EP2652563B1 - Method and device for obtaining a continuous movement of a display means - Google Patents
Method and device for obtaining a continuous movement of a display means Download PDFInfo
- Publication number
- EP2652563B1 EP2652563B1 EP11793746.6A EP11793746A EP2652563B1 EP 2652563 B1 EP2652563 B1 EP 2652563B1 EP 11793746 A EP11793746 A EP 11793746A EP 2652563 B1 EP2652563 B1 EP 2652563B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- display means
- movement
- sensor
- velocity
- simulated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 14
- 230000004913 activation Effects 0.000 claims description 36
- 230000001133 acceleration Effects 0.000 claims description 32
- 239000012530 fluid Substances 0.000 claims description 19
- 238000007781 pre-processing Methods 0.000 claims description 3
- 230000003213 activating effect Effects 0.000 claims 2
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000001994 activation Methods 0.000 description 31
- 238000004364 calculation method Methods 0.000 description 17
- 238000012937 correction Methods 0.000 description 15
- 230000008901 benefit Effects 0.000 description 7
- 230000006870 function Effects 0.000 description 6
- 230000002035 prolonged effect Effects 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000004088 simulation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000002779 inactivation Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 208000031968 Cadaver Diseases 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 229940082150 encore Drugs 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/14—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
-
- G—PHYSICS
- G04—HOROLOGY
- G04C—ELECTROMECHANICAL CLOCKS OR WATCHES
- G04C3/00—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
- G04C3/14—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor
- G04C3/146—Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means incorporating a stepping motor incorporating two or more stepping motors or rotors
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G21/00—Input or output devices integrated in time-pieces
- G04G21/02—Detectors of external physical values, e.g. temperature
Definitions
- the present invention relates to the field of display devices, and in particular electromechanical timepieces provided with an analog-type display.
- time-setting devices actuated by a crown kinematically connected to the minute-gear train of the watch in its axial position corresponding to the setting mode are known. time, with determined gear train ratios to move the minute hand simply and quickly without having to rotate the crown either too long or often.
- the Swiss patent CH 641630 describes an electronic device for scrolling symbols at a variable speed in response to the activation of a sensor (movement of a finger on a touch sensor, pressure on a push button).
- the number of activations of the sensors and the duration of these activations have the effect of incrementing or decrementing the values contained in a register, which in turn determine a proportional scrolling speed. Decrementing the register values after a prolonged inactivation of the sensors makes it possible to gradually decrease the scrolling speed; however, this slowing down of the scrolling speed still lacks fluidity since the relative variations of the scrolling speed are all the greater the closer the register values are to zero.
- This solution has the advantage of using sensors without mechanical parts; the disadvantage is that the use is less intuitive than a traditional crown. Moreover, this solution relates only to digital displays and does not apply to watches comprising analog display members.
- the document CH 702 862 A1 describes a digital display timepiece comprising, in the embodiment of the figure 4 , a physical crown.
- a user's action on the crown is detected and the timepiece's processor uses this information, in combination with other measured/simulated force/torque values, to perform a simulation of the actual position of the components of a simulated mechanical watch movement.
- the figure 4 of this document that a simulation at all times of the position of the (virtual) components of a mechanical movement is displayed on the digital display device of the timepiece.
- virtual masses, inertias and elasticities are assigned to the displayed virtual components.
- An object of the present invention is therefore to propose a solution free from the aforementioned drawbacks of the prior art.
- an object of the present invention is to propose a more fluid and more intuitive display device for the user.
- An advantage of the proposed solution is to make the adjustment operation on the one hand more efficient, and on the other hand visually more intuitive thanks to the emulation of a Newtonian movement for the display means, i.e. that is, whose speed is continuous with acceleration and deceleration proportional to an applied torque or force. It is thus possible to adjust the scrolling speed to the magnitude of the correction, by first performing a coarse adjustment then a finer adjustment when approaching the desired value, with a speed that is always continuous.
- An additional advantage of the proposed solution is that it does not require any particular sensor resolution to increment the display values.
- the fluidity of the adjustment is ensured in particular by the fact that it is not a correction speed which is deduced from the movements of a control member, or detected by a sensor, but the acceleration of the display means. This therefore makes it possible to generate a continuous speed of these display means, in accordance with the movement of a mechanical member according to Newtonian laws of physics. This speed presents only small variations between different periods of actuation of the control member, and the proposed solution therefore does not undergo any threshold effect at the level of the sensor resulting in jerks for the movements of the control members. 'display.
- Another advantage of the proposed solution is also to minimize the manipulations necessary for adjustment, only a few sporadic activations of the control member being necessary to adjust the position of the display elements. Furthermore the control of Adjustment operations are improved thanks to the possibility of acting not only to accelerate the speed of correction but also to decelerate this same speed.
- An additional advantage of the proposed solution is to allow simultaneous adjustment of several display parameters, unlike the usual sequential adjustments for electronic watches.
- the time saved by the invention for the correction thanks to a continuous movement of the display means between the periods of actuation of the activation means gives the possibility of moving, for example, the hour and minute hands at the same time. , following the intuitive approach of a classic mechanical watch, without large-scale correction taking too long in the eyes of the user.
- a preferred embodiment of the control device of the invention is intended for timepieces and is illustrated in the figures 1A and 1B , which respectively show the logical structure of the control device 3 as well as the different parameters used and the different calculation steps carried out by various elements of the control device 3 to transform the movement of the activation means 1 into a non-proportional movement of the means display, unlike a traditional mechanical cog.
- the Figure 1A shows the preferential structure of the activation means 1, in the form of a crown 11, the actuation of which can be performed in two opposite directions of rotation S1 and S2, as well as that of the display means 2, in the form an hour hand 22 and a minute hand 21.
- the control device 3 according to the invention to other types of rotating mechanical display members 2, such as for example rings or drums.
- the invention therefore makes it possible to transform a first angular speed 111, corresponding to that of the drive of the crown 11 in a given direction of rotation, for example S1, into another angular speed 211 of the minute hand 21.
- the two angular speeds 111 and 211 are not proportional, since the minute hand 211 is progressively accelerated following the actuation of the crown 11 in the direction S1 in accordance with a Newtonian equation of movement 700 described later, which allows elsewhere to give a continuous character to the movement of the needles.
- the control device 3 comprises an electronic circuit 31 preferably in the form of an integrated circuit comprising a processing unit 5, comprising for example a microcontroller, and a motor control circuit 6.
- the microcontroller transforms digital input parameters, provided by a counter module 44 at the output of a first sensor 4 of movements of the activation means 1, i.e. for example the rotation of the crown 11, into instructions for the motor control circuit 6, such as for example a number of not motors.
- the counter module 44 makes it possible to transform the electrical signals produced by the first sensor 4 into discrete digital values, and therefore manipulable by a software processing unit 5 such as a microcontroller. However, the latter is not described in detail because it is known to those skilled in the art.
- control circuit 6 controls two separate motors, a first motor 61 being dedicated to controlling the movements of the minute hand 21, and a second motor 62 being dedicated to controlling the hour hand 22
- the control device 3 thus simultaneously actuates a plurality of motors 61, 62 each dedicated to distinct mechanical display means.
- the dissociation of the motors makes it possible to quickly change the display mode, by indicating, for example, the time of an alarm, or the direction of the earth's magnetic field.
- the activation means 1 are preferably mechanical; however, they can also take the form, for example, of a capacitive sensor, such as a touch screen.
- the actuation of the activation means 1 makes it possible to impart a variable and continuous movement to the display means 2, and in particular the minute hand 21, thanks to the calculation of an acceleration 703' in proportion to a torque value 401 'determined at the output of the first sensor 4, in proportion to the values of the register of the counter module 44, which makes it possible to characterize the movement of the activation means 1, preferably a crown 11, by digital values, namely a number of pulses .
- the step of determining a pulse frequency 4001 is a digitization process necessary to provide an input parameter that can be manipulated by the electronic circuit 31, which can then simulate the movement of the mechanical display means as if it were determined by the application of a torque 401' proportional to the frequency of pulses 401.
- the actual movement of the hands is considered Newtonian because it corresponds to that of a rotating solid subject to the fundamental relationship of the dynamics, indicating that the acceleration of a rotating body is proportional to the sum of the torques applied to it.
- the fundamental dynamic equation could also be applied to linear, and not rotary, display means 2, in which case the acceleration would be proportional to the sum of the forces applied to the system.
- the movement of the 21 minute hand is determined by solving Newton's first equation of motion 700 which models this fundamental equation of solid dynamics using a first coefficient 701 determining the torque 401' applied to the system from the pulse frequency 401, and as well as, according to a preferred embodiment, a second coefficient 702 determining a so-called fluid friction torque because causing a deceleration of the speed of rotation of the hands proportionally to this same speed.
- the actual movement of the hands is also considered inertial because it corresponds to that of a solid in rotation which is no longer subject, as soon as the crown 11 is no longer activated, to a so-called fluid friction torque, proportional to its rotational speed itself, causing them to gradually slow down.
- this fluid friction torque 703" is however fictitious, and simulated by the microcontroller 5 within the framework of the Newtonian equation 700 above; it is moreover not applied directly to the minute hand 21, but at the simulated speed of minute hand 703 also used to solve Newtonian equation 700 above.
- the method for determining the speed of the display means 2 therefore solves a Newtonian equation of motion by using torque and/or force values as input parameters for the resolution of this equation.
- These parameters are themselves determined in relation to a physical quantity, here the angular speed 111 of the crown 11, which is transformed via the first sensor 4 and the counter module 44 into a pulse frequency 401.
- other physical quantities can however be used within the scope of the invention, such as for example a linear or angular speed, a magnetic field or a geometric angle.
- the embodiment relating to an electronic compass described in relation to the figures 4A and 4B , uses the geometric angle as an input parameter delivered to the processing unit to determine a torque to be applied to the needle 23 indicating magnetic north.
- the angular speed of the hands is necessarily limited due to the constraints of the system in terms of processing capabilities.
