EP2636763A1 - Procédé pour appliquer une couche de revêtement stable à haute température sur la surface d'un composant et composant avec une telle couche de revêtement - Google Patents
Procédé pour appliquer une couche de revêtement stable à haute température sur la surface d'un composant et composant avec une telle couche de revêtement Download PDFInfo
- Publication number
- EP2636763A1 EP2636763A1 EP12158129.2A EP12158129A EP2636763A1 EP 2636763 A1 EP2636763 A1 EP 2636763A1 EP 12158129 A EP12158129 A EP 12158129A EP 2636763 A1 EP2636763 A1 EP 2636763A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- coating layer
- micron
- component
- powder
- sub
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011247 coating layer Substances 0.000 title claims abstract description 44
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000000843 powder Substances 0.000 claims abstract description 89
- 239000002245 particle Substances 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 32
- 238000005507 spraying Methods 0.000 claims abstract description 10
- 238000000576 coating method Methods 0.000 claims description 43
- 239000011248 coating agent Substances 0.000 claims description 39
- 238000007254 oxidation reaction Methods 0.000 claims description 20
- 230000003647 oxidation Effects 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 239000000725 suspension Substances 0.000 claims description 7
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 238000007750 plasma spraying Methods 0.000 claims description 6
- 238000010438 heat treatment Methods 0.000 claims description 5
- 238000007751 thermal spraying Methods 0.000 claims description 5
- 238000007749 high velocity oxygen fuel spraying Methods 0.000 claims description 3
- 239000010410 layer Substances 0.000 description 16
- 239000007921 spray Substances 0.000 description 15
- 239000012720 thermal barrier coating Substances 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 9
- 238000005336 cracking Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 239000000446 fuel Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000010953 base metal Substances 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000036961 partial effect Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910052593 corundum Inorganic materials 0.000 description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000002103 nanocoating Substances 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 229910000601 superalloy Inorganic materials 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229910002077 partially stabilized zirconia Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000000930 thermomechanical effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/08—Metallic material containing only metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
- Y10T428/256—Heavy metal or aluminum or compound thereof
Definitions
- the present invention relates to thermally loaded components of thermal machines, especially gas turbines. It refers to a method for applying a high-temperature stable coating layer on the surface of a component. It further refers to a component with such a coating layer.
- a thermal barrier coating TBC
- a bond coat may be provided between the base material of the component and the TBC.
- the hot-section stationary components mainly combustors, transition pieces, and vanes
- TBCs thermal barrier coatings
- M metallic MCrAIY
- YPSZ Yttria partially stabilized zirconia
- the document further asserts that the full potential of the YPSZ TBCs is yet to be realized due mainly to the cracking problem that occurs along or near the bond coat/top coat interface after a limited number of cycles of engine operation.
- This interfacial cracking often leading to premature coating failure by debonding (spallation) of the top coat from the bond coat, has been amply demonstrated from microstructural evidence that was obtained from in-service degradation of deposited coatings as well as from laboratory experiments that have been conducted.
- the thin oxide layer that grows on top of the bond coat, at the bond coat/top coat interface plays a critical role in the interface cracking. It is quite evident that this cracking problem negatively impacts the coating performance by reducing both the engine efficiency (because the engine operating temperature is kept below its optimum temperature) and the lifetime of the engine components. In turn, this greatly affects the reliability and the efficiency of the entire engine system.
- the bond coat surface, onto which the YPSZ top coat is disposed has a thin oxide layer that consists mostly of various oxides (NiO, Ni(Cr,Al) 2 O 4 , Cr 2 O 3 , Y 2 O 3 , Al 2 O 3 ).
- This thin oxide layer plays an important role in the adhesion (bonding) between the metallic bond coat and the ceramic top coat.
- another oxide layer forms in addition to the native oxide.
- This second layer also mostly alumina, is commonly referred to as the thermally grown oxide (TGO) and slowly grows during exposure to elevated temperatures.
- TGO thermally grown oxide
- Interfacial oxides, in particular the TGO layer play a pivotal role in the cracking process. It is believed that the growth of the TGO layer leads to the build up of stresses at the interface region between the TGO layer and top coat.
