EP2648547A1 - Food product comprising hydrolyzed whole grain - Google Patents
Food product comprising hydrolyzed whole grainInfo
- Publication number
- EP2648547A1 EP2648547A1 EP10788328.2A EP10788328A EP2648547A1 EP 2648547 A1 EP2648547 A1 EP 2648547A1 EP 10788328 A EP10788328 A EP 10788328A EP 2648547 A1 EP2648547 A1 EP 2648547A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- food product
- whole grain
- product according
- composition
- hydrolyzed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 235000020985 whole grains Nutrition 0.000 title claims abstract description 162
- 235000013305 food Nutrition 0.000 title claims abstract description 130
- 239000000203 mixture Substances 0.000 claims abstract description 94
- 235000013325 dietary fiber Nutrition 0.000 claims abstract description 49
- 102000004139 alpha-Amylases Human genes 0.000 claims abstract description 36
- 108090000637 alpha-Amylases Proteins 0.000 claims abstract description 36
- 244000005700 microbiome Species 0.000 claims abstract description 35
- 229940024171 alpha-amylase Drugs 0.000 claims abstract description 31
- 230000003301 hydrolyzing effect Effects 0.000 claims abstract description 30
- 239000012634 fragment Substances 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 19
- 102000004190 Enzymes Human genes 0.000 claims description 95
- 108090000790 Enzymes Proteins 0.000 claims description 95
- 229940088598 enzyme Drugs 0.000 claims description 95
- 239000000047 product Substances 0.000 claims description 45
- 108091005804 Peptidases Proteins 0.000 claims description 32
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 29
- 239000004365 Protease Substances 0.000 claims description 29
- 239000008103 glucose Substances 0.000 claims description 28
- 235000013339 cereals Nutrition 0.000 claims description 27
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 21
- FYGDTMLNYKFZSV-URKRLVJHSA-N (2s,3r,4s,5s,6r)-2-[(2r,4r,5r,6s)-4,5-dihydroxy-2-(hydroxymethyl)-6-[(2r,4r,5r,6s)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1[C@@H](CO)O[C@@H](OC2[C@H](O[C@H](O)[C@H](O)[C@H]2O)CO)[C@H](O)[C@H]1O FYGDTMLNYKFZSV-URKRLVJHSA-N 0.000 claims description 20
- UGXQOOQUZRUVSS-ZZXKWVIFSA-N [5-[3,5-dihydroxy-2-(1,3,4-trihydroxy-5-oxopentan-2-yl)oxyoxan-4-yl]oxy-3,4-dihydroxyoxolan-2-yl]methyl (e)-3-(4-hydroxyphenyl)prop-2-enoate Chemical group OC1C(OC(CO)C(O)C(O)C=O)OCC(O)C1OC1C(O)C(O)C(COC(=O)\C=C\C=2C=CC(O)=CC=2)O1 UGXQOOQUZRUVSS-ZZXKWVIFSA-N 0.000 claims description 17
- 241000894006 Bacteria Species 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 15
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 108700040099 Xylose isomerases Proteins 0.000 claims description 11
- 238000002156 mixing Methods 0.000 claims description 10
- 239000006041 probiotic Substances 0.000 claims description 10
- 235000018291 probiotics Nutrition 0.000 claims description 10
- 108010019077 beta-Amylase Proteins 0.000 claims description 9
- 239000000413 hydrolysate Substances 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 8
- 235000013336 milk Nutrition 0.000 claims description 7
- 239000008267 milk Substances 0.000 claims description 7
- 210000004080 milk Anatomy 0.000 claims description 7
- 235000014048 cultured milk product Nutrition 0.000 claims description 6
- 235000015110 jellies Nutrition 0.000 claims description 6
- 239000008274 jelly Substances 0.000 claims description 6
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 6
- 235000013351 cheese Nutrition 0.000 claims description 5
- 230000000529 probiotic effect Effects 0.000 claims description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 4
- 239000006071 cream Substances 0.000 claims description 4
- 235000021185 dessert Nutrition 0.000 claims description 4
- 235000011850 desserts Nutrition 0.000 claims description 4
- 239000007858 starting material Substances 0.000 claims description 4
- 108010009736 Protein Hydrolysates Proteins 0.000 claims description 3
- 230000000415 inactivating effect Effects 0.000 claims description 3
- 235000014655 lactic acid Nutrition 0.000 claims description 3
- 239000004310 lactic acid Substances 0.000 claims description 3
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 235000013618 yogurt Nutrition 0.000 claims description 3
- 241000195940 Bryophyta Species 0.000 claims description 2
- 239000002131 composite material Substances 0.000 claims description 2
- 235000011929 mousse Nutrition 0.000 claims description 2
- 235000011962 puddings Nutrition 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 3
- 235000000346 sugar Nutrition 0.000 description 32
- 102000035195 Peptidases Human genes 0.000 description 29
- 239000000835 fiber Substances 0.000 description 28
- 229920002498 Beta-glucan Polymers 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 235000007319 Avena orientalis Nutrition 0.000 description 16
- 241000209140 Triticum Species 0.000 description 16
- 235000021307 Triticum Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 229930006000 Sucrose Natural products 0.000 description 15
- 235000018102 proteins Nutrition 0.000 description 15
- 239000005720 sucrose Substances 0.000 description 15
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 14
- 229920000617 arabinoxylan Polymers 0.000 description 14
- 238000011282 treatment Methods 0.000 description 14
- 230000015556 catabolic process Effects 0.000 description 13
- 239000012467 final product Substances 0.000 description 13
- 108010056079 Subtilisins Proteins 0.000 description 12
- 102000005158 Subtilisins Human genes 0.000 description 12
- 238000006731 degradation reaction Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 244000075850 Avena orientalis Species 0.000 description 10
- 235000007558 Avena sp Nutrition 0.000 description 10
- 229920002472 Starch Polymers 0.000 description 10
- 230000002255 enzymatic effect Effects 0.000 description 10
- 238000011534 incubation Methods 0.000 description 10
- 238000001542 size-exclusion chromatography Methods 0.000 description 10
- 235000019698 starch Nutrition 0.000 description 10
- 102000013142 Amylases Human genes 0.000 description 9
- 108010065511 Amylases Proteins 0.000 description 9
- 239000008107 starch Substances 0.000 description 9
- 229930091371 Fructose Natural products 0.000 description 8
- 239000005715 Fructose Substances 0.000 description 8
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 8
- 240000005979 Hordeum vulgare Species 0.000 description 8
- 235000007340 Hordeum vulgare Nutrition 0.000 description 8
- 150000001720 carbohydrates Chemical class 0.000 description 8
- 230000007062 hydrolysis Effects 0.000 description 8
- 238000006460 hydrolysis reaction Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 7
- 235000014633 carbohydrates Nutrition 0.000 description 7
- 235000013312 flour Nutrition 0.000 description 7
- 235000003599 food sweetener Nutrition 0.000 description 7
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000001954 sterilising effect Effects 0.000 description 7
- 238000004659 sterilization and disinfection Methods 0.000 description 7
- 239000003765 sweetening agent Substances 0.000 description 7
- 241000209761 Avena Species 0.000 description 6
- 235000019418 amylase Nutrition 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 125000003071 maltose group Chemical group 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000004382 Amylase Substances 0.000 description 4
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- 241000219051 Fagopyrum Species 0.000 description 4
- 235000009419 Fagopyrum esculentum Nutrition 0.000 description 4
- 244000062793 Sorghum vulgare Species 0.000 description 4
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 4
