EP2657492A2 - Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique - Google Patents

Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique Download PDF

Info

Publication number
EP2657492A2
EP2657492A2 EP11850744.1A EP11850744A EP2657492A2 EP 2657492 A2 EP2657492 A2 EP 2657492A2 EP 11850744 A EP11850744 A EP 11850744A EP 2657492 A2 EP2657492 A2 EP 2657492A2
Authority
EP
European Patent Office
Prior art keywords
sensor
angle
sensing means
steering
construction equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11850744.1A
Other languages
German (de)
English (en)
Other versions
EP2657492B1 (fr
EP2657492A4 (fr
Inventor
Kwang Seok Park
Sung Il Kim
Hee Jun Jeong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyundai Doosan Infracore Co Ltd
Original Assignee
Doosan Infracore Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doosan Infracore Co Ltd filed Critical Doosan Infracore Co Ltd
Publication of EP2657492A2 publication Critical patent/EP2657492A2/fr
Publication of EP2657492A4 publication Critical patent/EP2657492A4/fr
Application granted granted Critical
Publication of EP2657492B1 publication Critical patent/EP2657492B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • F02D41/083Introducing corrections for particular operating conditions for idling taking into account engine load variation, e.g. air-conditionning
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2066Control of propulsion units of the type combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Definitions