- document US 7,361,386 B2 proposes to modify the microstructure of the MCrAIY bond coat (in a thermal barrier coating) in a controlled way prior to exposure to high temperatures, in order to control the subsequent changes during high temperature exposure. More specifically, the structure, composition, and growth rate of the thermally grown oxide (TGO) is controlled to ultimately improve the performance of TBCs.
- a nanostructure is provided in the bond coat and, consequently, nanocrystalline dispersoids are introduced into the structure. The purpose of the dispersoids is to stabilize the nanocrystalline structure and to nucleate the desirable [alpha]-Al 2 O 3 in the TGO.
- the method according to the invention for applying a high-temperature stable coating layer on the surface of a component comprises the steps of:
- said powder material is applied to the surface of the component by means of a thermal spraying technique.
- the thermal spraying technique used is one of High Velocity Oxygen Fuel Spraying (HVOF), Low Pressure Plasma Spraying (LPPS), Air Plasma Spraying (APS) or Suspension Plasma Spraying (SPS).
- HVOF High Velocity Oxygen Fuel Spraying
- LPPS Low Pressure Plasma Spraying
- APS Air Plasma Spraying
- SPS Suspension Plasma Spraying
- said powder material has the form of agglomerates.
- said powder material has the form of a suspension.
- the powder material contains powder particles of micron size and/or larger agglomerates, and that the sub-micron powder particles are in said coating layer distributed around the surface of said powder particles of micron size and/or said larger agglomerates.
- the sub-micron powder particles are pre-oxidized before being incorporated into said coating layer.
- the pre-oxidation takes place in-flight during spraying.
- the pre-oxidation is done by an oxidative pre heat treatment of the powder material.
- the powder material is a metallic powder.
- the coating layer is a bond coat or an overlay coating.
- said component having a surface, which is coated with a coating layer is characterized in that said coating layer comprises sub-micron powder particles, which are each at least partially surrounded by an oxide shell and establish with their oxide shells an at least partially interconnected sub-micron oxide network within said coating layer.
- said coating layer further comprises powder particles of micron size and/or larger agglomerates.
- said sub-micron powder particles are in said coating layer distributed around the surface of said powder particles of micron size and/or said larger agglomerates.
- the present invention discloses a specific type of sub-micron structured coating. Due to a sub-micron scale oxide network and fine grain microstructure, the invention aims to reduce the LCF/TMF cracking.
- Another aspect of the invention is the retardant effect for the oxidation and the corrosion. Due to the nano-scale oxide network of the bond coat/overlay coating, the impact by oxidation and corrosion is slowed down.
- the invention should enable a longer service life and/or assure reconditionability with less scrap parts and/or decreased operation risks, such as crack formation in critical area of the component due to mechanical/thermal load, and/or oxidation/corrosion and/or FOD (Foreign Objects Damage) events.
- the invention enables:
- the novelty of the invention is the use of a sub-micron powder (at least to a certain percentage of the total powder mixture) and the way to process it (preparation and thermal spray application) to reach the mentioned improved coating properties.
- the improved coating behavior is particularly based on a reduced TMF/LCF effect of the coating with (at least partial) sub-micron structure.
- the invention is based on:
- In-flight oxidation during spraying has the effect of pre-oxidizing the sub-micron powder of the agglomerate or suspension. Pre-oxidation can also be achieved by oxidative pre heat treatment of the powder mixture. When only a portion of the powder exhibits a sub-micron scale, it is preferable to have the sub-micron particles distributed around the surface of the micron and/or agglomerated spray powder particles.
- Fig. 1 shows a typical thermal spray configuration 10, which can be used to apply the sub-micron powder coating layer according to the invention.
- the thermal spray configuration 10 comprises a spray gun 13, which is supplied with the sub-micron powder 15, a fuel 16 and an oxidant 17. By burning the fuel 16, a flame 14 is generated, which transports the powder particles to the surface of a component 11, thereby building the coating layer 12.
- the sub-micron powder particles 18 undergo a reaction, as can be seen in Fig. 2 , such that they are transformed into particles having a (metallic) core 19 surrounded by an oxide shell 20.
