Tastelemente 423 angepasst werden. Als ein besonders vorteilhaftes Tastelement 423 kann eine am Ende des Tastarms 422 angebrachte Tastkugel verwendet werden, mit der bereits eine Vielzahl von Messaufgaben an axial antastbaren Flächen durchgeführt werden können. Es können aber auch andere Tastelemente 423 wie beispielsweise Zylinder, Spitzen oder Scheiden verwendet werden, mit denen schwer zugängliche Flächen besser erreichbar sind. Für axial antastbare Flächen, die wie in
Bei dem erfindungsgemäßen Verfahren zur Messung von Form-, Lage-, und Dimensionsmerkmalen wird in einem ersten Verfahrensschritt ein entsprechendes Maschinenelement 5 in eine drehbare Werkstückhalterung 2 eingespannt. Als drehbare Werkstückhalterung 2 können neben zwei Zentrierspitzen auch einseitige Spannmittel, wie Drei-, Vier- oder Sechsbackenfutter oder Spannzangen, verwendet werden. Bei den Maschinenelementen 5 kann es sich um Motor- und Getriebewellen, Schubstangen, Ventile, Kolben, Schrauben, Turbinenteile oder Ähnliches handeln, die fest in der Werkstückhalterung 2 aufgenommen werden, sodass sie um ihre Rotationsachse 6 gedreht werden können.In the method according to the invention for measuring shape, position, and dimension features, a corresponding
Im nachfolgenden Verfahrensschritt kann das Maschinenelement 5 optisch gemessen werden. Dazu werden mit einer optischen Messeinheit 3 Schattenbilder des Maschinenelements 5 erfasst. Die Schattenbilder werden in dem orthogonal zur Rotationsachse 6 gerichteten Strahlengang der optischen Messeinheit 3 erzeugt.In the subsequent method step, the
Bei der optischen Messung können abschnittsweise sowohl Konturen aufgezeichnet, indem die Rotationsachse 6 still steht und die Messeinheit 3 parallel zur Rotationsachse 6 bewegt wird als auch indem das Maschinenelement 5 um die Rotationsachse 6 rotiert wird, während die Messeinheit 3 an einer Position steht. Auf diese Weise können sehr schnell Form-, Lage- und Dimensionsmerkmale des Maschinenelements erfasst werden.In the optical measurement sections can be recorded both contours by the
Aus der optischen Messung lassen sich auch leicht die Positionen von axial antastbaren Flächen des Maschinenelements 5 ermitteln. Entsprechend diesen optisch erfassten Positionen der axial antastbaren Flächen kann im nächsten Verfahrensschritt eine mechanische Messeinheit 4 mit einem taktilen Messtaster 42 zur Messung dieser Flächen positioniert werden. Die Positionierung erfolgt über eine Bewegung der optischen Messeinheit 3 entlang des Linearführungssystems 12 (nur in
Im letzten Verfahrensschritt erfolgt die taktile Messung der axial antastbaren Flächen. Dazu wird der taktile Messtaster 42 aus einer außerhalb des Maschinenelements 5 liegenden Ausgangsposition in das Maschinenelement 5 eingeschwenkt (siehe
Die Besonderheiten des Messens von Abstandswerten M zwischen zwei axial antastbaren Flächen eines Maschinenelements 5 sollen anhand von zwei Beispielen erläutert werden.The peculiarities of measuring distance values M between two axially engageable surfaces of a
In einem ersten Beispiel erfolgt die Messung eines Abstandswerts M an zwei gegenüberliegenden Flächen, die durch Material des Maschinenelements 5 voneinander getrennt sind. Die Messung kann anhand der
Die Messung des Abstandswerts M der beiden Flächen aus dem obigen Beispiel kann auch erfolgen, indem die axiale Position einer Fläche taktil erfasst wird und die axiale Position der anderen Fläche optisch.The measurement of the distance value M of the two surfaces from the above example can also be done by tactively detecting the axial position of one surface and optically detecting the axial position of the other surface.
