EP2634273A1 - Oxidation method - Google Patents

Oxidation method Download PDF

Info

Publication number
EP2634273A1
EP2634273A1 EP13162488.4A EP13162488A EP2634273A1 EP 2634273 A1 EP2634273 A1 EP 2634273A1 EP 13162488 A EP13162488 A EP 13162488A EP 2634273 A1 EP2634273 A1 EP 2634273A1
Authority
EP
European Patent Office
Prior art keywords
alloy
heat treatment
temperature
carried out
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP13162488.4A
Other languages
German (de)
French (fr)
Other versions
EP2634273B1 (en
EP2634273B8 (en
Inventor
Bernd Dr. Kempf
Gunther Wiehl
Werner Roth
Andreas Koch
Peter Dr. Braumann
Ralf Niederreuther
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saxonia Technical Materials GmbH
Original Assignee
Umicore AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore AG and Co KG filed Critical Umicore AG and Co KG
Priority to EP13162488.4A priority Critical patent/EP2634273B8/en
Publication of EP2634273A1 publication Critical patent/EP2634273A1/en
Publication of EP2634273B1 publication Critical patent/EP2634273B1/en
Application granted granted Critical
Publication of EP2634273B8 publication Critical patent/EP2634273B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0466Alloys based on noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1078Alloys containing non-metals by internal oxidation of material in solid state
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/06Alloys based on silver
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon

Definitions

  • the present invention relates to a novel process for producing metal composites by internal oxidation.
  • Metal composites have been known for some time and are used in many fields. These include, for example, oxide-dispersed metals, such as yttria-refractory refractory metals for fine grain stabilization. In other areas such materials have become established on the basis of silver, in particular in the field of contact materials.
  • US-A-5207842 describes silver-based materials obtained by mixing silver metal powder with powder of tin oxide and tellurium oxide and then pressing and sintering. Such silver and tin oxide based materials are well suited as contact materials.
  • Sakairi et al. describes in Holm Conferences on Electrical Contacts 1982, pages 77-85 a process for the internal oxidation of silver alloys.
  • internal oxidation is meant a process in which an alloy of silver with less noble metals is subjected to oxidizing conditions, thereby causing oxidation of the less noble metals, but not of the silver.
  • the materials had to be heat treated to make them workable.
  • the internal oxidation was carried out for one week at 450 ° C in a pure oxygen atmosphere at a pressure of 9 atmospheres.
  • US 4243413 shows a silver-tin oxide contact material containing oxides of tin, nickel and indium. The internal oxidation was carried out for 40 hours at 700 ° C under 10 atm overpressure.
  • EP-A-508 055 shows silver-based contact materials obtained by internal oxidation of alloys of 4-11 wt.% tin, 1-5 wt.% indium, 0.05 to 4 wt.%, and optionally 0.01-1 wt.% iron , Nickel or cobalt and / or 0.05 to 3 wt .-% cadmium, remainder silver, can be obtained.
  • the internal oxidation is carried out in an oxidizing atmosphere at 650 ° C to 750 ° C for 8 to 26 hours.
  • the oxidizable alloying element of the first alloy is selected from the group consisting of indium, tellurium, bismuth, nickel, copper, zinc, tin, gallium, germanium, selenium, manganese, magnesium, aluminum, antimony, lead, and combinations thereof.
  • the total amount of oxidizable alloying elements is generally from 5% to 15% by weight.
  • Tin is preferably used in amounts of from 5% to 15% by weight, preferably at least 8% by weight, of tin as the oxidisable alloying element, so that tin oxide contents of from 5% by weight to 18% by weight, in particular tin oxide contents from 8 to 14% by weight after the internal oxidation.
  • tin contents of above 7% by weight, in particular above 8% by weight or 9% by weight it is advantageous to add up to 5% by weight of indium.
  • Zinc and tin are sufficiently similar so that in the present invention tin can be substituted with zinc. In this case, when using zinc instead of tin, the addition of indium is often unnecessary.
  • alloys of silver and tin or silver and zinc results in contact materials that are already well suited for many purposes, even at tin or zinc contents of 6.7 wt .-% to 8.5 wt .-%.
  • the indium content may be from 2 wt% to 15 wt%, more preferably from 1 wt% to 5 wt%, or from 1.5 wt% to 3 wt%.
  • tellurium in amounts of 0.05 wt .-% to 4 wt .-%, advantageously 0.05 wt .-% to 0.8 wt .-% or from 0.1 wt .-% to 1% by weight.
  • bismuth can also be used in principle in equal amounts, more preferably in amounts of from 0.005% by weight to 0.06% by weight.
  • Further advantageous added elements are iron, nickel, cobalt or copper, individually or in combination with each other.
  • Each of these elements may be used in amounts of from 0.001% to 1% by weight, preferably from 0.05 to 0.2 or from 0.03 to 0.5 wt .-% are used.
  • Particularly preferred are nickel and copper. Particular preference is given to using 0.03% by weight to 0.5% by weight of nickel or 0.05% by weight to 0.9% by weight of copper.
  • iron, nickel, cobalt, copper are present together in amounts of usually less than 1.5 wt .-%.
  • the first alloy is advantageously an alloy of 4-11% by weight of tin, 1-6% by weight of indium, 0.05 to 4% by weight of tellurium, and optionally 0.01-1% by weight of iron, nickel , Cobalt or combinations thereof, and / or 0.05 to 3 wt .-% cadmium, ad 100 wt .-% silver and unavoidable impurities. Because of its toxicity, cadmium is generally no longer used today and is therefore advantageously not used.
  • Particularly suitable as a first alloy are silver alloys of 5.1 to 9 wt% tin, 1.5 to 5 wt% indium, 0.05 to 0.8 wt% tellurium, optionally 0.03 to 0 , 5% by weight of nickel, 0.05 to 0.9% by weight of copper and ad 100% by weight of silver and unavoidable impurities.
  • tellurium 0.005 to 0.06 wt .-% bismuth can be used.
  • first alloy is alloys with 5 wt .-% to 8 wt .-% tin, 1.5 wt .-% to 3 wt .-% indium, 0.1 wt .-% to 1 wt .-% tellurium , 0.05% to 0.2% by weight iron and 100% by weight silver and unavoidable impurities.
  • Particularly suitable as a first alloy are silver alloys of 5.1 to 9 wt% tin, 1.5 to 5 wt% indium, 0.05 to 0.8 wt% tellurium, optionally 0.03 to 0 , 5% by weight of nickel, 0.05 to 0.9% by weight of copper and ad 100% by weight of silver and unavoidable impurities.
  • tellurium 0.005 to 0.06 wt .-% bismuth can be used.
  • first alloy is alloys with 5 wt .-% to 8 wt .-% tin, 1.5 wt .-% to 3 wt .-% indium, 0.1 wt .-% to 1 wt .-% tellurium 0.05% to 0.2% by weight iron and 100% by weight silver and unavoidable impurities; or 5 wt% to 8 wt% tin, 1.5 wt% to 3 wt% indium, 0.1 wt% to 1 wt% tellurium, 0.05 wt% to 0.2% by weight of cobalt and 100% by weight of silver and unavoidable impurities; or 5.2 wt% to 8 wt% tin, 2.8 wt% to 3.9 wt% indium, 0.5 wt% to 0.75 wt% tellurium, 0 From 0.8% to 1.2% by weight of nickel and from 100% by weight of silver and unavoidable impurities; or 5.2 w
  • compositions and resulting contact materials are known in principle.
  • the enlargement of the surface of the first alloy may be effected by grinding, gas atomizing, liquid atomizing, granulating, wire drawing, sheet metal rolling, extrusion, cutting, extruding, extrusion and combinations thereof.
  • the first alloy may be extruded into wire or a sheet metal profile and then cut, or sheets may be rolled and then cut into strips.
  • an enlargement of the surface is important, but also a reduction in the thickness of the outside to be penetrated with oxygen thickness of the metal particles, which are to be subjected to the internal oxidation in the second heat treatment.
  • the second alloy has a BET specific surface area of 0.75 to 100 cm 2 / g.
  • the second alloy may be coated with silver.
  • the first heat treatment is carried out under reducing conditions at a temperature of at least 350 ° C.
  • the upper limit of the temperature for this process step is 5 ° C below the solidus temperature of the first or second alloy.
  • This first heat treatment is carried out for a period of 15 seconds to 3 hours, especially 30 minutes to 90 minutes. A longer heat treatment is harmless, but usually brings no further benefits.
  • the heat treatment of the second alloy is carried out under a reducing atmosphere. Suitable as a reducing atmosphere are, for example, hydrogen, carbon monoxide, hydrocarbons, methane, nitrogen, noble gas or mixtures thereof.
  • the pressure in the first heat treatment is less than 2 bar, preferably is carried out at atmospheric pressure.
  • the easiest way is usually a procedure in which the second alloy is heat-treated at atmospheric pressure in a stream of the reducing atmosphere, that is, for example, forming gas.
  • the third alloy is obtained, which is advantageously after the first heat treatment in an inert or reducing atmosphere to a temperature of less than 200 ° C, preferably room temperature, cooled.
  • the second heat treatment which can be done directly afterwards.
  • the third alloy need not be further processed immediately and may be handled or stored in air for a limited time and subjected to this process step at a later date.