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 4
- 239000012141 concentrate Substances 0.000 description 4
- 235000008504 concentrate Nutrition 0.000 description 4
- 235000013399 edible fruits Nutrition 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 235000019634 flavors Nutrition 0.000 description 4
- 210000002429 large intestine Anatomy 0.000 description 4
- -1 phytonutrients Substances 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 150000008163 sugars Chemical class 0.000 description 4
- 235000011875 whole grain product Nutrition 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 235000016623 Fragaria vesca Nutrition 0.000 description 3
- 240000009088 Fragaria x ananassa Species 0.000 description 3
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 241000209504 Poaceae Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000004464 cereal grain Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 235000011389 fruit/vegetable juice Nutrition 0.000 description 3
- 229930182830 galactose Natural products 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 150000004804 polysaccharides Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000004809 thin layer chromatography Methods 0.000 description 3
- 235000013311 vegetables Nutrition 0.000 description 3
- 229930003231 vitamin Natural products 0.000 description 3
- 239000011782 vitamin Substances 0.000 description 3
- 229940088594 vitamin Drugs 0.000 description 3
- 235000013343 vitamin Nutrition 0.000 description 3
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 2
- WSVLPVUVIUVCRA-KPKNDVKVSA-N Alpha-lactose monohydrate Chemical compound O.O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O WSVLPVUVIUVCRA-KPKNDVKVSA-N 0.000 description 2
- 235000009328 Amaranthus caudatus Nutrition 0.000 description 2
- 240000001592 Amaranthus caudatus Species 0.000 description 2
- 241000186000 Bifidobacterium Species 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 240000006162 Chenopodium quinoa Species 0.000 description 2
- 244000077995 Coix lacryma jobi Species 0.000 description 2
- 235000007354 Coix lacryma jobi Nutrition 0.000 description 2
- 241000371652 Curvularia clavata Species 0.000 description 2
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 2
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- HMFHBZSHGGEWLO-SOOFDHNKSA-N D-ribofuranose Chemical compound OC[C@H]1OC(O)[C@H](O)[C@@H]1O HMFHBZSHGGEWLO-SOOFDHNKSA-N 0.000 description 2
- 240000008570 Digitaria exilis Species 0.000 description 2
- 235000014966 Eragrostis abyssinica Nutrition 0.000 description 2
- 244000140063 Eragrostis abyssinica Species 0.000 description 2
- 244000130270 Fagopyrum tataricum Species 0.000 description 2
- 235000019715 Fonio Nutrition 0.000 description 2
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 2
- 229920001202 Inulin Polymers 0.000 description 2
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- 229920002774 Maltodextrin Polymers 0.000 description 2
- 229930195725 Mannitol Natural products 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- 241000745991 Phalaris Species 0.000 description 2
- 235000005632 Phalaris canariensis Nutrition 0.000 description 2
- DLRVVLDZNNYCBX-UHFFFAOYSA-N Polydextrose Polymers OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(O)O1 DLRVVLDZNNYCBX-UHFFFAOYSA-N 0.000 description 2
- 229920000294 Resistant starch Polymers 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 235000007238 Secale cereale Nutrition 0.000 description 2
- 244000082988 Secale cereale Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 2
- 244000299461 Theobroma cacao Species 0.000 description 2
- 235000019714 Triticale Nutrition 0.000 description 2
- 240000003834 Triticum spelta Species 0.000 description 2
- 235000004240 Triticum spelta Nutrition 0.000 description 2
- 244000078534 Vaccinium myrtillus Species 0.000 description 2
- 240000008042 Zea mays Species 0.000 description 2
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 2
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 2
- 241000746966 Zizania Species 0.000 description 2
- 235000002636 Zizania aquatica Nutrition 0.000 description 2
- HMFHBZSHGGEWLO-UHFFFAOYSA-N alpha-D-Furanose-Ribose Natural products OCC1OC(O)C(O)C1O HMFHBZSHGGEWLO-UHFFFAOYSA-N 0.000 description 2
- 235000012735 amaranth Nutrition 0.000 description 2
- 239000004178 amaranth Substances 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 229940025131 amylases Drugs 0.000 description 2
- PYMYPHUHKUWMLA-WDCZJNDASA-N arabinose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)C=O PYMYPHUHKUWMLA-WDCZJNDASA-N 0.000 description 2
- 239000008122 artificial sweetener Substances 0.000 description 2
- 235000021028 berry Nutrition 0.000 description 2
- 235000021329 brown rice Nutrition 0.000 description 2
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 2
- 235000019577 caloric intake Nutrition 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 235000005822 corn Nutrition 0.000 description 2
- 235000013365 dairy product Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 150000002016 disaccharides Chemical class 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 235000013373 food additive Nutrition 0.000 description 2
- 239000002778 food additive Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 150000004676 glycans Polymers 0.000 description 2
- 230000007407 health benefit Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000000594 mannitol Substances 0.000 description 2
- 235000010355 mannitol Nutrition 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 235000019713 millet Nutrition 0.000 description 2
- 150000004682 monohydrates Chemical class 0.000 description 2
- 150000002772 monosaccharides Chemical group 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 235000013406 prebiotics Nutrition 0.000 description 2
- 230000017854 proteolysis Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 235000021254 resistant starch Nutrition 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 241000228158 x Triticosecale Species 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- MIDXCONKKJTLDX-UHFFFAOYSA-N 3,5-dimethylcyclopentane-1,2-dione Chemical compound CC1CC(C)C(=O)C1=O MIDXCONKKJTLDX-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- 208000004611 Abdominal Obesity Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 229930188104 Alkylresorcinol Natural products 0.000 description 1
- 244000144730 Amygdalus persica Species 0.000 description 1
- 229920000189 Arabinogalactan Polymers 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 208000002699 Digestive System Neoplasms Diseases 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010068370 Glutens Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 108010073032 Grain Proteins Proteins 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 1
- 241000186660 Lactobacillus Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 108010029785 Pancreatic alpha-Amylases Proteins 0.000 description 1
- 102000001746 Pancreatic alpha-Amylases Human genes 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 229920001100 Polydextrose Polymers 0.000 description 1
- 235000006040 Prunus persica var persica Nutrition 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000017848 Rubus fruticosus Nutrition 0.000 description 1
- 240000007651 Rubus glaucus Species 0.000 description 1
- 235000011034 Rubus glaucus Nutrition 0.000 description 1
- 235000009122 Rubus idaeus Nutrition 0.000 description 1
- 238000010793 Steam injection (oil industry) Methods 0.000 description 1
- 235000019486 Sunflower oil Nutrition 0.000 description 1
- 235000009470 Theobroma cacao Nutrition 0.000 description 1
