EP2655813B1 - Waste heat recovery installation - Google Patents

Waste heat recovery installation Download PDF

Info

Publication number
EP2655813B1
EP2655813B1 EP11802103.9A EP11802103A EP2655813B1 EP 2655813 B1 EP2655813 B1 EP 2655813B1 EP 11802103 A EP11802103 A EP 11802103A EP 2655813 B1 EP2655813 B1 EP 2655813B1
Authority
EP
European Patent Office
Prior art keywords
waste heat
expansion machine
refrigerant
generator
orc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11802103.9A
Other languages
German (de)
French (fr)
Other versions
EP2655813A2 (en
Inventor
Stefan Müller
Konrad Herrmann
Anayet Temelci-Andon
Harald Köhler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2655813A2 publication Critical patent/EP2655813A2/en
Application granted granted Critical
Publication of EP2655813B1 publication Critical patent/EP2655813B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether

Definitions

  • the invention relates to a waste heat recovery system according to the preamble of claim 1.
  • ORC Organic Rankine Cycle
  • ORC plants for example, in the utilization of biomass in connection with combined heat and power, especially at relatively low power, so if the conventional biomass combustion technology seems relatively expensive.
  • Biomass plants often have a fermenter for biogas production, which usually has to be heated.
  • Combined heat and power plants as plants for combined heat and power are well known. These are decentralized, usually powered by internal combustion engines power generation systems with simultaneous waste heat recovery. The discharged during the combustion of the cooling media heat is used as completely as possible for the heating of suitable objects.
  • the engine manufacturers prescribe a cooling water inlet temperature of only approx. 40 to 50 ° C for the mixture cooling so that the mixture can be sufficiently cooled. Since this temperature level is relatively low, the heat extracted from the fuel gas mixture in the previously known combined heat and power plants is released to the environment, for example with a table cooler.
  • a second heating circuit draws heat from engine cooling water and exhaust gas of the internal combustion engine and is connected to the second heat exchanger after the feed pump, wherein the heat from the cooling circuit and the exhaust gas for overheating and evaporation of the process medium in ORC and coupled as high-temperature heat in the second heat exchanger after the feed pump becomes.
  • the waste heat recovery system consists inter alia of an expansion machine for steam expansion in ORC, which has a magnetic bearing with an associated control device and a power supply via a DC intermediate circuit of a generator-frequency converter.
  • the waste heat recovery system is characterized by a unit of expander, generator and frequency converter cooled with the refrigerant from the ORC circuit.
  • cool, liquid refrigerant is removed after the feed pump and supplied for cooling the unit from the expansion machine, generator and frequency converter.
  • the cool, liquid refrigerant is removed after the feed pump and fed directly to the expansion machine for storage cooling.
  • heated refrigerant exiting from the unit of expansion machine, generator and frequency converter and / or the storage area of the expansion machine is supplied to the condenser on the inlet side.
  • the refrigerant used for cooling of about 15 ° C to 50 ° C on the inlet side and about 30 ° C to 80 ° C on the outlet side, the respective temperatures of the current operating condition to be cooled components and / or assemblies and the entire waste heat recovery system.
  • a temperature monitoring device linked to a superordinate control device is provided with temperature measuring points in the components and / or assemblies to be cooled. This compares actual temperature measured values with predefinable setpoint values, evaluates them and / or regulates accordingly optimized refrigerant flow rate.
  • separate control loops with separate cooling channels or corresponding lines are preferably provided for the components to be cooled and / or assemblies. These individual, each to be cooled components and / or assemblies associated control circuits, valves, preferably solenoid valves, to control the refrigerant flow rate to optimally meet the respective local temperature situation.
  • Waste heat sources can be, for example, combined heat and power plants, industrial plants or boiler plants.
  • the waste heat recovery system in particular the unit of expansion machine, generator and frequency converter, is cooled optimally and situation appropriate with the inventive measures. On the one hand, this is a prerequisite for safe, robust plant operation, but on the other hand also for effective and gentle operation of the individual components, all of which have special requirements with regard to cooling. This not only applies to the stationary operation of the waste heat recovery system, but also the modulating of the system according to it waste heat attack and the startup and shutdown. In particular, these states pose a challenge to the refrigeration system and, in accordance with the invention, provide safe control.
  • the drawing illustrates an embodiment of the invention and shows in a single figure the schematic structure of a waste heat recovery system, consisting of one of these downstream ORC.
  • ORC circuit 1 The essential components for the ORC are an ORC circuit 1, a feed pump 2, an evaporator 3, a steam expansion expansion machine 4, which is coupled to a generator 5, a condenser 6 for re-cooling via a heat sink 7, and the heat exchangers 9, 10 for preheating the working medium in ORC circuit 1.
  • the two heat exchangers 8, 9 are connected downstream of the feed pump 2 in series.
  • the first heat exchanger 8 after the feed pump 2 serves as a first stage for coupling low-temperature heat and the subsequent heat exchanger 9 as a second stage for coupling high-temperature heat from a waste heat source 10th
  • a second heating circuit 11 is connected with its flow area with the evaporator 3 of the ORC, because the temperature level is initially sufficiently high for its direct heating. Thereafter, the second heating circuit 11 opens the return side in the second heat exchanger 9 and there are still residual heat from the ORC.
  • a liquid refrigerant partial stream 12 for cooling the expansion machine 4 is branched off and initially passed through the generator 5. Thereafter, the cooling medium flows through the housing of the expansion machine 4, there in the starting phase for preheating initially for heat and ensures there in normal operation for sufficient heat dissipation.
  • Drawn to this is only a simplified, schematic wiring without the necessary branches to individual components or assemblies, subcircuits, temperature measuring points, valves and control devices.
  • a steam valve 13 is opened at the inlet of the steam expansion expansion machine 4 in the ORC and during the rest Opening the steam valve 13 is carried out a further ramping up the speed, so that the generator 5 passes from the engine operation in the normal generator operation.
  • a controlled bypass 14 with at least one throttle valve 15 is provided around the expansion machine 4.
  • This bypass 14 is initially open in the starting phase, ie at a still relatively low temperature of the working medium.
  • the working medium is passed around the expansion machine 4 around.
  • the throttle valve 15 in the bypass 14 is closed and the steam engine 13 connected upstream of the expansion engine 4 is opened.