  • the present invention relates to a low idle control system of construction equipment and an automatic control method thereof, and more particularly, to a low idle control system of construction equipment and an automatic control method thereof, capable of implementing an effective auto idle function by accurately recognizing a state of using equipment.
  • the excavators perform various operations such as operations of excavating, leveling the ground, compacting the ground, lifting heavy objects, and the like.
  • the excavator has a working device including a boom, an arm, and a bucket, and work of the excavator is performed by controlling the working device including the boom, the arm, and the bucket by operating each corresponding actuator (or a hydraulic cylinder).
  • the wheel loader refers to equipment that is used to perform civil work at construction sites, and is widely used to perform operations of conveying powder materials such as soil, sand, or the like, loading or unloading conveyed soil and sand onto or from freight vehicles, leveling ground for road, removing snow, towing vehicles, and the like.
  • a technology of converting a state of an engine into an idle state so as to improve fuel efficiency is generally applied in a case in which pressure of working oil in an accelerator pedal, a steering part, and a front unit is not varied for a predetermined time.
  • This function is typically referred to as an 'auto idle function'.
  • a no-load operation for example, a bucket dump, a boom floating that the boom is lowered by its own weight, or the like, may occur during performing work.
  • a variation in pressure of the front unit is very small when the no-load operations are performed, it may be recognized that the equipment does not work. Accordingly, a case occurs in which the equipment enters the aforementioned auto idle state, or the auto idle state, which is already in progress, is continued.
  • the aforementioned no-load operation is frequently converted directly into a load operation, and in this case, because the auto idle state needs to be suddenly released, there is a problem in that the engine is stopped (engine stall), or an increase in output of the engine is delayed.
  • the present invention has been made in an effort to solve the aforementioned problem, and an object of the present invention is to provide a low idle control system of construction equipment and an automatic control method thereof, capable of implementing an effective auto idle function by more accurately recognizing a state of using equipment.
  • the present invention provides a low idle control system of construction equipment, including: a front angle change sensing means which detects an operation of at least a part of a front unit through changes in an angle; a controller which is electrically connected to the front angle change sensing means, determines whether to enter an auto idle state by receiving an output signal that is transmitted from the front angle change sensing means, and generates an rpm control signal corresponding to the result of the determination on whether to enter the auto idle state; and an ECU which controls the rpm of an engine by receiving the rpm control signal outputted from the controller.
  • the present invention further provides the following specific exemplary embodiments.
  • the front angle change sensing means may include at least one of a boom angle sensor which is installed at an upper turning unit and detects a change in an angle of a boom, an arm angle sensor which is installed at the boom and detects a change in an angle of an arm, and a bucket angle sensor which is installed at the arm and detects a change in an angle of a bucket.
  • the low idle control system of construction equipment may further include: an accelerator pedal sensor which detects operating pressure of an accelerator pedal or a change in angle of the accelerator pedal; and a steering sensor which detects a change in angle or operating pressure of a steering wheel or a steering joystick, in which the controller may additionally consider signals outputted from the accelerator pedal sensor and the steering sensor, at the time of determining whether to enter the auto idle state.
  • the low idle control system of construction equipment may further include: a working oil pressure sensor which detects pilot pressure that is generated corresponding to pressure of working oil supplied to drive a working device of the front unit, or an operation of an operating lever for operating the front unit, in which the controller may additionally consider a signal outputted from the working oil pressure sensor, at the time of determining whether to enter the auto idle state.
  • the present invention provides an automatic control method of a low idle control system of construction equipment, including: monitoring output signals that are received from a steering sensor, an accelerator pedal sensor, and a front angle change sensing means (S20); determining whether a preset output signal corresponding to a steering pressure reference value or less from the steering sensor, an off signal from the accelerator pedal sensor, and an off signal from the front angle change sensing means are continued for a predetermined time or more (S22); entering an auto idle mode by recognizing that the equipment does not work when it is determined that the condition is continued for a predetermined time or more according to the determination result of step S22 (S24); and outputting normal rpm by inputting a preset control signal into the ECU, which controls the engine, when it is determined that the condition is not satisfied according to the determination result of step S22 (S22a).
  • the present invention further provides the following specific exemplary embodiments.
  • the automatic control method of a low idle control system of construction equipment may further include: determining, after step S24, whether at least one of a preset output signal corresponding to a steering pressure reference value or more from the steering sensor, an operating signal from the accelerator pedal sensor, and an operating signal from the front angle change sensing means is received (S26), in which when it is determined that at least a signal of the signals is received according to the determination result, a preset control signal is inputted into the ECU, which controls the engine, and normal rpm is outputted (S22a).
  • the present invention additionally provides an angle change sensing means, which may detect an operation of a front unit through changes of the angle of the front unit, in addition to the existing partial input elements (a steering sensor and an accelerator pedal sensor) that are used to determine a state of using equipment, and an ECU may be controlled by a controller using signals of the aforementioned components, thereby implementing an effective auto idle function by more accurately recognizing a state of using the equipment.