  • rapid further processing, in particular directly following the first heat treatment is advantageous.
  • the first heat treatment may be performed in a retort furnace, after cooling, the reducing atmosphere is replaced by an oxidizing atmosphere, and the second heat treatment is performed so that no contact with the air takes place.
  • the first heat treatment may be performed in a push-through furnace with a temperature gradient.
  • the reaction mixture is e.g. pushed through the oven in a graphite crucible.
  • the crucible After passing through the push-through furnace in a reducing atmosphere, the crucible, after cooling to 200 ° C. or below, can be taken out and, after a short time in the air, passed through a second push-through furnace having an oxidizing atmosphere for carrying out the second heat treatment. In this procedure, a more or less long contact with the air takes place.
  • the internal oxidation of the third alloy takes place in an oxidizing atmosphere and the fourth alloy is obtained.
  • This internal oxidation causes the conversion of an alloy into a composite of silver and the oxides of the oxidizable alloying elements (referred to herein as the fourth alloy).
  • the second heat treatment is carried out at a temperature of at least about 500 ° C. Maximum should be worked at 150 ° C below the solidus, advantageously up to 5 ° C below the solidus temperature of the first, second or third alloy. These temperatures are not significantly different since the first, second and third alloys are chemically substantially equal.
  • the second heat treatment is carried out at temperatures of about 500 ° C to about 800 ° C, preferably 600 ° C to 750 ° C, especially 650 ° C to 730 ° C.
  • the heat treatment is continued until the internal oxidation has completely expired.
  • the duration of the second heat treatment is about 10 hours to about 7 days, advantageously 12 to 72 hours, especially 12 to 48 hours, for example 24 hours.
  • the time may also be calculated depending on the selection of the process parameters and the alloy composition or be tracked in the course of the reaction.
  • the reaction can be followed well gravimetrically. The completion of the reaction can be detected in the finished (intermediate) product by making a cut and a light microscopic examination.
  • the second heat treatment can in principle be carried out in all furnaces which are usable under the temperatures, atmospheres and times.
  • the third alloy may be subjected to the conditions of the second heat treatment in various vessels, for example the third alloy may be subjected to the second heat treatment as a bed of powders, wire or sheet sections in an open crucible, ceramic crucible or metal container, a porous one , loose sintered body or molded body is formed.
  • sheet metal or wire sections it is also possible to singulate in a reaction vessel or to carry out the heat treatment in a rotary kiln. This optimizes contact with the oxidizing atmosphere and facilitates rapid and complete internal oxidation.
  • the second heat treatment is carried out in an oxidizing atmosphere, advantageously an oxygen-containing atmosphere containing elemental oxygen (O 2 ), nascent oxygen, ozone, nitrogen, noble gas or mixtures thereof.
  • an oxygen-containing atmosphere containing elemental oxygen (O 2 ), nascent oxygen, ozone, nitrogen, noble gas or mixtures thereof.
  • Advantageous are oxygen or air.
  • the second heat treatment is carried out at a pressure of less than 2 bar, advantageously at about atmospheric pressure. It is often simplest to carry out the second heat treatment in a stream of the oxygen-containing atmosphere (ie air or oxygen) at approximately atmospheric pressure, for example under ambient pressure.
  • the partial pressure of oxygen is at least 80% of the total pressure.
  • the second heat treatment is carried out in two temperature stages, wherein this is carried out at a first temperature in the range of at least 500 ° C to at most 150 ° C below the solidus temperature of the first alloy for a first period of time and at a second temperature of 500 ° C to 40 ° C below the solidus temperature, but a maximum of 5 ° C below the solidus temperature of the first alloy for a second period of time is performed.
  • the process variant is carried out at a pressure of less than 2 bar, advantageously approximately at atmospheric pressure and advantageously in a stream of the oxygen-containing atmosphere (ie air or oxygen) at about atmospheric pressure such. under ambient pressure.
  • the partial pressure of oxygen is also at least 80% of the total pressure.
  • the second temperature is higher than the first temperature and is about 500 ° C to about 800 ° C, preferably 600 ° C to 750 ° C, especially 650 ° C to 730 ° C.
  • the first time period is 30 to 240 minutes and the second time period 10 hours to 7 days is advantageously 12 to 72 hours, in particular 12 to 48 hours, for example 24 hours.
  • the required time period can be calculated or the course of the reaction can be followed by measurement, for example by gravimetry, until the reaction is complete. For example, with a wire having a thickness of 2.1 mm, the internal oxidation is completed after about 100 hours, with a wire having a thickness of 1.4 mm as early as 60 hours when starting from a material with 14% by weight total oxide content becomes. At a total oxide content of 10 wt .-%, the required reaction time is about 30% shorter.
  • the fourth alloy contains at least one oxide selected from the group consisting of tin oxide, indium oxide, tellurium oxide, bismuth oxide, nickel oxide, copper oxide, zinc oxide, gallium oxide, germanium oxide, selenium dioxide, manganese dioxide, magnesium oxide, aluminum oxide, lead oxide and mixtures thereof. These oxides were formed from the alloy components of the third alloy in the course of the second heat treatment during which the internal oxidation took place.
  • the fourth alloy advantageously contains more than 12% by weight of oxide.
  • the fourth alloy is cooled after the second heat treatment, usually to a temperature of less than 200 ° C or to room temperature.
  • this fourth alloy is preferably subjected to a third heat treatment to obtain a fifth alloy.
  • the third heat treatment is carried out at 900 ° C to 970 ° C, or 910 ° C to 960 ° C performed.
  • the third heat treatment is carried out for 2 to 40, especially 10 to 20 hours. In this case, Ostwald ripening of the finely divided oxides occurs, thereby increasing conductivity and ductility, so that workability is greatly improved.
  • This third heat treatment will
  • the fourth or fifth alloy may be further processed to produce contact workpieces.
  • the fourth or possibly the fifth alloy is extruded and further deformed by plating or wire drawing, depending on the shape of the desired contact workpieces.
  • the silver alloys listed in the tables are melted in an induction furnace and cast into bolts.
  • the stated contents of oxidizable alloying elements are given in% by weight, the silver content is ad 100% by weight.
  • These bolts are extruded into wires having an average diameter of about 2 mm and cut into sections about 7 mm in length.
  • these wire sections were placed in a box furnace in a stream of forming gas having a hydrogen content of 5% at ambient pressure of a first heat treatment (1st WB) below the times (t) and Temperatures (T), then shut off the furnace and allowed to cool to less than 200 ° C under flowing forming gas, then reheated in flowing, clean oxygen and subjected to the second heat treatment (2nd WB) under the times indicated in the table (t ) and temperatures (T). Subsequently, if necessary, a third heat treatment was carried out under air, (3. WB) under the times given in the table (t) and temperatures (T). Times are given in hours, temperatures in degrees Celsius.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Contacts (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