Description

Die Erfindung betrifft eine Abwärmenutzungsanlage nach dem Oberbegriff des Patentanspruches 1.The invention relates to a waste heat recovery system according to the preamble of claim 1.

Bei einem ORC (Organic-Rankine-Cycle) handelt es sich um einen thermodynamischen Kreisprozess nach Rankine. Dies bedeutet, dass ein Arbeitsmedium verschiedene thermodynamische Zustände durchläuft, um am Ende wieder in den flüssigen Ausgangszustand überführt zu werden. Dabei wird das Arbeitsmedium mit einer Pumpe auf ein höheres Druckniveau gebracht. Danach wird das Arbeitsmedium auf die Verdampfungstemperatur vorgewärmt und anschließend verdampft.An ORC (Organic Rankine Cycle) is a thermodynamic cycle according to Rankine. This means that a working medium passes through different thermodynamic states in order to be finally returned to the liquid initial state. The working medium is brought to a higher pressure level with a pump. Thereafter, the working medium is preheated to the evaporation temperature and then evaporated.

Es handelt sich somit um einen Dampfprozess, bei dem an Stelle von Wasser ein organisches Medium verdampft wird. Der entstandene Dampf treibt eine Expansionsmaschine an, beispielsweise eine Turbine, einen Kolben- oder Schraubenmotor, welcher wiederum mit einem elektrischen Generator gekoppelt ist, um Strom zu erzeugen. Nach der Arbeitsmaschine gelangt das Prozessmedium in einen Verflüssiger und wird dort unter Wärmeabgabe zurückgekühlt. Da Wasser unter atmosphärischen Bedingungen bei 100 °C verdampft, kann Wärme auf einem niedrigen Temperaturniveau, wie zum Beispiel Industrieabwärme oder Erdwärme, oftmals nicht zur Stromerzeugung genutzt werden. Verwendet man allerdings organische Medien mit niedrigeren Siedetemperaturen, so lässt sich Niedertemperaturdampf erzeugen.It is thus a steam process in which instead of water, an organic medium is evaporated. The resulting steam drives an expansion machine, such as a turbine, a piston or screw motor, which in turn is coupled to an electrical generator to generate power. After the working machine, the process medium enters a condenser and is cooled down there with the release of heat. Since water evaporates at 100 ° C under atmospheric conditions, heat at a low temperature level, such as industrial waste heat or geothermal heat, often can not be used to generate electricity. However, using organic media with lower boiling temperatures, low-temperature steam can be produced.

Vorteilhaft in der Anwendung sind ORC-Anlagen beispielsweise auch bei der Verwertung von Biomasse im Zusammenhang mit Kraft-Wärme-Kopplung, insbesondere bei relativ kleinen Leistungen, also wenn die herkömmliche Biomasse-Feuerungstechnik relativ teuer erscheint. Biomasseanlagen besitzen häufig einen Fermenter zur Biogaserzeugung, welcher in der Regel beheizt werden muss.Advantageous in the application are ORC plants, for example, in the utilization of biomass in connection with combined heat and power, especially at relatively low power, so if the conventional biomass combustion technology seems relatively expensive. Biomass plants often have a fermenter for biogas production, which usually has to be heated.