Ein zweites Beispiel ist in
Bei einer kombinierten optischen und mechanischen Messung zur vollständigen Erfassung des Maschinenelements 5 mit mehreren zu messenden Abschnitten mit axial antastbaren Flächen, kann sich der Ablauf wie nachfolgend beschrieben unterschiedlich gestalten.In a combined optical and mechanical measurement for complete detection of the
Es besteht entweder die Möglichkeit, zunächst alle Abschnitte des Maschinenelements 5 im ersten Verfahrensschritt optisch zu messen. Das kann mit einer Bewegung der optischen Messeinheit entlang des Maschinenelements 5 erfolgen, bei dem ein sukzessive aufgenommenes Schattenbild des gesamten Maschinenelements 5 erfasst wird. Anschließend werden in weiteren Teilschritten des taktilen Messens alle relevanten Abschnitte nacheinander mit der mechanischen Messeinheit 4 angetastet und gemessen.There is either the possibility to first optically measure all sections of the
Alternativ besteht die Möglichkeit, das Maschinenelement 5 in nacheinander folgenden Verfahrensschritten abschnittsweise optisch und taktil zu messen. Nachdem ein erster Abschnitt des Maschinenelements 5 optisch und taktil erfasst wurde, werden die Messeinheiten 3 und 4 zum nachfolgenden Abschnitt bewegt und dieser Abschnitt vermessen, bis das Maschinenelement 5 vollständig erfasst ist.Alternatively, it is possible to measure the
Um eine sehr genaue Messung zu ermöglichen, ist es erforderlich vor oder auch während der Messung eines Maschinenelements 5 eine Kalibrierungen der Messeinheiten erforderlich. Die Einmessschritte müssen bei den beiden in den Beispielen genannten Verfahrensabläufen und auch bei allen anderen Variationen des Verfahrens durchgeführt werden. Der Ablauf des Einmessens richtet sich nach der Kombination der für die Messung der axial antastbaren Flächen verwendeten Messeinheiten.In order to allow a very accurate measurement, it is necessary before or even during the measurement of a
In einer ersten Variante des Messverfahrens zur Messung axial antastbarer Flächen bei der die optische Messeinheit 3 und die mechanische Messeinheit 4 kombiniert verwendet werden, ist mindestens vor Beginn und gegebenenfalls auch noch während der Messung ein genauer Offset-Wert O zu ermitteln, der dem Abstandswert zwischen der optischen Achse 34 der optischen Messeinheit 3 und dem Tastelement 423 des taktilen Messtasters 42 entspricht. Wie in
In einer zweiten Variante des Messverfahrens zur Messung axial antastbarer Flächen, bei der gegenüberliegende axial antastbare Flächen die durch Luft voneinander beabstandet sind aus entgegengesetzten Richtungen angetastet werden sollen, ist die mindestens vor der Messung erforderliche Kalibrierung auf andere Weise vorzunehmen. Da bei dieser Abstandswertmessung die Antastung der beiden gegenüberliegenden axial antastbaren Flächen ausschließlich taktil erfolgen kann, ist ein Längennormal erforderlich das zwei Referenzflächen aufweist, die sich ebenfalls nur durch Luft getrennt gegenüberliegen.In a second variant of the measuring method for measuring surfaces which can be touched axially, in which opposing axially engageable surfaces which are spaced apart from one another by air are to be scanned from opposite directions, the calibration required at least prior to the measurement must be carried out in another way. Since in this distance value measurement, the probing of the two opposing axially engageable surfaces can be done exclusively tactile, a length standard is required which has two reference surfaces, which are also separated only by air.
Eine Ausführungsform des Längennormals ist, wie in
Die beiden Referenzflächen R1 und R2 werden nacheinander mit dem taktilen Messtaster 42 angetastet und die ermittelten Messwerte als Längennormal gespeichert und zur Normierung der axialen Abstandsmesswerte des vom taktilen Messtaster 42 angetasteten Maschinenelements 5 verwendet. Unmittelbar danach kann die Anstandsmessung mit einer maximalen Genauigkeit durchgeführt werden. Die Normierung kann, falls erforderlich, auch beliebig oft während der Messung wiederholt werden.The two reference surfaces R1 and R2 are sequentially scanned with the
Eine weitere Ausführungsform des Längennormals ist in
Eine weitere Steigerung der Genauigkeit kann erreicht werden, indem das gemessene Längennormal zwischen den Referenzflächen R1 und R2 in Abhängigkeit einer ermittelten Temperaturdifferenz des U-Profils 7 oder des Rotationskörpers 8 angepasst werden. Dazu wird die Temperatur von U-Profil 7 bzw. Rotationskörper 8 mit Hilfe eines Temperatursensors (nicht gezeichnet) kontinuierlich erfasst und das gemessene Längennormal zwischen den Referenzflächen R1 und R2 mit einem Faktor korrigiert wird der dem der Temperaturänderung entsprechenden Wärmeausdehnungskoeffizienten berücksichtigt.