The method comprises increasing a surface area of a first alloy containing silver and an oxidizable alloying element to obtain a second alloy, performing a first heat treatment of the second alloy at a reducing atmosphere to obtain a third alloy, and performing a second heat treatment of the third alloy in an oxygen containing atmosphere to obtain fourth alloy. The second heat treatment is carried out in two temperature stages. The second heat treatment is carried out at a first temperature of 150-500[deg] C below a solidus temperature of the first alloy for a first time period of 30-240 minutes. The method comprises increasing a surface area of a first alloy containing silver and an oxidizable alloying element to obtain a second alloy, performing a first heat treatment of the second alloy at a reducing atmosphere to obtain a third alloy, and performing a second heat treatment of the third alloy in an oxygen containing atmosphere to obtain fourth alloy. The second heat treatment is carried out in two temperature stages. The second heat treatment is carried out at a first temperature of 150-500[deg] C below a solidus temperature of the first alloy for a first time period of 30-240 minutes and at a second temperature of 5-500[deg] C below the solidus temperature of the first alloy for a second time period of 10 hours to 7 days. The second temperature is higher than the first temperature. The first heat treatment is carried out at a temperature of 5-350[deg] C below the solidus temperature of the first alloy for 15 seconds to 3 hours. The first and second heat treatments are further carried out under a pressure of less than 2 bars. The alloy is subjected at a temperature of 900-970[deg] C for 2-40 hours to obtain a fifth alloy, after the heat treatment of third alloy. The step of increasing the surface area of the first alloy is carried out by grinding, gas atomization, liquid atomization, granulation, manipulation, rolling sheets, extrusion, cutting, and/or extrusion process. The fourth and/or fifth alloy is pressed, sintered and optionally formed by extrusion molding.