- the first and second motors 61, 62 can only implement a given maximum number of steps per second, and there is therefore always a maximum frequency of motor steps from which the Newtonian equation of motion 700 does not can no longer be applied, because the angular acceleration necessarily becomes zero.
- the maximum frequency of motor steps 611' of the first motor 61 controlling the minute hand 21 is preferably between 200 and 1000 Hz, which corresponds to the maximum speed of rotation of the minute hand 21 between approximately one and five revolutions per second when a complete turn of the dial corresponds to 180 motor steps. It may be noted that whatever the embodiment chosen for the invention involving the use of an electronic circuit 31, a maximum scrolling speed of the mechanical display means 2 must always be defined according to the processing capacities of the motor control circuit 6.
- the figure 2A shows a preferred embodiment of the first sensor 4 according to the invention, which makes it possible to relatively simply determine a pulse frequency 401 used by the electronic circuit 31 in order to calculate the acceleration and/or deceleration values of the display means 1 by solving the first Newtonian equation 700 applied to this input parameter.
- the first sensor 4 is mounted on a rod 41, fixed in rotation to the crown 11, and which can be driven in rotation in two opposite directions S1 and S2.
- On the periphery of this rod 41 are mounted a plurality of electrical contactors 41a, 41b, 41c, 41d, preferably 4 in number, as illustrated in the figure 2A .
- the first sensor 4 also comprises two electrical contacts 42, 43 mounted on a fixed structure, a first contact 42 at the terminals of which is measured the value of a signal 412 of output and a second contact 43 across which the value of an output signal 413 is measured when a voltage is applied to the electrical contactors 41a, 41b, 41c, 41d.
- the figure 2B shows, in the upper part (a), the first and second signals 412 and 413 obtained during a rotation of the crown 11 in the direction of rotation S1, corresponding to the clockwise direction.
- the first period 401a corresponding to the duration during which each signal 412, 413 is positive
- the second period 401b during which each signal 412, 413 is zero
- the third total period 401c corresponding to the sum of the first and second periods 401a, 401b are identical for each of the first and second output signals 412, 413, which are simply shifted in time by a value corresponding to the path of one of the electrical contacts 41a, 41b, 41c, 41d from the first contact 42 to the 2nd contact 43 external.
- the use of the first contactor of the figure 2A to determine the frequency of pulses 401 applied to the first Newtonian equation 700 also has the advantage of not requiring any fine resolution of the first sensor 4 to guarantee the fluidity of the correction, since the speed determined by solving a Newtonian equation is always continues even if the acceleration is not.
- a less fine resolution of the granularity of the torque values, proportional to the frequency of pulses 401 will not have the consequence of causing the display means 2 to advance jerkily, but simply of generating sharper accelerations following the detection of each additional pulse.
- the picture 3 shows a state diagram for different sequences of time adjustment operations using hands according to a preferred embodiment of the invention applied to a timepiece.
- Those skilled in the art will understand that it is however possible to adjust other types of parameters that are not necessarily temporal (that is to say any type of symbol) and that the hands could be replaced by other analog display devices.
- Step 1001 corresponds to a first activation of crown 11, which makes it possible to generate the movement of minute hand 21.
- the first sensor 4 detects a “positive” number of pulses 401 corresponding to a positive angular speed 111 for crown 11 and simulates the application of a torque, applied to the needle in the same direction.
- the rotation of the crown 11 in the clockwise direction S1 makes it possible to advance the minute hand 21 on the dial.
- a maximum simulated angular speed 7031 is determined as a function of the maximum motor step frequency 611'. As soon as the algorithm solving the Newtonian equation reaches this upper speed limit, it saturates, that is to say stops increasing the simulated angular speed 703 even if the algorithm were to give a result of a value superior.
- the diagram of the picture 3 illustrates the comparison step 5003 performed by the microcontroller 5 to determine whether the speed is saturating, in which case the simulated angular speed 703 is limited to the maximum value 7031 and the angular acceleration 703' is zero for the sampling period over which the calculation has been made.
- the feedback loop starting from the comparison step 5003 towards a positive acceleration value 703' indicates that no saturation takes place until the maximum simulated angular velocity 7031 has not been reached.
- step 1001 has been described in the context of an activation of the crown 11 in the direction of rotation S1 of the hands of a watch to preferably advance the minute hand 21 in the same direction, it is possible also ensure that an activation of the crown 11 in the reverse direction S2 similarly rotates the minute 21 and hour 22 hands in the opposite direction, the number of pulses 401 being calculated identically for each period sampling but the information on the direction of rotation determined by the first sensor 4 makes it possible to choose the direction of rotation applied to the needles by the first and second motors 61, 62.
- the solution proposed here according to which the movement applied to the mechanical display means is the result of an acceleration which depends on the speed of the crown, is very robust in the face of a low resolution crown. Moreover, the movement remains fluid, even if the user advances the crown in jerks: if a user rotates the crown in successive strokes, the corrections continue between the strokes. This provides significant time savings in the case where the mechanical display means are not very efficient.
- a simultaneous adjustment of the hour hand 22 and the minute hand 21 in accordance with a totally mechanical approach, according to which the minute hand performs a complete rotation for each time change, is made possible at a speed acceptable to the user even for a relatively slow system.
- the activation step 1001 consequently makes it possible to simultaneously adjust the hour hand 22 and the minute hand 21, which is particularly advantageous for watches electronics where each parameter is usually set sequentially for performance reasons.
- Step 1001' is a step subordinate to step 1001, or more generally any activation step, which it immediately follows. This is a step during which crown 11, or more generally control means 1, ceases to be activated. During this step, the modeling of the invention means that no more external torque is applied to the system as soon as the detected pulse frequency 401 is zero, which depends among other things on the sampling period chosen at the level of the counter module 44 to determine the pulse frequency 401.
- the resolution of this Newtonian equation 700 determines the inertial type deceleration of the display member, such as for example the minute hand 21 in the embodiment described above, because the deceleration is only proportional to the simulated angular speed 703 During this inertial-type deceleration, the system is in the first deceleration phase B1 illustrated in figure picture 3 .
- the crown 11 is turned in the opposite direction S2 during an additional actuation step 1002, the angular acceleration 703' is still negative, but the B2 deceleration, shown on the picture 3 , is more pronounced because the sign of the dummy torque 401' becomes negative, acting with the angular acceleration 703' to slow the system more quickly.
- Actuation of the crown 11 in the opposite direction makes it possible to further refine the adjustment using the additional activation step 1002 when approaching a desired value while the angular speed is at this moment there relatively high, because the second phase of deceleration B2 which is generated is more pronounced than the first phase of deceleration B1 which occurs only during prolonged inactivation of the crown 11.
- the first activation step 1001 is therefore always followed by an acceleration phase A of the mechanical display means 2, and firstly the minute hand 21 for which the acceleration is the most perceptible.
- This acceleration phase A ends as soon as the motor control circuit 6 detects that a maximum frequency has been reached, in this case that of step 611′ of the first motor 61, in which case a phase follows. C during which the simulated angular speed 703 is limited to the maximum angular speed value 7031. During this phase C, the minute hand 21 is therefore constant, limited by the maximum step frequency 611' of the first motor 61: the algorithm saturates.
- any additional activation of crown 11 in the same direction of rotation S1 therefore has no impact on the real angular speed 211 of the minute hand; however, such activations make it possible to maintain the actual angular velocity 211 at this constant level by preventing the angular acceleration value 703' from becoming negative after too prolonged inactivation, corresponding according to the preferred embodiment described to a period of sampling, and which can be calibrated for example to one second.
- the proportionality coefficients defining the moments applied to the system in the first Newtonian equation of motion 700 namely the coefficient 701 of proportionality with respect to the pulse frequency 401 and that of fluid friction 702 can preferably be chosen, together with the maximum value of motor steps 611' of the first motor 61, such that the angular acceleration value 703 is always positive as soon as at least one pulse 401 is detected per second, or respectively the value chosen for the lapse time above, so that the effective angular speed 211 always remains constant if the crown 11 is activated at least once per second as soon as the maximum angular speed 21 has been reached.
- phase acceleration A of the display means 1 is followed most of the time by a phase C during which the scrolling speed of the display means 2 is constant as soon as the difference in the display value displayed when the adjustment is undertaken and the value to be achieved is important. If the control means are not activated for a determined period, the first deceleration phase B1 of the display means 2 takes place following this prolonged inactivation; otherwise a second more pronounced deceleration phase B2 can be actuated during an additional activation step 1002 of the control means in the opposite direction to that used during the initial activation step 1001.
- a crown 11 In the case of a crown 11 these are opposite directions of rotation S2 if S1 was the first direction of rotation, and S1 if S2 was the first direction of rotation.
- the use of a second activation step 1002 depends on the preferences of the user of the display device in terms of scrolling speed and the moment from which he wishes to carry out a finer adjustment of the display element(s). analog.
- the control method and device according to the invention therefore allows increased control throughout the adjustment operations by being able to accelerate and/or decelerate the scrolling of the display element(s) at any time. Furthermore, the speed variations are much more gradual than according to the solutions of the prior art where the speeds are directly deduced from the values of the sensor.
- the determination of an acceleration instead of a speed from the magnitudes of a sensor makes it possible to fluidify the movement of the mechanical display elements.
- the preferred solution described transforms a physical quantity into a physical quantity of the same order, namely an angular speed - that of the crown 11 - into another angular speed - those of the minute and 22 hour hands 21 - it is however possible also consider replicating the control device 3 to any other type of display means 2.
- the figures 4A and 4B respectively illustrate a schematic view of the control device 3 according to a preferred embodiment of the invention, as well as parameters and calculation steps used for the production of an electronic compass. Contrary to the embodiment described previously, the compass does not require any adjustment of the position of the north indicator hand 23 on the part of the user, this position being determined automatically by calculation.
- the electronic circuit 31 comprising the calculation unit 5, preferably constituted by a microprocessor or a microcontroller, the memory unit 7, and the motor control circuit 6.