Gattungsgemäße Abwärmenutzungsanlagen sind aus dem Bereich der Kraft-Wärme-Kopplung bekannt und bestehen aus einem mit einem nachgeschalteten ORC kombinierten BHKW, also einem Blockheizkraftwerk. Aus der DE 195 41 521 A1 geht eine Anlage zur Steigerung des elektrischen Wirkungsgrades bei der Verstromung von Sondergasen mittels Verbrennungsmotoren hervor, bei der die Abwärme des Motors in einer nachgeschalteten Energieumwandlungsanlage zur weiteren Stromerzeugung genutzt wird. Allerdings ist dabei nur die Hochtemperaturwärme aus dem Kühlwasserkreislauf sowie aus dem Abgaswärmetauscher des Motors zur Verwertung vorgesehen.Generic waste heat recovery systems are known from the field of combined heat and power and consist of a combined with a downstream ORC CHP, so a combined heat and power plant. From the DE 195 41 521 A1 is a plant to increase the electrical efficiency in the power generation of special gases by means of internal combustion engines, in which the waste heat of the engine in a downstream Energy conversion plant is used for further power generation. However, only the high-temperature heat from the cooling water circuit and from the exhaust gas heat exchanger of the engine is provided for recovery.

Weiterhin ist aus der US 4 901 531 ein in einen Rankine-Prozess integriertes Diesel-Aggregat bekannt, wobei ein Zylinder der Expansion gemäß Rankine dient und die anderen als Dieselmotor arbeiten. Aus der US 4 334 409 geht eine nach dem Rankine-Prozess arbeitende Anordnung hervor, bei der das Arbeitsfluid mit einem Wärmetauscher vorgeheizt wird, über den die Luft aus dem Auslass eines Kompressors einer Maschine mit innerer Verbrennung geführt ist.Furthermore, from the US 4 901 531 a diesel engine integrated into a Rankine process, wherein one cylinder is used for the expansion according to Rankine and the others work as a diesel engine. From the US 4,334,409 shows an operating according to the Rankine process arrangement in which the working fluid is preheated with a heat exchanger through which the air is guided from the outlet of a compressor of an internal combustion engine.

Blockheizkraftwerke (BHKW) als Anlagen zur Kraft-Wärme-Kopplung sind allgemein bekannt. Es handelt sich dabei um dezentrale, meistens mit Verbrennungskraftmaschinen angetriebene Stromerzeugungsanlagen mit gleichzeitiger Abwärmenutzung. Die bei der Verbrennung über die Kühlmedien ausgetragene Wärme wird dabei möglichst vollständig zur Beheizung geeigneter Objekte genutzt.Combined heat and power plants (CHP) as plants for combined heat and power are well known. These are decentralized, usually powered by internal combustion engines power generation systems with simultaneous waste heat recovery. The discharged during the combustion of the cooling media heat is used as completely as possible for the heating of suitable objects.

Insbesondere bei Kraft-Wärme-Kopplungsanlagen mit nachgeschaltetem ORC als Abwärmekraftwerk haben sich Maschinen durchgesetzt, die auf Motoren mit einem Abgasturbolader zur Aufladung basieren. Man kommt damit der Forderung nach Maschinen mit sehr hohen elektrischen Wirkungsgraden nach, die sich nur mit Turboaufladung und Rückkühlung des durch die Verdichtung erhitzten Brenngasgemisches erreichen lassen. Generell ist eine Kühlung des Brenngasgemisches erforderlich, weil ansonsten die Füllung der Zylinder relativ schlecht wäre. Mit der Kühlung wird die Dichte des angesaugten Gemisches größer und es verbessert sich der Füllungsgrad. Damit steigen die Leistungsausbeute und der mechanische Wirkungsgrad des Motors.In particular, in combined heat and power plants with downstream ORC as a waste heat power plant, machines have prevailed that are based on engines with an exhaust gas turbocharger for charging. This meets the demand for machines with very high electrical efficiencies, which can only be achieved with turbocharging and recooling of the fuel gas mixture heated by the compression. Generally, a cooling of the fuel gas mixture is required because otherwise the filling of the cylinder would be relatively poor. With the cooling, the density of the sucked mixture is larger and it improves the degree of filling. This increases the power output and the mechanical efficiency of the engine.

Die Motorenhersteller schreiben für die Gemischkühlung eine Kühlwassereintrittstemperatur von nur etwa 40 bis 50 °C vor, damit das Gemisch genügend abgekühlt werden kann. Da dieses Temperaturniveau relativ niedrig ist, wird die dem Brenngasgemisch entzogene Wärme bei den bisher bekannten Kraft-Wärme-Kopplungsanlagen an die Umgebung abgegeben, beispielsweise mit einem Tischkühler.The engine manufacturers prescribe a cooling water inlet temperature of only approx. 40 to 50 ° C for the mixture cooling so that the mixture can be sufficiently cooled. Since this temperature level is relatively low, the heat extracted from the fuel gas mixture in the previously known combined heat and power plants is released to the environment, for example with a table cooler.