- those oxidized sub-micron particles build up an interconnected structure with a sub-micron oxide network 22.
- the resulting coating layer 12a comprises those agglomerates or micron powder particles 21 being surrounded by oxidized sub-micron powder particles 18.
- the initiation and propagation of damages within coatings exhibiting an at least partial sub-micron scale structure is retarded compared to conventional coating microstructures.
- the "sub-micron effect" is retained over extended lifetime periods, also due to the (at least partial) oxide network.
- Such aspects of the invention give to the coating a so-called self healing characteristic.
- the fine grain sized coating allows a diffusion heat treatment with a reduced number of heat treatment cycles.
- a nano coating as top layer improves the TMF and oxidation resistance, which results in an improved overall coating lifetime.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12158129.2A EP2636763B1 (fr) | 2012-03-05 | 2012-03-05 | Procédé pour appliquer une couche de revêtement stable à haute température sur la surface d'un composant et composant avec une telle couche de revêtement |
PCT/EP2013/054337 WO2013131874A1 (fr) | 2012-03-05 | 2013-03-05 | Procédé pour l'application d'une couche de revêtement stable à haute température sur la surface d'un composant et composant pourvu d'une telle couche de revêtement |
CA2864618A CA2864618A1 (fr) | 2012-03-05 | 2013-03-05 | Procede pour l'application d'une couche de revetement stable a haute temperature sur la surface d'un composant et composant pourvu d'une telle couche de revetement |
CN201380012678.5A CN104160059B (zh) | 2012-03-05 | 2013-03-05 | 在组件的表面上涂敷高温稳定涂层的方法和具有这种涂层的组件 |
US14/474,564 US20150284834A1 (en) | 2012-03-05 | 2014-09-02 | Method for applying a high-temperature stable coating layer on the surface of a component and component with such a coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12158129.2A EP2636763B1 (fr) | 2012-03-05 | 2012-03-05 | Procédé pour appliquer une couche de revêtement stable à haute température sur la surface d'un composant et composant avec une telle couche de revêtement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2636763A1 true EP2636763A1 (fr) | 2013-09-11 |
EP2636763B1 EP2636763B1 (fr) | 2020-09-02 |
Family
ID=47997369
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12158129.2A Active EP2636763B1 (fr) | 2012-03-05 | 2012-03-05 | Procédé pour appliquer une couche de revêtement stable à haute température sur la surface d'un composant et composant avec une telle couche de revêtement |
Country Status (5)
Country | Link |
---|---|
US (1) | US20150284834A1 (fr) |
EP (1) | EP2636763B1 (fr) |
CN (1) | CN104160059B (fr) |
CA (1) | CA2864618A1 (fr) |
WO (1) | WO2013131874A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451520A (zh) * | 2014-12-04 | 2015-03-25 | 中国船舶重工集团公司第十二研究所 | 一种氧化锆多晶团陶瓷涂层的制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3168204B1 (fr) * | 2015-11-12 | 2019-02-27 | Ansaldo Energia IP UK Limited | Procédé de fabrication d'une pièce de turbine à gaz |
US10752999B2 (en) | 2016-04-18 | 2020-08-25 | Rolls-Royce Corporation | High strength aerospace components |
US10763715B2 (en) | 2017-12-27 | 2020-09-01 | Rolls Royce North American Technologies, Inc. | Nano-crystalline coating for magnet retention in a rotor assembly |
CN108004498A (zh) * | 2017-12-29 | 2018-05-08 | 上海英佛曼纳米科技股份有限公司 | 一种具有抗高温结瘤抗氧化耐腐蚀耐磨损涂层的高温热轧钢炉辊 |
US11317540B2 (en) | 2019-09-20 | 2022-04-26 | Samsung Electronics Co., Ltd. | Solid state drive apparatus and data storage apparatus including the same |
CN113881912B (zh) * | 2021-10-09 | 2023-01-31 | 矿冶科技集团有限公司 | 一种纳米氧化物弥散型MCrAlY抗氧化涂层及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0368082A2 (fr) * | 1988-11-08 | 1990-05-16 | H.C. Starck GmbH & Co. KG | Poudre métallique de molybdène et son procédé de préparation |
US20060165910A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Processes for forming nanoparticles |