- 235000003095 Vaccinium corymbosum Nutrition 0.000 description 1
- 235000017537 Vaccinium myrtillus Nutrition 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 229940023476 agar Drugs 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 235000019312 arabinogalactan Nutrition 0.000 description 1
- 150000004783 arabinoxylans Chemical class 0.000 description 1
- 235000021311 artificial sweeteners Nutrition 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 235000021029 blackberry Nutrition 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 235000021014 blueberries Nutrition 0.000 description 1
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 1
- 229960001948 caffeine Drugs 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000013736 caramel Nutrition 0.000 description 1
- 230000005189 cardiac health Effects 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 235000016213 coffee Nutrition 0.000 description 1
- 235000013353 coffee beverage Nutrition 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- GVJHHUAWPYXKBD-UHFFFAOYSA-N d-alpha-tocopherol Natural products OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000000378 dietary effect Effects 0.000 description 1
- 235000020979 dietary recommendations Nutrition 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000009837 dry grinding Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 235000019525 fullness Nutrition 0.000 description 1
- 235000021255 galacto-oligosaccharides Nutrition 0.000 description 1
- 150000003271 galactooligosaccharides Chemical class 0.000 description 1
- 244000005709 gut microbiome Species 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 235000019534 high fructose corn syrup Nutrition 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000003871 intestinal function Effects 0.000 description 1
- JYJIGFIDKWBXDU-MNNPPOADSA-N inulin Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)OC[C@]1(OC[C@]2(OC[C@]3(OC[C@]4(OC[C@]5(OC[C@]6(OC[C@]7(OC[C@]8(OC[C@]9(OC[C@]%10(OC[C@]%11(OC[C@]%12(OC[C@]%13(OC[C@]%14(OC[C@]%15(OC[C@]%16(OC[C@]%17(OC[C@]%18(OC[C@]%19(OC[C@]%20(OC[C@]%21(OC[C@]%22(OC[C@]%23(OC[C@]%24(OC[C@]%25(OC[C@]%26(OC[C@]%27(OC[C@]%28(OC[C@]%29(OC[C@]%30(OC[C@]%31(OC[C@]%32(OC[C@]%33(OC[C@]%34(OC[C@]%35(OC[C@]%36(O[C@@H]%37[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O%37)O)[C@H]([C@H](O)[C@@H](CO)O%36)O)[C@H]([C@H](O)[C@@H](CO)O%35)O)[C@H]([C@H](O)[C@@H](CO)O%34)O)[C@H]([C@H](O)[C@@H](CO)O%33)O)[C@H]([C@H](O)[C@@H](CO)O%32)O)[C@H]([C@H](O)[C@@H](CO)O%31)O)[C@H]([C@H](O)[C@@H](CO)O%30)O)[C@H]([C@H](O)[C@@H](CO)O%29)O)[C@H]([C@H](O)[C@@H](CO)O%28)O)[C@H]([C@H](O)[C@@H](CO)O%27)O)[C@H]([C@H](O)[C@@H](CO)O%26)O)[C@H]([C@H](O)[C@@H](CO)O%25)O)[C@H]([C@H](O)[C@@H](CO)O%24)O)[C@H]([C@H](O)[C@@H](CO)O%23)O)[C@H]([C@H](O)[C@@H](CO)O%22)O)[C@H]([C@H](O)[C@@H](CO)O%21)O)[C@H]([C@H](O)[C@@H](CO)O%20)O)[C@H]([C@H](O)[C@@H](CO)O%19)O)[C@H]([C@H](O)[C@@H](CO)O%18)O)[C@H]([C@H](O)[C@@H](CO)O%17)O)[C@H]([C@H](O)[C@@H](CO)O%16)O)[C@H]([C@H](O)[C@@H](CO)O%15)O)[C@H]([C@H](O)[C@@H](CO)O%14)O)[C@H]([C@H](O)[C@@H](CO)O%13)O)[C@H]([C@H](O)[C@@H](CO)O%12)O)[C@H]([C@H](O)[C@@H](CO)O%11)O)[C@H]([C@H](O)[C@@H](CO)O%10)O)[C@H]([C@H](O)[C@@H](CO)O9)O)[C@H]([C@H](O)[C@@H](CO)O8)O)[C@H]([C@H](O)[C@@H](CO)O7)O)[C@H]([C@H](O)[C@@H](CO)O6)O)[C@H]([C@H](O)[C@@H](CO)O5)O)[C@H]([C@H](O)[C@@H](CO)O4)O)[C@H]([C@H](O)[C@@H](CO)O3)O)[C@H]([C@H](O)[C@@H](CO)O2)O)[C@@H](O)[C@H](O)[C@@H](CO)O1 JYJIGFIDKWBXDU-MNNPPOADSA-N 0.000 description 1
- 229940029339 inulin Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 235000021097 low calorie intake Nutrition 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 244000005706 microflora Species 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229930014626 natural product Natural products 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 210000001819 pancreatic juice Anatomy 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000009928 pasteurization Methods 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 230000008855 peristalsis Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 235000017807 phytochemicals Nutrition 0.000 description 1
- 229930000223 plant secondary metabolite Natural products 0.000 description 1
- 239000001259 polydextrose Substances 0.000 description 1
- 235000013856 polydextrose Nutrition 0.000 description 1
- 229940035035 polydextrose Drugs 0.000 description 1
- 235000013824 polyphenols Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000007065 protein hydrolysis Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012146 running buffer Substances 0.000 description 1
- 210000003296 saliva Anatomy 0.000 description 1
- 230000036186 satiety Effects 0.000 description 1
- 235000019627 satiety Nutrition 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 125000000185 sucrose group Chemical group 0.000 description 1
- 239000002600 sunflower oil Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000011732 tocopherol Substances 0.000 description 1
- 235000010384 tocopherol Nutrition 0.000 description 1
- 229960001295 tocopherol Drugs 0.000 description 1
- 229930003799 tocopherol Natural products 0.000 description 1
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 1
- 235000019871 vegetable fat Nutrition 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 235000008939 whole milk Nutrition 0.000 description 1
- 235000011844 whole wheat flour Nutrition 0.000 description 1
- GVJHHUAWPYXKBD-IEOSBIPESA-N α-tocopherol Chemical compound OC1=C(C)C(C)=C2O[C@@](CCC[C@H](C)CCC[C@H](C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-IEOSBIPESA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01003—Glucan 1,4-alpha-glucosidase (3.2.1.3), i.e. glucoamylase
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/12—Fermented milk preparations; Treatment using microorganisms or enzymes
- A23C9/13—Fermented milk preparations; Treatment using microorganisms or enzymes using additives
- A23C9/1315—Non-milk proteins or fats; Seeds, pulses, cereals or soja; Fatty acids, phospholipids, mono- or diglycerides or derivatives therefrom; Egg products
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/06—Enzymes
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L29/00—Foods or foodstuffs containing additives; Preparation or treatment thereof
- A23L29/065—Microorganisms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
- A23L33/21—Addition of substantially indigestible substances, e.g. dietary fibres
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/20—Reducing nutritive value; Dietetic products with reduced nutritive value
- A23L33/21—Addition of substantially indigestible substances, e.g. dietary fibres
- A23L33/22—Comminuted fibrous parts of plants, e.g. bagasse or pulp
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/104—Fermentation of farinaceous cereal or cereal material; Addition of enzymes or microorganisms
- A23L7/107—Addition or treatment with enzymes not combined with fermentation with microorganisms
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/115—Cereal fibre products, e.g. bran, husk
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L7/00—Cereal-derived products; Malt products; Preparation or treatment thereof
- A23L7/10—Cereal-derived products
- A23L7/197—Treatment of whole grains not provided for in groups A23L7/117 - A23L7/196
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y302/00—Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
- C12Y302/01—Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
- C12Y302/01001—Alpha-amylase (3.2.1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21062—Subtilisin (3.4.21.62)
Definitions
- the present invention relates to food products being supplemented with whole grain.