Description

Die vorliegende Erfindung betrifft ein neues Verfahren zur Herstellung von Metall-Verbundwerkstoffen durch innere Oxidation.The present invention relates to a novel process for producing metal composites by internal oxidation.

Metall-Verbundwerkstoffe sind seit Längerem bekannt und finden in zahlreichen Gebieten Anwendung. Hierzu gehören beispielsweise oxiddispergierte Metalle, wie mit Yttriumoxid versehene Refraktärmetalle zur Feinkornstabilisierung. In anderen Gebieten haben sich derartige Werkstoffe auf Basis von Silber durchgesetzt, insbesondere auf dem Gebiet der Kontaktwerkstoffe.Metal composites have been known for some time and are used in many fields. These include, for example, oxide-dispersed metals, such as yttria-refractory refractory metals for fine grain stabilization. In other areas such materials have become established on the basis of silver, in particular in the field of contact materials.

US-A-5207842 beschreibt silberbasierende Materialien, welche durch Mischen von Silbermetallpulver mit Pulver aus Zinnoxid und Telluroxid und anschließendes Pressen und Sintern erhalten wurde. Derartige auf Silber und Zinnoxid basierende Werkstoffe sind gut als Kontaktmaterialien geeignet. US-A-5207842 describes silver-based materials obtained by mixing silver metal powder with powder of tin oxide and tellurium oxide and then pressing and sintering. Such silver and tin oxide based materials are well suited as contact materials.