- a new motor 63 is however introduced to control the movement of compass needle 23.
- the second sensor 4' differs from the first sensor 4 in that it measures another type of physical quantity, namely a magnetic field. It may for example be a magnetic sensor of the fluxgate type or any other suitable magnetic sensor.
- the so-called positioning circuit 45 determines the relative angle 451 between the direction of north determined by the second sensor 4' and the current position of the hand 23. This relative angle 451 is the input parameter delivered to the microprocessor to resolve the 700" Newtonian type equation of motion shown in figure 4B described below.
- the positioning circuit 45 which therefore acts pre-processing circuitry to determine the torque and/or mechanical force values applied to the modeled system.
- This positioning circuit 45 is quite comparable to the counter module 44 of the embodiment of the figures 1A and 1B described previously, which also transforms a speed of rotation 111 into a frequency of pulses 401, and therefore also constitutes a pre-processing circuit.
- the motor 63 associated with the movement of the needle of the compass 23 is the motor 61 associated with the minute hand 21, and that this minute hand 21 is simultaneously used as a hand compass 23 in a specific dedicated operating mode.
- the second Newtonian equation 700' used to determine the movement of the needle 23 of the compass 21 could also be simplified by an equivalent rewriting requiring no division operation.
- the method for determining the movement of a compass needle 23 makes it possible to considerably smooth out its movement, which is often jerky on electromechanical watches.
- the electronic compass described according to the preferred embodiment above comprises a mechanical display member 2, namely a needle, and can therefore be easily integrated for example into a wristwatch.
- the minute hand 21 can advantageously be used as a compass hand 23.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromechanical Clocks (AREA)
Description
La présente invention se rapporte au domaine des dispositifs d'affichage, et en particulier des pièces d'horlogerie électromécaniques munies d'un affichage de type analogique.The present invention relates to the field of display devices, and in particular electromechanical timepieces provided with an analog-type display.
Dans des pièces d'horlogerie mécaniques, en particulier des montres bracelet à aiguilles, on connaît des dispositifs de mise à l'heure actionnés par une couronne reliée cinématiquement au rouage de minuterie de la montre dans sa position axiale correspondant au mode de mise à l'heure, avec des rapports de rouage d'engrenage déterminés pour déplacer l'aiguille des minutes de manière simple et rapide sans devoir actionner en rotation la couronne ni trop longtemps ni souvent.In mechanical timepieces, in particular wristwatches with needles, time-setting devices actuated by a crown kinematically connected to the minute-gear train of the watch in its axial position corresponding to the setting mode are known. time, with determined gear train ratios to move the minute hand simply and quickly without having to rotate the crown either too long or often.
Dans des pièces d'horlogerie électroniques à affichage digital, en particulier à cristaux liquides, il est connu de pouvoir accélérer la vitesse de défilement de symboles numériques en fonction d'une activation prolongée ou répétée d'un capteur lorsqu'on se trouve dans un mode de réglage spécifique. Par exemple, une pression prolongée sur un bouton poussoir permet d'accélérer le défilement jusqu'à une vitesse maximale pour la valeur d'affichage à corriger. Le réglage s'effectue alors séquentiellement pour chaque paramètre d'affichage.In electronic timepieces with digital display, in particular with liquid crystals, it is known to be able to accelerate the scrolling speed of digital symbols as a function of prolonged or repeated activation of a sensor when one is in a specific setting mode. For example, a prolonged pressure on a push button makes it possible to accelerate the scrolling up to a maximum speed for the display value to be corrected. Adjustment is then carried out sequentially for each display parameter.
Il est également connu de corriger un affichage digital en utilisant une couronne munie de capteurs comme élément d'actionnement, et un dispositif électronique de commande pour effectuer une correction à une vitesse proportionnelle à celle de rotation de la couronne, comme par exemple le circuit électronique décrit dans le brevet
Le brevet suisse
Le document
Il est par ailleurs connu, dans des montres électromécaniques notamment, d'afficher la direction du Nord magnétique à l'aide d'aiguilles. Le mouvement de l'aiguille indicatrice du Nord est toutefois souvent saccadé et par conséquent peu intuitif pour l'utilisateur de la montre.It is also known, in electromechanical watches in particular, to display the direction of magnetic North using hands. The movement of the North indicator hand is however often jerky and therefore not very intuitive for the user of the watch.
Un but de la présente invention est par conséquent de proposer une solution exempte des inconvénients de l'art antérieur suscités.An object of the present invention is therefore to propose a solution free from the aforementioned drawbacks of the prior art.
En particulier, un but de la présente invention est de proposer un dispositif d'affichage plus fluide et plus intuitif pour l'utilisateur.In particular, an object of the present invention is to propose a more fluid and more intuitive display device for the user.
Ces buts sont atteints grâce à une méthode pour la détermination d'un mouvement de vitesse variable et continue de moyens d'affichage analogiques d'une pièce d'horlogerie électromécanique selon la revendication 1.These objects are achieved by means of a method for determining a variable and continuous speed movement of analog display means of an electromechanical timepiece according to claim 1.
Ces buts sont également atteints grâce à une pièce d'horlogerie selon la revendication 6.These objects are also achieved thanks to a timepiece according to
Des modes de réalisation préférés de l'invention sont définis dans les revendications dépendantes.Preferred embodiments of the invention are defined in the dependent claims.
Un avantage de la solution proposée est de rendre l'opération de réglage d'une part plus efficace, et d'autre part visuellement plus intuitive grâce à l'émulation d'un mouvement newtonien pour les moyens d'affichage, c'est-à-dire dont la vitesse est continue avec une accélération et une décélération proportionnelle à un couple ou une force appliquée. Il est ainsi possible d'ajuster la vitesse de défilement à l'ampleur de la correction, en effectuant tout d'abord un réglage grossier puis un réglage plus fin lorsqu'on se rapproche de la valeur souhaitée, avec une vitesse toujours continue.An advantage of the proposed solution is to make the adjustment operation on the one hand more efficient, and on the other hand visually more intuitive thanks to the emulation of a Newtonian movement for the display means, i.e. that is, whose speed is continuous with acceleration and deceleration proportional to an applied torque or force. It is thus possible to adjust the scrolling speed to the magnitude of the correction, by first performing a coarse adjustment then a finer adjustment when approaching the desired value, with a speed that is always continuous.
Un avantage additionnel de la solution proposée est de ne requérir aucune résolution particulière de capteurs pour incrémenter les valeurs d'affichage. La fluidité du réglage est assurée notamment par le fait que ce n'est pas une vitesse de correction qui est déduite des mouvements d'un organe de commande, ou détectés par un capteur, mais l'accélération des moyens d'affichage. Ceci permet donc de générer une vitesse continue de ces moyens d'affichage, conformément au mouvement d'un organe mécanique suivant des lois newtoniennes de physique. Cette vitesse ne présente que de faibles variations entre différentes périodes d'actionnement de l'organe de commande, et la solution proposée ne subit par conséquent aucun effet de seuil au niveau du capteur se traduisant par des à-coups pour les mouvements des organes d'affichage.An additional advantage of the proposed solution is that it does not require any particular sensor resolution to increment the display values. The fluidity of the adjustment is ensured in particular by the fact that it is not a correction speed which is deduced from the movements of a control member, or detected by a sensor, but the acceleration of the display means. This therefore makes it possible to generate a continuous speed of these display means, in accordance with the movement of a mechanical member according to Newtonian laws of physics. This speed presents only small variations between different periods of actuation of the control member, and the proposed solution therefore does not undergo any threshold effect at the level of the sensor resulting in jerks for the movements of the control members. 'display.
Un autre avantage de la solution proposée est de minimiser par ailleurs les manipulations nécessaires au réglage, seules quelques activations sporadiques de l'organe de commande étant nécessaires pour ajuster la position des éléments d'affichage. Par ailleurs le contrôle des opérations de réglage est amélioré grâce à la possibilité d'agir non seulement pour accélérer la vitesse de correction mais également pour décélérer cette même vitesse.Another advantage of the proposed solution is also to minimize the manipulations necessary for adjustment, only a few sporadic activations of the control member being necessary to adjust the position of the display elements. Furthermore the control of Adjustment operations are improved thanks to the possibility of acting not only to accelerate the speed of correction but also to decelerate this same speed.
Un avantage additionnel de la solution proposée est de permettre un réglage simultané de plusieurs paramètres d'affichage, contrairement aux réglages séquentiels usuels pour des montres électroniques. Le gain de temps procuré par l'invention pour la correction grâce à un mouvement continu des moyens d'affichage entre les périodes d'actionnement des moyens d'activation donne la faculté de déplacer par exemple les aiguilles des heures et des minutes en même temps, selon l'approche intuitive d'une montre mécanique classique, sans qu'une correction de grande ampleur ne prenne un temps trop long aux yeux de l'utilisateur.An additional advantage of the proposed solution is to allow simultaneous adjustment of several display parameters, unlike the usual sequential adjustments for electronic watches. The time saved by the invention for the correction thanks to a continuous movement of the display means between the periods of actuation of the activation means gives the possibility of moving, for example, the hour and minute hands at the same time. , following the intuitive approach of a classic mechanical watch, without large-scale correction taking too long in the eyes of the user.
