EP2661523B1 - Leitungsdurchführung für die kesselwand einer hgü-komponente - Google Patents

Leitungsdurchführung für die kesselwand einer hgü-komponente Download PDF

Info

Publication number
EP2661523B1
EP2661523B1 EP11805463.4A EP11805463A EP2661523B1 EP 2661523 B1 EP2661523 B1 EP 2661523B1 EP 11805463 A EP11805463 A EP 11805463A EP 2661523 B1 EP2661523 B1 EP 2661523B1
Authority
EP
European Patent Office
Prior art keywords
sheath
specific resistivity
composite
cellulose material
wire bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11805463.4A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP2661523A2 (de
Inventor
Beriz BAKIJA
Dieter Breitfelder
Thomas Hammer
Jens Hoppe
Karsten LOPPACH
Johann Schlager
Ursus KRÜGER
Frank Heinrichsdorff
Volkmar LÜTHEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2661523A2 publication Critical patent/EP2661523A2/de
Application granted granted Critical
Publication of EP2661523B1 publication Critical patent/EP2661523B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/185Substances or derivates of cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens

Definitions

  • the invention relates to a cable bushing for the boiler wall of a HVDC component.
  • This has either an electrode tube or a conductor pin, which has a conductive surface.
  • This component which will also be referred to below generally as a conducting element, is usually made of copper.
  • As electrode tube this passage can be set to potential, this electrode tube for shielding a HVDC line is used, which can be performed electrically isolated through the tube interior.
  • the passage element is designed as a conductor pin, it serves directly as a HVDC line. This is suitably contacted inside and outside the boiler with a HVDC line.
  • the cable bushing on a sheath of a cellulose material, in particular paper, on. This is usually wrapped as a paper wrap around the electrode tube or the conductor bolt, so that this or this is fully enclosed.
  • a cable bushing of the type specified is, for example, according to the EP 285 895 A1 described.
  • This cable bushing has a conductor bolt as a passage element.
  • such a line implementation is also in the DE 10 2005 021 225 A1 described.
  • This cable bushing is suitable for guiding a HVDC line through a correspondingly formed electrode tube.
  • a wrapping of the passage element is provided with a cellulose material, which further wrapping further solid barriers in the form of a plurality of concentrically arranged press foil cylinders follow, which together with the Serving an insulated area result.
  • Transformer oil is provided in the spaces between the individual solid barriers and the paper wrapper. This fills the interstices, with absorbent materials such as pressboard and absorb the transformer oil.
  • HVDC components in general are understood to mean those components which are used for the transmission of high-voltage direct currents and contain current-carrying elements (HVDC stands for high-voltage direct current transmission).
  • HVDC stands for high-voltage direct current transmission
  • transformers or chokes are required as HVDC components.
  • cable routing for the electrical connection of various HVDC components are required.
  • Further HVDC components are disconnection points in such cable guides or bushings through housing components in which other HVDC components are housed.
  • leading to high-voltage direct currents occur, for example, in transformer and choke coils and alternating currents.
  • the HVDC components in the context of this invention should be suitable for transmitting high-voltage direct currents of at least 100 KV, preferably for the transmission of high-voltage direct currents of more than 500 KV.
  • the oxidizing agent ensures on the one hand for the polymerization of the pyrrole compounds, in addition to an increase in electrical conductivity.
  • the resistivity p of such impregnated cellulosic materials can thus be influenced by the concentration of pyrroles and the nature of the oxidizing agent.
  • nanocomposites can also be used as a field grading material when it comes to reducing peaks in the formation of electric fields, for example on the insulation of electrical conductors.
  • a material consisting of a polymer can be used for this purpose.
  • a filler is distributed whose particles are nanoparticles, so have a mean diameter of at most 100 nm.
  • inter alia semiconducting materials can be used whose band gap lies in a range of 0 eV and 5 eV.
  • the electrical resistance of the nanocomposite can be adjusted. If, during the admixture of the nanoparticles, a certain proportion of the volume is exceeded, which is between 10 and 20% by volume, depending on the size of the nanoparticles, the specific resistance of the nanocomposite is noticeably reduced, with the result that the electrical conductivity of the nanocomposite is adjusted and can be adapted to the required conditions.
  • I can set a resistivity of the order of 10 12 ⁇ m. This results in a voltage drop across the nanocomposite, which results in a more uniform distribution of the potential and thus also grades the resulting electric field in a suitable manner. As a result, the resulting field peaks can be reduced, which advantageously increases the dielectric strength.
  • the field-weakening effect of the nanocomposite depends on the permittivity of the nanocomposite, the permittivity ⁇ being a measure of the permeability of a material for electric fields.
