EP2661523A2 - Leitungsdurchführung für die kesselwand einer hgü-komponente - Google Patents

Leitungsdurchführung für die kesselwand einer hgü-komponente

Info

Publication number
EP2661523A2
EP2661523A2 EP11805463.4A EP11805463A EP2661523A2 EP 2661523 A2 EP2661523 A2 EP 2661523A2 EP 11805463 A EP11805463 A EP 11805463A EP 2661523 A2 EP2661523 A2 EP 2661523A2
Authority
EP
European Patent Office
Prior art keywords
resistivity
specific resistance
cable bushing
composite
bushing according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11805463.4A
Other languages
English (en)
French (fr)
Other versions
EP2661523B1 (de
Inventor
Beriz BAKIJA
Dieter Breitfelder
Thomas Hammer
Jens Hoppe
Karsten LOPPACH
Johann Schlager
Ursus KRÜGER
Frank Heinrichsdorff
Volkmar LÜTHEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2661523A2 publication Critical patent/EP2661523A2/de
Application granted granted Critical
Publication of EP2661523B1 publication Critical patent/EP2661523B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens
    • H01F27/363Electric or magnetic shields or screens made of electrically conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/185Substances or derivates of cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/04Leading of conductors or axles through casings, e.g. for tap-changing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/322Insulating of coils, windings, or parts thereof the insulation forming channels for circulation of the fluid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • H01F27/36Electric or magnetic shields or screens