Claims (14)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012104008A DE102012104008B3 (en) | 2012-05-08 | 2012-05-08 | Apparatus and method for measuring shape, position and dimension features on machine elements |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2662662A1 true EP2662662A1 (en) | 2013-11-13 |
EP2662662B1 EP2662662B1 (en) | 2018-07-18 |
Family
ID=48325438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13166608.3A Active EP2662662B1 (en) | 2012-05-08 | 2013-05-06 | Device and method for measuring shape, position and dimension features of machine elements |
Country Status (5)
Country | Link |
---|---|
US (1) | US8964023B2 (en) |
EP (1) | EP2662662B1 (en) |
JP (1) | JP5568663B2 (en) |
CN (1) | CN103453848B (en) |
DE (1) | DE102012104008B3 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105737781A (en) * | 2016-05-12 | 2016-07-06 | 青岛麦科三维高新技术有限公司 | Three-dimensional measuring device special for thin and long thin-wall workpiece |
WO2017097944A1 (en) * | 2015-12-10 | 2017-06-15 | Sms Group Gmbh | Method and device for measuring a contour of a body or for checking the position thereof about an axis of rotation |
IT201800009215A1 (en) * | 2018-10-05 | 2020-04-05 | Vici & C Spa | OPTICAL MEASURING MACHINE FOR MEASURING A PART WITH MAINLY LONGITUDINAL DEVELOPMENT |
Families Citing this family (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012003321B4 (en) * | 2012-02-18 | 2015-07-23 | Federal-Mogul Burscheid Gmbh | Device for measuring piston rings |
ES2438390B1 (en) * | 2012-06-12 | 2014-10-27 | Bellota Agrisolutions, S.L. | MACHINE AND METHOD OF DATA ACQUISITION TO MEASURE THE ALABEO AND CONCAVITY OF AGRICULTURAL DISCS. |
US8806764B1 (en) * | 2012-06-19 | 2014-08-19 | The Boeing Company | Expandable collet and metrology target |
CN103822605B (en) * | 2014-03-18 | 2017-06-23 | 厦门大学 | Splicing measuring device of optical elements of large caliber profile |
CN105277121A (en) * | 2014-06-23 | 2016-01-27 | 日产螺丝股份有限公司 | Automatic screw size measurement system |
DE102014111320A1 (en) * | 2014-08-08 | 2016-02-11 | Brodmann Technologies GmbH | Device for non-contact measurement on transmission shafts, in particular on worm shafts and working methods for this purpose |
MX348535B (en) * | 2014-11-14 | 2017-05-23 | Kaplun Mucharrafille Margarita | Positioning appliance for measurement and analysis. |
CN104315979B (en) * | 2014-11-19 | 2017-01-25 | 重庆理工大学 | Three-dimensional scanner and three-dimensional scanning method |
DE102014118756B4 (en) * | 2014-12-16 | 2017-07-27 | Jenoptik Industrial Metrology Germany Gmbh | measurement device |
DE102015105171A1 (en) | 2015-04-02 | 2016-10-06 | Jenoptik Industrial Metrology Germany Gmbh | Method and device for optically measuring rotatable workpieces with eccentrics |
DE102015105978B3 (en) | 2015-04-20 | 2016-09-15 | Carl Mahr Holding Gmbh | Holding device for an optical measuring device |
DE202015009568U1 (en) * | 2015-05-04 | 2018-08-03 | Jenoptik Industrial Metrology Germany Gmbh | calibration |
DE102015114213B4 (en) | 2015-08-27 | 2017-06-22 | Jenoptik Industrial Metrology Germany Gmbh | Arrangement for clamping a rotatable workpiece |
DE102015114212B4 (en) | 2015-08-27 | 2024-01-04 | Jenoptik Industrial Metrology Germany Gmbh | Arrangement for clamping a rotatable workpiece |
DE102015114214B4 (en) | 2015-08-27 | 2017-03-30 | Jenoptik Industrial Metrology Germany Gmbh | Arrangement for clamping a rotatable workpiece |
CN105091799B (en) * | 2015-09-16 | 2017-05-24 | 珠海凯邦电机制造有限公司 | Coaxiality measuring system of motor end cover |
DE102015115936B3 (en) * | 2015-09-21 | 2016-11-17 | Jenoptik Industrial Metrology Germany Gmbh | Screw drive with flexible coupling |