- the present invention relates to food products which are supplemented with hydrolysed whole grain, where neither taste or viscosity nor organoleptic properties of the food products have been compromised .
- the consumer is not willing to compromise on food products organoleptic properties, in order to increase his daily whole grain intake.
- taste, texture and overall appearance are such organoleptic properties.
- US 4,282,319 relates to a process for the preparation of hydrolyzed products from whole grain, and such derived products. The process includes an enzymatic treatment in an aqueous medium with a protease and an amylase. The obtained product may be added to different types of products. US 4,282,319 describe a complete degradation of the proteins present in the whole grain.
- US 5,686,123 discloses a cereal suspension generated by treatment with both an alpha-amylase and a beta-amylase both specifically generating maltose units and have no glucanase effect.
- the invention relates to a food product comprising - a liquid component
- alpha-amylase or fragment thereof which alpha-amylase or fragment thereof shows no hydrolytic activity towards dietary fibers when in the active state.
- Another aspect of the present invention relates to a process for preparing a food product according to the present invention, said process comprising : 1) preparing a hydrolyzed whole grain composition, comprising the steps of: a) contacting a whole grain component with an enzyme composition in water, the enzyme composition comprising at least one alpha-amylase, said enzyme composition showing no hydrolytic activity towards dietary fibers, b) allowing the enzyme composition to react with the whole grain component, to provide a whole grain hydrolysate, c) providing the hydrolyzed whole grain composition by inactivating said enzymes when said hydrolysate has reached a viscosity comprised between 50 and 5000 mPa.s measured at 65°C;
- composition with a premix comprising at least one strain of microorganisms and a liquid component or providing the food product by I. mixing the hydrolyzed whole grain composition obtained in step c) with a premix comprising a liquid component and
- Figure 1 shows a thin layer chromatography analysis of various enzymes put in contact with dietary fibres.
- the legend for the different tracks is the following : AO : pure arabinoxylan spot (blank)
- Figure 2 shows size exclusion chromatography (SEC) of ⁇ -Glucan
- Figure 4 shows size exclusion chromatography (SEC) of ⁇ -Glucan
- the inventors of the present invention have surprisingly found that by treating the whole grain component with an alpha-amylase and optionally with a protease the whole grain will become less viscous and the following mixing into the food product may be easier. This results in the possibility to increase the amount of whole grains in the product. Furthermore, the alpha-amylase treatment also results in a reduced need for adding sweetener such as sucrose to the food product.
- a food product comprising
- alpha-amylase or fragment thereof which alpha-amylase or fragment thereof shows no hydrolytic activity towards dietary fibers when in the active state.
- An additional advantage may be to improve the carbohydrate profile of the food products by replacing traditional externally supplied sweeteners such as glucose syrup, high fructose corn syrup, invert syrup, maltodextrine, sucrose, fiber concentrate, inulin, etc. with a more wholesome sweetener source.
- traditional externally supplied sweeteners such as glucose syrup, high fructose corn syrup, invert syrup, maltodextrine, sucrose, fiber concentrate, inulin, etc.
- the food product is selected from the group consisting of
- I. fermented milk products such as yoghurt, cheese, and fresh cheese
- non-fermented milk products such as desserts such as pudding, cream
- jelly e.g . water-based, cereal-based, vegetable-based, fruit-based and frbased on fermented cereals.
- the strain of microorganisms may be added as a probiotic bacteria and/or the microorganism may be used for fermenting the milk product.
- microorganisms may be added as a probiotic bacteria.
- the strain of microorganisms may be added as a probiotic bacteria and/or the microorganism may be used for fermenting the jelly e.g . jelly from fermented cereals.
- the strain of microorganisms present in the food product may be of different origins depending on the type of product.
- the at least one strain of microorganisms is selected from
- bacteria such as lactic acid bacteria, bifidus bacteria, or other probiotic bacteria;
- microorganisms may be viable or non-viable.
- the at least one strain of microorganisms is viable or non-viable.
- the food product of the invention may be heat-treated to prolong storage time. In such heat treated products the at least one strain of micro-organism will be non-viable.
- the concentration CFU, Cell Forming Units
- microorganisms is viable and present at a concentration of at least 10 2 CFU/gram of food product such as at least 10 3 CFU/gram, such as at least 10 5 CFU/gram, such as at least 10 7 CFU/gram, such as at least 10 8 CFU/gram, and such as at least 10 9 CFU/gram.
- a food product comprises a concentration (CFU) of micro-organisms
- the at least one strain of probiotics is selected from the group consisting of Lactic acid bacteria and bifidobacteria.
- probiotics to function as probiotics it is to be understood that they should be viable in the food product. This could e.g. be done by avoiding sterilization or by adding the probiotics after sterilization.
- the food products according to the invention are chilled food products.
- chilled food products it is to be understood as food products which are preferably stored at 4-8 °C.
- a quality parameter of the food product and an important parameter in respect of the product processability is the viscosity of the hydrolysed whole grain
- viscosity is a measurement of "thickness” or fluidability of a fluid .
- viscosity is a measure of the resistance of a fluid which is being deformed by either shear stress or tensile stress. If not indicated otherwise viscosity is given in mPa.s.
- Viscosity may be measured using a Rapid Visco Analyser from Newport Scientific.
- the Rapid Visco Analyser measures the resistance of the product to the stirring action of a paddle. The viscosity is measured after 10 minutes stirring, at 65°C and 50 rpm.
- the whole grain component may be obtained from different sources.
- whole grain sources are semolina, cones, grits, flour and micronized grain
- the whole grains may be grounded, preferably by dry milling. Such grounding may take place before or after the whole grain component being contacted with the enzyme composition according to the invention.
- the whole grain component may be heat treated to limit rancidity and microbial count.
- Whole grains are cereals of monocotyledonous plants of the Poaceae family (grass family) cultivated for their edible, starchy grains.
- whole grain cereals include barley, rice, black rice, brown rice, wild rice, buckwheat, bulgur, corn, millet, oat, sorghum, spelt, triticale, rye, wheat, wheat berries, teff, canary grass, Job's tears and fonio.
- Plant species that do not belong to the grass family also produce starchy seeds or fruits that may be used in the same way as cereal grains, are called pseudo-cereals.
- pseudo-cereals include amaranth, buckwheat, tartar buckwheat and quinoa.
- the whole g rain component accord ing to the invention may orig inate from a cereal or a pseudo-cereal .
- the hyd rolyzed whole g rain composition is obtained from a plant selected from the group consisting of barley, rice, brown rice, wild rice, black rice, buckwheat, bulg ur, corn, millet, oat, sorghum, spelt, triticale, rye, wheat, wheat berries, teff, canary grass, Job's tears, fonio, amaranth, buckwheat, tartar buckwheat, quinoa, other variety of cereals and pseudo-cereals and mixtures thereof.
- the source of grain depends on the product type, since each g rain will provide its own taste profile.
- Whole grain components are components made from unrefined cereal grains.
- Whole grain components comprise the entire edible parts of a g rain ; i .e. the germ, the endosperm and the bran .
- Whole grain components may be provided in a variety of forms such as g round, flaked, cracked or other forms, as is commonly known in the milling ind ustry.
- a hyd rolyzed whole grain composition refers to enzymatically digested whole grain components or a whole grain component digested by using at least an alpha-amylase, which alpha-amylase shows no hydrolytic activity towards d ietary fibers when in the active state.