D'autres caractéristiques et avantages ressortiront plus clairement de la description détaillée de divers modes de réalisation et des dessins annexés, sur lesquels:
- la
figure 1A illustre une vue schématique du dispositif de commande selon un mode de réalisation préférentiel de l'invention pour le réglage de paramètres horaires; - la
figure 1B montre les différents paramètres utilisés et les différentes étapes de calcul effectuées par divers éléments du dispositif de commande selon le mode de réalisation préférentiel illustré à lafigure 1A ; - la
figure 2A illustre une structure de capteur selon un mode de réalisation préférentiel de l'invention; - la
figure 2B montre le fonctionnement du capteur selon le mode de réalisation préférentiel illustré par lafigure 2A ; - la
figure 3 montre un diagramme d'état pour les différentes séquences d'opérations de réglage selon un mode de réalisation préférentiel de l'invention. - la
figure 4A illustre une vue schématique du dispositif de commande selon un mode de réalisation préférentiel de l'invention pour une boussole électronique; - la
figure 4B montre les différents paramètres utilisés et les différentes étapes de calcul effectuées par divers éléments du dispositif de commande selon le mode de réalisation préférentiel illustré à lafigure 4A ;
- the
Figure 1A illustrates a schematic view of the control device according to a preferred embodiment of the invention for setting time parameters; - the
figure 1B shows the different parameters used and the different calculation steps performed by various elements of the control device according to the preferred embodiment illustrated inFigure 1A ; - the
figure 2A illustrates a sensor structure according to a preferred embodiment of the invention; - the
figure 2B shows the operation of the sensor according to the preferred embodiment illustrated by thefigure 2A ; - the
picture 3 - the
figure 4A illustrates a schematic view of the control device according to a preferred embodiment of the invention for an electronic compass; - the
figure 4B shows the different parameters used and the different calculation steps performed by various elements of the control device according to the preferred embodiment illustrated infigure 4A ;
Un mode de réalisation préférentiel du dispositif de commande de l'invention est destiné à des pièces d'horlogerie et est illustré aux
Le dispositif de commande 3 selon la variante préférentielle de l'invention illustré à la
Le microcontrôleur utilise, pour effectuer ses calculs, différents paramètres sauvegardés dans une unité de mémoire 7, afin de pouvoir déterminer un nombre de pas moteurs, ou encore une fréquence de pas moteurs 611, 622 lorsque ces derniers sont rapportés à une unité temporelle comme la seconde ou la minute. Ces fréquences de pas moteurs 611, 622 correspondent respectivement aux fréquences d'activation du premier moteur 61 et du deuxième moteur 62 selon la première équation newtonienne du mouvement 700, décrite ci-dessous. La
l'étape 4001 consiste en la détermination d'une fréquence d'impulsions 401, utilisée en sortie du module compteur 44 par le microcontrôleur de l'unité de traitement 5 pour calculer le nombre de pas moteurs et en déduire la fréquence de pas moteurs 611, 622. Une structure préférentielle pour lepremier capteur 4 utilisé pour réaliser cette étape 4001 est détaillée plus loin à l'aide des illustrations desfigures 2A et 2B ;- lors de l'étape 5000, un coefficient de proportionnalité 701 est multiplié à la fréquence d'impulsions 401 pour déterminer une valeur de couple 401', fictif, et qui est censé être appliqué, selon la modélisation choisie dans le cadre de l'invention, à l'aiguille des
minutes 21 autour de son axe de rotation. l'étape 5001 est l'étape de calcul principale réalisée par le microcontrôleur. Elle vise à déterminer la fréquence de pas moteurs 611 du premier moteur 61 en fonction de la fréquence d'impulsions 401, afin d'en déduire la vitesse angulaire 211 effective de l'aiguille des minutes. Pour ce faire, le microcontrôleur résout une première équation newtonienne 700, modélisant ici le mouvement de l'aiguille desminutes 21 comme celui d'un système tournant selon le principe fondamental de la dynamique, qui stipule que l'accélération angulaire d'un corps en rotation est proportionnelle à la somme des couples mécaniques qui lui sont appliqués. Avec les paramètres de simulation choisis dans le cadre du mode de réalisation préférentiel de l'invention, la première équation newtonienne se lit:minutes 21 autour de son axe de rotation. Afin de conférer un maximum d'inertie au mouvement de l'aiguille desminutes 21, c'est-à-dire pour qu'elle continue de tourner le plus longtemps possible entre les activations de l'organe de commande, on pourra noter que le coefficient 704 du moment d'inertie du système tournant simulé est choisi de préférence beaucoup plus grand que le moment d'inertie réel de l'aiguille desminutes 21, ce qui lui donne le comportement d'un système plus massif, comme si elle était par exemple solidaire en rotation d'un disque en métal. Dans la partie droite de la première équation newtonienne 700 ci-dessus, la valeur 401' correspond à une valeur de couple mécanique fictive appliquée au système tournant qui est simulé pour l'aiguille desminutes 21. Le couple fictif 401', qui dépend de la fréquence d'impulsions 401, est différent de zéro lors de la rotation de la couronne 11. Un autre couple fictif 703", proportionnel à la vitesse angulaire 703 simulée des moyens d'affichage, en l'occurrence celle de l'aiguille desminutes 21, modélise un frottement fluide qui ralentit progressivement le mouvement de l'aiguille desminutes 21. Ce couple mécanique est le seul appliqué lorsque la couronne 11 n'est plus activée. Similairement à la valeur de couple fictif 401', la valeur de couple fictif 703" est obtenue en multipliant la vitesse angulaire simulée 703 par un coefficient de proportionnalité 702, appelé coefficient de frottement fluide. Cette modélisation de frottement fluide fait prendre dans ce cas à la première équation newtonienne 700 la forme d'une équation différentielle pour la vitesse angulaire simulée 703 de l'aiguille 21, qui est résolue par le microcontrôleur. Selon le mode de réalisation préférentiel décrit, la résolution de cette équation newtonienne du mouvement 700, permet ainsi d'émuler un mouvement d'aiguilles fluide et continu puisque la vitesse angulaire de cette dernière est déterminée comme s'il s'agissait de celle d'un système tournant soumis à un couple mécanique lorsque la couronne est actionnée, et un couple de ralentissement fluide. Selon le mode de réalisation préférentiel décrit ici, le paramètre d'entrée choisi pour cette équation est un couple fictif 401' proportionnel à la vitesse de rotation de la couronne 11, et comme résultat en sortie une vitesse derotation 703 simulée de l'aiguille desminutes 21.
-
step 4001 consists of determining apulse frequency 401, used at the output ofcounter module 44 by the microcontroller ofprocessing unit 5 to calculate the number of motor steps and deduce therefrom the frequency of motor steps 611 , 622. A preferential structure for thefirst sensor 4 used to carry out thisstep 4001 is detailed below using the illustrations of thefigures 2A and 2B ; - during
step 5000, a proportionality coefficient 701 is multiplied at thepulse frequency 401 to determine a torque value 401', fictitious, and which is supposed to be applied, according to the modeling chosen within the framework of the invention , to theminute hand 21 around its axis of rotation. -
step 5001 is the main calculation step performed by the microcontroller. It aims to determine the frequency of motor steps 611 of thefirst motor 61 as a function of thepulse frequency 401, in order to deduce therefrom the effective angular speed 211 of the minute hand. To do this, the microcontroller solves a first 700 Newtonian equation, here modeling the motion of the 21 minute hand as that of a rotating system according to the fundamental principle of dynamics, which states that the angular acceleration of a body in rotation is proportional to the sum of the mechanical torques applied to it. With the simulation parameters chosen within the framework of the preferred embodiment of the invention, the first Newtonian equation reads:minute hand 21 around its axis of rotation. In order to confer maximum inertia on the movement of theminute hand 21, that is to say so that it continues to rotate as long as possible between activations of the control member, it may be noted that the coefficient 704 of the moment of inertia of the simulated rotating system is preferably chosen much larger than the real moment of inertia of theminute hand 21, which gives it the behavior of a more massive system, as if it was for example integral in rotation with a metal disc. In the right part of the firstNewtonian equation 700 above, the value 401' corresponds to a fictitious mechanical torque value applied to the rotating system which is simulated for theminute hand 21. The fictitious torque 401', which depends on thepulse frequency 401, is different from zero during the rotation of thecrown 11. Anotherfictitious torque 703 ", proportional to the simulatedangular speed 703 of the display means, in this case that of theminutes 21, models a fluid friction which progressively slows down the movement of theminutes hand 21. This mechanical torque is the only one applied when thecrown 11 is no longer activated.fictitious torque 703" is obtained by multiplying the simulatedangular velocity 703 by a proportionality coefficient 702, called fluid friction coefficient. This modeling of fluid friction in this case causes the firstNewtonian equation 700 to take the form of a differential equation for the simulatedangular velocity 703 of theneedle 21, which is solved by the microcontroller. According to the preferred embodiment described, the resolution of this Newtonian equation ofmovement 700 thus makes it possible to emulate a fluid and continuous movement of hands since the angular speed of the latter is determined as if it were that of a rotating system subjected to a mechanical torque when the crown is actuated, and a fluid deceleration torque. According to the preferred embodiment described here, the input parameter chosen for this equation is a fictitious couple 401' proportional to the speed of rotation ofcrown 11, and as output result a simulated speed ofrotation 703 ofminute hand 21.
La vitesse de rotation simulée 703 permet de déduire ensuite proportionnellement le nombre de pas moteurs par seconde, c'est-à-dire la fréquence de pas moteurs 611. La vitesse angulaire effective de l'aiguille des minutes 211 est réciproquement proportionnelle à la fréquence de pas moteurs 611 ainsi établie. Selon une variante préférentielle de l'invention, chaque pas moteur provoque un mouvement de l'aiguille 21 d'un secteur angulaire correspondant à une indication de durée inférieure à une minute. Afin de rendre le défilement des aiguilles le plus fluide possible, on choisit la valeur angulaire d'incrémentation angulaire de chaque pas de préférence égale à 2 degrés. Autrement dit, chaque pas moteur fait tourner l'aiguille des minutes 21 d'une valeur angulaire correspondant à un tiers de celui correspondant à une minute. Une résolution plus fine serait également envisageable mais nécessiterait un usage accru du moteur 61 qui devrait incrémenter plus de pas et consommerait dans ce cas d'autant plus d'énergie.
l'étape 5002 déduit la valeur de fréquence 622 du deuxième moteur 622 en fonction de la valeur de fréquence du premier moteur 611 trouvée en sortie de l'étape 5001. En effet le rapport des vitesses de rotation entre l'aiguille desminutes 21 et celle des heures 22 est de 12, dans le cadre d'un affichage analogique standard selon lequel une révolution complète de l'aiguille desminutes 21 correspond à l'avancement d'une heure de celle de l'aiguille des heures 22, soit d'un douzième de cadran pour une graduation des heures de 1 à 12. Il est ainsi relativement aisé de déduire la valeur de fréquence 622 du deuxième moteur 62 sans devoir effectuer de calcul intrinsèque, ni d'opération de division, mais simplement en implémentant au niveau du circuit de commande des moteurs 6 un ordre d'implémentation d'un pas du 2e moteur 62 après chaque 12e pas dupremier moteur 61. Les exigences en termes de calcul sont ainsi minimisées tout en procurant un effet visuel intuitif de mouvement coordonné de plusieurs organes d'affichage, à savoir l'aiguille desminutes 21 et celle des heures 22, lors de leur réglage. La subordination de cette étape additionnelle de calcul 5002 à l'étape de calcul précédente 5001 selon le mode de réalisation préférentiel décrit permet par ailleurs de coordonner simplement le mouvement des deux aiguilles 21, 22.