CN105423961A (en) * | 2015-12-01 | 2016-03-23 | 上海沪工焊接集团股份有限公司 | Workpiece center error detection device and method |
DE202016100766U1 (en) * | 2016-02-15 | 2017-05-17 | Klingelnberg Ag | Workpiece clamping system for a measuring machine |
ITUA20161835A1 (en) * | 2016-03-21 | 2017-09-21 | Marposs Spa | METHOD FOR MEASURING THE ORTHOGONALITY ERROR OF A PLANAR SURFACE OF A PIECE COMPARED TO A ROTATION AXIS, AND CORRESPONDING TO MEASURE |
DE102016107135A1 (en) * | 2016-04-18 | 2017-10-19 | Jenoptik Industrial Metrology Germany Gmbh | measuring arrangement |
JP6687464B2 (en) * | 2016-05-24 | 2020-04-22 | 株式会社ミツトヨ | Measuring device and shaft work support mechanism |
CA3034633A1 (en) * | 2016-09-09 | 2018-03-15 | Gleason Metrology Systems Corporation | Measurement of toothed articles utilizing multiple sensors |
CN106705791B (en) * | 2017-03-01 | 2022-08-30 | 福建永强力加动力设备有限公司 | Outer circle jumping detection tool for generator rotor |
CN108534713B (en) * | 2017-03-02 | 2019-08-06 | 林明慧 | Exempt from the image measuring device and its measurement method to positive axle center |
DE102017131466B4 (en) * | 2017-12-29 | 2020-12-31 | Jenoptik Industrial Metrology Germany Gmbh | Etalon step wave and method for calibrating optical measuring devices |
DE102017131465B4 (en) * | 2017-12-29 | 2021-01-28 | Jenoptik Industrial Metrology Germany Gmbh | Calibration body and method for calibrating optical measuring devices for measuring rotatable workpieces |
CN108413892B (en) * | 2018-01-30 | 2020-05-05 | 华侨大学 | Method and device for detecting three-dimensional surface topography of whole circumference of diamond wire saw |
KR102050719B1 (en) * | 2018-03-26 | 2019-12-03 | 일륭기공(주) | Forgings Curve Inspection Device |
EP3784981B1 (en) * | 2018-04-24 | 2023-08-30 | VICI & C. S.p.A. | Optical measuring machine for measuring an object having a mainly longitudinal extension |
IT201800004824A1 (en) * | 2018-04-24 | 2019-10-24 | OPTICAL MEASURING MACHINE FOR MEASURING A PART WITH MAINLY LONGITUDINAL DEVELOPMENT | |
SG10201907808VA (en) * | 2018-09-05 | 2020-04-29 | Blm Spa | Machine for the working of tubes provided with a device for detecting any slippage of the tube being worked |
DE102018127439B4 (en) * | 2018-11-02 | 2020-05-14 | Jenoptik Industrial Metrology Germany Gmbh | Device for exchanging a tactile probe arm of a 3D measuring device |
US10845180B2 (en) * | 2018-12-18 | 2020-11-24 | Mitutoyo Corporation | Measurement apparatus and method for measuring coordinates of columnar workpiece |
CN109631781A (en) * | 2018-12-26 | 2019-04-16 | 杭州科德磁业有限公司 | A kind of annulus product outer diameter bounce high-speed, high precision measuring device |
CN110049243B (en) * | 2019-04-19 | 2021-09-10 | 博众精工科技股份有限公司 | Image acquisition method, apparatus, device, and medium |
CN110440666B (en) * | 2019-09-06 | 2020-12-25 | 中国航发南方工业有限公司 | Method for measuring mounting edge of guide blade of high-pressure turbine |
CN110726360B (en) * | 2019-12-03 | 2021-05-25 | 亚杰科技(江苏)有限公司 | Part flatness inspection letter utensil |
CN111288909B (en) * | 2020-03-25 | 2022-06-03 | 日立电梯电机(广州)有限公司 | Roundness detection device and method |
US20230324169A1 (en) * | 2020-09-08 | 2023-10-12 | Vici & C. S.P.A. | Optical measuring machine and measuring method |
DE102020124805A1 (en) | 2020-09-23 | 2022-03-24 | Jenoptik Industrial Metrology Germany Gmbh | Measuring system and method for operating a measuring system |
CN112504069B (en) * | 2020-12-09 | 2023-06-09 | 合肥埃科光电科技股份有限公司 | Non-contact precision measuring instrument |
CN112945099B (en) * | 2021-02-08 | 2022-09-20 | 杭州晶耐科光电技术有限公司 | On-line detection system for shaft size |