- the hydrolyzed whole grain composition may be further digested by the use of a protease, which protease shows no hydrolytic activity towards dietary fibers when in the active state.
- a hydrolyzed whole grain composition is also relating to enzymatic treatment of flour and subsequent reconstitution of the whole g rain by blending flour, bran and germ . It is also to be understood that reconstitution may be done before the use in the final prod uct or during mixing in a final product. Thus, reconstitution of whole grains after treatment of one or more of the ind ivid ual parts of the whole grain also forms part of the present invention .
- the whole grain component Prior to or after g rinding of the whole grain, the whole grain component may be subjected to a hydrolytic treatment in order to breakdown the polysaccharide structure and optionally the protein structure of the whole grain component.
- the hydrolyzed whole grain composition may be provided in the form of a liquid, a concentrate, a powder, a juice or a puree. If more than one type of enzymes is used it is to be understood that the enzymatic processing of the whole grains may be performed by sequential addition of the enzymes, or by providing an enzyme composition comprising more than one type of enzyme.
- an enzyme showing no hydrolytic activity towards dietary fibers when in the active state should be understood as also encompassing the enzyme mixture from which the enzyme originates.
- the proteases, amylases, glucose isomerase and amyloglucosidase described in the present context may be provided as an enzyme mixture before use which is not completely purified and thus, comprises enzymatic activity towards e.g. dietary fibers.
- the activity towards dietary fibers may also come from the specific enzyme if the enzyme is multi-functional.
- the enzymes (or enzyme mixtures) are devoid of hydrolytic activity towards dietary fibers.
- no hydrolytic activity or “devoid of hydrolytic activity towards dietary fibers” may encompass up to 5% degradation of the dietary fibers, such as up to 3%, such as up to 2% and such as up to 1% degradation. Such degradation may be unavoidable if high concentrations or extensive incubation times are used .
- In the active state refers to the capability of the enzyme or enzyme mixture to perform hydrolytic activity, and is the state of the enzyme before it is inactivated . Inactivation may occur both by degradation and denaturation.
- the food product according to the invention may comprise a protease which shows no hydrolytic activity towards dietary fibers when in the active state.
- the advantage of adding a protease according to the invention is that the viscosity of the hydrolyzed whole grain may be further lowered, which may also result in a decrease in the viscosity of the final product.
- the food product comprises said protease or fragment thereof at a concentration of 0.0001 to 5% by weight of the total whole grain content, such as 0.01-3%, such as 0.01-1%, such as 0.05-1%, such as 0.1-1%, such as 0.1-0.7%, or such as 0.1-0.5%.
- concentration of added proteases depends on several factors. As it has been found that the addition of protease during production of the hydrolyzed whole grain may result in a bitter off-taste, addition of protease may be considered as a tradeoff between lower viscosity and off- taste. In addition the amount of protease may also depend on the incubation time during production of the hydrolyzed whole grain. For example a lower
- concentration of protease may be used if the incubation time is increased.
- Proteases are enzymes allowing the hydrolysis of proteins. They may be used to decrease the viscosity of the hydrolyzed whole grain composition. Alcalase 2.4L (EC 3.4.21.62), from Novozymes is an example of a suitable enzyme. Depending on the incubation time and concentration of protease a certain amount of the proteins from the hydrolyzed whole grain component may be hydrolyzed to amino acid and peptide fragments. Thus, in an embodiment 1-10% of the proteins from the whole grain composition is hydrolyzed, such as 2-8%, e.g.
- hydrolyzed protein content refers to the content of hydrolyzed protein from the whole grain composition unless otherwise defined.
- the protein may be degraded into larger or smaller peptide units or even into amino acid components. The person skilled in the art will know that during processing and storage small amount of degradation will take place which is not due to external enzymatic degradation.
- the enzymes used in the production of the hydrolyzed whole grain composition is different from the corresponding enzymes naturally present in the whole grain component.
- the food products according to the invention may also comprise proteins from sources, different from the hydrolyzed whole grain component, which are not degraded, it may be appropriate to evaluate the protein degradation on more specific proteins present in the whole grain composition .
- the degraded proteins are whole grain proteins, such as gluten proteins, globulins, albumins and glycoproteins.
- Amylase (EC 3. 2. 1. 1) is an enzyme classified as a saccharidase : an enzyme that cleaves polysaccharides. It is mainly a constituent of pancreatic juice and saliva, needed for the breakdown of long-chain carbohydrates such as starch, into smaller units.
- alpha-amylase is used to hydrolyze gelatinized starch in order to decrease the viscosity of the hydrolyzed whole grain composition .
- Validase HT 425L, Validase RA from Valley Research, Fungamyl from Novozymes and MATS from DSM are examples of alpha-amylases suitable for the present invention. Those enzymes show no activity towards the dietary fibers in the processing conditions used (duration, enzyme concentrations) .
- the enzymes show no activity towards the dietary fibers when the enzyme concentration is below 5% (w/w), such as below, 3% (w/w), e.g . below 1% (w/w), such as below 0.75% (w/w), e.g . below 0.5% (w/w) .
- Some alpha-amylases generate maltose units as the smallest carbohydrate entities, whereas others are also able to produce a fraction of glucose units.
- the alpha-amylase or fragments thereof is a mixed sugar producing alpha-amylase, including glucose producing activity, when in the active state. It has been found that some alpha-amylases both comprise glucose producing activity while having no hydrolytic activity towards dietary fibers when in the active state. By having an alpha-amylase which comprises glucose producing activity an increased sweetness may be obtained, since glucose has almost twice the sweetness of maltose. In an embodiment of the present invention a reduced amount of external sugar source needs to be added
- composition examples of such external sugar source could be sucrose, lactose, and artificial sweeteners.
- Amyloglucosidase (EC 3.2.1.3) is an enzyme able to release glucose residues from starch, maltodextrins and maltose by hydrolysing glucose units from the non- reduced end of the polysaccharide chain. The sweetness of the preparation increases with the increasing concentration of released glucose.
- the food product further comprises an amyloglucosidase or fragment thereof. It may be advantageous to add an amyloglucosidase to the production of the hydrolyzed whole grain composition, since the sweetness of the preparation increases with the increasing concentration of released glucose. It may also be advantageous if the amyloglucosidase did not influence health properties of the whole grains, directly or indirectly.
- amyloglucosidase shows no hydrolytic activity towards dietary fibers when in the active state.
- An interest of the invention, and particularly of the process for preparing the food product according to the invention, is that it allows reducing the sugar (e.g.
- sucrose content of the food product when compared to products described in the prior art.
- amyloglucosidase is used in the enzyme composition, it may become possible to dispense with other external sugar sources e.g. the addition of sucrose.
- the food product according to the invention does not comprise an amyloglucosidase such as an exogenic amyloglucosidase.
- Glucose isomerase D-glucose ketoisomerase causes the isomerization of glucose to fructose.
- the food product further comprises a glucose isomerase or fragment thereof, which glucose isomerase or fragments thereof shows no hydrolytic activity towards dietary fibers when in the active state.
- Glucose has 70-75% the sweetness of sucrose, whereas fructose is twice as sweet as sucrose.
- processes for the manufacture of fructose are of considerable value because the sweetness of the product may be significantly increased without the addition of an external sugar source (such as sucrose or artificial sweetening agents) .
- a number of specific enzymes or enzyme mixtures may be used for production of the hydrolyzed whole grain composition according to the invention.