-
step 5002 deduces the frequency value 622 of the second motor 622 as a function of the frequency value of the first motor 611 found at the output ofstep 5001. Indeed the ratio of rotational speeds between theminute hand 21 and that of thehours 22 is 12, in the context of a standard analog display according to which a complete revolution of theminute hand 21 corresponds to the advancement of one hour of that of thehour hand 22, i.e. d twelfth of a dial for a graduation of hours from 1 to 12. It is thus relatively easy to deduce the frequency value 622 of thesecond motor 62 without having to perform any intrinsic calculation, nor any division operation, but simply by implementing at level of themotor control circuit 6 an order of implementation of a step of the 2 ndmotor 62 after each 12 th step of thefirst motor 61. The requirements in terms of calculation are thus minimized while providing an intuitive visual effect of movement coordinate of several display organs, namely theminute hand 21 and thehour hand 22, during their adjustment. The subordination of thisadditional calculation step 5002 to theprevious calculation step 5001 according to the preferred embodiment described also makes it possible to simply coordinate the movement of the two 21, 22.hands
Selon ce mode de réalisation préférentiel décrit ci-dessus, les moyens d'activation 1 sont de préférence mécaniques; ils peuvent toutefois aussi prendre la forme par exemple d'un capteur capacitif, comme un écran tactile.According to this preferred embodiment described above, the activation means 1 are preferably mechanical; however, they can also take the form, for example, of a capacitive sensor, such as a touch screen.
L'actionnement des moyens d'activation 1 permet d'imprimer un mouvement variable et continu aux moyens d'affichage 2, et notamment l'aiguille des minutes 21, grâce au calcul d'une accélération 703' proportionnellement à une valeur de couple 401' déterminée en sortie du premier capteur 4, proportionnellement aux valeurs du registre du module compteur 44, qui permet de caractériser le mouvement des moyens d'activation 1, de préférence une couronne 11, par des valeurs numériques, à savoir un nombre d'impulsions. L'étape de détermination d'une fréquence d'impulsions 4001 est un processus de numérisation nécessaire pour fournir un paramètre d'entrée manipulable par le circuit électronique 31, qui peut alors simuler le mouvement des moyens d'affichage mécaniques comme s'il était déterminé par l'application d'un couple 401' proportionnel à la fréquence d'impulsions 401. Le mouvement effectif des aiguilles est considéré comme newtonien car il correspond à celui d'un solide en rotation soumis à la relation fondamentale de la dynamique, indiquant que l'accélération d'un corps en rotation est proportionnelle à la somme des couples qui lui sont appliqués. Dans le cadre de l'invention, on pourrait également appliquer l'équation fondamentale de la dynamique à des moyens d'affichage 2 linéaires, et non pas rotatifs, auquel cas l'accélération serait proportionnelle à la somme des forces appliquées au système. Le mouvement de l'aiguille des minutes 21 est déterminé en résolvant la première équation newtonienne du mouvement 700 qui modélise cette équation fondamentale de la dynamique du solide à l'aide d'un premier coefficient 701 déterminant le couple 401' appliqué au système à partir de la fréquence d'impulsions 401, et ainsi que, selon un mode de réalisation préférentiel, un deuxième coefficient 702 déterminant un couple dit de frottement fluide car provoquant une décélération de la vitesse de rotation des aiguilles proportionnellement à cette même vitesse. Le mouvement effectif des aiguilles est également considéré comme inertiel car il correspond à celui d'un solide en rotation qui n'est plus soumis, dès que la couronne 11 n'est plus activée, qu'à un couple dit de frottement fluide, proportionnel à sa vitesse de rotation elle-même, provoquant leur ralentissement progressif. Selon le mode de réalisation préférentiel décrit, ce couple de frottement fluide 703" est toutefois fictif, et simulé par le microcontrôleur 5 dans le cadre de l'équation newtonienne 700 ci-dessus; il n'est par ailleurs pas appliqué directement à l'aiguille des minutes 21, mais à la vitesse simulée de l'aiguille des minutes 703 utilisée également pour résoudre l'équation newtonienne 700 ci-dessus.The actuation of the activation means 1 makes it possible to impart a variable and continuous movement to the display means 2, and in particular the
La méthode de détermination de la vitesse des moyens d'affichage 2 selon l'invention résout donc une équation newtonienne du mouvement en utilisant des valeurs de couple et/ou de force comme paramètres d'entrée pour la résolution de cette équation. Ces paramètres sont eux-mêmes déterminés en relation avec une grandeur physique, ici la vitesse angulaire 111 de la couronne 11, qui est transformée par l'intermédiaire du premier capteur 4 et du module compteur 44 en une fréquence d'impulsions 401. D'autres grandeurs physiques sont toutefois utilisables dans le cadre de l'invention, comme par exemple une vitesse linéaire, angulaire, un champ magnétique ou un angle géométrique. Comme on le verra plus tard, le mode de réalisation concernant une boussole électronique, décrit en relation avec les
Une des spécificités de la modélisation proposée par rapport à une « réalité physique » est que la vitesse angulaire des aiguilles, et selon le mode de réalisation préférentiel choisi la vitesse angulaire de l'aiguille des minutes 211, est nécessairement bornée en raison des contraintes du système en termes de capacités de traitement. En effet, les premiers et deuxièmes moteurs 61, 62 ne peuvent implémenter qu'un nombre maximal donné de pas par seconde, et il existe ainsi par conséquent toujours une fréquence maximale de pas moteurs à partir de laquelle l'équation newtonienne du mouvement 700 ne peut plus être appliquée, du fait que l'accélération angulaire devient nécessairement nulle. La fréquence maximale de pas moteurs 611' du premier moteur 61 commandant l'aiguille des minutes 21 se situe de préférence entre 200 et 1000 Hz, ce qui correspond à vitesse de rotation maximale de l'aiguille des minutes 21 entre environ un et cinq tours par seconde lorsqu'un tour complet de cadran correspond à 180 pas moteur. On pourra noter que quel que soit le mode de réalisation choisi pour l'invention impliquant l'usage d'un circuit électronique 31, une vitesse de défilement maximale des moyens d'affichage mécaniques 2 devra toujours être définie en fonction des capacités de traitement du circuit de commande des moteurs 6.One of the specificities of the modeling proposed with respect to a "physical reality" is that the angular speed of the hands, and according to the preferred embodiment chosen the angular speed of the minute hand 211, is necessarily limited due to the constraints of the system in terms of processing capabilities. Indeed, the first and
La
La
L'emploi du premier contacteur de la
On peut aussi envisager, selon un mode de réalisation alternatif, d'utiliser un ou plusieurs contacteurs associés à un ou plusieurs boutons poussoir (non représentés) et d'incrémenter la fréquence d'impulsions 401 à chaque pression sur un premier bouton poussoir, et respectivement décrémenter la fréquence d'impulsions 401 à chaque pression sur un deuxième bouton poussoir. Selon ce mode de réalisation alternatif, on utilisera donc deux capteurs dédiés chacun à l'augmentation et respectivement de la diminution de la fréquence d'impulsions 401, ce qui correspond selon la modélisation de l'invention à appliquer un couple mécanique fictif dans un sens ou dans le sens opposé pour accélérer et respectivement décélérer le mouvement des aiguilles 21, 22.It is also possible, according to an alternative embodiment, to use one or more contactors associated with one or more push buttons (not shown) and to increment the
La
L'étape 1001 correspond à une première activation de la couronne 11, qui permet de générer le mouvement de l'aiguille des minutes 21. Lorsque la couronne est actionnée dans un sens de rotation donné, par exemple dans le sens S1, le premier capteur 4 détecte un nombre d'impulsions 401 « positif » correspondant à une vitesse angulaire 111 positive pour la couronne 11 et simule l'application d'un couple, appliqué à l'aiguille dans le même sens. Ainsi la rotation de la couronne 11 dans le sens S1 des aiguilles d'une montre permet de faire avancer l'aiguille des minutes 21 sur le cadran. Une rotation répétée de la couronne 11 dans le même sens S1 permet de maintenir positive la fréquence d'impulsions 401 lors des périodes d'échantillonnage successives utilisées par le module compteur 44, et donc d'accélérer encore davantage le mouvement de l'aiguille 21 selon la première équation newtonienne 700 ou newtonienne modifiée 700', jusqu'à obtenir un mouvement fluide et continu pour lequel il n'est plus possible d'observer visuellement le saut de l'aiguille lors de chaque pas. Le mouvement de l'aiguille des minutes 21 ne pouvant toutefois pas excéder une vitesse angulaire maximale, qui est observée dès lors que la fréquence de pas moteurs maximale 611' est atteinte, la rotation de la couronne 11 n'a toutefois plus aucun effet dès que cette vitesse maximale est atteinte. Selon un mode de réalisation préférentiel, on détermine une vitesse angulaire simulée maximale 7031 en fonction de la fréquence de pas moteurs maximale 611'. Dès lors que l'algorithme résolvant l'équation newtonienne atteint cette limite supérieure de vitesse, il sature, c'est-à-dire arrête d'augmenter la vitesse angulaire simulée 703 même si l'algorithme devait donner un résultat d'une valeur supérieure.