DE102021107928B4 (en) | 2021-03-29 | 2023-02-16 | Jenoptik Industrial Metrology Germany Gmbh | Connection of a moveable additional sensor to a device for measuring the shape, position and dimensional characteristics of machine elements |
CN113118784B (en) * | 2021-05-18 | 2022-12-30 | 重庆建设工业(集团)有限责任公司 | Automatic avatar tube production line |
CN113432563B (en) * | 2021-06-28 | 2023-06-09 | 中国计量大学 | Extreme environment linear sensor calibration device and method |
CN114001655B (en) * | 2021-11-02 | 2022-11-15 | 深圳市腾盛精密装备股份有限公司 | Method and device for determining precision of machine equipment |
CN114322889B (en) * | 2021-12-10 | 2024-08-23 | 安徽灵轴科创有限公司 | Precise and rapid measuring device and measuring method for hemispherical air floatation tank |
CN114343848B (en) * | 2022-01-06 | 2024-09-10 | 北京瑞医博科技有限公司 | Length measurement system of marking block and surgical robot system |
CN114413796B (en) * | 2022-02-08 | 2022-11-29 | 大连理工大学 | Multifunctional standard device for precision calibration of precision parts and equipment |
CN114453261B (en) * | 2022-04-13 | 2022-07-05 | 常州市昌隆电机股份有限公司 | Transmission shaft detection and classification device and working method thereof |
CN115523856A (en) * | 2022-11-23 | 2022-12-27 | 西安西部新锆科技股份有限公司 | Measuring device and measuring method for nuclear zirconium alloy pipe cold-rolled core rod |
CN116147538A (en) * | 2023-03-31 | 2023-05-23 | 山东曦伴机电技术服务有限公司 | Device and method for measuring straightness of gas cylinder based on light-shadow relation |
CN117168269B (en) * | 2023-11-01 | 2024-06-14 | 山东省水利科学研究院 | Reinforcing bar size detection structure for water conservancy supervision |
CN117283505B (en) * | 2023-11-23 | 2024-02-20 | 山东无形信息技术有限公司 | High-efficient full-automatic survey and drawing instrument |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820241A1 (en) * | 1988-06-14 | 1989-12-21 | Stahlecker Fritz | Device for measuring diameters |
EP0478898A2 (en) * | 1990-10-01 | 1992-04-08 | Dr.-Ing. Höfler Messgerätebau Gmbh | Testing apparatus for rotationnally symmetric work pieces |
DE10319947A1 (en) * | 2003-05-02 | 2004-11-18 | Hommelwerke Gmbh | Surface contour measurement device for use with rotationally symmetric workpieces comprises an optical measurement assembly with light source and sensor and an additional electromechanical feeler transducer assembly |
WO2010133552A1 (en) * | 2009-05-19 | 2010-11-25 | Celette Sa | Three-dimensional measurement device |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5521707A (en) * | 1991-08-21 | 1996-05-28 | Apeiron, Inc. | Laser scanning method and apparatus for rapid precision measurement of thread form |
JP3267340B2 (en) * | 1992-09-28 | 2002-03-18 | 牧野フライス精機株式会社 | Tool measuring device |
JPH087053B2 (en) * | 1993-06-04 | 1996-01-29 | 川崎重工業株式会社 | Object position measurement method |
US5610391A (en) * | 1994-08-25 | 1997-03-11 | Owens-Brockway Glass Container Inc. | Optical inspection of container finish dimensional parameters |
JPH08197381A (en) * | 1995-01-24 | 1996-08-06 | Mitsubishi Heavy Ind Ltd | Automatic measuring device of cutting tool |
FR2742865B1 (en) * | 1995-12-22 | 1998-01-16 | Saint Gobain Cinematique | METHOD FOR CHECKING A GLASS CONTAINER |
JP3687896B2 (en) * | 2000-09-27 | 2005-08-24 | 富士重工業株式会社 | Measuring device for pulley for continuously variable transmission |
JP4534080B2 (en) * | 2000-10-17 | 2010-09-01 | 株式会社ユタカ | Work inspection device |
FR2866708B1 (en) * | 2004-02-23 | 2006-03-24 | Commissariat Energie Atomique | METHOD AND DEVICE FOR OMBROSCOPY CONTROL |
US20060236792A1 (en) * | 2005-04-22 | 2006-10-26 | Mectron Engineering Company | Workpiece inspection system |
