EP2635853A1 - Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux - Google Patents

Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux

Info

Publication number
EP2635853A1
EP2635853A1 EP10771759.7A EP10771759A EP2635853A1 EP 2635853 A1 EP2635853 A1 EP 2635853A1 EP 10771759 A EP10771759 A EP 10771759A EP 2635853 A1 EP2635853 A1 EP 2635853A1
Authority
EP
European Patent Office
Prior art keywords
channel arrangement
cooling channels
channel
heat
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10771759.7A
Other languages
German (de)
English (en)
Inventor
Hans Keife
Petri Konttinen
Anders Falkenö
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aurubis AG
Original Assignee
Aurubis AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aurubis AG filed Critical Aurubis AG
Publication of EP2635853A1 publication Critical patent/EP2635853A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/70Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits
    • F24S10/75Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations
    • F24S10/753Solar heat collectors using working fluids the working fluids being conveyed through tubular absorbing conduits with enlarged surfaces, e.g. with protrusions or corrugations the conduits being parallel to each other
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Definitions

  • the channel arrangement comprises preferably a material with high thermal conductivity, such as copper, alumi num, etcetera, wherein the inner heat conducting parts are adapted to conduct heat to the channels.
  • the channels are adapted to conduct a fluid in form of a cooling medium.
  • the channel arrangement is adapted to be exposed to solar radiation and absorb at least a portion of the energy from the solar radiation, convert the energy of the solar radiation i nto heat and transfer the heat away from the channel arrangement.
  • the size of the cross section of the cooling channels shall be as large as possi ble in order to allow a large quantity of the fluid to stream through the channel .
  • the pressure of the streami ng fl uid shall preferably be as high as possible in order to transfer a large portion of the heat away from the body of the channel arrangement.
  • the object of the present invention is to provide a channel arrangement for solar absorbers with improved heat transfer efficiency.
  • the first ratio is in the range of 0,82 - 0,86.
  • the range of the first ratio provides the most advantageous efficiency in relation to the material consumption of the channel arrangement.
  • a body with a high thermal conductivity is advantageous for the efficiency when the channel arrangement is used in a solar ab- sorber.
  • the high thermal conductivity promotes the heat transfer rate from the inner heat conducting part to the cooling channels.
  • the cooling channels are oval with a certain length of the major axis and the inner heat conducting part separates the cooling channels with a certain distance from each other, wherein a third ratio between the length of the major axis and said distance between the channels is in the range 0,10 - 0,30, preferably in the range 0,15 - 0,20.
  • the body comprises two outer heat conductive parts that are located at a first side respectively a second side of the body, wherein each of the outer heat conductive parts has a certain width that forms the respective side of the body of the channel arrangement.
  • the outer heat conductive parts have the same width.
  • the cross section area of each channel is between 5-15 mm 2 , preferably between 7-10 mm 2 .
  • the strength and rigidity of the inner heat conducting part is increased in relation to the cooling channel .
  • the channel arrangement is constructed by the first and the second material , the strength of the cooling channel can be optimized in relation to both the inner heat conducting part and to the pressure mai ntaining capacity of the cooling channels.
  • the first material is aluminum, or an alloy thereof, and the second material is copper, or an alloy thereof.
  • the first material is iron, or an alloy thereof, and the second material is copper, or an alloy thereof.
  • the first material is stainless steel .
  • the chan nels have an i nternal surface adapted to be in contact with the fluid , wherei n the internal surface comprises a surface enhancement with grooves and projections.
  • Fig. 1-2 shows a channel arrangement for a solar absorber according to a first embodiment of the invention.
  • Fig. 1a shows the channel arrangement in a perspective view.
  • Fig. 1b shows the channel arrangement viewed from above.
  • Fig. 1c shows the channel arrangement viewed from a first side parallel with a longitudinal axis of channels of the channel arrangement.
  • Fig. 2b shows an enlargement of a channel of the channel arrangement in fig.2a.