Sakairi et al. beschreibt in Holm Conferences on Electrical Contacts 1982, Seiten 77-85 ein Verfahren zur inneren Oxidation von Silberlegierungen. Unter innerer Oxidation versteht man ein Verfahren, bei welchem eine Legierung von Silber mit unedleren Metallen oxidierenden Bedingungen ausgesetzt wird, wodurch eine Oxidation der unedleren Metalle, nicht jedoch des Silbers bewirkt wird. Auf diese Weise wurden Silber-Zinnoxid Werkstoffe welche fein verteiltes Zinnoxid in Mengen von 9,3 Gew.-% bis 11,7 Gew.-% enthielten, und Silber-Cadmiumoxid-Werkstoffe, welche fein verteiltes Cadmiumoxid in Mengen von 12,4 Gew.-% enthielten. Die Werkstoffe mußten wärmebehandelt werden, um sie verarbeitbar zu machen. Die innere Oxidation wurde eine Woche lang bei 450°C in reiner Sauerstoffatmosphäre bei einem Überdruck von 9 Atmosphären durchgeführt. Sakairi et al. describes in Holm Conferences on Electrical Contacts 1982, pages 77-85 a process for the internal oxidation of silver alloys. By internal oxidation is meant a process in which an alloy of silver with less noble metals is subjected to oxidizing conditions, thereby causing oxidation of the less noble metals, but not of the silver. In this way, silver-tin oxide materials containing finely divided tin oxide in amounts of 9.3 wt .-% to 11.7 wt .-%, and silver-cadmium oxide materials containing finely divided cadmium oxide in amounts of 12.4 wt .-% contained. The materials had to be heat treated to make them workable. The internal oxidation was carried out for one week at 450 ° C in a pure oxygen atmosphere at a pressure of 9 atmospheres.

US 4243413 zeigt ein Silber-Zinnoxid-Kontaktmaterial, welches Oxide von Zinn, Nickel und Indium enthielt. Die innere Oxidation wurde für 40 Stunden bei 700°C unter 10 atm Überdruck durchgeführt. US 4243413 shows a silver-tin oxide contact material containing oxides of tin, nickel and indium. The internal oxidation was carried out for 40 hours at 700 ° C under 10 atm overpressure.

EP-A-508055 zeigt silberbasierende Kontaktmaterialien, welche durch innere Oxidation von Legierungen aus 4-11 Gew.-% Zinn, 1-5 Gew.-% Indium, 0,05 bis 4 Gew.-% sowie optional 0,01-1 Gew.-% Eisen, Nickel oder Cobalt und/oder 0,05 bis 3 Gew.-% Cadmium, Rest Silber, erhalten werden können. Die innere Oxidation wird in oxidierender Atmosphäre bei 650°C bis 750°C für 8 bis 26 Stunden durchgeführt. EP-A-508 055 shows silver-based contact materials obtained by internal oxidation of alloys of 4-11 wt.% tin, 1-5 wt.% indium, 0.05 to 4 wt.%, and optionally 0.01-1 wt.% iron , Nickel or cobalt and / or 0.05 to 3 wt .-% cadmium, remainder silver, can be obtained. The internal oxidation is carried out in an oxidizing atmosphere at 650 ° C to 750 ° C for 8 to 26 hours.

Alle beschriebenen Herstellungsverfahren mittels innerer Oxidation werden unter Überdruck für einen vergleichsweise langen Zeitraum durchgeführt. Es wäre daher erstrebenswert, die Herstellung bei niedrigerem Druck wie zum Beispiel Normaldruck (d.H. ohne Anwendung von Überdruck) zu ermöglichen. Es war die Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung an sich bekannter silberbasierender Kontaktwerkstoffe bei niedrigerem Druck zur Verfügung zu stellen, ohne die vorteilhaften Eigenschaften der Werkstoffe signifikant zu beeinträchtigen.All internal oxidation processes described are carried out under overpressure for a comparatively long period of time. It would therefore be desirable to be able to produce at lower pressure, such as atmospheric pressure (i.e., without the use of overpressure). It was the object of the present invention to provide a process for the preparation of per se known silver-based contact materials at lower pressure, without significantly affecting the advantageous properties of the materials.

Diese Aufgabe wird gelöst durch ein Verfahren zur Herstellung von Materialien auf Basis von Silber, enthaltend die Schritte

  • Bereitstellen einer ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement;
  • Vergrößerung der Oberfläche der ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement, um eine zweite Legierung zu erhalten;
  • Erste Wärmebehandlung der zweiten Legierung, wobei die Wärmebehandlung in einer reduzierenden Atmosphäre durchgeführt wird, um eine dritte Legierung zu erhalten;
  • Zweite Wärmebehandlung der dritten Legierung, wobei die Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre durchgeführt wird, um eine vierte Legierung zu erhalten.
This object is achieved by a method for producing materials based on silver, comprising the steps
  • Providing a first alloy containing silver and at least one oxidizable alloying element;
  • Enlarging the surface of the first alloy containing silver and at least one oxidizable alloying element to obtain a second alloy;
  • First heat treatment of the second alloy, wherein the heat treatment is performed in a reducing atmosphere to obtain a third alloy;
  • Second heat treatment of the third alloy, wherein the heat treatment is carried out in an oxygen-containing atmosphere to obtain a fourth alloy.