US7185412B2 (en) * | 2005-05-02 | 2007-03-06 | Precision Spherical Corp. | Multi-axis, processor-controlled, toolhead positioner |
US20070115467A1 (en) * | 2005-11-23 | 2007-05-24 | Owens-Brockway Glass Container | Apparatus and method for ensuring rotation of a container during inspection |
CN101000499A (en) * | 2006-12-18 | 2007-07-18 | 浙江大学 | Contour machining method and system based on multi-sensor integral measuring |
CN101842188B (en) * | 2007-09-17 | 2013-12-11 | 科诺普提卡股份有限公司 | Rotating part position and change finding method and apparatus |
US7738088B2 (en) * | 2007-10-23 | 2010-06-15 | Gii Acquisition, Llc | Optical method and system for generating calibration data for use in calibrating a part inspection system |
TWI524091B (en) * | 2008-12-05 | 2016-03-01 | 麥可尼克資料處理公司 | Method and device using rotating printing arm to project or view image across a workpiece |
-
2012
- 2012-05-08 DE DE102012104008A patent/DE102012104008B3/en not_active Expired - Fee Related
-
2013
- 2013-04-26 JP JP2013093703A patent/JP5568663B2/en not_active Expired - Fee Related
- 2013-05-02 US US13/875,787 patent/US8964023B2/en not_active Expired - Fee Related
- 2013-05-06 EP EP13166608.3A patent/EP2662662B1/en active Active
- 2013-05-08 CN CN201310167354.0A patent/CN103453848B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3820241A1 (en) * | 1988-06-14 | 1989-12-21 | Stahlecker Fritz | Device for measuring diameters |
EP0478898A2 (en) * | 1990-10-01 | 1992-04-08 | Dr.-Ing. Höfler Messgerätebau Gmbh | Testing apparatus for rotationnally symmetric work pieces |
DE10319947A1 (en) * | 2003-05-02 | 2004-11-18 | Hommelwerke Gmbh | Surface contour measurement device for use with rotationally symmetric workpieces comprises an optical measurement assembly with light source and sensor and an additional electromechanical feeler transducer assembly |
DE10319947B4 (en) | 2003-05-02 | 2010-06-02 | Hommel-Etamic Gmbh | Device for measuring the circumferential shape of rotationally symmetrical workpieces |
WO2010133552A1 (en) * | 2009-05-19 | 2010-11-25 | Celette Sa | Three-dimensional measurement device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017097944A1 (en) * | 2015-12-10 | 2017-06-15 | Sms Group Gmbh | Method and device for measuring a contour of a body or for checking the position thereof about an axis of rotation |
CN105737781A (en) * | 2016-05-12 | 2016-07-06 | 青岛麦科三维高新技术有限公司 | Three-dimensional measuring device special for thin and long thin-wall workpiece |
CN105737781B (en) * | 2016-05-12 | 2019-02-12 | 青岛麦科三维测控技术股份有限公司 | The elongated dedicated 3-D measuring apparatus of thin wall work-piece |
IT201800009215A1 (en) * | 2018-10-05 | 2020-04-05 | Vici & C Spa | OPTICAL MEASURING MACHINE FOR MEASURING A PART WITH MAINLY LONGITUDINAL DEVELOPMENT |
Also Published As
Publication number | Publication date |
---|---|
US8964023B2 (en) | 2015-02-24 |
JP5568663B2 (en) | 2014-08-06 |
DE102012104008B3 (en) | 2013-11-07 |
US20130300861A1 (en) | 2013-11-14 |
CN103453848B (en) | 2015-06-17 |
EP2662662B1 (en) | 2018-07-18 |
CN103453848A (en) | 2013-12-18 |
JP2013234996A (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2662662B1 (en) | Device and method for measuring shape, position and dimension features of machine elements | |
EP3146290B1 (en) | Device, method and computer program for geometrically measuring an object | |
DE2725756C2 (en) | ||
EP2055403B1 (en) | Device and method for correcting roundness or straighteness errors on elongated workpieces with at least one toothed zone such as gear shafts or gear racks | |
DE4420137A1 (en) | Measuring device for checking the dimensions of cylindrical workpieces | |
EP2224204A2 (en) | Method for measuring object geometries with a coordinate measuring device | |