Definitions

  • the invention relates to a cable bushing for the boiler wall of a HVDC component.
  • This has either a Elekt ⁇ rodenrohr or a conductor bolt, which has a conductive surface.
  • This component which will also be referred to below generally as a conducting element, is usually made of copper.
  • electrode tube this passage element can be set to potential, said electrode tube for shielding a HVDC line is used, which can be electrically isolated through the tube interior ⁇ leads.
  • the transit element executed as head bolt ⁇ it is used directly as HVDC line. This is suitably contacted inside and outside the boiler with a HVDC line.
  • the Lei ⁇ tion implementation on a sheath of a cellulose material, in particular paper on. This is usually wrapped as Pa ⁇ pierwicklung to the electrode tube or conductor bolt so that this or these full extent closed around ⁇ is.
  • a cable bushing of the type described above is described for example according to EP 285 895 AI.
  • This cable bushing has a conductor bolt as a passage element.
  • a Kaus press document ⁇ tion is also described in DE 10 2005 021 225 AI.
  • This cable bushing is suitable for guiding a HVDC line through a correspondingly formed electrode tube.
  • a wrapping of the passage element is provided with a cellulose material, which further wrapping further solid barriers in the form of a plurality of concentrically arranged press foil cylinders follow, which together with the Serving an insulated area result.
  • Transformer oil is provided in the spaces between the individual solid barriers and the paper wrapper. This fills the interstices, with absorbent materials such as pressboard and absorb the transformer oil.
  • HVDC high-voltage direct currents used and include current-carrying elements
  • HVDC current-carrying elements
  • transformers or chokes are required as HVDC components.
  • Lei ⁇ tung versions are required for electrical connection of various components of HVDC.
  • Further HVDC components are disconnection points in such cable guides or bushings through housing components in which other HVDC components are housed.
  • high-voltage direct currents occur, for example, in transformer and choke coils and alternating currents.
  • the HVDC components in the sense of this invention are to be suitable for transmission of high voltage direct current of at least 100 KV, preferably for Studentstra ⁇ supply of high-voltage direct currents of more than 500 KV.
  • an impregnable solid material made of cellulose fibers in an aqueous oxidant tion medium such as. B. a weakly acidic solution of iron (III) chloride solution, cerium (IV) sulfate, potassium hexacyanoferrate (III) or molybdatophosphoric acid can be immersed. Subsequently, the wet cellulosic material is treated with either liquid or vapor pyrrole compounds at room temperature until the pyrrole is polymerized depending on the concentration of the oxidizing agent. The impregnated cellulose material is used in room temperature. temperature 24 hours dried.
  • the oxidizing agent ensures ei ⁇ netrust for the polymerization of pyrrole compounds, and also for increasing the electrical conductivity.
  • the specific resistance p of such impregnated cellulosic materials can thus be influenced by the concentration of pyrroles and the type of oxidizing agent.
  • nanocomposites can also be used as a field- ⁇ gradierendes material, when it comes to reduce peaks in the formation of electric fields, for example, to the insulation of electrical conductors.
  • a material consisting of a polymer can be used for this purpose.
  • a filler is distributed whose particles are nanoparticles, ie have an average diameter of at most 100 nm.
  • AI semiconducting materials are used for such nanoparticles, inter alia, whose band gap is in a range of 0 eV and 5 eV.
  • the electrical resistance of the nanocomposite can be adjusted. Is used in the admixture of nanoparticles of a certain proportion Volu ⁇ mens exceeded, which is depending on the size of the nanoparticles is 10 to 20 vol%, the specific resistance decreases noticeably was the nanocomposite, wherein in this way the electrical conductivity of the nanocomposite and can be adapted to the required conditions. In particular, I can set a resistivity of the order of 10 12 Gm. Is achieved so that a voltage drop across the nanocomposite, which has a uniform distribution of potential re ⁇ result, and thus the resultant electric field graded in a suitable manner. This can reduce the resulting field peaks. the, which advantageously the dielectric strength is increased.
  • the field weakening effect of the nanocomposite here depends on the permittivity of the nanocomposite, the permittivity ⁇ being a measure of the permeability of a material for electric fields.
  • the permittivity is named ⁇ as the ⁇ lektrizticianskonstante to be being used below the Beg ⁇ riff "permittivity.”
  • a relative Per ⁇ mitt society man denotes by the permittivity ⁇ ⁇ ⁇ / ⁇ designated ratio of the permittivity ⁇ of a Stof- fes is the electric field constant ⁇ 0, indicating the Permittivi ⁇ ty of vacuum. the higher the relative permittivity is, the larger the field weakening effect of the substance used in relation to the vacuum. in the following the Permittriossloom next to the starting materials are just treated.
  • WO 2006/122736 A1 also describes a system of cellulose fibers and nanotubes, preferably carbon nanotubes (hereinafter CNT), in which specific resistances of the equivalent of 6 to 75 ⁇ m can be set.
  • CNT carbon nanotubes
  • These nanocomposites are to be used, for example, as electrical resistance heating, the conductivity being designed with regard to an ability of the material to convert electrical energy into heat. For this, a sufficient degree of coverage of the cellulose fibers with CNT is required.
  • WO 2006/131011 A1 describes a bush, which may consist inter alia of an impregnated paper wrap.
  • BN is also mentioned among other materials. This can also be used in doped form.
  • the particles should be used with a concentration in the cellulose material below the percolation threshold, so that there is no electrical contact between the particles. For this reason, the specific electrical resistance of the nanocomposite remains essentially unaffected.
  • a Na is nokomposit angles with semiconductive or non-conductive nanoparticle which are distributed in a cellulose material such as for example, press ⁇ span, known to the gradierendes as field Mate ⁇ rial in Transformers can be used. At least part of the nanoparticles distributed in the cellulosic material have an enclosure of an electrically conductive polymer.
  • a cellulosic material such as a Pa ⁇ pier, cardboard or pressboard can be used.
  • the Cellulosema ⁇ TERIAL has a construction made of cellulose fibers that make up the cellulosic material forming the dressing in ih ⁇ rer entirety.
  • a semi-conductive or non-conductive nanoparticles may, for example, Si, SiC, ZnO, BN, GaN, A1N, or C, to the special ⁇ also boron nitride nanotubes (hereinafter referred to as BNNT) may be used.
  • BNNT boron nitride nanotubes
  • electrically conductive polymers ⁇ mentioned in the DE 10 2007 018 540 AI polymers can be used.
  • electrically conductive polymers include polypyrroles, polyaniline, polythiophenes, polyparaphenylenes, polyparaphenylenevinylenes and derivatives of these polymers mentioned.
  • a specific example of such polymers is PEDOT, which is also sold under the trade name Baytron by Bayer AG. PEDOT will be Its systematic name is also referred to as poly (3,4-ethylene dioxythiophene).
  • the impregnation consists of a polymer which is crosslinked from a negative ionomer, in particular PSS, and a positively charged ionomer.
  • a positively charged ionomer preferably PEDOT or PANI can be used.
  • PEDOT refers to the already mentioned poly (3, 4-ethylene-dioxydthiophene).
  • PANI is polyaniline and PSS is polystyrene sulfonate.
  • the use of negatively charged and positively charged ionomers allows beneficial ⁇ way a particularly simple production of the Cellulosemateri- as.
  • the ionomers can be easily dissolved in water and thus fed to the process of making the cellulosic material, which is also water-based.
  • Vernet ⁇ wetting the ionomers following the preparation of the Cellu ⁇ loose material the resistivity of the cellulose material ⁇ can be lowered.
  • the ionomers polymerize and form in the cellulosic material an electrically conductive network which is responsible for the reduction of the specific resistance.
  • the ge ⁇ can called ionomers also be used to encase semiconducting already mentioned or non-conductive nanoparticles.
  • the nanocomposite can also be impregnated with semiconducting nanoparticles which consist at least partially of BNNT and are distributed in the cellulose or a polymer.
  • semiconducting nanoparticles which consist at least partially of BNNT and are distributed in the cellulose or a polymer.
  • the concentration of BNNT can be chosen so that the nanocomposite has a specific conductivity p of the order of 10 12 ⁇ m.
  • no conductive polymers are used as a sheathing of the BNNT.
  • Doping can be achieved by modifying the BNNT by adding suitable dopants such that the dopant atoms form electronic states that will make the BNNT a p-conductor (ie, electronic states that capture electrons from the valence band edge ) or to an n-conductor (ie, that electronic states are reached, the electrons by thermal excitation on the conduction band edge emittie ⁇ ren) form.
  • a dopant for a p-type doping is for example Be in question, as a dopant for n-doping Si comes into question.
  • Such doping of the BNNT can be done in situ, during the growth of the BNNT z. B. from the gas or liquid phase, the dopant atoms are incorporated.
  • the nanocomposite of cellulosic material can also be impregnated with semiconducting nanoparticles, wherein also to increase the effective conductivity of at least part of the nanoparticles distributed in the insulating material Doping of these nanoparticles is provided with dopants.
  • the use of the semi-conductive nanoparticles, in particular BNNT has the advantage that low degrees of filling of Hoechsmann ⁇ least 5% by volume preferably lierstoff sufficient even at most 2% by volume in the iso to cause percolation of the nanoparticles and thus the electrical conductivity of the Increase nanocomposites.
  • the object of the invention is to improve an initially indicated cable routing in such a way that it has a higher dielectric strength and a greater constructive freedom of design for the construction of the cable bushing.
  • This object is achieved according to the invention with the above ⁇ line implementation that the Umhül ⁇ ment is designed as a composite, consisting of a behan ⁇ delten cellulosic material.
  • the cellulosic material is treated OF INVENTION ⁇ dung according to the fact that in this particles are p of the treated cellulosic material lower resistivity in a concentration above the percolation threshold ver ⁇ informs nem egg compared to the resistivity p.
  • a continuous network of a conductive polymer with a lower resistivity than the specific resistance p p of the untreated cellulose material pervades the composite.
  • the addition of particles or the provision of a network of a conductive polymer in a cellulose material in the manner indicated has the effect of reducing the specific resistance of the composite thus produced in comparison to untreated cellulose material.
  • the specific resistance of the composite is matched to that of transformer oil, so that a load of the iso- lierate can be reduced evenly over a single DC voltage across the individual elements of the insulation.
  • the voltage drop across the cellulosic material is lower, so that the transformer oil is loaded to a greater extent.
  • a reserve is used according to the invention, which is available anyway. This advantageously advantageously increases the design scope for the design of the cellulose barriers, in particular the coating of the leadthrough element.
  • the described, for the invention essential effect of a relief of the cellulosic material by the voltage drop is also to a greater extent on the transformer oil, can be used advantageously good if the specific resistance P C om P of the composite is at most 5 times 10 13 Qm.
  • a specific resistance p C om P of the composite which is 1 to 20 times the specific resistance p 0 of the transformer oil.
  • the resistivity p C P om speaks of the composite size Trim ⁇ moderate resistivity of transformer oil ⁇ ent.
  • order of magnitude it is meant that the speci ⁇ fic resistance p C om P of the composite differs at most by a magnitude ⁇ order of that of the transformer oil (ie at most by a factor of 10).
  • the specific resistances p 0 , p P and p C om P in the context of this invention are to be measured in each case at room temperatures and a prevailing reference field strength of 1 kV / mm. Under these conditions, the resistivity p 0 is between 10 12 and 10 13 square meters. It should be noted, however, that the specific resistance p Q of transformer oil tends to be reduced in the case of a heavier load according to the invention due to the voltage drop across the transformer oil. In the mecanicsbei play described in more detail below is therefore assumed by a resistivity p 0 in the transformer oil of 10 12 square meters.
  • the specific resistance of be ⁇ adjacent, the sheath-forming film layer is stepped, wherein the coating layer or the film layer adjacent to the ge ⁇ slightest specific resistance of the electrode tube or the head bolts.
  • the cladding is constructed from several layers which differ in their electrical properties. It is thus possible to change the resistivity in the enclosure in stages, it being advantageous if the resistivity in the enclosure to the passageway decreases. As a result, the effect of a field grading in the area near the passage element can be used more.
  • the specific resistance of the casing is lowered to a region greater than or equal to the specific resistance of the transformer oil only at the surface of the casing which forms an interface with the surrounding transformer oil, while the specific resistance inside the casing Passage element is further lowered towards. This allows Be ⁇ lastungsspitzen are degraded in the wrapping material near the fürleitele ⁇ mentes.
  • the wrapping consists of a paper winding with a plurality of winding layers, wherein the paper wrap is wound around the electrode tube or the conductor bolt.
  • a particularly simple production of the covering is advantageously possible.
  • This is wrapped around the transmission element by this around its centers axis is turned.
  • a winding layer is dependent on the paper thickness, while the already er Wegn ⁇ th film layer is dependent on the area to be provided with which resistivity.
  • a winding layer is generally much thinner (because of the paper thickness) as a layer layer. A layer layer is thus produced by winding a plurality of winding layers.
  • the thickness s of the covering is reduced in comparison with the required thickness when using the relevant untreated cellulose material instead of the composite. This is an advantageous possible ⁇ ness as the constructive design freedom, which is obtained by reducing the resistivity of the envelope can be exploited. Due to a smaller thickness of the covering, the space required for the lead-through is advantageously reduced. Due to the reduced specific resistance, the dielectric strength of the cladding remains the same.
  • the barrier material barriers are provided to form gaps (ie gaps) for transformer oil between the solid barriers with each other and to the envelope out. This results in an alternating sequence of transformer oil and cellulosic material. This sequence gives the Isolierumble. It is particularly advantageous if the solid Barrie ⁇ ren consist of the treated cellulosic material, that are reduced with respect to their resistivity is. This allows advantageous constructive Gestal ⁇ tung leeway still be expanded by beispiels- example solid barriers are provided with reduced wall thickness. Here, a wall thickness of 1 mm should not be un ⁇ undershot, as this is a constructive design limit. The solid barriers must have a sufficient mechanical stability. Before Trains t ⁇ wall thicknesses of 1 to 3 mm can be provided.
  • the solid barriers are equipped with graded electrical resistors, as has already been described for the enclosure.
  • the specific resistance increases with increasing distance of the solids barrier to the passage element.
  • the stepped A ⁇ position different specific resistances of solid material and barrier layer portions in the envelope has the advantage that the specific resistance of each local field strength of the present surrounding the passage elekt ⁇ generic field can be adjusted.
  • Figure 1 shows schematically a section of an embodiment ⁇ example of an insulating section for a passage
  • Figure 2 shows another embodiment of a line implementation in the schematic longitudinal section.
  • An electrical insulating section 18 consists generally of several layers of cellulose material 19, between which oil layers 20 can lie.
  • the insulating section begins at the metallic surface 11 of a component 12 to be insulated, which may be formed, for example, by a tube of a not shown nä ⁇ forth implementation for electrical conduction of a HVDC component from the associated housing.
  • the cellulosic material 19 is impregnated with oil, which is not shown in detail in Figure 1. This is in ⁇ Fi gur 1 within the cellulosic material impregnation 11 can be seen.
  • the insulation shown in Figure 1 surrounds, for example, in a transformer which is used there Elektodenrohr 21 a line feedthrough for the boiler wall.
  • the electrical insulation, for example, of a transformer must prevent electrical breakdown in the case of operation in the presence of an AC voltage in the area of the bushings.
  • the isolation behavior of the insulation depends on the permittivity of the components of the insulation.
  • the dielectric constant is ⁇ 0 approximately at 2, for the cellulosic material ⁇ ⁇ at 4.
  • the insulation with an AC voltage thus results for the loading of the individual isolation components that present at the oil voltage U 0 about dop ⁇ pelt is as high as the voltage applied to the cellulosic material U p .
  • the distribution of the applied voltage to the individual insulation components is then no longer dependent on the permittivity, but on the resistivity of the individual components.
  • the specific resistance P o of oil is between 1 0 13 and 1 0 12 Gm.
  • a larger part of the tensioning ⁇ voltage drop on the discharge of the cellulosic material in the oil it ⁇ is to follow and that the specific resistance of the oil decreases upon application of a voltage is rather as shown in Figure 1, of a resistivity p 0 out of 1 0 12 sqm to go out.
  • p p of the cellulosic material is three orders of magnitude higher and is 10 15 m.
  • the inventively introduced into the cellulosic material 1 9 impregnation 1 1 may, for. B. from BNNT and is adjusted by a suitable coating of BNNT from PEDOT: PSS and possibly by an additional doping of the BNNT with dopants with their resistivity (between 0, 1 and 1 000 Qcm), that the resistivity of the Cellulo ⁇ sematerials p p is reduced.
  • This is also allei ⁇ nige using PEDOT: PSS possible or sole use of BNNT.
  • a line guide according to FIG. 2 has an electrode tube 21 as a passage element.
  • a conductor pin 23 Darge ⁇ represents, which can also act as a passage element.
  • the electrode tube 21 serves to pass an HVDC line, which is not shown in detail, the HVDC line is electrically conductively attached to the front ends 24 when using a conductor pin 23, so that the conductor pin 23 itself forms part of the HVDC cable. Lead represents.
  • a sheath 26 is provided from a cellulosic material. This envelope consists of several layers 27, consisting of windings of a paper. These have different specific resistance ⁇ stands.
  • the shield electrode 30 serves to receive the HGÜ line, which is not shown in more detail, and which is laid in the shape of a loop in the screen electrode due to the realization of an axial compensation.
  • the shield electrode itself is just ⁇ be provided with a cellulosic material in the form of a layer 31st Also, this layer may consist of a paper wrap or, for example, from a molded body of pressboard. It is also true for the layer 31 that a use of the cellulose material according to the invention with reduced specific resistance is particularly advantageous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulating Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulators (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