Bekannt ist weiterhin aus der DE 10 2005 048 795 B3 die Vorwärmung des Arbeitsmediums im ORC in zwei Schritten in einer Beheizungsvorrichtung, nämlich dass das Prozessmedium im ORC über zwei in Reihe einer Speisepumpe nachgeschaltete Wärmetauscher erwärmt wird, wobei der erste Wärmetauscher nach der Speisepumpe als erste Stufe zur Einkopplung von Niedertemperaturwärme und der nachfolgende Wärmetauscher als zweite Stufe zur Einkopplung von Hochtemperaturwärme vorgesehen ist. Dabei ist die Gemischkühlung der Verbrennungskraftmaschine über einen Kreislauf mit dem ersten Wärmetauscher nach der Speisepumpe verbunden, wobei die Wärme aus der Kühlung des von der Verbrennungskraftmaschine angesaugten Brenngasgemisches zur Vorwärmung des Prozessmediums im ORC dient und als Niedertemperaturwärme im ersten Wärmetauscher eingekoppelt wird. Ein zweiter Heizkreislauf bezieht Wärme aus Motorkühlwasser und Abgas der Verbrennungskraftmaschine und ist mit dem zweiten Wärmetauscher nach der Speisepumpe verbunden, wobei die Wärme aus dem Kühlkreislauf und dem Abgas zur Überhitzung und Verdampfung des Prozessmediums im ORC dient und als Hochtemperaturwärme im zweiten Wärmetauscher nach der Speisepumpe eingekoppelt wird.It is also known from the DE 10 2005 048 795 B3 the preheating of the working medium in ORC in two steps in a heating device, namely that the process medium in the ORC via two in series a feed pump downstream heat exchanger is heated, wherein the first heat exchanger is provided after the feed pump as a first stage for coupling low-temperature heat and the subsequent heat exchanger as a second stage for coupling high-temperature heat. The mixture cooling of the internal combustion engine is connected via a circuit with the first heat exchanger after the feed pump, wherein the heat from the cooling of the intake of the internal combustion engine fuel gas mixture for preheating the process medium in ORC and is coupled as low-temperature heat in the first heat exchanger. A second heating circuit draws heat from engine cooling water and exhaust gas of the internal combustion engine and is connected to the second heat exchanger after the feed pump, wherein the heat from the cooling circuit and the exhaust gas for overheating and evaporation of the process medium in ORC and coupled as high-temperature heat in the second heat exchanger after the feed pump becomes.

Bekannt ist weiterhin aus der US 2009/277400 und der WO 2007/088194 eine einen ORC-Kreislauf aufweisende Abwärmenutzungsanlage, wobei die Kühlung des Generators und der Lager des Turbogenerators durch das Kondensat des Arbeitsmediums erfolgt. Der Erfindung liegt daher die Aufgabe zu Grunde, eine aus einem einer Abwärmequelle nachgeschalteten ORC bestehende Abwärmenutzungsanlage im Hinblick auf Aufbau und sicheres Betriebsverhalten zu optimieren.It is also known from the US 2009/277400 and the WO 2007/088194 an ORC cycle waste heat recovery system, wherein the cooling of the generator and the bearings of the turbogenerator is effected by the condensate of the working medium. The invention is therefore based on the object to optimize an existing from a waste heat source downstream ORC waste heat recovery system in terms of design and safe performance.

Erfindungsgemäß wird dies mit den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen sind den Unteransprüchen zu entnehmen.This is achieved with the features of claim 1 according to the invention. Advantageous developments can be found in the dependent claims.

Die Abwärmenutzungsanlage besteht unter anderem aus einer Expansionsmaschine zur Dampfexpansion im ORC, welche eine magnetische Lagerung mit einer zugeordneten Regeleinrichtung und einer Stromversorgung über einen Gleichstrom-Zwischenkreis eines Generator-Frequenzumrichters aufweist. Gekennzeichnet ist die Abwärmenutzungsanlage durch eine mit dem Kältemittel aus dem ORC-Kreislauf gekühlte Einheit aus Expansionsmaschine, Generator und Frequenzumrichter. Dazu wird erfindungsgemäß kühles, flüssiges Kältemittel nach der Speisepumpe entnommen und zur Kühlung der Einheit aus Expansionsmaschine, Generator und Frequenzumrichter zugeführt. Erfindungsgemäß wird das kühle, flüssige Kältemittel nach der Speisepumpe entnommen und direkt der Expansionsmaschine zur Lagerkühlung zugeführt.The waste heat recovery system consists inter alia of an expansion machine for steam expansion in ORC, which has a magnetic bearing with an associated control device and a power supply via a DC intermediate circuit of a generator-frequency converter. The waste heat recovery system is characterized by a unit of expander, generator and frequency converter cooled with the refrigerant from the ORC circuit. For this purpose, according to the invention, cool, liquid refrigerant is removed after the feed pump and supplied for cooling the unit from the expansion machine, generator and frequency converter. According to the invention, the cool, liquid refrigerant is removed after the feed pump and fed directly to the expansion machine for storage cooling.

Weiterhin wird erfindungsgemäß erwärmtes, aus der Einheit aus Expansionsmaschine, Generator und Frequenzumrichter und/oder dem Lagerbereich der Expansionsmaschine austretendes Kältemittel dem Verflüssiger eintrittsseitig zugeführt.Furthermore, according to the invention, heated refrigerant exiting from the unit of expansion machine, generator and frequency converter and / or the storage area of the expansion machine is supplied to the condenser on the inlet side.