GB2426010A (en) * | 2005-05-14 | 2006-11-15 | Jeffrey Boardman | Production of oxide coated metallic particles for use in semiconductor devices. |
US20080090071A1 (en) * | 2004-10-21 | 2008-04-17 | Commissariat A L'energie Atomique | Nanosturctured Coating and Coating Method |
US7361386B2 (en) | 2002-07-22 | 2008-04-22 | The Regents Of The University Of California | Functional coatings for the reduction of oxygen permeation and stress and method of forming the same |
US20100032619A1 (en) * | 2006-09-14 | 2010-02-11 | Rene Jabado | Method for producing a particle-containing functional layer and functional element comprising such a layer |
US20100080921A1 (en) * | 2008-09-30 | 2010-04-01 | Beardsley M Brad | Thermal spray coatings for reduced hexavalent and leachable chromuim byproducts |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE390497T1 (de) * | 2002-11-22 | 2008-04-15 | Sulzer Metco Us Inc | Spritzpulver für die herstellung einer bei hohen temperaturen beständigen wärmedämmschicht mittels einem thermischen spritzverfahren |
US8313810B2 (en) * | 2011-04-07 | 2012-11-20 | General Electric Company | Methods for forming an oxide-dispersion strengthened coating |
-
2012
- 2012-03-05 EP EP12158129.2A patent/EP2636763B1/fr active Active
-
2013
- 2013-03-05 CA CA2864618A patent/CA2864618A1/fr not_active Abandoned
- 2013-03-05 CN CN201380012678.5A patent/CN104160059B/zh active Active
- 2013-03-05 WO PCT/EP2013/054337 patent/WO2013131874A1/fr active Application Filing
-
2014
- 2014-09-02 US US14/474,564 patent/US20150284834A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0368082A2 (fr) * | 1988-11-08 | 1990-05-16 | H.C. Starck GmbH & Co. KG | Poudre métallique de molybdène et son procédé de préparation |
US7361386B2 (en) | 2002-07-22 | 2008-04-22 | The Regents Of The University Of California | Functional coatings for the reduction of oxygen permeation and stress and method of forming the same |
US20080090071A1 (en) * | 2004-10-21 | 2008-04-17 | Commissariat A L'energie Atomique | Nanosturctured Coating and Coating Method |
US20060165910A1 (en) * | 2005-01-21 | 2006-07-27 | Cabot Corporation | Processes for forming nanoparticles |
GB2426010A (en) * | 2005-05-14 | 2006-11-15 | Jeffrey Boardman | Production of oxide coated metallic particles for use in semiconductor devices. |
US20100032619A1 (en) * | 2006-09-14 | 2010-02-11 | Rene Jabado | Method for producing a particle-containing functional layer and functional element comprising such a layer |
US20100080921A1 (en) * | 2008-09-30 | 2010-04-01 | Beardsley M Brad | Thermal spray coatings for reduced hexavalent and leachable chromuim byproducts |
Non-Patent Citations (2)
Title |
---|
AJDELSZTAJN ET AL., SURF. & COAT. TECH., vol. 201, 2007, pages 9462 - 9467 |
FUNK ET AL., MET. MAT. TRANS. A, vol. 42, no. 8, 2011, pages 2233 - 2241 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104451520A (zh) * | 2014-12-04 | 2015-03-25 | 中国船舶重工集团公司第十二研究所 | 一种氧化锆多晶团陶瓷涂层的制备方法 |
CN104451520B (zh) * | 2014-12-04 | 2017-08-01 | 中国船舶重工集团公司第十二研究所 | 一种氧化锆多晶团陶瓷涂层的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104160059A (zh) | 2014-11-19 |
EP2636763B1 (fr) | 2020-09-02 |
CA2864618A1 (fr) | 2013-09-12 |
CN104160059B (zh) | 2019-01-08 |
WO2013131874A1 (fr) | 2013-09-12 |
US20150284834A1 (en) | 2015-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150284834A1 (en) | Method for applying a high-temperature stable coating layer on the surface of a component and component with such a coating layer | |
Thakare et al. | Thermal barrier coatings—A state of the art review | |
Hsu et al. | On the study of thermal-sprayed Ni0. 2Co0. 6Fe0. 2CrSi0. 2AlTi0. 2 HEA overlay coating | |
Ghasemi et al. | Comparison of microstructure and mechanical properties of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings | |
US6284390B1 (en) | Thermal barrier coating system utilizing localized bond coat and article having the same | |