EP1901033B1 (en) | Apparatus and method for mobile contactless measurement, determination and evaluation of body contours | |
DE102005018787A1 (en) | Measurement of the shape of spherical and almost spherical optical surfaces | |
DE102015121582A1 (en) | Method and device for measuring features on workpieces | |
EP3044536B1 (en) | Method and apparatus for measuring internal threads of a workpiece using an optical sensor | |
DE102013220943A1 (en) | Profile measuring device, setting method for profile measuring device and profile measuring method | |
EP3146293B1 (en) | Device and method for geometrically measuring an object | |
DE102016120557A1 (en) | System for dimensionally measuring an object | |
WO1986007442A1 (en) | Process and device for determining the dimensions of a long testpiece | |
EP1640688A1 (en) | Method and Apparatus for Measuring the Surface on an Object in three Dimensions | |
DE102005029735A1 (en) | Rotationally symmetric body e.g. test sample, dimension e.g. diameter, measuring machine for use in machine tool, has fixed stopper arranged on one of slides adjustably parallel to other slide, and supporting measuring bars with caliper | |
DE68906669T2 (en) | MEASURING SYSTEM FOR A TOOL SETTING IN A MACHINE TOOL. | |
DE3687614T2 (en) | OPTICAL MEASURING APPARATUS. | |
DE4030994A1 (en) | TESTING DEVICE FOR ROTATION-SYMMETRICAL WORKPIECES | |
EP0671679A1 (en) | Method and device to measure without contact tridimensional objects based on optical triangulation | |
DE102013208397B4 (en) | Coordinate measuring machine with an additional, non-contact measuring surface measuring device | |
DE10123496A1 (en) | Gear wheel dimensioning and checking instrument has both radial and tangential feelers that can operate simultaneously in a high speed measurement mode or with only the tangential feeler for slower precise measurement | |
DE3704791A1 (en) | Method and device for measuring bodies | |
DE69103501T2 (en) | DEVICE FOR MULTIPLE CONTROL OF INTERNAL DIMENSIONS. | |
DE69001787T2 (en) | Device for automatic dimension measurement of rotating bodies. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20140430 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170328 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180208 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1019854 Country of ref document: AT Kind code of ref document: T Effective date: 20180815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013010624 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181018 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181019 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013010624 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
26N | No opposition filed |
Effective date: 20190423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190506 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181118 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1019854 Country of ref document: AT Kind code of ref document: T Effective date: 20190506 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013010624 Country of ref document: DE Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502013010624 Country of ref document: DE Representative=s name: GLEIM PETRI OEHMKE PATENT- UND RECHTSANWALTSPA, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130506 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180718 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502013010624 Country of ref document: DE Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240517 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240531 Year of fee payment: 12 |