  • Fig. 3a-3d shows a channel arrangement for a solar absorber according to a second embodiment of the invention.
  • Fig.3a shows the channel arrangement in a perspective view.
  • Fig.3b shows the channel arrangement viewed from above.
  • Fig.3c shows the channel arrangement viewed from a first side parallel with a longitudinal axis of channels of the channel arrangement.
  • Fig.3d shows an enlargement of an edge part of the channel arrangement in fig.3a.
  • Fig.4a shows a collective tube with openings for receiving cool- ing channels of the channel arrangement in fig.3a-3d.
  • Fig.4b shows a collective tube with openings for receiving cooling channels of the channel arrangement in fig.3a-3d.
  • Fig.5 shows the channel arrangement in fig.3a-3d attached to the collective tube in fig.4a4b.
  • Figure 1 shows a channel arrangement 1 for a solar absorber according to an embodiment of the invention.
  • the channel arrangement 1 is seen in a perspective view in fig. 1a, in a view from above in fig. 1b, and in a side view in fig. 1c.
  • Each of the three cooling channels 10 extends along a longitudinal axis L1.
  • the body 5 comprises a first side S1, a second side S2, a third side S3 and a forth side S4.
  • the first side S1 and the second side S2 are parallel with the longitudinal axis L1.
  • the third side S3 and the fourth side S4 are perpendicular to the longitudinal axis L1.
  • the body 5 further comprises a plurality of inner heat conducting parts 12 and two outer heat conducting parts 14.
  • the body comprises two inner heat conducting parts 12 and two outer heat conducting parts 14.
  • Each of the two inner heat conducting parts 12 is located between two of the cooling chan- nels 10.
  • the two outer heat conducting parts 14 forms the first side S1 respectively at the second side S2 of the body 5.
  • Each of the i nner heat conducting parts 12 separates two adjacent cooling channels 10 from each other by means of that each of the inner heat conducting parts 1 2 has a width W 1 .
  • the two inner heat conducti ng parts 12 have preferably the same width
  • Each of the outer heat conductive parts 14 has a certai n width W2 that forms the respective side of the body 5 of the channel arrangement 1 .
  • the two outer heat conductive parts 14 have the same width W2.
  • the body 5 of the channel arrangement 1 comprises a first metal profile and a second metal profile.
  • the first and the second metal profile are attached to each other by a plurality of joints 20.
  • Two joints 20 are arranged on opposite sides of each cooling channel 10.
  • Joints are also arranged on the first side S 1 and the second side S2.
  • the joints between the first and the second metal profile are manufactured by means of clad-rolling .
  • Figure 2a shows the channel arrangement 1 in figure 1 a - 1 c viewed from the third side S3.
  • Figure 2b shows an enlargement of a channel of the channel arrangement 1 at the enclosed area in fig . 2a.
  • Fig . 2a-2b comprises dimensional numbers of an embodiment of the invention. It shall be understood that the dimen- sional numbers are merely a preferable embodiment and shall not be interpreted as limiting to the scope of protection.
  • Each of the cooling channels 10 comprises a first cross section area A1 for conducting the fluid.
  • the inner heat conducting parts 12 comprises material with a second cross section area A2.
  • a first ratio between the first cross section area A1 and the second cross section area A2 is in the range of 0,7 - 0,9.
  • the first ratio is in the range of 0,82 - 0,86.
  • the body 5 of the channel arrangement 1 preferably comprises a metal with a high thermal conductivity.
  • the metal is copper or a copper alloy that has a thermal conductivity higher than 340 W/(m K).
  • FIG.2b an enlargement of a cooling channel 10 of the channel ar-rangement 1 in fig. 2a is shown.
  • the cooling channel comprises a an ovality by means of that the channel 10 comprises a major axis "a" and minor axis "b" that are perpendicular to the longitudinal axis L1 and mutually perpendicular to each other.
  • the ovality is defined as the ratio: 2(a-b)/(a+b).
  • the ovality of the cooling channel 10 is between 0,10 and 0,15.
  • Both the first side S1 and the second side S2 comprise the edge part with the L-shaped flange 30.
  • the flange 35 protrudes perpendicular to the outer heat conducting part 14.
  • Fig.5 shows the channel arrangement 1 in fig.3a-3d attached to a collective tube 30.
  • the forth side S4 of the channel arrangement 1 is attached to the collective tube 30.
  • the attachment between the cooling channels 10 and the collective tube 30 is established by means of soldering, brazing, welding, gluing, shrink fitting, etcetera.
  • the invention is not limited to the disclosed embodiments but may be varied within the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Abstract