Kurze Beschreibung der ErfindungBrief description of the invention

  1. 1. Verfahren zur Herstellung von Materialien auf Basis von Silber, enthaltend die Schritte
    • Bereitstellen einer ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement;
    • Vergrößerung der Oberfläche der ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement, um eine zweite Legierung zu erhalten;
    • Erste Wärmebehandlung der zweiten Legierung, wobei die Wärmebehandlung in einer reduzierenden Atmosphäre durchgeführt wird, um eine dritte Legierung zu erhalten;
    • Zweite Wärmebehandlung der dritten Legierung, wobei die Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre durchgeführt wird, um eine vierte Legierung zu erhalten.
    A process for the preparation of silver-based materials comprising the steps
    • Providing a first alloy containing silver and at least one oxidizable alloying element;
    • Enlarging the surface of the first alloy containing silver and at least one oxidizable alloying element to obtain a second alloy;
    • First heat treatment of the second alloy, wherein the heat treatment is performed in a reducing atmosphere to obtain a third alloy;
    • Second heat treatment of the third alloy, wherein the heat treatment is carried out in an oxygen-containing atmosphere to obtain a fourth alloy.
  2. 2. Verfahren nach Punkt 1, wobei die erste Wärmebehandlung bei einer Temperatur von 350°C bis 5°C unterhalb der Solidustemperatur der ersten Legierung, insbesondere bei 650°C, durchgeführt wird.2. The method of item 1, wherein the first heat treatment at a temperature of 350 ° C to 5 ° C below the solidus temperature of the first alloy, in particular at 650 ° C, is performed.
  3. 3. Verfahren nach einem der vorstehenden Punkte, wobei die erste Wärmebehandlung für eine Zeitdauer von 15 Sekunden bis 3h durchgeführt wird.3. The method according to any one of the preceding claims, wherein the first heat treatment is carried out for a period of 15 seconds to 3 hours.
  4. 4. Verfahren nach einem der vorstehenden Punkte, wobei die erste Wärmebehandlung in einer reduzierenden Atmosphäre durchgeführt wird, die Wasserstoff, Kohlenmonoxid, Kohlenwasserstoffe, Methan, Stickstoff, ein Edelgas oder deren Mischungen enthält.4. The method according to any preceding item, wherein the first heat treatment is carried out in a reducing atmosphere containing hydrogen, carbon monoxide, hydrocarbons, methane, nitrogen, a noble gas or mixtures thereof.
  5. 5. Verfahren nach einem der vorstehenden Punkte, wobei die erste Wärmebehandlung in einem Strom einer reduzierenden Atmosphäre bei einem Druck von weniger als 2 bar durchgeführt wird.5. A method according to any one of the preceding claims, wherein the first heat treatment is carried out in a reducing atmosphere stream at a pressure of less than 2 bar.
  6. 6. Verfahren nach einem der vorstehenden Punkte, wobei die dritte Legierung nach der ersten Wärmebehandlung in einer inerten oder reduzierenden Atmosphäre auf eine Temperatur von weniger als 200°C, bevorzugt Raumtemperatur, abkühlt.6. The method according to any one of the preceding claims, wherein the third alloy after the first heat treatment in an inert or reducing atmosphere to a temperature of less than 200 ° C, preferably room temperature, cooled.
  7. 7. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Wärmebehandlung bei einer Temperatur von 500°C bis zu einer Temperatur von 150°C unterhalb der Solidustemperatur, insbesondere 5°C unterhalb der Solidustemperatur der ersten Legierung durchgeführt wird.7. The method according to any one of the preceding points, wherein the second heat treatment at a temperature of 500 ° C to a temperature of 150 ° C below the solidus, in particular 5 ° C below the solidus temperature of the first alloy is performed.
  8. 8. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Wärmebehandlung in zwei Temperaturstufen durchgeführt wird, wobei bei einer ersten Temperatur von 500°C bis 150°C unterhalb der Solidustemperatur der ersten Legierung für eine erste Zeitdauer durchgeführt wird und bei einer Temperatur von 500°C bis 5°C unterhalb der Solidustemperatur der ersten Legierung für eine zweite Zeitdauer durchgeführt wird und wobei die zweite Temperatur höher ist als die erste Temperatur.8. A method according to any one of the preceding claims, wherein the second heat treatment is performed in two temperature stages, wherein at a first temperature of 500 ° C to 150 ° C below the solidus temperature of the first alloy is carried out for a first period of time and at a temperature of 500 ° C to 5 ° C below the solidus temperature of the first alloy for a second period of time, and wherein the second temperature is higher than the first temperature.
  9. 9. Verfahren nach einem der vorstehenden Punkte, wobei die erste Zeitdauer 30 bis 240 Minuten und/oder die zweite Zeitdauer 10 Stunden bis 7 Tage beträgt.9. The method according to any one of the preceding items, wherein the first time period is 30 to 240 minutes and / or the second time period is 10 hours to 7 days.
  10. 10. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre enthaltend elementaren Sauerstoff, naszierenden Sauerstoff, Ozon, Stickstoff, Edelgas oder deren Mischungen durchgeführt wird.10. The method according to any preceding item, wherein the second heat treatment in an oxygen-containing atmosphere containing elemental oxygen, nascent oxygen, ozone, nitrogen, noble gas or mixtures thereof is performed.
  11. 11. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Wärmebehandlung in einem Strom einer sauerstoffhaltigen Atmosphäre unter einem Druck von weniger als 2 bar durchgeführt wird.11. A method according to any one of the preceding claims, wherein the second heat treatment is carried out in a stream of an oxygen-containing atmosphere under a pressure of less than 2 bar.
  12. 12. Verfahren nach einem der vorstehenden Punkte, wobei die Vergrößerung der Oberfläche der ersten Legierung durch Mahlen, Gasverdüsen, Flüssigkeitsverdüsen, Granulieren, Drahtziehen, Walzen von Blechen, Strangpressen, Zerschneiden, Extrudieren oder Strangpressen und deren Kombinationen bewirkt wird.12. Method according to one of the preceding points, wherein the enlargement of the surface of the first alloy by grinding, gas atomization, liquid atomization, granulation, wire drawing, rolling of metal sheets, Extrusion, cutting, extruding or extrusion and their combinations is effected.
  13. 13. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Legierung vor der Wärmebehandlung mit Silber beschichtet wird.13. A method according to any one of the preceding claims, wherein the second alloy is coated with silver prior to the heat treatment.
  14. 14. Verfahren nach einem der vorstehenden Punkte, wobei die zweite Legierung eine spezifische Oberfläche von 0,75 bis 100 cm2/g nach BET aufweist.14. A method according to any one of the preceding claims, wherein the second alloy has a BET specific surface area of from 0.75 to 100 cm 2 / g.
  15. 15. Verfahren nach einem der vorstehenden Punkte, wobei das oxidierbare Legierungselement der ersten Legierung ausgewählt ist aus der Gruppe bestehend aus Indium, Tellur, Wismut, Nickel, Kupfer, Zink, Zinn, Gallium, Germanium, Selen, Mangan, Magnesium, Aluminium, Blei und deren Kombinationen.15. The method of any one of the preceding items, wherein the oxidizable alloying element of the first alloy is selected from the group consisting of indium, tellurium, bismuth, nickel, copper, zinc, tin, gallium, germanium, selenium, manganese, magnesium, aluminum, lead and their combinations.
  16. 16. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung bis zu 8 Gew.-% Zinn enthält.16. The method according to any one of the preceding items, wherein the first alloy contains up to 8 wt .-% tin.
  17. 17. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung Indium und 8 Gew.-% bis 12 Gew.-% Zinn enthält.17. A method according to any one of the preceding claims, wherein the first alloy contains indium and 8 wt% to 12 wt% tin.
  18. 18. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung 2 Gew.-% bis 15 Gew.-% Indium enthält.18. A method according to any one of the preceding claims, wherein the first alloy contains from 2% to 15% indium by weight.
  19. 19. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung 0,05 Gew.-% bis 4 Gew.-% Tellur enthält.19. A method according to any one of the preceding claims, wherein the first alloy contains from 0.05% to 4% by weight of tellurium.
  20. 20. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung Eisen, Nickel, Cobalt oder Kupfer, einzeln oder in Kombination miteinander in Mengen von jeweils 0,001 Gew.-% bis 1 Gew.-% enthält20. A method according to any one of the preceding claims, wherein the first alloy contains iron, nickel, cobalt or copper, individually or in combination with each other, in amounts of 0.001% to 1% by weight each
  21. 21. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung Zink statt Zinn enthält.21. A method according to any one of the preceding claims, wherein the first alloy contains zinc instead of tin.
  22. 22. Verfahren nach einem der vorstehenden Punkte, wobei die erste Legierung Wismut statt Tellur enthält.22. A method according to any one of the preceding claims, wherein the first alloy contains bismuth instead of tellurium.
  23. 23. Verfahren nach einem der vorstehenden Punkte, wobei die vierte Legierung mindestens ein Oxid ausgewählt aus der Gruppe bestehend aus Zinnoxid, Indiumoxid, Telluroxid, Wismutoxid, Nickeloxid, Kupferoxid, Zinkoxid, Galliumoxid, Germaniumoxid, Selendioxid, Mangandioxid, Magnesiumoxid, Aluminiumoxid; Bleioxid und deren Mischungen enthält.23. A method according to any one of the preceding claims, wherein the fourth alloy comprises at least one oxide selected from the group consisting of tin oxide, indium oxide, tellurium oxide, bismuth oxide, nickel oxide, copper oxide, zinc oxide, gallium oxide, germanium oxide, selenium dioxide, manganese dioxide, magnesium oxide, aluminum oxide; Contains lead oxide and mixtures thereof.
  24. 24. Verfahren nach einem der vorstehenden Punkte, wobei die vierte Legierung mehr als 12 Gew.-% Oxid enthält.24. A method according to any one of the preceding claims, wherein the fourth alloy contains greater than 12 weight percent oxide.
  25. 25. Verfahren nach einem der vorstehenden Punkte, wobei die vierte Legierung nach der zweiten Wärmebehandlung abkühlt.25. A method according to any one of the preceding claims, wherein the fourth alloy cools after the second heat treatment.
  26. 26. Verfahren nach einem der vorstehenden Punkte, wobei die vierte Legierung einer dritten Wärmebehandlung unterzogen wird, um eine fünfte Legierung zu erhalten26. A method according to any one of the preceding claims, wherein the fourth alloy is subjected to a third heat treatment to obtain a fifth alloy
  27. 27. Verfahren nach einem der vorstehenden Punkte, wobei die dritte Wärmebehandlung bei 900 bis 970°C für 2 bis 40, insbesondere 10 bis 20 Stunden unterzogen wird.27. The method according to any preceding item, wherein the third heat treatment at 900 to 970 ° C for 2 to 40, in particular 10 to 20 hours is subjected.
  28. 28. Verfahren nach einem der vorstehenden Punkte, wobei die vierte oder fünfte Legierung gepresst, gesintert und gegebenenfalls durch Strangpressen umgeformt wird.28. A method according to any one of the preceding claims, wherein the fourth or fifth alloy is pressed, sintered and optionally reformed by extrusion.
Detaillierte Darstellung der ErfindungDetailed illustration of the invention