Beispielsweise handelt es sich um Temperaturbereiche des zur Kühlung eingesetzten Kältemittels von etwa 15 °C bis 50 °C auf der Eintrittsseite und etwa 30 °C bis 80 °C auf der Austrittsseite, wobei die jeweiligen Temperaturen vom aktuellen Betriebszustand zu kühlender Bauteile und/oder Baugruppen sowie der gesamten Abwärmenutzungsanlage abhängen.For example, it concerns the temperature ranges of the refrigerant used for cooling of about 15 ° C to 50 ° C on the inlet side and about 30 ° C to 80 ° C on the outlet side, the respective temperatures of the current operating condition to be cooled components and / or assemblies and the entire waste heat recovery system.

Erfindungsgemäß ist eine mit einer übergeordneten Regeleinrichtung verknüpfte Temperaturüberwachungseinrichtung mit Temperaturmessstellen in den zu kühlenden Bauteilen und/oder Baugruppen vorgesehen. Diese vergleicht aktuelle Temperaturmesswerte mit vorgebbaren Sollwerten, wertet diese aus und/oder regelt dementsprechend optimiert den Kältemitteldurchsatz. Dabei sind vorzugsweise für die zu kühlenden Bauteile und/oder Baugruppen getrennte Regelkreise mit getrennten Kühlkanälen oder entsprechenden Leitungen vorgesehen. Diese einzelnen, den jeweils zu kühlenden Bauteilen und/oder Baugruppen zugeordneten Regelkreise, weisen Ventile, vorzugsweise Magnetventile, zur Steuerung des Kältemitteldurchsatzes auf, um optimal der jeweiligen örtlichen Temperatursituation gerecht zu werden.According to the invention, a temperature monitoring device linked to a superordinate control device is provided with temperature measuring points in the components and / or assemblies to be cooled. This compares actual temperature measured values with predefinable setpoint values, evaluates them and / or regulates accordingly optimized refrigerant flow rate. In this case, separate control loops with separate cooling channels or corresponding lines are preferably provided for the components to be cooled and / or assemblies. These individual, each to be cooled components and / or assemblies associated control circuits, valves, preferably solenoid valves, to control the refrigerant flow rate to optimally meet the respective local temperature situation.

Mit der Erfindung werden Aufbau und Betriebsverhalten einer Abwärmenutzungsanlage, welche aus einem einer Abwärmequelle nachgeschalteten ORC besteht, optimiert. Abwärmequellen können beispielsweise Blockheizkraftwerke, Industrieanlagen oder Kesselanlagen sein.With the invention, construction and performance of a waste heat recovery system, which consists of a waste heat source downstream ORC optimized. Waste heat sources can be, for example, combined heat and power plants, industrial plants or boiler plants.

Die Abwärmenutzungsanlage, insbesondere die Einheit aus Expansionsmaschine, Generator und Frequenzumrichter, wird mit den erfindungsgemäßen Maßnahmen optimal und situationsgerecht gekühlt. Einerseits ist dies Voraussetzung für einen sicheren, robusten Anlagenbetrieb, aber andererseits auch für einen effektiven und schonenden Betrieb der einzelnen Komponenten, welche allesamt spezielle Anforderungen in Bezug auf Kühlung haben. Dies betrifft nicht nur den stationären Betrieb der Abwärmenutzungsanlage, sondern auch das Modulieren des Systems entsprechend es Abwärmeanfalls sowie das An- und Abfahren. Insbesondere diese Zustände stellen für das Kühlsystem eine Herausforderung dar und bieten erfindungsgemäß eine sichere Beherrschung.The waste heat recovery system, in particular the unit of expansion machine, generator and frequency converter, is cooled optimally and situation appropriate with the inventive measures. On the one hand, this is a prerequisite for safe, robust plant operation, but on the other hand also for effective and gentle operation of the individual components, all of which have special requirements with regard to cooling. This not only applies to the stationary operation of the waste heat recovery system, but also the modulating of the system according to it waste heat attack and the startup and shutdown. In particular, these states pose a challenge to the refrigeration system and, in accordance with the invention, provide safe control.

Zum Beispiel wird in der Startphase eine maximale Betriebssicherheit und Schutz vor Kältemittelkondensation erreicht, wenn der mit dem motorisch betriebenen Generator gekoppelte Hochlauf der Expansionsmaschine ohne Kältemittelbeaufschlagung im ORC-Kreislauf stattfindet. Weil auf der Kühlungsseite der dafür eingesetzte Kältemittel-Teilstrom über die Generatoreinheit geführt wird, nimmt dieser dort die durch mechanische Verluste entstehende Wärme während des motorischen Betriebes auf. Das Kühlmedium strömt danach durch das Gehäuse der Expansionsmaschine, gibt dort Wärme ab und sorgt dadurch in der Startphase zunächst für eine Vorwärmung.For example, in the starting phase maximum operational safety and protection against refrigerant condensation is achieved if the run-up of the expansion machine coupled to the motor-driven generator takes place without the application of refrigerant in the ORC circuit. Because on the cooling side of the used for this refrigerant partial flow over the Generator unit is performed, this takes there due to mechanical heat losses during engine operation. The cooling medium then flows through the housing of the expansion machine, where it gives off heat and thus ensures in the starting phase, first for preheating.