La présente invention concerne un agencement de canaux (1) pour un absorbeur solaire. L'agencement de canaux (1) comprend une surface (3) conçue pour être exposée au rayonnement solaire et pour transformer ce rayonnement en chaleur, et un corps (5) conçu pour absorber la chaleur provenant de la surface (3). Le corps (5) comprend deux canaux de refroidissement (10) ou plus permettant de conduire un fluide, lequel fluide absorbe la chaleur provenant du corps (5) et transfère la chaleur à l'écart du corps (5), au moins une partie thermoconductrice interne (12) entre les canaux de refroidissement (10) étant conçue pour conduire la chaleur vers les canaux de refroidissement. Chaque canal de refroidissement comporte une première coupe transversale (A1) permettant de conduire le fluide et la ou les parties thermoconductrices internes (12) comprennent un matériau comportant une seconde coupe transversale (A2), un premier rapport entre la première coupe transversale (A1) et la seconde coupe transversale (A2) se trouvant dans la plage allant de 0,7 à 0,9.
EP10771759.7A 2010-11-02 2010-11-02 Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux Withdrawn EP2635853A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2010/066576 WO2012059123A1 (fr) 2010-11-02 2010-11-02 Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux

Publications (1)

Publication Number Publication Date
EP2635853A1 true EP2635853A1 (fr) 2013-09-11

Family

ID=44624882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10771759.7A Withdrawn EP2635853A1 (fr) 2010-11-02 2010-11-02 Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux

Country Status (2)

Country Link
EP (1) EP2635853A1 (fr)
WO (1) WO2012059123A1 (fr)

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB869747A (en) * 1958-09-09 1961-06-07 Sun Heaters Ltd Improvements in absorbers of solar energy
DE2528267A1 (de) * 1975-06-25 1977-01-20 Buderus Eisenwerk Vorrichtung zur uebertragung von sonnenenergie an ein fluessiges medium
US4083093A (en) * 1975-08-08 1978-04-11 Chertok Burton Z Multiple material solar panel and method and apparatus for manufacturing the same
US3987784A (en) * 1975-08-21 1976-10-26 Kennecott Copper Corporation Solar energy absorber panel
DE2603506A1 (de) * 1976-01-30 1977-08-11 Jenaer Glaswerk Schott & Gen Flaechige sonnenenergiesammler mit absorberplatten aus glashohlfasern
US4072262A (en) * 1977-04-04 1978-02-07 Kennecott Copper Corporation Method of fabricating a solar heating unit
FR2417730A1 (fr) * 1978-02-17 1979-09-14 Dearo Jerome Methode de fabrication et de montage permettant de realiser des capteurs solaires dans differents materiaux de toutes formes et dimensions et pouvant servir de toitures
AT380105B (de) * 1984-04-03 1986-04-10 Solkav Solartechnik Ges M B H Rohr- oder schlauchwaermetauscher
DE10043295C1 (de) * 2000-09-02 2002-04-25 Rheinzink Gmbh Heliothermischer Flachkollektor-Modul
DE20022009U1 (de) * 2000-12-27 2001-03-01 Rheinzink GmbH & Co. KG, 45711 Datteln Heliothermischer Flachkollektor-Modul
DE20216297U1 (de) * 2002-10-23 2003-01-09 Rheinzink GmbH & Co. KG, 45711 Datteln Heliothermischer Flachkollektor-Modul in Sandwichbauweise
EP1688683A1 (fr) * 2005-01-06 2006-08-09 Fenis Teknik Ürünler A.S. Collecteur solaire léger et de rendement élevé, fait de papier d'aluminium avec une surface selective
CN2893537Y (zh) * 2006-03-24 2007-04-25 陈壬洲 可同时作为热水供应以及消防的装置
DE102008026163A1 (de) * 2008-05-30 2009-12-03 Melidis, Paris Solarkollektorpanel, sowie unter Einschluss desselben gefertigtes Kollektorsystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012059123A1 *

Also Published As

Publication number Publication date
WO2012059123A1 (fr) 2012-05-10

Similar Documents

Publication Publication Date Title
ES2745858T3 (es) Receptor para sistemas de energía solar FV/T
RU2016105525A (ru) Корпус солнечного коллектора для системы концентрации солнечной энергии и способ изготовления корпуса солнечного коллектора
WO2006017885B1 (fr) Systeme de panneau collecteur solaire
JP2010144957A (ja) 太陽熱集熱方法及び装置
WO2012059123A1 (fr) Agencement de canaux pour un absorbeur solaire, absorbeur solaire et utilisation d'un agencement de canaux
CN201203279Y (zh) 高温真空集热管
CN102159903B (zh) 微通道管太阳能集热器
US20090064992A1 (en) Absorber for a solar heating panel
CN204612193U (zh) 一种集热器
CN205300348U (zh) W型鳍片管
JP2009275451A (ja) 太陽集熱器一体型の屋根用折板及び屋根
CN202630477U (zh) 一种集热板芯及采用该集热板芯的平板型太阳能集热器
RU2007118034A (ru) Плоский солнечный коллектор для работы в условиях северных территорий на основе теплоприемной панели, выполненной из материалов со специальными свойствами
CN206944509U (zh) 平板太阳能集热器用集热翅片
CN206944510U (zh) 一种应用于太阳能集热器的免焊翅片
EP2096376A3 (fr) Absorbeur métallique extrudé pour collecteur solaire
CN210896914U (zh) 一种散热性能好的变压器油箱
CN205919565U (zh) 一种太阳能热泵悬挂式散热片
JP2005283092A (ja) 太陽熱集熱兼放射器およびその製造方法
CN110648819A (zh) 一种散热效果好的变压器
CN102650473B (zh) 一种集热板芯及采用该集热板芯的平板型太阳能集热器
CN217844330U (zh) 一种太阳能真空集热管及太阳能热水器
CN219433892U (zh) 一种散热水管
CN107238217A (zh) 基于太阳能的集热翅片
CN107289648A (zh) 基于太阳能的集热翅片

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130402

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140115