  • the permittivity is also referred to as the dielectric constant, the term "permittivity" being used below.
  • the higher the relative permittivity the greater the field weakening effect of the substance used in relation to the vacuum. In the following, only the permittivity figures of the substances used are dealt with.
  • the WO 2006/122736 A1 also describes a system of cellulosic fibers and nanotubes, preferably carbon nanotubes (hereinafter CNT), in which specific resistances of about 6 to 75 ⁇ m can be set.
  • CNT carbon nanotubes
  • These nanocomposites are to be used, for example, as electrical resistance heating, wherein the conductivity is designed with regard to an ability of the material of the conversion of electrical energy into heat. For this purpose, a sufficient degree of coverage of cellulose fibers with CNT is required.
  • the WO 2006/131011 A1 describes a socket, which may consist inter alia of an impregnated paper wrap.
  • BN is also mentioned among other materials. This can also be used in doped form.
  • the particles should be used with a concentration in the cellulose material below the percolation threshold, so that there is no electrical contact between the particles with each other. For this reason, the specific electrical resistance of the nanocomposite remains essentially unaffected.
  • a nanocomposite comprising semiconducting or nonconducting nanoparticles dispersed in a cellulosic material such as pressboard is known, which can be used as a field grading material in transformers. At least part of the nanoparticles distributed in the cellulosic material have an enclosure of an electrically conductive polymer.
  • a cellulosic material for example, a paper, paperboard or pressboard can be used.
  • the cellulosic material has a construction of cellulosic fibers which in their entirety make up the bandage forming the cellulosic material.
  • BNNT boron nitride nanotubes
  • electrically conductive polymers in the DE 10 2007 018 540 A1 mentioned polymers find use.
  • electrically conductive polymers include polypyrroles, polyaniline, polythiophenes, polyparaphenylenes, polyparaphenylenevinylenes and derivatives of these polymers mentioned.
  • PEDOT polyethylene-dioxythiophene
  • the impregnation consists of a polymer which is crosslinked from a negative ionomer, in particular PSS, and a positively charged ionomer.
  • positively charged ionomers preferably PEDOT or PANI can be used.
  • PEDOT refers to the already mentioned poly (3,4-ethylene-dioxydthiophene).
  • PANI is polyaniline and PSS is polystyrene sulfonate.
  • the use of negatively charged and positively charged ionomers advantageously makes it particularly easy to produce the cellulosic material.
  • the ionomers can be easily dissolved in water and thus fed to the process of making the cellulosic material, which is also water-based. By crosslinking the ionomers following preparation of the cellulosic material, the resistivity of the cellulosic material can be lowered.
  • the ionomers polymerize and form in the cellulosic material an electrically conductive network, which is responsible for the reduction of the specific resistance.
  • the mentioned ionomers can also be used to coat already mentioned semiconducting or non-conducting nanoparticles.
  • the nanocomposite can also be impregnated with semiconducting nanoparticles which are at least partially made of BNNT and distributed in the cellulose or a polymer.
  • semiconducting nanoparticles which are at least partially made of BNNT and distributed in the cellulose or a polymer.
  • a doping of this BNNT with suitable dopants or a coating is possible provided with metals or doped semiconductors on the BNNT.
  • the concentration of the BNNT can be chosen such that the nanocomposite has a specific conductivity p of the order of 10 12 ⁇ m. According to this variant, no conductive polymers are used as a sheathing of the BNNT.
  • Doping can be achieved by modifying the BNNT by adding suitable dopants such that the dopant atoms form electronic states that will make the BNNT a p-conductor (ie, electronic states that capture electrons from the valence band edge ) or to an n-conductor (ie, reaching electronic states that emit electrons by thermal excitation across the conduction band edge).
  • a dopant for a p-doping for example Be comes into question, as a dopant for n-doping Si comes into question.
  • Such doping of the BNNT can be done in situ, during the growth of the BNNT z. B. from the gas or liquid phase, the dopant atoms are incorporated.
  • the doping in a further step after the growth of the BNNT, wherein the dopants are typically taken up by the BNNT under the influence of a heat treatment.
  • the resistivity can be lowered to values typical for doped semiconductors between 0.1 and 1000 ⁇ cm.
  • the nanocomposite made of cellulosic material can also be impregnated with semiconducting nanoparticles with others, and also to increase the effective conductivity of at least part of the nanoparticles distributed in the insulating material Doping of these nanoparticles is provided with dopants.
  • the use of the semiconducting nanoparticles, in particular BNNT has the advantage that low filler contents of at most 5% by volume, preferably even at most 2% by volume, in the insulating material are sufficient to cause percolation of the nanoparticles and thus increase the electrical conductivity of the nanocomposite.