Die Erfindung betrifft eine Leitungsdurchführung für die Kesselwand einer HGÜ-Komponente. Diese weist ein Durchleitelement in Form eines Elektrodenrohres (25) oder eines Leiterbolzens (23) auf. Dieses Durchleitelement ist mit einer Umhüllung (26) aus einem Cellulosematerial versehen, dessen spezifischer Widerstand durch eine Behandlung erfindungsgemäß im Vergleich zu Cellulosematerial ohne eine solche Behandlung herabgesetzt ist. Hierdurch kann eine höhere Durchschlagfestigkeit der Isolierstrecke, gebildet aus der Umhüllung (26) und weiteren Feststoffbarrieren (28) erreicht werden. Die verbesserte Durchschlagfestigkeit eröffnet vorteilhaft einen zusätzlichen gestalterischen Spielraum für die Durchleitung.

Description

Beschreibung
Leitungsdurchführung für die Kesselwand einer HGU-Komponente
Die Erfindung betrifft eine Leitungsdurchführung für die Kesselwand einer HGÜ-Komponente . Diese weist entweder ein Elekt¬ rodenrohr oder einen Leiterbolzen auf, der eine leitfähige Oberfläche hat. Dieses Bauelement, welches im Folgenden auch allgemein als Durchleitelement bezeichnet werden soll, ist normalerweise aus Kupfer gefertigt. Als Elektrodenrohr kann dieses Durchleitelement auf Potential gelegt werden, wobei dieses Elektrodenrohr zur Abschirmung einer HGÜ-Leitung dient, welche elektrisch isoliert durch das Rohrinnere ge¬ führt werden kann. Ist das Durchleitungselement als Leiter¬ bolzen ausgeführt, so dient es direkt als HGÜ-Leitung. Dieses wird in geeigneter Weise im Inneren und außerhalb des Kessels mit einer HGÜ-Leitung kontaktiert. Außerdem weist die Lei¬ tungsdurchführung eine Umhüllung aus einem Cellulosematerial , insbesondere Papier, auf. Dieses wird üblicherweise als Pa¬ pierwicklung um das Elektrodenrohr oder den Leiterbolzen herumgewickelt, so dass dieses oder dieser voll umfänglich um¬ schlossen ist.
Eine Leitungsdurchführung der eingangs angegebenen Art ist beispielsweise gemäß der EP 285 895 AI beschrieben. Diese Leitungsdurchführung weist einen Leiterbolzen als Durchleitungselement auf. Außerdem ist eine solche Leitungsdurchfüh¬ rung auch in der DE 10 2005 021 225 AI beschrieben. Diese Leitungsdurchführung ist geeignet, um eine HGÜ-Leitung durch ein entsprechend ausgebildetes Elektrodenrohr zu führen. In jedem Fall ist eine Umhüllung des Durchleitungselementes mit einem Cellulosematerial vorgesehen, wobei auf diese Umhüllung weitere Feststoffbarrieren in Form von mehreren konzentrisch angeordneten Pressspanzylindern folgen, die zusammen mit der Umhüllung eine Isolierstrecke ergeben. In den Zwischenräumen zwischen den einzelnen Feststoffbarrieren und der Umhüllung aus Papier ist Transformatorenöl vorgesehen. Dieses füllt die Zwischenräume aus, wobei saugfähige Materialien wie Pressspan auch das Transformatoröl aufsaugen.
Unter HGÜ-Komponenten allgemein sind derartige Komponenten zu verstehen, die zur Übertragung von Hochspannungs- Gleichströmen zum Einsatz kommen und stromführende Elemente beinhalten (HGÜ steht für Hochspannungsgleichstromübertra¬ gung) . Insbesondere werden hierbei Transformatoren oder Drosseln als HGÜ-Komponenten benötigt. Allerdings sind auch Lei¬ tungsführungen zur elektrischen Verbindung verschiedener HGÜ- Komponenten erforderlich. Weitere HGÜ-Komponenten sind Trennstellen in solchen Leitungsführungen bzw. Durchführungen durch Gehäusebauteile, in denen andere HGÜ-Komponenten untergebracht sind. Neben den zu führenden Hochspannungsgleichströmen treten beispielsweise in Transformator- und Drosselspulen auch Wechselströme auf. Die HGÜ-Komponenten im Sinne dieser Erfindung sollen zur Übertragung von Hochspannungsgleichströmen von mindestens 100 KV, bevorzugt zur Übertra¬ gung von Hochspannungsgleichströmen von mehr als 500 KV geeignet sein.
Aus der US 4,521,450 ist es bekannt, dass ein imprägnierfähiges Vollmaterial aus Cellulosefasern in ein wässriges Oxida- tionsmittel, wie z. B. einer schwach säurehaltigen Lösung aus Eisen ( III ) -chloridlösung, Cer ( IV) -sulfat , Kaliumhexacyano- ferrat(III) oder Molybdatophosphorsäure getaucht werden kann. Anschließend wird das feuchte Cellulosematerial entweder mit flüssigem oder dampfförmigem Pyrrol-Verbindungen bei Raumtemperatur so lange behandelt, bis das Pyrrol in Abhängigkeit von der Konzentration des Oxidationsmittels polymerisiert wird. Das so imprägnierte Cellulosematerial wird bei Raumtem- peratur 24 Stunden getrocknet. Das Oxidationsmittel sorgt ei¬ nerseits für die Polymerisation der Pyrrol-Verbindungen, außerdem für eine Erhöhung der elektrischen Leitfähigkeit. Der spezifische Widerstand p solcher imprägnierten Cellulosemate- rialien kann damit über die Konzentration an Pyrrolen und die Art des Oxidationsmittels beeinflusst werden.
Weiterhin ist es bekannt, dass Nanokomposite auch als feld¬ gradierendes Material verwendet werden können, wenn es darum geht, Spitzen bei der Ausbildung von elektrischen Feldern, beispielsweise an der Isolation elektrischer Leiter, zu verringern. Gemäß der WO 2004/038735 AI kann hierzu beispielsweise ein Material, bestehend aus einem Polymer, verwendet werden. In diesem wird ein Füllstoff verteilt, dessen Parti- kel Nanopartikel sind, also einen mittleren Durchmesser von höchtens 100 nm aufweisen. Gemäß der US 2007/0199729 AI sind für derartige Nanopartikel u. a. halbleitende Materialien einsetzbar, deren Bandlücke in einem Bereich von 0 eV und 5 eV liegt. Mittels der eingesetzten Nanopartikel, die bei- spielsweise aus ZnO bestehen können, lässt sich der elektrische Widerstand des Nanokomposits einstellen. Wird bei der Zumischung der Nanopartikel ein bestimmter Anteil des Volu¬ mens überschritten, der je nach Größe der Nanopartikel bei 10 bis 20 Vol-% liegt, so verringert sich der spezifische Wider- stand des Nanokomposits spürbar, wobei sich auf diese Weise die elektrische Leitfähigkeit des Nanokomposits einstellen und an die geforderten Bedingungen anpassen lässt. Insbesondere lässt ich ein spezifischer Widerstand in einer Größenordnung von 1012 Gm einstellen. Erreicht wird damit ein Span- nungsabfall über den Nanokomposit , welcher eine gleichmäßige¬ re Verteilung des Potentials zur Folge hat und damit auch das entstehende elektrische Feld in geeigneter Weise gradiert. Hierdurch können die entstehenden Feldspitzen verringert wer- den, wodurch vorteilhaft die Durchschlagfestigkeit gesteigert wird .
Bei einer Beanspruchung des elektrischen Leiters mit einer Wechselspannung entsteht ebenfalls ein feldgradierender Effekt, der allerdings einem anderen Mechanismus folgt. Die feldschwächende Wirkung des Nanokomposits hängt hierbei von der Permittivität des Nanokomposits ab, wobei die Permittivi- tät ε ein Maß für die Durchlässigkeit eines Materials für elektrische Felder ist. Die Permittivität wird auch als Die¬ lektrizitätskonstante bzeichnet, wobei im Folgenden der Beg¬ riff „Permittivität" verwendet werden soll. Als relative Per¬ mittivität bezeichnet man das durch die Permittivitätszahl εΓ = ε/εο bezeichnete Verhältnis der Permittivität ε eines Stof- fes zur elektrischen Feldkonstante ε0, welche die Permittivi¬ tät des Vakuums angibt. Je höher die relative Permittivität ist, desto größer ist auch der feldschwächende Effekt des eingesetzten Stoffes im Verhältnis zum Vakuum. Im Folgenden werden nur die Permittivitätszahlen der zum Einsatz kommenden Stoffe behandelt.