- the alpha- amylase may be selected from Validase HT 425L and Validase RA from Valley Research, Fungamyl from Novozymes and MATS from DSM, the protease may be selected from the group consisting of Alcalase, iZyme B and iZyme G
- the concentration of the enzymes according to the invention in the food product may influence the organoleptic parameters of the food product.
- concentration of enzymes may also be adjusted by changing parameters such as temperature and incubation time.
- the food product comprises 0.0001 to 5% by weight of the total whole grain content in the food product of at least one of:
- an alpha-amylase or fragments thereof which alpha-amylase or fragment thereof shows no hydrolytic activity towards dietary fibers when in the active state
- - an amyloglucosidase or fragments thereof which amyloglucosidase shows no hydrolytic activity towards dietary fibers when in the active state
- the food product comprises 0.001 to 3% of the alpha- amylase by weight of the total whole grain content in the food product, such as 0.01-3%, such as 0.01-0.1%, such as 0.01-0.5%, such as 0.01-0.1%, such as 0.03-0.1%, such as 0.04-0.1%.
- the food product comprises 0.001 to 3% of the amyloglucosidase by weight of the total whole grain content in the food product, such as 0.001-3%, such as 0.01-1%, such as 0.01-0.5%, such as 0.01-0.5%, such as 0.01-0.1%, such as 0.03-0.1%, such as 0.04-0.1%.
- the food product comprises 0.001 to 3% of the glucose isomerase by weight of the total whole grain content in the food product, such as 0.001-3%, such as 0.01-1%, such as 0.01-0.5%, such as 0.01-0.5%, such as 0.01-0.1%, such as 0.03-0.1%, such as 0.04-0.1%.
- Beta-amylases are enzymes which also break down saccharides, however beta- amylases mainly have maltose as the smallest generated carbohydrate entity.
- the food product according to the invention does not comprise a beta-amylase, such as an exogenic beta-amylase.
- beta-amylases By avoiding beta- amylases a larger fraction of the starches will be hydrolyzed to glucose units since the alpha amylases do have to compete with the beta-amylases for substrates. Thus, an improved sugar profile may be obtained. This is in contrast to US
- the action of the protease is not necessary, to provide a sufficient low viscosity.
- the food product does not comprise the protease, such as an exogenic protease.
- protease such as an exogenic protease.
- the addition of protease may generate a bitter off-taste which in certain instances is desirable to avoid.
- US 4,282,319 discloses a process including enzymatic treatment with a protease and an amylase.
- the enzymes used according to the present invention for producing the hydrolyzed whole grain composition show no hydrolytic activity towards dietary fibers when in the active state.
- the hydrolyzed whole grain composition has a substantial intact beta-glucan structure relative to the starting material.
- the hydrolyzed whole composition has a substantial intact arabinoxylan structure relative to the starting material .
- a substantial intact beta- glucan and arabinoxylan structure may be maintained .
- the degree of degradation of the beta-glucan and arabinoxylan structures may be determined by Size- exclusion chromatography (SEC). ) .
- SEC Size- exclusion chromatography
- substantially intact structure is to be understood that the structure is at least 95% intact, such as at least 97%, such as at least 98%, or such as at least 99% intact.
- enzymes such as proteases, amylases, glucose isomerases and amyloglucosidases refer to enzymes which have been previously purified or partly purified . Such proteins/enzymes may be produced in bacteria, fungi or yeast, however they may also have plant origin .
- exogenic enzymes Such enzymes may be added to a product during production to add a certain enzymatic effect to a substance. Similar, in the present context, when an enzyme is disclaimed from the present invention such disclaimer refers to exogenic enzymes. In the present context such enzymes e.g . provide enzymatic
- the food product has a maltose to glucose ratio below 144: 1, by weight in the product, such as below 120 : 1, such as below 100 : 1 e.g. below 50 : 1, such as below 30 : 1, such as below 20 : 1 or such as below 10 : 1.
- starch processing enzyme used is a glucose generating alpha-amylase
- a larger fraction of the end product will be in the form of glucose compared to the use of an alpha-amylase specifically generating maltose units. Since glucose has a higher sweetness than maltose, this may result in that the addition of a further sugar source (e.g. sucrose) can be dispensed. This advantage may be further pronounced if the ratio is lowered by the conversion of the maltose present in the hydrolyzed whole grain to glucose (one maltose unit is converted to two glucose units).
- the maltose to glucose ratio may be further lowered if an amyloglucosidase is included in the enzyme composition since such enzymes also generates glucose units.
- the food product has a maltose to glucose + fructose ratio below 144: 1 by weight in the product, such as below 120 : 1, such as below 100 : 1 e.g. below 50 : 1, such as below 30 : 1, such as below 20 : 1 or such as below 10 : 1.
- the food product may have a maltose to fructose ratio below 230 : 1 by weight in the product, such as below 144: 1, such as below 120 : 1, such as below 100 : 1 e.g.
- total content of the whole grain is to be understood as the combination of the content of “hydrolyzed whole grain composition” and “solid whole grain content”. If not indicated otherwise, “total content of the whole grain” is provided as % by weight in the final product.
- the food product has a total content of the whole grain in the range 1-25% by weight of the food product, such as 5-20%, such as 5-15%.
- the phrasing "content of the hydrolyzed whole grain composition” is to be understood as the % by weight of hydrolyzed whole grains in the final product.
- Hydrolyzed whole grain composition content is part of the total content of the whole grain composition.
- the food product according to the invention has a content of the hydrolyzed whole grain composition in the range 1-25% by weight of the food product such as 5-20%, such as 5-15%.
- the amount of the hydrolyzed whole grain composition in the final product may depend on the type of product.
- a higher amount of hydrolyzed whole grains may be added (compared to a non-hydrolyzed whole grain composition) without substantially affecting the organoleptic parameters of the product because of the increased amount of soluble fibers in the hydrolysed whole grain.
- the food product has a content of dietary fibers in the range of 0.01-10% by weight of the food product, preferably, in the range of 0.01-4%, even more preferably in the range of 0.01-2%.
- a food product according to the invention may be provided with high amounts of dietary fibers by the addition of the hydrolyzed whole grain component provided by the present invention. This may be done due to the unique setup of the process according to the present invention.
- Dietary fibers are the edible parts of plants that are not broken down by digestion enzymes. Dietary fibers are fermented in the human large intestine by the microflora. There are two types of fibers: soluble fibers and insoluble fibers. Both soluble and insoluble dietary fibers can promote a number of positive physiological effects, including a good transit through the intestinal tract which helps to prevent constipation, or a feeling of fullness. Health authorities recommend a consumption of between 20 and 35 g per day of fibers, depending on the weight, gender, age and energy intake. Soluble fibers are dietary fibers that undergo complete or partial fermentation in the large intestine. Examples of soluble fibers from cereals include beta-glucans, arabinoxylans, arabinogalactans and resistant starch type 2 and 3, and
- Soluble fibers from other sources include pectins, acacia gum, gums, alginate, agar, polydextrose, inulins and galacto-oligosaccharides for instance.
- Some soluble fibers are called prebiotics, because they are a source of energy for the beneficial bacteria (e.g . Bifidobacteria and Lactobacilli) present in the large intestine.
- Further benefits of soluble fibers include blood sugar control, which is important in diabetes prevention, control of cholesterol, or risk reduction of cardiovascular disease.