EP2971533B1 (fr) | Traitement de bout de pale de turbine pour des turbines à gaz industrielles | |
EP1829984B1 (fr) | Procédé de fabrication d'un revêtement de barrière thermique à forte densité | |
JP3579267B2 (ja) | 遮熱コーティング系用ボンディングコートの緻密化及び粒子間結合の促進方法 | |
US20160333455A1 (en) | Thermal Barrier Coating with Lower Thermal Conductivity | |
CN105951030B (zh) | 单晶合金表面双层结构粘结层及其制备方法 | |
JP7232295B2 (ja) | 基材上に高温保護層を接合するための付着促進層、並びにそれの製造方法 | |
CA2772227A1 (fr) | Composant d'une turbomachine et methode de fabrication d'un tel composant | |
JP7377201B2 (ja) | メカニカルアロイングによる金属溶射コーティング材料およびその材料を利用した溶射コーティング方法 | |
JP2003041358A (ja) | 金属基体に断熱コーティングシステムを付与する方法 | |
WO2012029540A1 (fr) | Film de revêtement de protection thermique ainsi que procédé de fabrication de celui-ci, et élément en alliage résistant à la chaleur mettant en œuvre ce film | |
Yamano et al. | Oxidation control with chromate pretreatment of MCrAlY unmelted particle and bond coat in thermal barrier systems | |
NL2018995B1 (en) | Self-healing particles for high temperature ceramics | |
Stolle | Conventional and advanced coatings for turbine airfoils | |
Ashofteh et al. | Effect of nano-structuration and compounding of YSZ APS TBCs with different thickness on coating performance in thermal shock conditions | |
Zhou et al. | Effects of shot peening process on thermal cycling lifetime of TBCs prepared by EB-PVD | |
Koomparkping et al. | Al-rich precipitation in CoNiCrAlY bondcoat at high temperature | |
JP5905355B2 (ja) | 発電用ガスタービン翼の製造方法 | |
RU2774991C2 (ru) | Механически легированный материал для металлического газотермического покрытия и использующий его способ газотермического напыления | |
Azarmi et al. | How Al and Ta Diffusion Responses the Oxidation of NiCoCrAlYTa Coatings: Experiments | |
KR101377750B1 (ko) | 확산방지 니켈층을 갖는 니켈기 합금 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131024 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: ANSALDO ENERGIA SWITZERLAND AG |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170807 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 602012072055 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C23C0004020000 Ipc: C23C0004110000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 4/12 20160101ALI20200316BHEP Ipc: C23C 4/073 20160101ALI20200316BHEP Ipc: C23C 4/10 20160101ALI20200316BHEP Ipc: C23C 4/02 20060101ALI20200316BHEP Ipc: C23C 4/08 20160101ALI20200316BHEP Ipc: C23C 4/11 20160101AFI20200316BHEP Ipc: C23C 4/134 20160101ALI20200316BHEP |
|
INTG | Intention to grant announced |
Effective date: 20200331 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GRASSO, PIERO-DANIELE Inventor name: STANKOWSKI, ALEXANDER Inventor name: DUVAL, SOPHIE BETTY CLAIRE Inventor name: OLLIGES, SVEN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1308889 Country of ref document: AT Kind code of ref document: T Effective date: 20200915 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012072055 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201203 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201202 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1308889 Country of ref document: AT Kind code of ref document: T Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210104 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210102 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012072055 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20210603 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210305 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210305 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210305 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210305 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120305 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240321 Year of fee payment: 13 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20240430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200902 |