Die Zeichnung stellt ein Ausführungsbeispiel der Erfindung dar und zeigt in einer einzigen Figur den schematischen Aufbau einer Abwärmenutzungsanlage, bestehend aus einem dieser nachgeschalteten ORC.The drawing illustrates an embodiment of the invention and shows in a single figure the schematic structure of a waste heat recovery system, consisting of one of these downstream ORC.

Die für den ORC betriebswichtigen Komponenten sind ein ORC-Kreislauf 1, eine Speisepumpe 2, ein Verdampfer 3, eine Expansionsmaschine 4 zur Dampfexpansion, welche mit einem Generator 5 gekoppelt ist, ein Verflüssiger 6 für die Rückkühlung über eine Wärmesenke 7 sowie die Wärmetauscher 9, 10 zur Vorwärmung des Arbeitsmediums im ORC-Kreislauf 1.The essential components for the ORC are an ORC circuit 1, a feed pump 2, an evaporator 3, a steam expansion expansion machine 4, which is coupled to a generator 5, a condenser 6 for re-cooling via a heat sink 7, and the heat exchangers 9, 10 for preheating the working medium in ORC circuit 1.

Die beiden Wärmetauscher 8, 9 sind in Reihe der Speisepumpe 2 nachgeschaltet. Dabei dient der erste Wärmetauscher 8 nach der Speisepumpe 2 als erste Stufe zur Einkopplung von Niedertemperaturwärme und der nachfolgende Wärmetauscher 9 als zweite Stufe zur Einkopplung von Hochtemperaturwärme aus einer Abwärmequelle 10.The two heat exchangers 8, 9 are connected downstream of the feed pump 2 in series. In this case, the first heat exchanger 8 after the feed pump 2 serves as a first stage for coupling low-temperature heat and the subsequent heat exchanger 9 as a second stage for coupling high-temperature heat from a waste heat source 10th

Ein zweiter Heizkreislauf 11 ist mit seinem Vorlaufbereich mit dem Verdampfer 3 des ORC verbunden, weil das Temperaturniveau zunächst ausreichend hoch für dessen direkte Beheizung ist. Danach mündet der zweite Heizkreislauf 11 rücklaufseitig in den zweiten Wärmetauscher 9 und gibt dort noch vorhandene Restwärme an den ORC ab.A second heating circuit 11 is connected with its flow area with the evaporator 3 of the ORC, because the temperature level is initially sufficiently high for its direct heating. Thereafter, the second heating circuit 11 opens the return side in the second heat exchanger 9 and there are still residual heat from the ORC.

Ein flüssiger Kältemittel-Teilstrom 12 zur Kühlung der Expansionsmaschine 4 wird abgezweigt und zunächst durch den Generator 5 geführt. Danach strömt das Kühlmedium durch das Gehäuse der Expansionsmaschine 4, gibt dort in der Startphase zur Vorwärmung zunächst für Wärme ab und sorgt dort im Normalbetrieb für ausreichende Wärmeabfuhr. Gezeichnet ist dazu nur eine vereinfachte, schematische Leitungsführung ohne die notwendigen Abzweigungen zu einzelnen Bauteilen oder Baugruppen, Teilkreise, Temperaturmessstellen, Ventile und Regeleinrichtungen.A liquid refrigerant partial stream 12 for cooling the expansion machine 4 is branched off and initially passed through the generator 5. Thereafter, the cooling medium flows through the housing of the expansion machine 4, there in the starting phase for preheating initially for heat and ensures there in normal operation for sufficient heat dissipation. Drawn to this is only a simplified, schematic wiring without the necessary branches to individual components or assemblies, subcircuits, temperature measuring points, valves and control devices.

Beim Erreichen einer Mindest-Startdrehzahl wird ein Dampfventil 13 am Einlass der Expansionsmaschine 4 zur Dampfexpansion im ORC geöffnet und während des weiteren Öffnens des Dampfventils 13 erfolgt ein weiteres Hochfahren der Drehzahl, so dass der Generator 5 vom motorischen Betrieb in den normalen Generatorbetrieb übergeht.Upon reaching a minimum starting speed, a steam valve 13 is opened at the inlet of the steam expansion expansion machine 4 in the ORC and during the rest Opening the steam valve 13 is carried out a further ramping up the speed, so that the generator 5 passes from the engine operation in the normal generator operation.

Um die Expansionsmaschine 4 herum ist ein geregelter Bypass 14 mit mindestens einem Drosselventil 15 vorgesehen. Dieser Bypass 14 ist in der Startphase, also bei noch relativ niedriger Temperatur des Arbeitsmediums, zunächst geöffnet. Damit wird das Arbeitsmedium um die Expansionsmaschine 4 herum geleitet. Sobald der ORC-Kreislauf 1 seinen Soll-Betriebszustand erreicht hat, wird das Drosselventil 15 im Bypass 14 geschlossen und das der Expansionsmaschine 4 vorgeschaltete Dampfventil 13 geöffnet.Around the expansion machine 4, a controlled bypass 14 with at least one throttle valve 15 is provided. This bypass 14 is initially open in the starting phase, ie at a still relatively low temperature of the working medium. Thus, the working medium is passed around the expansion machine 4 around. As soon as the ORC circuit 1 has reached its desired operating state, the throttle valve 15 in the bypass 14 is closed and the steam engine 13 connected upstream of the expansion engine 4 is opened.