- Insoluble fibers are the dietary fibers that are not fermented in the large intestine or only slowly digested by the intestinal microflora.
- examples of insoluble fibers include celluloses, hemicelluloses, resistant starch type 1 and lignins.
- Further benefits of insoluble fibers include promotion of the bowel function through stimulation of the peristalsis, which causes the muscles of the colon to work more, become stronger and function better. There is also evidence that consumption of insoluble fibers may be linked to a reduced risk of gut cancer.
- the total moisture content of the food product according to the invention may vary.
- the total moisture content is in the range of 10-98% by weight of the food product, e.g. between 50-98%, such as between 65-98%, and such as between 80-95%.
- factors influencing the moisture content may be the amount of the hydrolyzed whole grain composition and the degree of hydrolysis in this composition.
- total solid content equals 100 minus moisture content (%) of the product.
- the food product has a content of a sugar or a non-sugar sweetening agent of less than 25% by weight of the food product, such as less than 20%, such as less than 15%, such as less than 10%, less than 7%, less than 5%, less than 3%, or less than 1%.
- the food product is also sweetened from a natural sugar source different from the external sugar source.
- sugar is sugar is a monosaccharide, a disaccharide or a combination hereof.
- the monosaccharide is glucose, galactose, fructose or any combination hereof.
- the disaccharide is maltose, sucrose, lactose or any combination hereof.
- the sugar is sucrose.
- Sucrose is a widely used sweetener in food products, however others sugars may also be used .
- the water activity of the food product may vary.
- the food product has a water activity above 0.35, such as above 0.5, e.g. between 0.85-1, such as between 0.9-0.99. Since water activity reflects water content it often also reflects the viscosity of the products. Thus, an increased water activity may result in a lowered viscosity.
- Water activity or a w is a measurement of water content. It is defined as the vapor pressure of a liquid divided by that of pure water at the same temperature; therefore, pure distilled water has a water activity of exactly one. As the temperature increases a w typically increases, except in some products with crystalline salt or sugar. At a w -values above 0.65 crunchy products traditionally loose crunchiness.
- Humectants are often added to products which are to be in a dry or semi-dry state.
- the food product does not comprise a humectant.
- Supplementary ingredients of the food product include vitamins and minerals, preservatives such as tocopherol, and emulsifiers, such as lecithin, protein powders, cocoa solid, alkylresorcinols, phenolics and other active ingredients, such as DHA, caffeine, and prebiotics.
- the food product further comprises a flavor, e.g . different from sucrose.
- the at least one flavor component is selected from the group vanilla, honey, caramel, cheese, coffee, chocolate or fruit such as strawberry, blueberry, blackberry, raspberry, peach or combinations thereof.
- the food product has a fat content of 0-20% by weight of the food product, such as 0.1-10%, such as 0.1-7%, such as 0.5-7%, and such as 0.5-5%.
- the amount of fat may vary depending on the type of product.
- Fat components are preferably milk fats or vegetable fats such as cocoa butter, rapeseed oil, sunflower oil or palm oil, preferably not hydrogenated .
- the food product may have salt content in the range 0-2% by weight of the food product.
- the salt is sodium chloride.
- the food product according to the invention may be supplemented with a liquid component to provide the right consistency and viscosity.
- the food product further comprises a liquid component.
- the liquid component is selected from the group consisting of a dairy product such as milk, fermented cereal grains, fruit such as juice, vegetable extract and water.
- the milk is selected from the group consisting of whole milk, vegetable milk, whey fractions, casein, skimmed milk, cream, soy and any combination hereof. Addition of a liquid component may improve factors such as taste, viscosity and the nutritional profile.
- a process for preparing a food product comprising:
- preparing a hydrolyzed whole grain composition comprising the steps of: a) contacting a whole grain component with an enzyme composition in water, the enzyme composition comprising at least one alpha-amylase, said enzyme composition showing no hydrolytic activity towards dietary fibers, b) allowing the enzyme composition to react with the whole grain
- composition with a premix comprising at least one strain of microorganisms and a liquid component, or providing the food product by
- the enzyme composition further comprises a protease or fragment thereof, which protease or fragment thereof shows no hydrolytic activity towards dietary fibers when in the active state.
- the enzyme composition may comprise an amyloglucosidase and/or and glucose isomerase according to the present invention.
- step lb) is performed at 30- 100°C, such as 30- 90°C, such as 30-70°C, preferably 50 to 85°C.
- step lb) is performed for 1 minute to 24 hours, such as 1 minute to 12 hours, such as 1 minute to 6 hours, such as 5-120 minutes.
- step lb) is performed at 30-100°C for 5-120 minutes.
- step lc) is allowed to proceed at 70-150°C, such as 70-120°C for at least 1 second, such as 1-5 minutes, for at least 5 minutes such as 5-120 minutes, such as 5-60 minutes.
- step lc) is performed by heating to at least 90°C for 5-30 minutes.
- the reaction in step lc) is stopped when the hydrolysate has reached a viscosity comprised between 50 and 4000 mPa.s, such as between 50 and 3000 mPa.s, such as between 50 and 1000 mPa.s, such as between 50 and 500 mPa.s. In an additional embodiment viscosity is measured at TS 50.
- the hydrolyzed whole grain composition in step 1) is provided when said hydrolysate has reached a total solid content of 25-65% such as 25-50%.
- a total solid content 25-65% such as 25-50%.
- the hydrolyzed whole grain component in step lc) is provided in the form of a liquid, a concentrate, a powder, a juice or a pure.
- a drying step may be required.
- the process step further comprises a drying step.
- the above parameters can be adjusted to regulate the degree of starch degradation, the sugar profile, the total solid content and to regulate the overall organoleptic parameters of the final product.
- To improve the enzymatic processing of the whole grain component it may be advantageous to process the grains before or after the enzymatic treatment. By grounding the grains a larger surface area is made accessible to the enzymes, thereby speeding up the process.
- the organoleptic parameters may be improved by using a smaller particle size of the grains.
- the whole grains are roasted or toasted before or after enzymatic treatment. Roasting and toasting may improve the taste of the final product. To prolong the storage time of the product several treatment can be performed .
- the process further comprises at least one of the following treatments: sterilization, pasteurization, thermal treatment, retort and any other thermal or non-thermal treatments, such as pressure treatment.
- the treatment is performed before or after the addition of the at least one strain of microorganisms.
- viable micro-organisms such as probiotics in the end product the micro-organisms should be added after sterilization or sterilization should be avoided.
- Enzyme compositions comprising Validase HT 425L (alpha-amylase) optionally in combination with Alcalase 2.4 L (protease) were used for the hydrolysis of wheat, barley and oats.
- Mixing may be performed in a double jacket cooker, though other industrial equipment may be used.
- a scraping mixer works continuously and scraps the inner surface of the mixer. It avoids product burning and helps maintaining a homogeneous temperature. Thus enzyme activity is better controlled. Steam may be injected in the double jacket to increase temperature while cold water is used to decrease it.
- the enzyme composition and water are mixed together at room temperature, between 10 and 25°C. At this low temperature, the enzymes of the enzyme composition have a very weak activity.
- the whole grain component is then added and the ingredients are mixed for a short period of time, usually less than 20 minutes, until the mixture is homogeneous. The mixture is heated progressively or by thresholds to activate the enzymes and hydrolyse the whole grain component.
- Hydrolysis results in a reduction of the viscosity of the mixture.