Le diagramme de la
Bien que l'étape 1001 ait été décrite dans le cadre d'une activation de la couronne 11 dans le sens de rotation S1 des aiguilles d'une montre pour faire de préférence avancer l'aiguille des minutes 21 dans le même sens, on peut également faire en sorte qu'une activation de la couronne 11 dans le sens inverse S2 fasse similairement tourner les aiguilles des minutes 21 et des heures 22 dans le sens inverse, le nombre d'impulsions 401 étant calculé de manière identique pour chaque période d'échantillonnage mais l'information sur le sens de rotation déterminé par le premier capteur 4 permet de choisir le sens de rotation appliqué aux aiguilles par les premiers et deuxièmes moteurs 61, 62.Although
Par ailleurs, la solution proposée ici selon laquelle le mouvement appliqué aux moyens d'affichage mécaniques est le résultat d'une accélération qui dépend de la vitesse de la couronne, est très robuste face à une couronne de faible résolution. De plus, le mouvement reste fluide, même si l'utilisateur fait avancer la couronne par à-coups : si un utilisateur fait tourner la couronne par coups successifs, les corrections continuent entre les coups. Ceci apporte un gain de temps important dans le cas où les moyens d'affichage mécaniques ne sont pas très performants. Ainsi un réglage simultané de l'aiguille des heures 22 et des minutes 21 conformément à une approche totalement mécanique, selon laquelle l'aiguille des minutes effectue une rotation complète pour chaque changement d'heure, est rendu possible à une vitesse acceptable pour l'utilisateur même pour un système relativement lent. En effet, pour conserver cette approche très intuitive pour l'utilisateur, une correction de quelques heures pour des pièces d'horlogerie électroniques à affichage analogique nécessite que l'aiguille des minutes fasse un grand nombre de pas moteur, dont l'exécution peut s'avérer beaucoup trop longue pour l'utilisateur si les moteurs sont peu performants. Or le gain de temps significatif procuré par l'invention grâce au mouvement continu des aiguilles entre les périodes d'activation de la couronne 11 permet d'effectuer ces réglages simultanément, indépendamment des performances de l'électronique et des moteurs.Moreover, the solution proposed here according to which the movement applied to the mechanical display means is the result of an acceleration which depends on the speed of the crown, is very robust in the face of a low resolution crown. Moreover, the movement remains fluid, even if the user advances the crown in jerks: if a user rotates the crown in successive strokes, the corrections continue between the strokes. This provides significant time savings in the case where the mechanical display means are not very efficient. Thus a simultaneous adjustment of the
Quel que soit le sens de rotation S1 ou S2 de la couronne 11, l'étape d'activation 1001 permet par conséquent de régler simultanément l'aiguille des heures 22 et l'aiguille de minutes 21, ce qui est particulièrement avantageux pour des montres électroniques où chaque paramètre est en général réglé séquentiellement pour des raisons de performance.Whatever the direction of rotation S1 or S2 of the
L'étape 1001' est une étape subordonnée à l'étape 1001, ou plus généralement n'importe quelle étape d'activation, qu'elle suit immédiatement. Il s'agit d'une étape durant laquelle la couronne 11, ou plus généralement le moyen de commande 1, cesse d'être activé. Durant cette étape, la modélisation de l'invention fait que plus aucun couple externe n'est appliqué au système dès lors que la fréquence d'impulsions détectée 401 est nulle, ce qui dépend entre autres de la période d'échantillonnage choisie au niveau du module compteur 44 pour déterminer la fréquence d'impulsions 401. Dès que la valeur 401 s'annule, l'accélération angulaire 703' est déterminée par le seul frottement fluide modélisé, à savoir selon la première équation newtonienne 700:
Si par contre, après avoir tourné la couronne 11 par exemple dans le sens S1, la couronne 11 est tournée dans le sens inverse S2 lors d'une étape d'actionnement additionnelle 1002, l'accélération angulaire 703' est toujours négative, mais la décélération B2, illustrée sur la
L'actionnement de la couronne 11 en sens inverse permet d'affiner encore le réglage à l'aide de l'étape d'activation additionnelle 1002 lorsqu'on se rapproche d'une valeur souhaitée alors que la vitesse angulaire est à ce moment-là relativement élevée, car la deuxième phase de décélération B2 qui est générée est plus prononcée que la première phase de décélération B1 qui survient uniquement lors d'une inactivation prolongée de la couronne 11.Actuation of the
Comme on peut le constater sur la
On comprend donc à la lecture de ce qui précède que, quels que soient les moyens d'activation, de préférence mécaniques 1 et les moyens mécaniques d'affichage 2 utilisés dans le cadre de l'invention, la phase d'accélération A des moyens d'affichage 1 est suivie la plupart du temps d'une phase C durant laquelle la vitesse de défilement des moyens d'affichage 2 est constante dès lors que l'écart de la valeur d'affichage affichée lorsque le réglage est entrepris et la valeur que l'on souhaite atteindre est importante. Si les moyens de commande ne sont pas activés durant une durée déterminée, la première phase de décélération B1 des moyens d'affichage 2 a lieu suite à cette inactivation prolongée; sinon une deuxième phase de décélération B2 plus prononcée peut être actionnée lors d'une étape d'activation additionnelle 1002 des moyens de commande dans le sens inverse de celui utilisé lors de l'étape d'activation initiale 1001. Dans le cas d'une couronne 11 il s'agit de sens de rotation opposés S2 si S1 était le premier sens de rotation, et S1 si S2 était le premier sens de rotation. L'emploi d'une deuxième étape d'activation 1002 dépend des préférences de l'utilisateur du dispositif d'affichage en termes de vitesse de défilement et du moment à partir duquel il souhaite effectuer un réglage plus fin de ou des éléments d'affichage analogiques.It is therefore understood on reading the foregoing that, whatever the activation means, preferably mechanical 1 and the mechanical display means 2 used in the context of the invention, the phase acceleration A of the display means 1 is followed most of the time by a phase C during which the scrolling speed of the display means 2 is constant as soon as the difference in the display value displayed when the adjustment is undertaken and the value to be achieved is important. If the control means are not activated for a determined period, the first deceleration phase B1 of the display means 2 takes place following this prolonged inactivation; otherwise a second more pronounced deceleration phase B2 can be actuated during an
La méthode et le dispositif de commande selon l'invention permet donc un contrôle accru tout au long des opérations de réglage en pouvant accélérer et/ou décélérer à tout moment le défilement de ou des éléments d'affichage. Par ailleurs, les variations de vitesse sont beaucoup plus progressives que selon les solutions de l'art antérieur où les vitesses sont directement déduites de valeurs du capteur. La détermination d'une accélération en lieu et place d'une vitesse à partir des grandeurs d'un capteur permet de fluidifier le mouvement des éléments d'affichage mécaniques. Bien que la solution préférentielle décrite transforme une grandeur physique en une grandeur physique du même ordre, à savoir une vitesse angulaire - celle de la couronne 11 - en une autre vitesse angulaire - celles des aiguilles 21 des minutes et 22 des heures - on peut toutefois également envisager répliquer le dispositif de commande 3 à n'importe quel autre type de moyens d'affichage 2. Dans le cas de pièces d'horlogerie, on pourra privilégier la génération d'un mouvement rotatif de moyens d'affichage 2 qui sont le plus fréquemment utilisés pour des montres mécaniques, et ce quel que soit le mode d'activation utilisé (rotation d'une couronne, pression sur un bouton poussoir, défilement d'un doigt sur un écran tactile, etc.); toutefois, des déplacements d'indicateurs linéaires sont aussi envisageables, auquel cas l'équation fondamentale du mouvement ne mettra plus en relation un moment d'inertie et une accélération angulaire, mais une force et une accélération linéaire. Similairement le ralentissement du mouvement inertiel n'est dans ce cas plus causé par un couple modélisant des frottements fluides, mais par une force de frottement.The control method and device according to the invention therefore allows increased control throughout the adjustment operations by being able to accelerate and/or decelerate the scrolling of the display element(s) at any time. Furthermore, the speed variations are much more gradual than according to the solutions of the prior art where the speeds are directly deduced from the values of the sensor. The determination of an acceleration instead of a speed from the magnitudes of a sensor makes it possible to fluidify the movement of the mechanical display elements. Although the preferred solution described transforms a physical quantity into a physical quantity of the same order, namely an angular speed - that of the crown 11 - into another angular speed - those of the minute and 22 hour hands 21 - it is however possible also consider replicating the
Les
Sur la
La
-
- lors de l'étape 5000', un coefficient de proportionnalité 705 est multiplié au sinus de l'angle relatif 451 pour déterminer une valeur de couple 451', fictive, laquelle est censée correspondre, selon la modélisation choisie dans le cadre de l'invention, à un couple appliqué à l'aiguille de la boussole 23 indicatrice du nord autour de son axe de rotation. Puisque l'on cherche à stabiliser l'aiguille 23 dans la direction du nord déterminée par le deuxième capteur magnétique 4' d'une manière la plus intuitive possible selon un mouvement correspondant à une réalité physique, les valeurs de couple 451' oscilleront ainsi entre des valeurs positives et négatives en fonction de l'angle relatif 451, matérialisant une force de rappel exercée sur l'aiguille 23 dans un sens ou dans l'autre.