  • an angle change sensing means may detect an operation of a front unit through changes of the angle of the front unit, in addition to the existing partial input elements (a steering sensor and an accelerator pedal sensor) that are used to determine a state of using equipment, and an ECU may be controlled by a controller using signals of the aforementioned components, thereby implementing an effective auto idle function by more accurately recognizing a state of using the equipment.
  • FIGS. 1 and 2 an exemplary embodiment of an automatic control method of a low idle control system of construction equipment according to the present invention will be described with reference to FIGS. 1 and 2 .
  • a low idle control system of construction equipment includes a front angle change sensing means 10, a controller 3, and an ECU 4.
  • the front angle change sensing means 10 detects an operation of at least a part of a front unit (for example, a working device) through changes in an angle.
  • the controller 3 is electrically connected to the front angle change sensing means 10.
  • the controller 3 determines whether to enter an auto idle state by receiving an output signal that is transmitted from the front angle change sensing means 10, and generates an rpm control signal corresponding to the result of the determination on whether to enter the auto idle state.
  • the ECU 4 controls the rpm of an engine 5 by receiving the rpm control signal outputted from the controller 3.
  • a low idle control system of construction equipment further includes a steering sensor 1, and an accelerator pedal sensor 2.
  • the steering sensor 1 detects an operation of a steering wheel or a steering joystick through changes in pressure or an angle
  • the accelerator pedal sensor 2 detects an operation of an accelerator pedal through changes in pressure or an angle.
  • a working oil pressure sensor 9 which measures pilot pressure that is generated corresponding to pressure of working oil supplied to drive a drive unit of the existing steering device and the existing front working device, or an operation of an operating lever, may be used.
  • the controller 3 first confirms whether to enter an auto idle mode on the basis of an inputted signal from the working oil pressure sensor 9, and then may determine whether to enter/release the auto idle mode according to the detection result of the front angle change sensing means 10.
  • the problem of the related art may be solved only by additionally installing the front angle change sensing means 10, which may be comparatively easily installed in the front working device, in the existing equipment, and correcting a control method as described above.
  • the controller 3 is electrically connected to the steering sensor 1 and the accelerator pedal sensor 2, or the working oil pressure sensor 9, respectively. Accordingly, the controller 3 may additionally consider signals outputted from the accelerator pedal sensor 2 and the steering sensor 1, or a signal outputted from the working oil pressure sensor 9, at the time of determining whether to enter the auto idle mode.
  • the ECU 4 may control the rpm of the engine 5 by receiving the rpm control signal corresponding to output signals from the steering sensor 1, the accelerator pedal sensor 2, and the front angle change sensing means 10 in the controller 3.
  • the front angle change sensing means 10 may be configured by at least one of a boom angle sensor 11 which is installed at an upper turning unit and detects a change in an angle of a boom, an arm angle sensor 12 which is installed at the boom and detects a change in an angle of an arm, and a bucket angle sensor 13 which is installed at the arm and detects a change in an angle of a bucket.
  • the front angle change sensing means 10 may implement a function of entering/releasing the auto idle state corresponding to most operations except for traveling/turning operations.
  • all of the steering sensor 1, the accelerator pedal sensor 2, the working oil pressure sensor 9, and the front angle change sensing means 10, which are described above, may be installed.
  • the controller 3 monitors output signals that are received from the steering sensor 1, the accelerator pedal sensor 2, and the front angle change sensing means 10 (S20).
  • step S24 when it is determined that the aforementioned condition is continued for a predetermined time (for example, 5 seconds) or more according to the determination result of step S22, it is recognized that the equipment does not work, and then the equipment enters the auto idle mode (S24).
  • a predetermined time for example, 5 seconds
  • step S22 when it is determined that the aforementioned condition is not satisfied according to the determination result of step S22, a preset control signal is inputted into the ECU 4, which controls the engine 5, and normal rpm is outputted (S22a).
  • step S24 it is determined whether at least one of a preset output signal corresponding to a steering pressure reference value or more from the steering sensor 1, an operating signal from the accelerator pedal sensor 2, and an operating signal from the front angle change sensing means 10 is received (S26).
  • step S26 When it is determined that at least a signal of the aforementioned signals is received according to the determination result of step S26, a preset control signal is inputted into the ECU 4, which controls the engine 5, and normal rpm is outputted (S22a).
  • the present invention additionally provides an angle change sensing means, which may detect an operation of a front unit through changes in the angle of the front unit, in addition to the existing partial input elements (a steering sensor, an accelerator pedal sensor, and a working oil pressure sensor) that are used to determine a state of using equipment, and an ECU may be controlled by a controller using signals of the aforementioned components, thereby implementing an effective auto idle function by more accurately recognizing a state of using the equipment.
  • an angle change sensing means may detect an operation of a front unit through changes in the angle of the front unit, in addition to the existing partial input elements (a steering sensor, an accelerator pedal sensor, and a working oil pressure sensor) that are used to determine a state of using equipment, and an ECU may be controlled by a controller using signals of the aforementioned components, thereby implementing an effective auto idle function by more accurately recognizing a state of using the equipment.
EP11850744.1A 2010-12-21 2011-12-21 Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique Active EP2657492B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100131189A KR101685206B1 (ko) 2010-12-21 2010-12-21 건설장비의 로우아이들 제어 시스템 및 그 자동 제어방법
PCT/KR2011/009920 WO2012087020A2 (fr) 2010-12-21 2011-12-21 Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique

Publications (3)

Publication Number Publication Date
EP2657492A2 true EP2657492A2 (fr) 2013-10-30
EP2657492A4 EP2657492A4 (fr) 2017-06-28
EP2657492B1 EP2657492B1 (fr) 2019-08-14

Family

ID=46314627

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11850744.1A Active EP2657492B1 (fr) 2010-12-21 2011-12-21 Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique

Country Status (5)

Country Link
US (1) US20130289834A1 (fr)
EP (1) EP2657492B1 (fr)
KR (1) KR101685206B1 (fr)
CN (1) CN103261643B (fr)
WO (1) WO2012087020A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5562893B2 (ja) * 2011-03-31 2014-07-30 住友建機株式会社 ショベル
KR20140109883A (ko) * 2011-12-15 2014-09-16 볼보 컨스트럭션 이큅먼트 에이비 건설기계의 효율 양호 rpm 구간 표시 장치
CN103422528B (zh) * 2013-08-24 2015-04-01 烟台兴业机械股份有限公司 一种地下铲运机的智能控制系统
JP6415839B2 (ja) * 2014-03-31 2018-10-31 住友重機械工業株式会社 ショベル
CN105221276B (zh) * 2014-10-15 2019-03-19 徐州重型机械有限公司 一种发动机转速的控制方法、系统及起重机
CN111821148B (zh) * 2020-06-19 2022-09-09 王从和 按摩机构空转状态监测平台及方法

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3560243D1 (en) * 1984-03-30 1987-07-16 Komatsu Mfg Co Ltd Method and system for controlling an engine
JPS60256528A (ja) * 1984-05-31 1985-12-18 Komatsu Ltd 油圧駆動機械のエンジン制御方法
KR910009257B1 (ko) * 1985-09-07 1991-11-07 히다찌 겡끼 가부시기가이샤 유압건설기계의 제어시스템
JPS62142834A (ja) * 1985-12-17 1987-06-26 Komatsu Ltd クレ−ンのエンジン制御装置
EP0765970B1 (fr) * 1991-01-28 2001-04-04 Hitachi Construction Machinery Co., Ltd. Dispositif de commande hydraulique pour engin de chantier
US5479908A (en) * 1994-05-26 1996-01-02 Ingersoll-Rand Company Engine speed control device
US5480364A (en) * 1994-08-15 1996-01-02 Caterpillar Inc. Elevated idle speed control and method of operating same
KR960024253A (ko) * 1994-12-23 1996-07-20 김무 산업용 작업기기의 회전체변위 측정장치
JP3520301B2 (ja) * 1995-09-18 2004-04-19 コベルコ建機株式会社 油圧作業機のエンジン回転数の制御方法
US5957989A (en) * 1996-01-22 1999-09-28 Hitachi Construction Machinery Co. Ltd. Interference preventing system for construction machine
CN1077187C (zh) * 1996-12-12 2002-01-02 新卡特彼勒三菱株式会社 用于建工机械的控制装置
JP3608900B2 (ja) * 1997-03-10 2005-01-12 新キャタピラー三菱株式会社 建設機械の制御方法および制御装置
KR19990005275A (ko) * 1997-06-30 1999-01-25 토니 헬샴 콘크리트 펌프차의 엔진회전수 자동조절방법
JP3364419B2 (ja) * 1997-10-29 2003-01-08 新キャタピラー三菱株式会社 遠隔無線操縦システム並びに遠隔操縦装置,移動式中継局及び無線移動式作業機械
DE69940161D1 (de) * 1998-06-18 2009-02-05 Kline & Walker L L C Automatische vorrichtung zur überwachung von auf abstand zu bedienende ausrüstungen und maschinen weltweit anwendbar
US6896088B2 (en) * 2001-10-12 2005-05-24 Clark Equipment Company Operation of wheeled work machine
JP4082935B2 (ja) * 2002-06-05 2008-04-30 株式会社小松製作所 ハイブリッド式建設機械
JP2004150304A (ja) * 2002-10-29 2004-05-27 Komatsu Ltd エンジンの制御装置
JP4173121B2 (ja) * 2003-09-02 2008-10-29 株式会社小松製作所 建設機械の運転システム
CN101696659B (zh) * 2003-09-02 2014-11-12 株式会社小松制作所 发动机控制装置
JP4712811B2 (ja) * 2005-10-14 2011-06-29 株式会社小松製作所 作業車両のエンジンおよび油圧ポンプの制御装置および方法
JP5040242B2 (ja) * 2006-09-29 2012-10-03 井関農機株式会社 コンバイン
JP5134238B2 (ja) * 2006-12-15 2013-01-30 株式会社小松製作所 作業車両のエンジン負荷制御装置
JP4812843B2 (ja) * 2007-01-18 2011-11-09 株式会社小松製作所 エンジンの制御装置及びその制御方法
JP5264091B2 (ja) * 2007-03-09 2013-08-14 カヤバ工業株式会社 メカニカルスロットル車両のオートモーティブ制御装置
JP5069518B2 (ja) * 2007-08-10 2012-11-07 日立建機株式会社 作業機械の走行システム
EP2208872B1 (fr) * 2007-11-06 2017-12-13 Hitachi Construction Machinery Co., Ltd. Véhicule de travail avec système de purification d'échappement
KR101549253B1 (ko) * 2008-12-24 2015-09-01 두산인프라코어 주식회사 건설장비의 아이들 상태에서 엔진 회전수 제어 장치 및 방법
JP2010220487A (ja) * 2009-03-19 2010-10-07 Yanmar Co Ltd 田植機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012087020A2 *