- the enzymes are inactivated by heating the hydrolysate at a temperature above 100°C, preferably by steam injection at 120°C.
- Enzymes are dosed according to the quantity of total whole grain. Quantities of enzymes are different depending on the type of whole grain component, as protein rates are different.
- the ratio water/whole grain component can be adapted according to required moisture for the final liquid whole grain. Usually, the water/whole grain component ratio is 60/40. Percents are by weight.
- the hydrolyzed whole grain compositions were analysed by HPAE for illustrating the sugar profile hydrolysed whole grain composition.
- Carbohydrates are extracted with water, and separated by ion chromatography on an anion exchange column.
- the eluted compounds are detected electrochemically by means of a pulsed amperometric detector and quantified by comparison with the peak areas of external standards.
- Duplicate samples (defatted if necessary) are digested for 16 hours in a manner that simulates the human digestive system with 3 enzymes (pancreatic alpha- amylase, protease, and amyloglucosidase) to remove starch and protein. Ethanol is added to precipitate high molecular weight soluble dietary fibre. The resulting mixture is filtered and the residue is dried and weighed . Protein is determined on the residue of one of the duplicates; ash on the other. The filtrate is captured, concentrated, and analyzed via HPLC to determine the value of low molecular weight soluble dietary fibre (LMWSF).
- LWSF low molecular weight soluble dietary fibre
- the results also demonstrates that the maltose:glucose ratio is ranging from about 15 : 1 to about 6 : 1.
- an increased sweetness may be obtained by using the hydrolyzed whole grain composition according to the invention and therefore the need for further sweetening sources may be dispensed or limited.
- the results demonstrate that the dietary fiber content is kept intact and the ratio and amount of soluble and insoluble fibers are substantially the same in the non-hydrolyzed whole grain and in the hydrolyzed whole grain composition.
- the enzymes Validase HT 425L (Valley Research), Alcalase 2.4L (Novozymes) and BAN (Novozymes) were analysed using a thin layer chromatography analysis for activity towards arabinoxylan and beta-glucan fibre extracts both components of dietary fibers of whole grain.
- the results from the thin layer chromatography analysis showed that the amylase Validase HT and the protease Alcalase showed no hydrolytic activity on either beta-glucan or arabinoxylan, while the commercial alpha-amylase preparation, BAN, causes hydrolysis of both the beta-glucan and arabinoxylan, see figure 1. See also example 4.
- the enzyme was added at an enzyme to substrate ratio (E/S) of 0.1 % (v/v). The reaction was allowed to proceed at 50°C for 20 minutes, the sample was then placed at 85°C during 15 min to enable starch gelatinization and hydrolysis. The enzymes were finally inactivated at 95°C for 15 minutes. Different batches of the following enzymes have been evaluated.
- Sodium Nitrate 0.1M/ at 0.5ml/min was used as running buffer. Detection was done by reflective index measurement.
- Example 5 - Chilled dairy product comprising hydrolyzed whole grain:
- the hydrolyzed whole grain of example 1 is mixed with strawberry instant powder (type Nesquik), pasteurized (at kitchen scale for example 90°C 10 min), cooled down to 10°C and then mixed with low fat yogurt.
- strawberry instant powder type Nesquik
- pasteurized at kitchen scale for example 90°C 10 min
- the hydrolyzed whole grain composition represents 45.5% by weight of the drink, which results in 22.72% of hydrolysed whole grain flour.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Nutrition Science (AREA)
- Organic Chemistry (AREA)
- Microbiology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Mycology (AREA)
- Botany (AREA)
- Biophysics (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Cereal-Derived Products (AREA)
- Grain Derivatives (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2010/069213 WO2012076054A1 (en) | 2010-12-08 | 2010-12-08 | Food product comprising hydrolyzed whole grain |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2648547A1 true EP2648547A1 (en) | 2013-10-16 |
Family
ID=44310647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10788328.2A Withdrawn EP2648547A1 (en) | 2010-12-08 | 2010-12-08 | Food product comprising hydrolyzed whole grain |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2648547A1 (pt) |
AU (1) | AU2010365333B2 (pt) |
BR (1) | BR112013014199B1 (pt) |
MX (1) | MX338677B (pt) |
WO (1) | WO2012076054A1 (pt) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113854577A (zh) * | 2021-09-30 | 2021-12-31 | 太原师范学院 | 一种功能性谷子全谷物可溶性膳食纤维及其制备方法和应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IE48036B1 (en) | 1977-10-18 | 1984-09-05 | Nordstjernan Ab | Process for the preparation of a hydrolysed product from whole corn,and such a product |
SE8505783D0 (sv) * | 1985-12-06 | 1985-12-06 | Rolf Bergkvist | Forfarande for framstellning av livsmedelsprodukter och dessas anvendning |
SE502941C2 (sv) | 1993-09-15 | 1996-02-26 | Lennart Lindahl | Homogen och stabil cerealiesuspension och förfarande för dess framställning |
US6451369B1 (en) * | 1998-10-19 | 2002-09-17 | Cereal Base Ceba Ab | Non-dairy, ready-to-use milk substitute, and products made therewith |
US7678403B2 (en) * | 2005-07-15 | 2010-03-16 | Crm Ip Llc | Whole grain non-dairy milk production, products and use |
FI121844B (fi) * | 2008-09-01 | 2011-05-13 | Ravintoraisio Oy | Parannettu syötävä koostumus ja menetelmä sen valmistamiseksi |
-
2010
- 2010-12-08 MX MX2013006351A patent/MX338677B/es active IP Right Grant
- 2010-12-08 WO PCT/EP2010/069213 patent/WO2012076054A1/en active Application Filing
- 2010-12-08 AU AU2010365333A patent/AU2010365333B2/en not_active Ceased
- 2010-12-08 BR BR112013014199-9A patent/BR112013014199B1/pt not_active IP Right Cessation
- 2010-12-08 EP EP10788328.2A patent/EP2648547A1/en not_active Withdrawn
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2012076054A1 * |
Also Published As
Publication number | Publication date |
---|---|
AU2010365333A1 (en) | 2013-06-06 |
MX338677B (es) | 2016-04-27 |
MX2013006351A (es) | 2013-08-26 |
BR112013014199A2 (pt) | 2016-07-19 |
WO2012076054A1 (en) | 2012-06-14 |
BR112013014199B1 (pt) | 2018-02-06 |
AU2010365333B2 (en) | 2016-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2648545B1 (en) | Ready-to-drink beverages comprising hydrolyzed whole grain | |
US20130280378A1 (en) | Cereal milk drink comprising hydrolyzed whole grain for infants | |
US20130136824A1 (en) | Nutritional products comprising hydrolyzed whole grain | |
US20130259974A1 (en) | Instant drink powders comprising hydrolyzed whole grain | |
EP2648546B1 (en) | Syrup comprising hydrolyzed whole grain | |
EP2648532B1 (en) | Composite product comprising a filling composition comprising hydrolyzed whole grain | |
EP2648542B1 (en) | Infant cereal products comprising hydrolyzed whole grain | |
AU2010365333B2 (en) | Food product comprising hydrolyzed whole grain | |
AU2010365335B2 (en) | Food product comprising hydrolyzed whole grain | |
AU2017245420A1 (en) | Filling composition comprising hydrolyzed whole grain | |
AU2016200149A1 (en) | Syrup comprising hydrolyzed whole grain |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130708 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170307 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170919 |