  • the object of the invention is to improve an initially specified wiring to the effect that it has a higher dielectric strength and a greater structural design freedom for the construction of the cable bushing.
  • the envelope is designed as a composite, consisting of a treated cellulose material.
  • the cellulosic material is treated according to the invention by distributing in this particle a lower specific resistance in a concentration above the percolation threshold compared to the specific resistance ⁇ p of the untreated cellulose material.
  • a coherent network of a conductive polymer with a lower resistivity compared to the specific resistance ⁇ p of the untreated cellulose material pervades the composite.
  • the described, for the invention essential effect of a relief of the cellulosic material by the voltage drop takes place to a greater extent on the transformer oil can be used advantageously good if the specific resistance ⁇ comp of the composite is not more than 5 times 10 13 ⁇ m.
  • a specific resistance ⁇ comp of the composite which is 1 to 20 times the specific resistance ⁇ o of the transformer oil. It can be provided particularly advantageously that the specific resistance ⁇ comp of the composite corresponds, on the order of magnitude, to the specific resistance of transformer oil.
  • order of magnitude it is meant that the specific resistance ⁇ comp of the composite differs by at most an order of magnitude from that of the transformer oil (ie at most by a factor of 10).
  • the specific resistances ⁇ o , ⁇ p and ⁇ comp in the context of this invention should each be measured at room temperatures and a prevailing reference field strength of 1 kV / mm. Under these conditions, the resistivity ⁇ o is between 10 12 and 10 13 ⁇ m. It should be noted, however, that the specific resistance ⁇ o of transformer oil is rather reduced in the case of an inventive heavier load due to the voltage drop across the transformer oil. In the embodiments described in more detail below, it is therefore assumed that a specific resistance ⁇ o in the transformer oil of 10 12 ⁇ m.
  • the specific resistance of adjacent, the sheath-forming layer layers is graded, wherein the layer layer or the layers with the lowest resistivity adjacent to the electrode tube or the conductor bolt.
  • the cladding is constructed from several layers which differ in their electrical properties. It is thus possible to change the resistivity in the enclosure in stages, it being advantageous if the resistivity in the enclosure to the passageway decreases. As a result, the effect of a field grading in the area near the passage element can be used more.
  • the specific resistance of the casing is lowered to a region greater than or equal to the specific resistance of the transformer oil only at the surface of the casing which forms an interface with the surrounding transformer oil, while the specific resistance inside the casing Passage element is further lowered towards.
  • load peaks in the wrapping material can be reduced near the passage element.
  • the envelope consists of a paper winding with several winding layers, wherein the paper wrap is wound around the electrode tube or the conductor bolt.
  • a particularly simple production of the envelope is advantageously possible.
  • This is wrapped around the transmission element by this around its center axis is turned.
  • a winding layer is dependent on the paper thickness, while the already mentioned layer layer is dependent on which region should be equipped with which specific resistance.
  • layers of different resistivity can be made by using different papers.
  • a winding layer is generally much thinner (because of the paper thickness) as a layer layer. A layer layer is thus produced by winding a plurality of winding layers.
  • the thickness s of the covering is reduced in comparison with the required thickness when using the relevant untreated cellulose material instead of the composite. This is an advantageous possibility of how the structural freedom of design, which results from the reduction of the specific resistance of the envelope, can be exploited. Due to a smaller thickness of the envelope, the space required for the line feedthrough is advantageously reduced. Due to the reduced specific resistance, the dielectric strength of the cladding remains the same.
  • solid barriers are provided around the casing to form gaps (ie gaps) for transformer oil between the solids barriers with each other and with respect to the casing. This results in an alternating sequence of transformer oil and cellulosic material. This sequence gives the Isolierumble. It is particularly advantageous if the solid barriers also consist of the treated cellulose material, ie are reduced in their specific resistance. As a result, the structural freedom of design can advantageously be extended even more by, for example Solid barriers are provided with reduced wall thickness.
  • a wall thickness of 1 mm should not be undercut, since this is a constructive design limit. Namely, the solid barriers must have sufficient mechanical stability.
  • wall thicknesses of 1 to 3 mm can be provided.
  • the solid barriers are equipped with graded electrical resistors, as has already been described for the enclosure.
  • the specific resistance increases with increasing distance of the solids barrier to the passage element.
  • the graduated setting of different specific resistances of solid barriers as well as layer layers in the enclosure has the advantage that the specific resistance can be adapted to the respectively locally present field strength of the electric field surrounding the transmission.