Die WO 2006/122736 AI beschreibt außerdem ein System aus Cel- lulosefasern und Nanotubes, vorzugsweise Carbon-Nanotubes (im folgenden CNT) , bei welchem sich spezifische Widerstände von umgerechnet 6 bis 75 Qm einstellen lassen. Diese Nanokomposi- te sollen beispielsweise als elektrische Widerstandsheizung verwendet werden, wobei die Leitfähigkeit mit Blick auf eine Fähigkeit des Materials der Umsetzung von elektrischer Energie in Wärme ausgelegt ist. Hierfür ist ein genügender Bede- ckungsgrad der Cellulosefasern mit CNT erforderlich.
Die WO 2006/131011 AI beschreibt eine Buchse, welche unter anderem aus einer imprägnierten Papierwicklung bestehen kann. Als Material für die Imprägnierung wird unter anderen Materialien auch BN genannt. Dieses kann auch in dotierter Form verwendet werden. Außerdem sollen die Partikel mit einer Konzentration im Cellulosematerial unterhalb der Perkolati- onsschwelle verwendet werden, so dass es nicht zu einer elektrischen Kontaktierung der Partikel untereinander kommt. Aus diesem Grund bleibt der spezifische elektrische Wider¬ stand des Nanokomposits im Wesentlichen unbeeinflusst .
Aus der nach dem Zeitpunkt dieser Anmeldung veröffentlichten Anmeldung mit dem Aktenzeichen DE 102010041630.4 ist ein Na- nokomposit mit halbleitenden oder nichtleitenden Nanoparti- keln, die in einem Cellulosematerial wie zum Beispiel Press¬ span verteilt sind, bekannt, der als Feld gradierendes Mate¬ rial bei Transformatoren verwendet werden kann. Zumindest ein Teil der in dem Cellulosematerial verteilten Nanopartikel weisen eine Umhüllung aus einem elektrisch leitfähigen Polymer auf. Als Cellulosematerial kann beispielsweise ein Pa¬ pier, Pappe oder Pressspan verwendet werden. Das Cellulosema¬ terial weist einen Aufbau aus Cellulosefasern auf, die in ih¬ rer Gesamtheit den das Cellulosematerial bildenden Verband ausmachen. Als halbleitende oder nichtleitende Nanopartikel können beispielsweise Si, SiC, ZnO, BN, GaN, A1N oder C, ins¬ besondere auch Bornitrid-Nanoröhrchen (im folgenden als BNNT bezeichnet) verwendet werden. Als elektrisch leitfähige Poly¬ mere können die in der DE 10 2007 018 540 AI erwähnten Polymere Verwendung finden. Als elektrisch leitfähige Polymere werden beispielsweise Polypyrrole, Polyanilin, Polythiophene, Polyparaphenylene, Polyparaphenylen-Vinylene und Derivate dieser genannten Polymere genannt. Ein spezielles Beispiel für solche Polymere ist PEDOT, das auch unter dem Handelnamen Baytron von der Bayer AG vertrieben wird. PEDOT wird mit sei- nem systematischen Namen auch als Poly- ( 3 , 4-ethylen- dioxythiophen) bezeichnet.
Gemäß der der nach dem Zeitpunkt dieser Anmeldung veröffentlichten Anmeldung mit dem Aktenzeichen DE 102010041635.5 kann auch vorgesehen werden, dass die Imprägnierung aus einem Polymer besteht, welches aus einem negativen Ionomer, insbesondere PSS, und einem positiv geladenen Ionomer vernetzt ist. Als positiv geladene lonomere können vorzugsweise PEDOT oder PANI Verwendung finden. Als PEDOT bezeichnet man das bereits erwähnte Poly- ( 3 , 4-ethylen-dioxydthiophen) . PANI ist Polyani- lin und PSS ist Polystyrensulfonat . Die Verwendung negativ geladener und positiv geladener lonomere ermöglicht vorteil¬ haft eine besonders einfache Herstellung des Cellulosemateri- als. Die lonomere können einfach in Wasser gelöst werden und somit dem Prozess der Herstellung des Cellulosematerials , der ebenfalls wasserbasiert ist, zugeführt werden. Durch Vernet¬ zung der lonomere im Anschluss an die Herstellung des Cellu¬ losematerials kann der spezifische Widerstand des Cellulose¬ materials gesenkt werden. Dabei polymerisieren die lonomere und bilden in dem Cellulosematerial ein elektrisch leitfähiges Netzwerk, welches für die Verminderung des spezifischen Widerstandes verantwortlich ist. Insbesondere können die ge¬ nannten lonomere auch verwendet werden, um bereits erwähnten halbleitenden oder nichtleitenden Nanopartikel zu umhüllen.
Gemäß der der nach dem Zeitpunkt dieser Anmeldung veröffentlichten Anmeldung mit dem Aktenzeichen DE 102009033267.7 kann der Nanokomposit auch mit halbleitenden Nanopartikeln imprägniert werden, die zumindest teilweise aus BNNT bestehen und in der Cellulose oder einem Polymer verteilt sind. Zur Erhöhung der effektiven Leitfähigkeit zumindest eines Teils der in dem Isolierstoff verteilten BNNT ist eine Dotierung dieser BNNT mit geeigneten Dotierstoffen oder eine Beschich- tung mit Metallen oder dotierten Halbleitern auf den BNNT vorgesehen. Die Konzentration der BNNT kann so gewählt werden, dass der Nanokomposit eine spezifische Leitfähigkeit p in der Größenordnung von 1012 Qm aufweist. Nach dieser Varian- te kommen keine leitfähigen Polymere als Ummmantelung der BNNT zum Einsatz.
Eine Dotierung kann erreicht werden, indem die BNNT durch Beigabe von geeigneten Dotierstoffen dahingehend modifiziert werden, dass die Dotierstoff-Atome elektronische Zustände ausbilden, die das BNNT zu einem p-Leiter (d.h., dass elektronische Zustände ausgebildet werden, die Elektronen von der Valenzbandkante einfangen) oder zu einem n-Leiter (d. h., dass elektronische Zustände erreicht werden, die Elektronen durch thermische Anregung über die Leitungsbandkante emittie¬ ren) ausbilden. Als Dotierstoff für eine p-Dotierung kommt beispielsweise Be in Frage, als Dotierstoff für eine n- Dotierung kommt Si in Frage. Eine solche Dotierung der BNNT kann in situ erfolgen, wobei während des Wachstums der BNNT z. B. aus der Gas- oder Flüssigphase die Dotierstoff-Atome eingebaut werden. Auch ist es möglich, die Dotierung in einem weiteren Schritt nach dem Wachstum der BNNT durchzuführen, wobei die Dotierstoffe typischerweise unter dem Einfluss ei¬ ner Wärmebehandlung von den BNNT aufgenommen werden. Durch Einbringung der Dotierstoffe in die BNNT kann der spezifische Widerstand auf für dotierter Halbleiter typische Werte zwi¬ schen 0,1 und 1000 Qcm abgesenkt werden.
Gemäß der der nach dem Zeitpunkt dieser Anmeldung veröffent- lichten Anmeldung mit dem Aktenzeichen DE 10 2009 033 268.5 kann der Nanokomposit aus Cellulosematerial auch anderen mit halbleitenden Nanopartikeln imprägniert werden, wobei auch zur Erhöhung der effektiven Leitfähigkeit zumindest eines Teils der in dem Isolierstoff verteilten Nanopartikel eine Dotierung dieser Nanopartikel mit Dotierstoffen vorgesehen ist. Die Verwendung der halbleitenden Nanopartikel, insbesondere BNNT hat den Vorteil, dass geringe Füllgrade von höchs¬ tens 5 Vol-% bevorzugt sogar höchstens 2 Vol-% in dem Iso- lierstoff ausreichen, um eine Perkolation der Nanoteilchen zu bewirken und damit die elektrische Leitfähigkeit des Nanokom- posits zu erhöhen.