l'étape 5004 vise à déterminer la fréquence de pas moteurs 633 du troisième moteur 63. Cette étape comprend une première sous-étape de calcul de l'accélération angulaire simulée des moyens d'affichage 703', en l'occurrence l'accélération angulaire de l'aiguille 23 de la boussole 21 selon le principe fondamental de la dynamique appliqué à la physique du solide, formalisé par la deuxième équation newtonienne 700' suivante:
par l'aiguille 23 de la boussole 21 et la direction du Nord. Similairement à la première équation newtonienne 700 précédente pour déterminer le mouvement de l'aiguille desminutes 21, le coefficient 704 du système tournant simulé est ici encore choisi, dans le cadre de la deuxième équation newtonienne 700', de préférence beaucoup plus grand que le moment d'inertie réel de l'aiguille de la boussole 23, afin de conférer à cette aiguille le comportement d'un système plus massif. Selon le mode de réalisation préférentiel illustré, et similairement au mode de réalisation préférentiel décrit précédemment pour la correction d'indications horaires, un couple fictif 703" proportionnel à la vitesse angulaire simulée 703, pour déterminer cette fois-ci la vitesse angulaire 233 de l'aiguille de la boussole 23, a été introduit pour modéliser un frottement fluide ralentissant progressivement le mouvement de cette aiguille 23. Similairement à la valeur de couple 401', la valeur decouple 703" est obtenue en multipliant la vitesse angulaire 703 simulée par un coefficient de proportionnalité 702, appelé coefficient de frottement fluide. Selon une variante préférentielle de l'invention, chaque pas moteur provoque un mouvement de l'aiguille 23 de la boussole d'un secteur angulaire restreint, afin de fluidifier au maximum le mouvement de l'aiguille. Afin de rendre le défilement de cette aiguille de la boussole 23 le plus fluide possible, on choisit la valeur angulaire d'incrémentation de chaque pas de préférence inférieure ou égale à 1 degré. Autrement dit, chaque pas moteur du moteur 63 fait tourner l'aiguille 23 de la boussole d'une valeur angulaire correspondant à un sixième de celui correspondant à une minute, de telle sorte que les pas du moteur ne sont quasiment plus perceptibles à l'œil nu.
-
- during step 5000', a proportionality coefficient 705 is multiplied by the sine of the
relative angle 451 to determine a torque value 451', fictitious, which is supposed to correspond, according to the modeling chosen within the framework of the invention , to a torque applied to thecompass needle 23 indicating north around its axis of rotation. Since the aim is to stabilize theneedle 23 in the north direction determined by the second magnetic sensor 4' in the most intuitive way possible according to a movement corresponding to a physical reality, the torque values 451' will thus oscillate between positive and negative values as a function of therelative angle 451, materializing a restoring force exerted on theneedle 23 in one direction or the other. -
step 5004 aims to determine the frequency ofmotor steps 633 of thethird motor 63. This step comprises a first sub-step of calculating the simulated angular acceleration of the display means 703′, in this case the angular acceleration ofneedle 23 ofcompass 21 according to the fundamental principle of dynamics applied to solid-state physics, formalized by the following second Newtonian equation 700':
compass 23 around its axis of rotation, 451' being the fictitious torque which is applied to it as a function of the sine of the angle formed by theneedle 23 of thecompass 21 and the direction of North. Similar to the firstNewtonian equation 700 above to determine the movement of theminute hand 21, the coefficient 704 of the simulated rotating system is here again chosen, within the framework of the second Newtonian equation 700', preferably much greater than the real moment of inertia of thecompass needle 23, in order to give this needle the behavior of a more massive system. According to the preferred embodiment illustrated, and similarly to the preferred embodiment described previously for the correction of time indications, afictitious torque 703" proportional to the simulatedangular speed 703, to determine this time theangular speed 233 of the 'compass needle 23', was introduced to model a fluid friction gradually slowing down the movement of thisneedle 23. Similar to the torque value 401', thetorque value 703" is obtained by multiplying the simulatedangular velocity 703 by a proportionality coefficient 702, called fluid friction coefficient. According to a preferred variant of the invention, each motor step causes a movement of theneedle 23 of the compass through a restricted angular sector, in order to make the movement of the needle as smooth as possible. In order to make the scrolling of thiscompass needle 23 as fluid as possible, the angular increment value of each step is chosen, preferably less than or equal to 1 degree. In other words, each motor step of themotor 63 causes theneedle 23 of the compass to rotate by an angular value corresponding to one sixth of that corresponding to one minute, so that the motor steps are almost no longer perceptible to the naked eye. - during step 5000', a proportionality coefficient 705 is multiplied by the sine of the
On peut envisager une résolution moins fine, ou équivalente à celles des autres moteurs utilisée pour le mouvement des aiguilles des minutes 21 ou des heures 22; il est envisageable par exemple de concevoir à cet effet que le moteur 63 associé au mouvement de l'aiguille de la boussole 23 est le moteur 61 associé à l'aiguille des minutes 21, et que cette aiguille des minutes 21 est simultanément utilisée comme aiguille de boussole 23 dans un mode de fonctionnement dédié spécifique.We can consider a less fine resolution, or equivalent to those of the other motors used for the movement of the hands of the 21 minutes or 22 hours; it is possible for example to conceive for this purpose that the
Pour simplifier les calculs, la deuxième équation newtonienne 700' utilisée pour déterminer le mouvement de l'aiguille 23 de la boussole 21 pourra également être simplifiée par une réécriture équivalente ne nécessitant pas d'opération de division.To simplify the calculations, the second Newtonian equation 700' used to determine the movement of the
La méthode de détermination du mouvement d'une aiguille de boussole 23 permet d'en fluidifier considérablement le mouvement, qui est souvent saccadé sur des montres électromécaniques. La boussole électronique décrite selon le mode de réalisation préférentiel ci-dessus comporte un organe d'affichage mécanique 2, à savoir une aiguille, et pourra donc être aisément intégrée par exemple à une montre bracelet. Dans ce cas, on pourra avantageusement utiliser l'aiguille des minutes 21 comme aiguille de boussole 23.The method for determining the movement of a
La méthode ci-dessus pourra également être utilisée par l'homme du métier dans d'autres types d'applications similaires, compatibles avec les montres électromécaniques, où le mouvement des aiguilles est utilisé pour donner d'autres types d'information, comme l'altitude pour un altimètre ou la profondeur pour un profondimètre.The above method could also be used by those skilled in the art in other types of similar applications, compatible with electromechanical watches, where the movement of the hands is used to give other types of information, such as the altitude for an altimeter or depth for a depth gauge.
Claims (11)
- A method for determining a movement of variable and continuous velocity of analog display means (2) of an electromechanical timepiece, the timepiece further including means (1) for activating display means (2), the activation means (1) could be actuated by a user, a sensor (4, 4') of the movement of the activation means (1), a calculating unit (5), and motor means (61, 62, 63) adapted to impart a movement of variable and continuous velocity to said display means (2), the method comprising a first step of measuring by the sensor (4, 4') the movement of said activation means (1), a second step of modelling at least one simulated mechanical torque and/or force value (401', 451') from values measured by the sensor (4, 4') in the first step, a third step (5001, 5004) of solving a Newtonian equation of the movement (700, 700') from said simulated mechanical torque and/or force values (401', 451') in the second step, said third step (5001, 5004) allowing calculating a simulated velocity (703) for said display means (2) whose acceleration and deceleration is proportional to the torque or to the force.
- The method for determining a movement of continuous velocity of display means (2) according to claim 1, the simulated acceleration (703) of said display means (2) being proportional to a value (401, 451) corresponding to a physical quantity.
- The method for determining a movement of variable and continuous velocity of display means (2) according to one of the preceding claims, the physical quantity being a velocity, a magnetic field, an altitude, a depth, a frequency or a geometric angle.
- The method for determining a movement of variable and continuous velocity of display means (2) according to one of the preceding claims, a second mechanical torque and/or force value (703") being used to determine the movement of the display means (2), said second mechanical torque and/or force value (703") modelling fluid frictions.
- The method for determining a movement of variable and continuous velocity of display means (2) according to one of the preceding claims, further comprising a step of determining an impulse frequency (4001) calculated from an angular velocity (111) of a crown (11).
- An electromechanical timepiece including analog display means (2), means (1) for activating the display means (2), the activation means (1) could be actuated by a user, a control device (3) provided with a sensor (4, 4') of the movement of the activation means (1), and motor means (61, 62, 63) adapted to impart a movement of variable and continuous velocity to said display means (2), and wherein the control device (3) comprises a calculating unit (5) and a memory unit (7) comprising instructions which, when executed by said calculating unit (5), lead the control device (3) to calculate a simulated velocity (703) for said display means (2) according to the method of one of claims 1 to 5.
- The electromechanical timepiece according to claim 6,, characterised in that the control device (3) comprises at least a first and/or a second sensor (4, 4') measuring first physical magnitudes, said first physical magnitudes being converted into second physical magnitudes (401, 451) from which said mechanical torque and/or force values (401', 451') are calculated by pre-processing circuits upstream of the calculating unit (5).
- The electromechanical timepiece according to one of claims 6 or 7, characterised in that the control device (3) actuates at least a first motor (61) driving said display means (2), said first motor (61) further determining a maximum scrolling velocity (611') for said display means (2).
- The electromechanical timepiece according to one of claims 6 to 8, characterised in that the control device (3) simultaneously actuates a plurality of motors (61, 62) each dedicated to distinct display means (2).
- The electromechanical timepiece according to one of claims 7 to 9, characterised in that the acceleration and/or deceleration of said display means (2) is calculated according to an impulse frequency (401) measured by said first sensor (4) or according to a relative angle (451) between said display means (2) and a direction of north determined by said second sensor (4').