Claims (3)

  1. Waste heat recovery installation for a waste heat source (10), consisting of an ORC (Organic Rankine Cycle) arranged downstream thereof, the waste heat source (10) being in connection with the heating device of the ORC, and with an expansion machine (4) coupled to a generator (5) for the steam expansion in the ORC, said expansion machine comprising a magnetic bearing with an assigned control device and a power supply unit via a DC link of a generator frequency converter,
    wherein a unit comprising the expansion machine (4), the generator (5) and the frequency converter is cooled by the refrigerant from the OCR circuit, wherein cool, liquid refrigerant is removed downstream of the feed pump (2) and supplied for cooling the unit comprising the expansion machine (4), the generator (5) and the frequency converter, characterized in that
    cool, liquid refrigerant is removed downstream of the feed pump (2) and supplied to the expansion machine (4) for cooling the bearing, and wherein heated refrigerant leaving the unit comprising the expansion machine (4), the generator (5) and the frequency converter and/or the bearing region of the expansion machine (4) is supplied to the inlet side of the liquefier (6), and wherein a temperature monitoring device which is connected up to a higher-level control device and has temperature measuring points is provided in the components and/or subassemblies to be cooled and compares and evaluates current measured temperature values with predeterminable setpoint values and/or controls the throughput of refrigerant.
  2. Waste heat recovery installation according to Claim 1,
    characterized in that separate control circuits for controlling the refrigerant throughput are provided for the assemblies and/or subassemblies to be cooled.
  3. Waste heat recovery installation according to Claim 2,
    characterized in that valves for controlling the refrigerant throughput are provided in the control circuits that are respectively assigned to components and/or subassemblies to be cooled.
EP11802103.9A 2010-12-24 2011-12-23 Waste heat recovery installation Not-in-force EP2655813B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010056299A DE102010056299A1 (en) 2010-12-24 2010-12-24 Waste heat utilization system
PCT/EP2011/073920 WO2012085264A2 (en) 2010-12-24 2011-12-23 Waste heat recovery installation

Publications (2)

Publication Number Publication Date
EP2655813A2 EP2655813A2 (en) 2013-10-30
EP2655813B1 true EP2655813B1 (en) 2017-04-19

Family

ID=45418691

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11802103.9A Not-in-force EP2655813B1 (en) 2010-12-24 2011-12-23 Waste heat recovery installation

Country Status (6)

Country Link
US (1) US20140013749A1 (en)
EP (1) EP2655813B1 (en)
CN (1) CN103620167A (en)
DE (1) DE102010056299A1 (en)
RU (1) RU2013134398A (en)
WO (1) WO2012085264A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202487A1 (en) * 2014-02-12 2015-08-13 Robert Bosch Gmbh Control unit, heat coupling circuit and method for operating such a heat coupling circuit
DE202017107002U1 (en) * 2017-11-18 2019-02-19 Bdr Thermea Group B.V. CHP
CN109401954A (en) * 2018-12-07 2019-03-01 黑龙江省能源环境研究院 Heat-exchange system and working method are heated outside biogas fermentation reactor
CN109337798A (en) * 2018-12-07 2019-02-15 黑龙江省能源环境研究院 Biogas slurry waste heat recycling system and working method
US11015846B2 (en) 2018-12-20 2021-05-25 AG Equipment Company Heat of compression energy recovery system using a high speed generator converter system
CN110173313A (en) * 2019-05-28 2019-08-27 上海慕帆动力科技有限公司 High parameter ORC turbine power generation equipment and ORC device applied to engine exhaust heat recycling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
WO2007088194A2 (en) * 2006-02-02 2007-08-09 Frank Eckert Organic rankine cycle (orc) turbogenerator