Die Aufgabe der Erfindung besteht darin, eine eingangs ange- gebene Leitungsführung dahingehend zu verbessern, dass diese eine höhere Durchschlagfestigkeit aufweist und ein größerer konstruktiver Gestaltungsspielraum für die Konstruktion der Leitungsdurchführung entsteht. Diese Aufgabe wird mit der eingangs angegebenen Leitungs¬ durchführung erfindungsgemäß dadurch gelöst, dass die Umhül¬ lung als Komposit ausgeführt ist, bestehend aus einem behan¬ delten Cellulosematerial . Das Cellulosematerial wird erfin¬ dungsgemäß dadurch behandelt, dass in diesem Partikel mit ei- nem im Vergleich zum spezifischen Widerstand pp des behandelten Cellulosematerials geringeren spezifischen Widerstand in einer Konzentration oberhalb der Perkolationsschwelle ver¬ teilt sind. Alternativ oder zusätzlich kann vorgesehen werden, dass in dem Cellulosematerial ein zusammenhängendes Netzwerk eines leitfähigen Polymers mit einem im Vergleich zum spezifischen Widerstand pp des unbehandelten Cellulosematerials geringeren spezifischen Widerstands den Komposit durchzieht. Die Zugabe von Partikeln bzw. das Vorsehen eines Netzwerkes eines leitfähigen Polymers in einem Cellulosemate- rial in der angegebenen Weise hat den Effekt, dass der spezifische Widerstand des so hergestellten Komposits im Vergleich zu unbehandeltem Cellulosematerial verringert wird. Dadurch wird der spezifische Widerstand des Komposits demjenigen von Transformatoröl angeglichen, so dass eine Belastung der Iso- lierstrecke bei einer Beaufschlagung mit einer Gleichspannung gleichmäßiger über die einzelnen Elemente der Isolierstrecke abgebaut werden kann. Konkret ist der Spannungsabfall über dem Cellulosematerial geringer, so dass das Transformatoröl in höherem Maße belastet wird. Hier wird erfindungsgemäß eine Reserve genutzt, die ohnehin zur Verfügung steht. Damit wird vorteilhaft der konstruktive Spielraum für die Gestaltung der Cellulosebarrieren insbesondere der Umhüllung des Durchleit- elementes vorteilhaft vergrößert.
Der beschriebene, für die Erfindung wesentliche Effekt einer Entlastung des Cellulosematerials , indem der Spannungsabfall in größerem Maße auch am Transformatoröl erfolgt, lässt sich vorteilhaft gut nutzen, wenn der spezifische Widerstand pComP des Komposits höchstens bei 5 mal 1013 Qm liegt. Man kann zur Nutzung dieses Effekts vorteilhaft auch einen spezifischen Widerstand pComP des Komposits einstellen, der das 1- bis 20- fache des spezifischen Widerstandes p0 des Transformatoröls beträgt. Besonders vorteilhaft kann vorgesehen werden, dass der spezifische Widerstand pComP des Komposits größenordnungs¬ mäßig dem spezifischen Widerstand von Transformatoröl ent¬ spricht. Mit größenordnungsmäßig ist gemeint, dass der spezi¬ fische Widerstand pComP des Komposits höchstens um eine Grö¬ ßenordnung von demjenigen des Transformatoröls abweicht (also höchstens um den Faktor 10) .
Die spezifischen Widerstände p0, pP und pComP im Zusammenhang mit dieser Erfindung sollen jeweils bei Raumtemperaturen und einer herrschenden Bezugsfeldstärke von 1 kV/mm gemessen werden. Bei diesen Bedingungen liegt der spezifische Widerstand p0 zwischen 1012 und 1013 Qm. Zu bemerken ist jedoch, dass sich der spezifische Widerstand pQ von Transformatorenöl bei einer erfindungsgemäß vorgesehenen stärkeren Belastung durch die am Transformatoröl abfallende Spannung eher verringert. Bei den im Folgenden noch näher beschriebenen Ausführungsbei spielen wird daher von einem spezifischen Widerstand p0 im Transformatoröl von 1012 Qm ausgegangen.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass der spezifische Widerstand von be¬ nachbarten, die Umhüllung bildenden Schichtlagen abgestuft ist, wobei die Schichtlage oder die Schichtlagen mit dem ge¬ ringsten spezifischen Widerstand an das Elektrodenrohr oder den Leiterbolzen angrenzen. Die Umhüllung wird mit anderen Worten also aus mehreren Schichtlagen aufgebaut, die sich in ihren elektrischen Eigenschaften unterscheiden. Es ist hiermit möglich, den spezifischen Widerstand in der Umhüllung stufenweise zu verändern, wobei es vorteilhaft ist, wenn der spezifische Widerstand in der Umhüllung zum Durchleitelement abnimmt. Hierdurch kann die Wirkung einer Feldgradierung im Bereich nahe des Durchleitelementes stärker genutzt werden. Insbesondere kann auch vorgesehen werden, dass der spezifische Widerstand der Umhüllung nur an der Oberfläche der Umhüllung, die eine Grenzfläche zum umgebenden Transformatoröl bildet, in einen Bereich größer oder gleich dem spezifischen Widerstand des Transformatoröls abgesenkt wird, während der spezifische Widerstand im Inneren der Umhüllung zum Durchleitelement hin weiter abgesenkt wird. Hierdurch können Be¬ lastungsspitzen im Umhüllungsmaterial nahe des Durchleitele¬ mentes abgebaut werden.
Weiterhin ist es vorteilhaft, wenn die Umhüllung aus einer Papierwicklung mit mehreren Wicklungslagen besteht, wobei di Papierwicklung um das Elektrodenrohr oder den Leiterbolzen gewickelt ist. Hierdurch ist vorteilhaft eine besonders ein¬ fache Herstellung der Umhüllung möglich. Diese wird um das Durchleitungselement gewickelt, indem dieses um seine Mitten achse gedreht wird. Zu bemerken ist, dass eine Wicklungslage abhängig von der Papierdicke ist, während die bereits erwähn¬ te Schichtlage abhängig davon ist, welcher Bereich mit welchem spezifischen Widerstand ausgestattet sein soll. Beim Wi- ekeln mit Papier können Schichtlagen mit unterschiedlichem spezifischen Widerstand dadurch hergestellt werden, dass unterschiedliche Papiere verwendet werden. Allerdings ist eine Wicklungslage im Allgemeinen sehr viel dünner (weil von der Papierstärke abhängig) als eine Schichtlage. Eine Schichtlage wird also durch Wickeln von mehreren Wicklungslagen erzeugt.
Weiterhin ist es vorteilhaft, wenn die Dicke s der Umhüllung im Vergleich zur erforderlichen Dicke bei Verwendung des betreffenden unbehandelten Cellulosematerials anstelle des Komposits verringert ist. Dies ist eine vorteilhafte Möglich¬ keit, wie der konstruktive Gestaltungsspielraum, der sich durch die Verringerung des spezifischen Widerstandes der Umhüllung ergibt, ausgeschöpft werden kann. Durch eine geringe¬ re Dicke der Umhüllung wird der Platzbedarf für die Leitungs- durchführung vorteilhaft verringert. Durch den verringerten spezifischen Widerstand bleibt die Durchschlagfestigkeit der Umhüllung dabei gleich.
Weiterhin ist es vorteilhaft, wenn um die Umhüllung Fest- stoffbarrieren unter Ausbildung von Spalten (also Zwischenräumen) für Transformatoröl zwischen den Feststoffbarrieren untereinander und zur Umhüllung hin vorgesehen sind. Es entsteht somit eine abwechselnde Folge von Transformatoröl und Cellulosematerial . Diese Abfolge ergibt die Isolierstrecke. Besonders vorteilhaft ist es, wenn auch die Feststoffbarrie¬ ren aus dem behandelten Cellulosematerial bestehen, d. h. hinsichtlich ihres spezifischen Widerstandes herabgesetzt sind. Hierdurch kann vorteilhaft der konstruktive Gestal¬ tungsspielraum noch mehr erweitert werden, indem beispiels- weise Feststoffbarrieren mit verringerter Wandstärke vorgesehen werden. Hierbei sollte eine Wandstärke von 1 mm nicht un¬ terschritten werden, da es sich hierbei um eine konstruktive Auslegungsgrenze handelt. Die Feststoffbarrieren müssen näm- lieh eine genügende mechanische Stabilität aufweisen. Bevor¬ zugt können Wandstärken von 1 bis 3 mm vorgesehen werden.