  • An electrical insulating section 18 generally consists of several layers of cellulosic material 19, between which oil layers 20 may lie.
  • the insulating section begins on the metallic surface 11 of a component 12 to be insulated, which may be formed, for example, by a tube of a bushing not shown in detail for an electrical line of a HVDC component from the associated housing.
  • the cellulosic material 19 is impregnated with oil, which in FIG. 1 not shown in detail. For this, an impregnation 11 can be seen in FIG. 1 within the cellulosic material.
  • the according to FIG. 1 insulation shown surrounds, for example, in a transformer which there used for use Elektodenrohr 21 a line feedthrough for the boiler wall.
  • the electrical insulation, for example, of a transformer must prevent electrical breakdown in the case of operation in the presence of an AC voltage in the area of the bushings.
  • the isolation behavior of the insulation depends on the permittivity of the components of the insulation.
  • the permittivity ⁇ o is approximately 2, for the cellulosic material ⁇ p at 4.
  • the load on the individual insulation components results in the voltage U o applied to the oil being approximately twice as high , such as the voltage U p applied to the cellulose material.
  • the impregnation 11 does not influence the stress distribution in the insulation according to the invention since the permittivity ⁇ BNNT is also approximately 4, and therefore the permittivity ⁇ comp of the impregnated cellulosic material is also approximately 4 lies.
  • the voltage U o applied to the oil is approximately twice as great as the voltage U comp applied to the nanocomposite (cellulosic material).
  • the breakdown strength of the insulation in the case of HVDC components when DC voltages are present is also important.
  • the distribution of the applied voltage to the individual insulation components is then no longer dependent on the permittivity, but on the resistivity of the individual components.
  • the specific resistance ⁇ o of oil is between 10 13 and 10 12 ⁇ m.
  • a greater part of the voltage drop to relieve the cellulosic material in the oil is to take place and that the specific resistance of the oil decreases when a voltage is applied, it is rather, as in Fig. 1 shown to start from a resistivity ⁇ o of 10 12 ⁇ m.
  • ⁇ p of cellulose material is three orders of magnitude higher and is 10 15 ⁇ m.
  • the inventively introduced into the cellulosic material 19 impregnation 11 may, for. B. from BNNT and is adjusted by a suitable coating of BNNT from PEDOT: PSS and possibly by an additional doping of the BNNT with dopants with their resistivity (between 0.1 and 1000 ⁇ cm) that the specific resistance of the cellulose material ⁇ p is lowered.
  • PEDOT: PSS or the sole use of BNNT.
  • the voltage U o applied to the oil is of the order of magnitude in the region of the voltage U comp applied to the composite, so that a balanced voltage profile is established in the insulation.
  • the dielectric strength of the insulation is advantageously improved, since the load on the cellulosic material is noticeably reduced.
  • a routing according to FIG. 2 has an electrode tube 21 as a passage element.
  • a conductor bolt 23 is shown beyond the line of symmetry 22, which can also act as a passage element.
  • the electrode tube 21 serves to pass an HVDC line, which is not shown in detail, the HVDC line is electrically conductively attached to the front ends 24 when using a conductor pin 23, so that the conductor pin 23 itself forms part of the HVDC cable. Lead represents.
  • a sheath 26 is provided from a cellulosic material. This envelope consists of several layers 27, consisting of windings of a paper. These have different specific resistances.
  • Solid barriers 28, 28i of pressboard Concentrically arranged around the envelope are also several solid barriers 28, 28i of pressboard, which also consist of a cellulosic material with reduced resistivity. Between the solid barriers with each other and between the innermost solid barrier 28i and the enclosure 26 gaps in the form of columns 32 are provided, which are filled in a manner not shown with a transformer oil. The solid barriers and the Enclosure, together with a shield electrode 30, the Isolierrange for the HVDC line feedthrough.
  • the shield electrode 30 serves to receive the HGÜ line, which is not shown in more detail, and which is laid in a loop shape due to the realization of an axial compensation within the shield electrode.
  • the shield electrode itself is also provided with a cellulosic material in the form of a layer 31.
  • this layer may consist of a paper wrap or, for example, from a molded body of pressboard. It is also true for the layer 31 that a use of the cellulose material according to the invention with reduced specific resistance is particularly advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulating Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Insulators (AREA)
  • Installation Of Indoor Wiring (AREA)
EP11805463.4A 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente Not-in-force EP2661523B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011008459A DE102011008459A1 (de) 2011-01-07 2011-01-07 Leitungsdurchführung für die Kesselwand einer HGÜ-Komponente
PCT/EP2011/072867 WO2012093023A2 (de) 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente

Publications (2)

Publication Number Publication Date
EP2661523A2 EP2661523A2 (de) 2013-11-13
EP2661523B1 true EP2661523B1 (de) 2019-09-04

Family

ID=45463561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11805463.4A Not-in-force EP2661523B1 (de) 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente

Country Status (5)

Country Link
EP (1) EP2661523B1 (pt)
CN (1) CN103403254B (pt)
BR (1) BR112013017406B1 (pt)
DE (1) DE102011008459A1 (pt)
WO (1) WO2012093023A2 (pt)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041714A1 (de) * 2010-09-29 2012-04-05 Siemens Aktiengesellschaft Cellulosematerial mit imprägnierung, verwendung dieses cellulosematerials und verfahren zu dessen herstellung

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321281A1 (de) 1982-06-22 1983-12-22 ASEA AB, 72183 Västerås Verfahren zur erhoehung der elektrischen leitfaehigkeit impraegnierbarer materialien
ATE73572T1 (de) 1987-04-09 1992-03-15 Siemens Ag Hochspannungsisolationsanordnung fuer transformatoren und drosselspulen, insbesondere zur hochspannungs-gleichstrom-uebertragung (hgue).
JP2771505B2 (ja) * 1996-03-14 1998-07-02 株式会社日立製作所 直流ブッシング
GB2331878A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri Power flow control in AC systems using directly connected rotary power converters
JP2000173836A (ja) * 1998-12-01 2000-06-23 Mitsubishi Electric Corp 静止誘導機器
SE525492C2 (sv) 2002-10-22 2005-03-01 Abb Research Ltd Fältstyrande polymermatris försedd med fyllning
CN1902716B (zh) 2003-08-21 2010-11-03 伦塞勒高聚技术研究所 具有受控电特性的纳米组合物
ATE465502T1 (de) * 2004-12-27 2010-05-15 Abb Technology Ag Elektrische induktionseinrichtung für hochspannungsanwendungen
DE102005021225A1 (de) 2005-05-09 2006-11-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung der Oberflächenbeschaffenheit von Objekten des Straßenverkehrs oder Personen
WO2006122736A2 (de) 2005-05-19 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanotubes umfassende verbundsysteme, verfahren ihrer herstellung und verwendung derselben in heizelementen
EP1889265A1 (en) 2005-06-07 2008-02-20 Abb Research Ltd. High-voltage bushing
SE529250C2 (sv) * 2005-09-29 2007-06-12 Abb Technology Ltd Transformator med optimerade distansorgan
DE102006013927B4 (de) * 2006-03-21 2008-11-20 Siemens Ag Verbindungselement für eine elektrische Abschirmungsanordnung
DE102007018540A1 (de) 2007-04-19 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch leitfähige und transparente Zusammensetzung
WO2011003635A1 (de) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Nanokomposit mit halbleitenden nanopatikeln
EP2451867A1 (de) 2009-07-08 2012-05-16 Siemens AG Nanokomposit mit bornitrid-nanoröhrchen
DE102010041630B4 (de) 2010-09-29 2017-05-18 Siemens Aktiengesellschaft Verwendung eines elektrisch isolierenden Nanokomposits mit halbleitenden oder nichtleitenden Nanopartikeln