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3035557A (en) * 1959-07-23 1962-05-22 Sulzer Ag Method of cooling resuperheaters of a steam plant
FR2449780A1 (en) 1979-02-22 1980-09-19 Semt METHOD AND APPARATUS FOR RECOVERING THERMAL ENERGY IN A SUPERFUELED INTERNAL COMBUSTION ENGINE
US4901531A (en) 1988-01-29 1990-02-20 Cummins Engine Company, Inc. Rankine-diesel integrated system
DE59205446D1 (en) * 1991-07-17 1996-04-04 Siemens Ag Process for operating a gas and steam turbine plant and plant for carrying out the process
NZ248729A (en) * 1992-10-02 1996-03-26 Ormat Ind Ltd High pressure geothermal power plant with secondary low pressure turbogenerator
DE19541521A1 (en) 1995-11-08 1997-07-31 Schmeink & Cofreth En Manageme Electrical efficiency improver for flow of special gases
DE602004011087T2 (en) * 2003-08-27 2009-01-15 TTL Dynamics Ltd., Salisbury ENERGY RECOVERY SYSTEM
DE102005048795B3 (en) 2005-10-12 2006-12-28 Köhler & Ziegler Anlagentechnik GmbH Combined heat and power generation plant, has heat exchanger provided next to feed pumps as stage for coupling low temperature heat, and another heat exchanger provided as another stage for coupling high temperature heat
US7841306B2 (en) * 2007-04-16 2010-11-30 Calnetix Power Solutions, Inc. Recovering heat energy
US7638892B2 (en) * 2007-04-16 2009-12-29 Calnetix, Inc. Generating energy from fluid expansion
US8839622B2 (en) * 2007-04-16 2014-09-23 General Electric Company Fluid flow in a fluid expansion system
DE202007016668U1 (en) * 2007-12-04 2008-02-28 GMK-Gesellschaft für Motoren und Kraftanlagen mbH Power generation plant according to the ORC principle
US20090277400A1 (en) * 2008-05-06 2009-11-12 Ronald David Conry Rankine cycle heat recovery methods and devices
CN101806232A (en) * 2010-03-17 2010-08-18 昆明理工大学 Multistage evaporation organic Rankine cycle waste heat recovery generation system and method thereof
US8400005B2 (en) * 2010-05-19 2013-03-19 General Electric Company Generating energy from fluid expansion
US8739538B2 (en) * 2010-05-28 2014-06-03 General Electric Company Generating energy from fluid expansion

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264863A (en) * 2004-03-19 2005-09-29 Ebara Corp Power generating device
WO2007088194A2 (en) * 2006-02-02 2007-08-09 Frank Eckert Organic rankine cycle (orc) turbogenerator

Also Published As

Publication number Publication date
US20140013749A1 (en) 2014-01-16
CN103620167A (en) 2014-03-05
RU2013134398A (en) 2015-01-27
DE102010056299A1 (en) 2012-06-28
EP2655813A2 (en) 2013-10-30
WO2012085264A3 (en) 2013-12-19
WO2012085264A2 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
EP1816318B1 (en) Cogeneration Plant with an Internal Combustion Engine and an Organic Rankine Cycle (ORC)
EP2655813B1 (en) Waste heat recovery installation
DE102010042792A1 (en) System for generating mechanical and / or electrical energy
DE102010003906A1 (en) internal combustion engine
AT510317A1 (en) ELECTRICAL POWER PLANT
WO2012107177A1 (en) Stationary power plant, in particular a gas power plant, for generating electricity
EP2683919B1 (en) Waste heat recovery installation
EP2381073B1 (en) Efficiency increasing device of a drive for a power and heat generator
WO2012085093A1 (en) Waste heat recovery installation
DE102009024772A1 (en) Fluid energy machine arrangement for motor vehicle, has fluid circuit with expansion device exhibiting closest effective cross section, which correlates with inlet pressure of fluid of less than five bars
DE10055202A1 (en) Electrical generation steam cycle with increased efficiency, branches off working fluid and condenses it for cooling during expansion process
EP1861587A2 (en) Method and device for improving the efficiency of energy conversion units
DE102010004079A1 (en) Power system for utilizing Rankine process to use heat of internal combustion engine, has exhaust gas heat exchanger which delivers heat of charge air of internal combustion engine to working fluid
EP1904731A1 (en) Gas and steam turbine installation and method for operating the same
WO2012085262A1 (en) Waste heat recovery installation
DE202011101243U1 (en) Waste heat utilization system
EP2559867A1 (en) Method for generating electrical energy with a combination power plant and combination power plant and device for carrying out the method
EP2733339B1 (en) Device for utilisation of the waste heat of an internal combustion engine
DE102011102803B4 (en) Waste heat utilization system
CH705180B1 (en) Method for increasing the efficiency of a drive and efficiency increasing device.
EP3516178A1 (en) Plant and method having a thermal power plant and a process compressor
EP2865941A1 (en) Use of a coiled heat exchanger for generating superheated steam from combustion or exhaust gases from heating installations or internal combustion engines
EP2443321A2 (en) Method and device for producing electricity from heat
DE102013202111B4 (en) Waste heat utilization and performance increase of gas turbine plants
DE102009024778A1 (en) Hybrid fluid energy machine arrangement for vehicle, has steam turbine arranged downstream of heat exchanger for expanding work fluid, where turbine is coupled with energy machine and arranged on shaft of energy machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

R17D Deferred search report published (corrected)

Effective date: 20131219

17P Request for examination filed

Effective date: 20140620

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011012089

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01K0025080000

Ipc: F01K0025100000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F01K 25/10 20060101AFI20161014BHEP

INTG Intention to grant announced

Effective date: 20161110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 886178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011012089

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170419

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011012089

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

26N No opposition filed

Effective date: 20180122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180102

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111223

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20201222

Year of fee payment: 10

Ref country code: AT

Payment date: 20201215

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210217

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011012089

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 886178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211223

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211223

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211223