Auch ist es möglich, dass die Feststoffbarrieren mit abgestuften elektrischen Widerständen ausgestattet werden, wie dies bereits für die Umhüllung beschrieben wurde. Dabei steigt der spezifische Widerstand mit zunehmendem Abstand der Feststoffbarriere zum Durchleitelement . Die abgestufte Ein¬ stellung unterschiedlicher spezifischer Widerstände von Fest- stoffbarrieren sowie Schichtlagen in der Umhüllung hat den Vorteil, dass der spezifische Widerstand an die jeweils lokal vorliegende Feldstärke des die Durchleitung umgebenden elekt¬ rischen Feldes angepasst werden kann.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende
Zeichnungselemente sind in den einzelnen Figuren jeweils mit den gleichen Bezugszeichen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen:
Figur 1 schematisch ein Ausschnitt aus einem Ausführungs¬ beispiel einer Isolierstrecke für eine Durchleitung und
Figur 2 ein weiteres Ausführungsbeispiel einer Leitungs- durchführung im schematischen Längsschnitt.
Eine elektrische Isolierstrecke 18 gemäß Figur 1 besteht all¬ gemein aus mehreren Lagen aus Cellulosematerial 19, zwischen denen Ölschichten 20 liegen können. Die Isolierstrecke be- ginnt an der metallischen Oberfläche 11 eines zu isolierenden Bauteils 12, das zum Beispiel durch ein Rohr einer nicht nä¬ her dargestellten Durchführung für einer elektrische Leitung einer HGÜ-Komponente aus dem zugehörigen Gehäuse gebildet sein kann. Auch das Cellulosematerial 19 ist mit Öl getränkt, was in Figur 1 nicht näher dargestellt ist. Dafür ist in Fi¬ gur 1 innerhalb des Cellulosematerials eine Imprägnierung 11 zu erkennen. Die gemäß Figur 1 dargestellte Isolierung umgibt beispielsweise in einem Transformator das dort zum Einsatz kommende Elektodenrohr 21 einer Leitungsdurchführung für die Kesselwand .
Die elektrische Isolation beispielsweise eines Transformators muss im Betriebsfall bei Anliegen einer Wechselspannung elektrische Durchbrüche auch im Bereich der Durchführungen verhindern. In diesem Fall ist das Isolationsverhalten der Isolierung von der Permittivität der Komponenten der Isolierung abhängig. Für Öl liegt die Permittivitätszahl ε0 ungefähr bei 2, für das Cellulosematerial ερ bei 4. Bei einer Be¬ anspruchung der Isolation mit einer Wechselspannung ergibt sich daher für die Belastung der einzelnen Isolationskomponenten, dass die am Öl anliegende Spannung U0 ungefähr dop¬ pelt so hoch ist, wie die am Cellulosematerial anliegende Spannung Up. Wird ein Nanokomposit verwendet, bei dem das Cellulosematerial 19 erfindungsgemäß imprägniert ist, so be- einflusst die Imprägnierung 11 die Spannungsverteilung in der erfindungsgemäßen Isolation nicht, da die Permittivitätszahl SB ebenfalls ungefähr bei 4 liegt und daher die Permittivi¬ tät Scomp des imprägnierten Cellulosematerials auch bei unge¬ fähr 4 liegt. Damit ist auch bei der erfindungsgemäßen Isolation die am Öl angreifende Spannung UQ ungefähr doppelt so groß wie die am Nanokomposit (Cellulosematerial) anliegende Spannung Ucomp . Gleichzeitig ist bei HGÜ-Komponenten auch die Durchschlagfes¬ tigkeit der Isolation bei Anliegen von Gleichspannungen von Bedeutung. Die Verteilung der anliegenden Spannung auf die einzelnen Isolationsbestandteile ist dann allerdings nicht mehr von der Permittivität abhängig, sondern vom spezifischen Widerstand der einzelnen Komponenten. Der spezifische Widerstand Po von Öl liegt zwischen 1 013 und 1 012 Gm. Berücksichtigt man, dass erfindungsgemäß ein größerer Teil des Span¬ nungsabfalls zur Entlastung des Cellulosematerials im Öl er¬ folgen soll und dass der spezifische Widerstand des Öl sich bei Anliegen einer Spannung verringert, ist eher, wie in Fig 1 dargestellt, von einem spezifischen Widerstand p0 von 1 012 Qm auszugehen. Demgegenüber ist pp vom Cellulosematerial um drei Größenordnungen höher und liegt bei 1 015 Qm. Dies bewirkt, dass bei Anliegen einer Gleichspannung die Spannung am Öl U0 ein Tausendstel (bei Annahme von pQ = 1 013 Qm zumindest ein Hundertstel bis ein Fünfhundertsei ) der Spannung am Cel¬ lulosematerial Up beträgt. Dieses Ungleichgewicht birgt die Gefahr, dass es bei einer Beaufschlagung der Isolation mit einer Gleichspannung zu Durchschlägen im Cellulosematerial kommt und die elektrische Isolation versagt.
Die erfindungsgemäß in das Cellulosematerial 1 9 eingebrachte Imprägnierung 1 1 kann z. B. aus BNNT bestehen und wird durch eine geeignete Beschichtung der BNNT aus PEDOT:PSS und evtl. durch eine zusätzliche Dotierung der BNNT mit Dotierstoffen mit ihrem spezifischen Widerstand (zwischen 0 , 1 und 1 000 Qcm) so eingestellt, dass der spezifische Widerstand des Cellulo¬ sematerials pp herabgesetzt wird. Dies ist auch durch allei¬ nige Verwendung von PEDOT:PSS oder alleinige Verwendung von BNNT möglich. Damit lässt sich für den erfindungsgemäßen Kom- posit eine spezifische Leitfähigkeit pCOmp einstellen, der an den spezifischen Widerstand pQ angenähert ist und im Ideal¬ fall diesem ungefähr entspricht. Bei einem spezifischen Wi- derstand pComP von höchstens 5 mal 10 Qm liegt die am Öl an¬ liegende Spannung U0 größenordnungsmäßig im Bereich der am Komposit anliegenden Spannung UCOmp / so dass sich ein ausge¬ glichenes Spannungsprofil in der Isolation einstellt. Hier- durch wird vorteilhaft die Durchschlagfestigkeit der Isolati¬ on verbessert, da sich die Belastung des Cellulosematerials spürbar verringert.
Eine Leitungsführung gemäß Figur 2 weist als Durchleitelement ein Elektrodenrohr 21 auf. Alternativ zu dieser Ausgestaltung ist jenseits der Symmetrielinie 22 ein Leiterbolzen 23 darge¬ stellt, der ebenfalls als Durchleitelement fungieren kann. Während das Elektrodenrohr 21 dazu dient, eine HGÜ-Leitung, die nicht näher dargestellt ist, hindurchzuführen, wird bei Verwendung eines Leiterbolzens 23 die HGÜ-Leitung an den stirnseitigen Enden 24 elektrisch leitend befestigt, so dass der Leiterbolzen 23 selbst einen Teil der HGÜ-Leitung darstellt. Unabhängig davon, ob der Leiterbolzen 23 oder das Elektrodenrohr 21 genutzt wird, so ist auf der leitfähigen Oberfläche 25 dieses Bauteils eine Umhüllung 26 aus einem Cellulosematerial vorgesehen. Diese Umhüllung besteht aus mehreren Schichtlagen 27, die aus Wicklungen eines Papiers bestehen. Diese weisen unterschiedliche spezifische Wider¬ stände auf.
Konzentrisch um die Umhüllung angeordnet sind weiterhin mehrere Feststoffbarrieren 28, 28i aus Pressspan, die ebenfalls aus einem Cellulosematerial mit verringertem spezifischem Widerstand bestehen. Zwischen den Feststoffbarrieren unterein- ander und zwischen der innersten Feststoffbarriere 28i und der Umhüllung 26 sind Zwischenräume in Form von Spalten 32 vorgesehen, die in nicht näher dargestellter Weise mit einem Transformatoröl gefüllt sind. Die Feststoffbarrieren und die Umhüllung ergeben zusammen mit einer Schirmelektrode 30 die Isolierstrecke für die HGÜ-Leitungsdurchführung .
Die Schirmelektrode 30 dient einer Aufnahme der nicht näher dargestellten HGÜ-Leitung, welche aufgrund der Realisierung eines Axialausgleiches innerhalb der Schirmelektrode schlei- fenförmig verlegt ist. Die Schirmelektrode selbst ist eben¬ falls mit einem Cellulosematerial in Form einer Schicht 31 versehen. Auch diese Schicht kann aus einer Papierwicklung bestehen oder beispielsweise aus einem Formkörper aus Pressspan. Auch für die Schicht 31 gilt, dass eine Verwendung des erfindungsgemäßen Cellulosematerials mit verringertem spezifischem Widerstand besonders vorteilhaft ist.