- The electromechanical timepiece according to claim 10, said display means (2) being hands (21, 22, 23), characterised in that the simulated angular acceleration (703') of at least one of said hands (21, 22, 23) is calculated according to a first torque value (401', 451') proportional to said impulse frequency (401) or said relative angle (451), and according to a second torque value (703") proportional to the simulated angular velocity (703) of said hand (21, 23).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11793746.6A EP2652563B1 (en) | 2010-12-16 | 2011-12-05 | Method and device for obtaining a continuous movement of a display means |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10195413 | 2010-12-16 | ||
PCT/EP2011/071752 WO2012080020A1 (en) | 2010-12-16 | 2011-12-05 | Method and device for obtaining a continuous movement of a display means |
EP11793746.6A EP2652563B1 (en) | 2010-12-16 | 2011-12-05 | Method and device for obtaining a continuous movement of a display means |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2652563A1 EP2652563A1 (en) | 2013-10-23 |
EP2652563B1 true EP2652563B1 (en) | 2022-07-27 |
Family
ID=43858216
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11793746.6A Active EP2652563B1 (en) | 2010-12-16 | 2011-12-05 | Method and device for obtaining a continuous movement of a display means |
Country Status (7)
Country | Link |
---|---|
US (1) | US9541903B2 (en) |
EP (1) | EP2652563B1 (en) |
JP (1) | JP5671153B2 (en) |
KR (1) | KR101478936B1 (en) |
CN (1) | CN103261978B (en) |
HK (1) | HK1188489A1 (en) |
WO (1) | WO2012080020A1 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7469381B2 (en) | 2007-01-07 | 2008-12-23 | Apple Inc. | List scrolling and document translation, scaling, and rotation on a touch-screen display |
US10691230B2 (en) | 2012-12-29 | 2020-06-23 | Apple Inc. | Crown input for a wearable electronic device |
US10275117B2 (en) | 2012-12-29 | 2019-04-30 | Apple Inc. | User interface object manipulations in a user interface |
US20140293755A1 (en) * | 2013-03-28 | 2014-10-02 | Meta Watch Oy | Device with functional display and method for time management |
US10545657B2 (en) | 2013-09-03 | 2020-01-28 | Apple Inc. | User interface for manipulating user interface objects |
US11068128B2 (en) | 2013-09-03 | 2021-07-20 | Apple Inc. | User interface object manipulations in a user interface |
US10001817B2 (en) | 2013-09-03 | 2018-06-19 | Apple Inc. | User interface for manipulating user interface objects with magnetic properties |
US10503388B2 (en) | 2013-09-03 | 2019-12-10 | Apple Inc. | Crown input for a wearable electronic device |
EP3340025B1 (en) | 2013-09-03 | 2019-06-12 | Apple Inc. | User interface for manipulating user interface objects with magnetic properties |
US9990333B1 (en) * | 2014-05-28 | 2018-06-05 | University Of South Florida | Systems and methods for synchronizing the kinematics of uncoupled, dissimilar rotational systems |
CN118192869A (en) | 2014-06-27 | 2024-06-14 | 苹果公司 | Reduced size user interface |
TWI676127B (en) | 2014-09-02 | 2019-11-01 | 美商蘋果公司 | Method, system, electronic device and computer-readable storage medium regarding electronic mail user interface |
WO2016036510A1 (en) | 2014-09-02 | 2016-03-10 | Apple Inc. | Music user interface |
WO2016036416A1 (en) | 2014-09-02 | 2016-03-10 | Apple Inc. | Button functionality |
US10073590B2 (en) | 2014-09-02 | 2018-09-11 | Apple Inc. | Reduced size user interface |
US10365807B2 (en) | 2015-03-02 | 2019-07-30 | Apple Inc. | Control of system zoom magnification using a rotatable input mechanism |
DK201670580A1 (en) | 2016-06-12 | 2018-01-02 | Apple Inc | Wrist-based tactile time feedback for non-sighted users |
US11435830B2 (en) | 2018-09-11 | 2022-09-06 | Apple Inc. | Content-based tactile outputs |
US10712824B2 (en) | 2018-09-11 | 2020-07-14 | Apple Inc. | Content-based tactile outputs |
US10996761B2 (en) | 2019-06-01 | 2021-05-04 | Apple Inc. | User interfaces for non-visual output of time |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH702862A1 (en) * | 2010-03-30 | 2011-09-30 | Comme Le Temps Sa | Wristwatch electronic display. |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4261048A (en) * | 1975-12-25 | 1981-04-07 | Citizen Watch Company Limited | Analog quartz timepiece |
US4150536A (en) | 1976-01-28 | 1979-04-24 | Citizen Watch Company Limited | Electronic timepiece |
FR2419538A1 (en) * | 1978-03-07 | 1979-10-05 | Suwa Seikosha Kk | ANALOGUE WATCH WITH LIQUID CRYSTALS |
JPS54135573A (en) | 1978-03-13 | 1979-10-20 | Seiko Epson Corp | Time correction system |
CH641630B (en) * | 1980-03-14 | Centre Electron Horloger | DATA ENTRY DEVICE. | |
US4470707A (en) * | 1983-02-17 | 1984-09-11 | Timex Corporation | Electronic setting for analog timepiece |
JP3052311B2 (en) * | 1988-04-19 | 2000-06-12 | セイコーエプソン株式会社 | Electronic clock with electronic correction function |
US4912692A (en) * | 1988-09-29 | 1990-03-27 | Timex Corporation | High rate, bidirectional drive for a bipole stepping motor watch |
JPH07144070A (en) * | 1993-11-22 | 1995-06-06 | Namco Ltd | Steering load device, game device using the same and driving simulator |
AU2003224882A1 (en) * | 2002-04-05 | 2003-10-27 | The Trustees Of Columbia University In The City Of New York | Robotic scrub nurse |
DE60235751D1 (en) * | 2002-08-30 | 2010-05-06 | Asulab Sa | Clock with tactile reading and pressing the time information |
US7961909B2 (en) * | 2006-03-08 | 2011-06-14 | Electronic Scripting Products, Inc. | Computer interface employing a manipulated object with absolute pose detection component and a display |
EP1571507A1 (en) * | 2004-03-03 | 2005-09-07 | ETA SA Manufacture Horlogère Suisse | Portable electronic device provided with an analog displayed variometer function |
US7976434B2 (en) * | 2005-12-22 | 2011-07-12 | Scott B. Radow | Exercise device |
US8626472B2 (en) * | 2006-07-21 | 2014-01-07 | James C. Solinsky | System and method for measuring balance and track motion in mammals |
WO2009003170A1 (en) * | 2007-06-27 | 2008-12-31 | Radow Scott B | Stationary exercise equipment |
US9569086B2 (en) * | 2007-12-12 | 2017-02-14 | Nokia Technologies Oy | User interface having realistic physical effects |
DE602007013075D1 (en) * | 2007-12-27 | 2011-04-21 | Eta Sa Mft Horlogere Suisse | A portable electronic device for displaying the value of variables based on measurements made by a sensor including a historical function |
JP5208906B2 (en) * | 2009-11-13 | 2013-06-12 | 本田技研工業株式会社 | Inverted pendulum type vehicle |
-
2011
- 2011-12-05 EP EP11793746.6A patent/EP2652563B1/en active Active
- 2011-12-05 KR KR1020137018697A patent/KR101478936B1/en not_active IP Right Cessation
- 2011-12-05 US US13/993,655 patent/US9541903B2/en active Active
- 2011-12-05 JP JP2013543636A patent/JP5671153B2/en active Active
- 2011-12-05 WO PCT/EP2011/071752 patent/WO2012080020A1/en active Application Filing
- 2011-12-05 CN CN201180060633.6A patent/CN103261978B/en active Active
-
2014
- 2014-02-18 HK HK14101519.4A patent/HK1188489A1/en unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CH702862A1 (en) * | 2010-03-30 | 2011-09-30 | Comme Le Temps Sa | Wristwatch electronic display. |
Also Published As
Publication number | Publication date |
---|---|
KR101478936B1 (en) | 2014-12-31 |
JP5671153B2 (en) | 2015-02-18 |
EP2652563A1 (en) | 2013-10-23 |
KR20130111609A (en) | 2013-10-10 |
US9541903B2 (en) | 2017-01-10 |
CN103261978A (en) | 2013-08-21 |
WO2012080020A1 (en) | 2012-06-21 |
CN103261978B (en) | 2016-02-17 |
JP2014503814A (en) | 2014-02-13 |
US20130258819A1 (en) | 2013-10-03 |
HK1188489A1 (en) | 2014-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2652563B1 (en) | Method and device for obtaining a continuous movement of a display means | |
EP2466400B1 (en) | Inertia movement of a mechanical display member | |
EP2553534B1 (en) | Wristwatch with electronic display | |
EP2075654B1 (en) | Portable electronic device designed to display the value of variables based on measurements taken by a sensor and having a history function | |
EP1748331B1 (en) | Electronic diver's watch with a redundant analog display of the instantaneous depth | |
EP3486734B1 (en) | Chronometric monitoring | |
FR3011097A1 (en) | WATCH BRACELET WITH EXTENDED FUNCTIONALITIES | |
WO2011000893A1 (en) | Wristwatch with a touch screen, and method for displaying on a touch-screen watch | |
EP1924895A1 (en) | Watch with multipurpose display | |
EP1716462A1 (en) | Chronograph watch with reverse display | |
WO2012127008A1 (en) | Instrument for counting duration of differentiated phases | |
CH704230A2 (en) | Method for determining continuous speed movement of display unit of e.g. hand integrated wrist-watch, involves solving Newtonian equation of motion from mechanical force and/or torque values | |
CH704229A2 (en) | Device for coupling activation unit and analog display unit of display mechanism of wristwatch, has sensor for sensing movement of activation unit, where device generates inertial movement of mechanical display unit | |
EP3495898B1 (en) | Mechanism for stop-watch movement | |
EP3163383B1 (en) | Pedometer built into a mechanical watch | |
CH704705B1 (en) | Chronograph countdown to ringing. | |
CH709562A2 (en) | A device for driving an analogue display of a timepiece. | |
CH709362A2 (en) | Mechanism timepiece display, part of clockwork and timepiece. | |
CH704683A2 (en) | Instrument i.e. timepiece for use by pilot to count flight time of aircraft for e.g. view flight rule phase, has selection unit being controlled by user or measurement unit and/or by signal for triggering arming of recording unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130716 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160530 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220225 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1507466 Country of ref document: AT Kind code of ref document: T Effective date: 20220815 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011073135 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221128 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221027 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1507466 Country of ref document: AT Kind code of ref document: T Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221127 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011073135 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
26N | No opposition filed |
Effective date: 20230502 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230615 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221205 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221205 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231122 Year of fee payment: 13 Ref country code: DE Payment date: 20231121 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111205 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240102 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220727 |