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012041714A1 (de) * 2010-09-29 2012-04-05 Siemens Aktiengesellschaft Cellulosematerial mit imprägnierung, verwendung dieses cellulosematerials und verfahren zu dessen herstellung

Also Published As

Publication number Publication date
CN103403254A (zh) 2013-11-20
WO2012093023A2 (de) 2012-07-12
BR112013017406B1 (pt) 2020-09-29
CN103403254B (zh) 2016-05-04
DE102011008459A1 (de) 2012-07-12
EP2661523A2 (de) 2013-11-13
BR112013017406A2 (pt) 2016-10-04
WO2012093023A3 (de) 2012-08-30

Similar Documents

Publication Publication Date Title
EP2661760B1 (de) Schirmring für eine hgü-transformatorspule oder eine hgü-drosselspule
EP2661761B1 (de) Leitungsführung für hgü-transformatorspulen oder hgü-drosselspulen
EP2622006B1 (de) Elektrisch isolierender nanokomposit mit halbleitenden oder nichtleitenden nanopartikeln, verwendung dieses nanokomposits und verfahren zu dessen herstellung
EP2661755B1 (de) Isolationsanordnung für eine hgü-komponente mit wandartigen feststoffbarrieren
DE102011008461A1 (de) Trennstelle einer Leitungsdurchführung für eine HGÜ-Komponente
WO2011003634A1 (de) Nanokomposit mit bornitrid-nanoröhrchen
WO2011003635A1 (de) Nanokomposit mit halbleitenden nanopatikeln
EP2740197B1 (de) Elektrische leitungseinrichtung, endenglimmschutzanordnung und verfahren zum herstellen eines endenglimmschutzes
EP3639282A1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit steckbarer hochspannungsdurchführung
DE69923040T2 (de) Isoliertes elektrisches kabel
EP2661523B1 (de) Leitungsdurchführung für die kesselwand einer hgü-komponente
DE69402494T2 (de) Energiekabel mit verbesserter dielektrischen Festigkeit
WO2014146901A1 (de) Nanokomposit mit elektrischen felder gradierenden nanopatikeln, verfahren zu seiner herstellung und dessen verwendung
DE1665075B1 (de) Verfahren zur Isolierung eines elektrischen Gegenstandes
EP2401747B1 (de) Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils
EP3410451B1 (de) Schirmring für eine transformatorspule
EP3819920A1 (de) Vorrichtung zum spannungsausgleich bei rechteckspannungen für ein elektromotor
WO2015135719A2 (de) Isolationsband, dessen verwendung als elektrische isolation für elektrische maschinen, die elektrische isolation und verfahren zur herstellung des isolationsbandes
DE542766C (de) Dreileiterkabel mit einzel verbleiten und verseilten Adern
CH170845A (de) Verfahren für die Herstellung von Erzeugnissen mit gegeneinander isolierten elektrischen Leitern und nach diesem Verfahren hergestellter isolierter Leiter.
DE2362183C3 (de) Hochspannungskabel mit Kunststoffisolierung
DE102017212026A1 (de) Schirmring und/oder Steigungsausgleich für eine Transformatorspule
DE1025958B (de) Elektrisches Hochspannungskabel mit einer Isolierung aus nichtvulkanisierbaren Kunststoffen
DE9218351U1 (de) Elektrokabel
DE2232696A1 (de) Schichtmaterial zur bildung von isolierschichten bzw. abschirmschichten bei elektrischen kabeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130626

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011016079

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D21H0017330000

Ipc: H01F0027360000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/36 20060101AFI20190326BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1176531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016079

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191212

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 9

Ref country code: GB

Payment date: 20191209

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016079

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200605

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1176531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011016079

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111215

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904