Claims

Patentansprüche
1. Leitungsdurchführung für die Kesselwand einer HGÜ- Komponente, aufweisend
· ein Elektrodenrohr (21) oder ein Leiterbolzen (23) mit einer leitfähigen Oberfläche und
• eine Umhüllung (26) aus einem Cellulosematerial , insbe¬ sondere Papier, die das Elektrodenrohr (21) oder den Leiterbolzen (23) vollumfänglich umschließt,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Umhüllung (26) als Komposit ausgeführt ist, beste¬ hend aus einem behandelten Cellulosematerial (19),
• in dem Partikel mit einem im Vergleich zum spezifischen Widerstand pp des unbehandelten Cellulosematerials ge- ringeren spezifischen Widerstand in einer Konzentration oberhalb der Perkolationsschwelle verteilt sind und/oder
• in dem ein zusammenhängendes Netzwerk eines leitfähigen Polymers mit einem im Vergleich zum spezifischen Widerstand Pp des unbehandelten Cellulosematerials geringeren spezifischen Widerstand den Komposit durchzieht, wobei der spezifische Widerstand von benachbarten die Umhül¬ lung (26) bildenden Schichtlagen (27) abgestuft ist und die Schichtlage oder die Schichtlagen mit dem geringsten spezifischen Widerstand an das Elektrodenrohr (21) oder den Leiter- bolzen (23) angrenzen.
2. Leitungsdurchführung nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t ,
dass der spezifische Widerstand pComP des Komposits zumindest an der Oberfläche der Umhüllung (26) höchstens bei 5 mal 1013 Qm liegt.
3. Leitungsdurchführung nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t ,
dass der spezifische Widerstand pComP des Komposits zumindest an der Oberfläche der Umhüllung (26) das ein- bis zwanzigfa¬ che des spezifischen Widerstandes pQ des Transformatoröls be- trägt
4. Leitungsdurchführung nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t ,
dass der spezifische Widerstand pCOmp des Komposits zumindest an der Oberfläche der Umhüllung (26) größenordnungsmäßig dem spezifischen Widerstand von Transformatoröl entspricht.
5. Leitungsdurchführung nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Umhüllung (26) aus einer Papierwicklung mit mehreren Wicklungslagen besteht, wobei die Papierwicklung um das
Elektrodenrohr (21) oder den Leiterbolzen (23) gewickelt ist.
6. Leitungsdurchführung nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Dicke s der Umhüllung (26) im Vergleich zur erforderlichen Dicke bei Verwendung des betreffenden unbehandelten Cellulosematerials an Stelle des Komposits verringert ist.
7. Leitungsdurchführung nach einem der vorangehenden Ansprüche,
d a d u r c h g e k e n n z e i c h n e t ,
dass um die Umhüllung (26) Feststoffbarrieren (28, 28i) unter Ausbildung von Spalten für Transformatoröl zwischen den Fest- stoffbarrieren untereinander und zur Umhüllung (26) vorgesehen sind.
8. Leitungsdurchführung nach Anspruch 7,
d a d u r c h g e k e n n z e i c h n e t ,
dass die Feststoffbarrieren +16 auch aus dem behandelten Cel- lulosematerial (19) bestehen.
EP11805463.4A 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente Not-in-force EP2661523B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011008459A DE102011008459A1 (de) 2011-01-07 2011-01-07 Leitungsdurchführung für die Kesselwand einer HGÜ-Komponente
PCT/EP2011/072867 WO2012093023A2 (de) 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente

Publications (2)

Publication Number Publication Date
EP2661523A2 true EP2661523A2 (de) 2013-11-13
EP2661523B1 EP2661523B1 (de) 2019-09-04

Family

ID=45463561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11805463.4A Not-in-force EP2661523B1 (de) 2011-01-07 2011-12-15 Leitungsdurchführung für die kesselwand einer hgü-komponente

Country Status (5)

Country Link
EP (1) EP2661523B1 (de)
CN (1) CN103403254B (de)
BR (1) BR112013017406B1 (de)
DE (1) DE102011008459A1 (de)
WO (1) WO2012093023A2 (de)

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3321281A1 (de) 1982-06-22 1983-12-22 ASEA AB, 72183 Västerås Verfahren zur erhoehung der elektrischen leitfaehigkeit impraegnierbarer materialien
ATE73572T1 (de) 1987-04-09 1992-03-15 Siemens Ag Hochspannungsisolationsanordnung fuer transformatoren und drosselspulen, insbesondere zur hochspannungs-gleichstrom-uebertragung (hgue).
JP2771505B2 (ja) * 1996-03-14 1998-07-02 株式会社日立製作所 直流ブッシング
GB2331878A (en) * 1997-11-28 1999-06-02 Asea Brown Boveri Power flow control in AC systems using directly connected rotary power converters
JP2000173836A (ja) * 1998-12-01 2000-06-23 Mitsubishi Electric Corp 静止誘導機器
SE525492C2 (sv) 2002-10-22 2005-03-01 Abb Research Ltd Fältstyrande polymermatris försedd med fyllning
JP4772676B2 (ja) 2003-08-21 2011-09-14 レンセラール ポリテクニック インスティチュート 制御された電気特性を有するナノコンポジット
CN101091228B (zh) * 2004-12-27 2010-12-08 Abb技术有限公司 一种用于高压应用的电感应装置
DE102005021225A1 (de) 2005-05-09 2006-11-16 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung der Oberflächenbeschaffenheit von Objekten des Straßenverkehrs oder Personen
WO2006122736A2 (de) 2005-05-19 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanotubes umfassende verbundsysteme, verfahren ihrer herstellung und verwendung derselben in heizelementen
WO2006131011A1 (en) 2005-06-07 2006-12-14 Abb Research Ltd High-voltage bushing
SE529250C2 (sv) * 2005-09-29 2007-06-12 Abb Technology Ltd Transformator med optimerade distansorgan
DE102006013927B4 (de) * 2006-03-21 2008-11-20 Siemens Ag Verbindungselement für eine elektrische Abschirmungsanordnung
DE102007018540A1 (de) 2007-04-19 2008-10-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Elektrisch leitfähige und transparente Zusammensetzung
EP2451867A1 (de) 2009-07-08 2012-05-16 Siemens AG Nanokomposit mit bornitrid-nanoröhrchen
WO2011003635A1 (de) 2009-07-08 2011-01-13 Siemens Aktiengesellschaft Nanokomposit mit halbleitenden nanopatikeln
DE102010041630B4 (de) 2010-09-29 2017-05-18 Siemens Aktiengesellschaft Verwendung eines elektrisch isolierenden Nanokomposits mit halbleitenden oder nichtleitenden Nanopartikeln
DE102010041635A1 (de) * 2010-09-29 2012-03-29 Siemens Aktiengesellschaft Cellulosematerial mit Imprägnierung, Verwendung dieses Cellulosematerials und Verfahren zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012093023A2 *

Also Published As

Publication number Publication date
CN103403254A (zh) 2013-11-20
DE102011008459A1 (de) 2012-07-12
BR112013017406A2 (pt) 2016-10-04
CN103403254B (zh) 2016-05-04
WO2012093023A2 (de) 2012-07-12
WO2012093023A3 (de) 2012-08-30
EP2661523B1 (de) 2019-09-04
BR112013017406B1 (pt) 2020-09-29

Similar Documents

Publication Publication Date Title
EP2661760B1 (de) Schirmring für eine hgü-transformatorspule oder eine hgü-drosselspule
EP2661761B1 (de) Leitungsführung für hgü-transformatorspulen oder hgü-drosselspulen
DE602005002724T2 (de) Gasisolierte Schaltanlage
EP2661755B1 (de) Isolationsanordnung für eine hgü-komponente mit wandartigen feststoffbarrieren
WO2012093054A1 (de) Trennstelle einer leitungsdurchführung für eine hgü-komponente
EP2740197B1 (de) Elektrische leitungseinrichtung, endenglimmschutzanordnung und verfahren zum herstellen eines endenglimmschutzes
WO2011003634A1 (de) Nanokomposit mit bornitrid-nanoröhrchen
EP3639282A1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit steckbarer hochspannungsdurchführung
DE102012205650A1 (de) Isolierstoff für rotierende Maschinen
DE69603589T2 (de) Verfahren zur herstellung von werkstoffen mit verbesserter dielektrischen festigkeit, verwendung der hergestellten werkstoffen zur herstellung von starkstromkabeln
EP2661523B1 (de) Leitungsdurchführung für die kesselwand einer hgü-komponente
EP3505943B1 (de) Nachweisen einer elektrischen überspannung
DE69402494T3 (de) Energiekabel mit verbesserter dielektrischen Festigkeit
DE1665075B1 (de) Verfahren zur Isolierung eines elektrischen Gegenstandes
DE102017212026A1 (de) Schirmring und/oder Steigungsausgleich für eine Transformatorspule
Pal et al. Studies on prospect of HTV silicone rubber as dielectric material when reinforced with TiO 2 nano particles
EP3410451B1 (de) Schirmring für eine transformatorspule
EP2401747B1 (de) Elektrisches bauteil und verfahren zur herstellung eines elektrischen bauteils
EP3819920A1 (de) Vorrichtung zum spannungsausgleich bei rechteckspannungen für ein elektromotor
DE102014204416A1 (de) Isolationsband, dessen Verwendung als elektrische Isolation für elektrische Maschinen, die elektrische Isolation und Verfahren zur Herstellung des Isolationsbandes
DE102017210088A1 (de) Verfahren zur Herstellung einer Kabelverbindung
CH170845A (de) Verfahren für die Herstellung von Erzeugnissen mit gegeneinander isolierten elektrischen Leitern und nach diesem Verfahren hergestellter isolierter Leiter.
DE1589897A1 (de) Mit einem Zusatz-Dielektrikum getraenkter selbstausheilender elektrischer Kondensator
DE9218351U1 (de) Elektrokabel
CH180784A (de) Zwischen einem elektrischen Verteilungsnetz und einem Hochfrequenzgerät angeordnete Anschlussleitung.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130626

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20161216

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011016079

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: D21H0017330000

Ipc: H01F0027360000

RIC1 Information provided on ipc code assigned before grant

Ipc: H01F 27/36 20060101AFI20190326BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1176531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016079

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20191212

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 9

Ref country code: GB

Payment date: 20191209

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016079

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200605

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1176531

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191215

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011016079

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111215

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20201215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201215

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904