Also Published As

Publication number Publication date
WO2012087020A3 (fr) 2012-09-07
CN103261643A (zh) 2013-08-21
CN103261643B (zh) 2017-02-15
US20130289834A1 (en) 2013-10-31
EP2657492B1 (fr) 2019-08-14
EP2657492A4 (fr) 2017-06-28
WO2012087020A2 (fr) 2012-06-28
KR101685206B1 (ko) 2016-12-12
KR20120069868A (ko) 2012-06-29

Similar Documents

Publication Publication Date Title
EP2657492B1 (fr) Système de commande de faible ralenti d'équipement de construction et son procédé de commande automatique
EP2543776B1 (fr) Véhicule de chantier et procédé de commande associé
EP2667059B1 (fr) Monteuse chargeuse sur roues et son procédé de contrôle
CN103270346B (zh) 轮式装载机的变速器自动控制装置及其控制方法
WO2011102209A1 (fr) Véhicule de travail et procédé de commande d'un véhicule de travail
US20110318156A1 (en) Construction vehicle provided with work equipment
US8954242B2 (en) Wheel loader and control method of wheel loader
AU2011332298A1 (en) Implement induced machine pitch detection
US8548692B2 (en) Travel vibration suppressing device of work vehicle
EP3892782A1 (fr) Dispositif de commande d'engin de chantier, engin de chantier et procédé de commande d'engin de chantier
US9079578B2 (en) Apparatus and method for controlling transmission cut-off of heavy construction equipment
US11035099B2 (en) Work vehicle
EP3521519B1 (fr) Pelleteuse avec système de controlle antipatinage
US9809948B2 (en) Work vehicle control method, work vehicle control device, and work vehicle
EP3521520B1 (fr) Pelle avec de moyens de commande de stabilité
EP2990543A2 (fr) Système automatique de mise au ralenti pour engins de chantier et son procédé
CN116057235A (zh) 作业车辆
KR20100071501A (ko) 건설기계의 동력제어장치
JP2011179180A (ja) 作業機を備えた建設車両
CN114270024A (zh) 发动机控制系统、作业机械以及作业机械的控制方法
KR20130087079A (ko) 건설기계의 디텐트 기능 자동 튜닝 시스템

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130624

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170530

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 45/00 20060101ALI20170522BHEP

Ipc: F02D 41/08 20060101AFI20170522BHEP

Ipc: F02D 35/00 20060101ALI20170522BHEP

Ipc: F02D 29/02 20060101ALI20170522BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190307

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1167309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011061344

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190814

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191216

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1167309

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191115

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011061344

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20200603

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111221

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011061344

Country of ref document: DE

Owner name: HYUNDAI DOOSAN INFRACORE CO., LTD., KR

Free format text: FORMER OWNER: DOOSAN INFRACORE CO., LTD., DONG-GU, INCHEON, KR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011061344

Country of ref document: DE

Owner name: HD HYUNDAI INFRACORE CO., LTD., KR

Free format text: FORMER OWNER: DOOSAN INFRACORE CO., LTD., DONG-GU, INCHEON, KR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011061344

Country of ref document: DE

Owner name: HD HYUNDAI INFRACORE CO., LTD., KR

Free format text: FORMER OWNER: HYUNDAI DOOSAN INFRACORE CO., LTD., INCHEON, KR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231109

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231108

Year of fee payment: 13

Ref country code: DE

Payment date: 20231114

Year of fee payment: 13