Es wurde überraschend gefunden, dass eine Vergrößerung der Oberfläche und eine anschließende Wärmebehandlung in reduzierender Atmosphäre für eine ausreichende Aktivierung sorgt, um die innere Oxidation, welche während der zweiten Wärmebehandlung stattfindet, bei weniger als 2 bar Druck, insbesondere bei Normaldruck innerhalb von etwa 10 Stunden bis zu 7 Tagen zu ermöglichen. Die Zeitdauer hängt von Faktoren wie Legierungszusammensetzung, Sauerstoffpartialdruck, verwendeter Atmosphäre, der Oberfläche und der Temperatur ab.It has surprisingly been found that enlargement of the surface and subsequent heat treatment in a reducing atmosphere provides sufficient activation to reduce the internal oxidation which takes place during the second heat treatment at less than 2 bar pressure, in particular at normal pressure within about 10 hours to allow up to 7 days. The length of time depends on factors such as alloy composition, Oxygen partial pressure, atmosphere used, the surface and the temperature.

Das oxidierbare Legierungselement der ersten Legierung ist ausgewählt aus der Gruppe bestehend aus Indium, Tellur, Wismut, Nickel, Kupfer, Zink, Zinn, Gallium, Germanium, Selen, Mangan, Magnesium, Aluminium, Antimon, Blei, und deren Kombinationen. Die Gesamtmenge an oxidierbaren Legierungselementen beträgt im Allgemeinen 5 Gew.-% bis 15 Gew.-%.The oxidizable alloying element of the first alloy is selected from the group consisting of indium, tellurium, bismuth, nickel, copper, zinc, tin, gallium, germanium, selenium, manganese, magnesium, aluminum, antimony, lead, and combinations thereof. The total amount of oxidizable alloying elements is generally from 5% to 15% by weight.

Vorzugsweise wird als oxidierbares Legierungselement Zinn in Mengen von 5 Gew.-% bis 15 Gew.-%, vorteilhaft mindestens 8 Gew.-% Zinn, eingesetzt, so dass Zinnoxidgehalte von 5 Gew.-% bis 18 Gew.-%, insbesondere Zinnoxidgehalte von 8 bis 14 Gew.-% nach der inneren Oxidation erhalten werden. Bei Zinngehalten von oberhalb 7 Gew.-%, insbesondere oberhalb 8 Gew.-% oder 9 Gew.-% wird vorteilhaft bis zu 5 Gew.-% Indium zugesetzt. Zink und Zinn sind sich hinreichend ähnlich, so dass in der vorliegenden Erfindung Zinn mit Zink substituiert werden kann. In diesem Fall, bei der Verwendung von Zink statt Zinn, ist der Zusatz von Indium oft nicht erforderlich.Tin is preferably used in amounts of from 5% to 15% by weight, preferably at least 8% by weight, of tin as the oxidisable alloying element, so that tin oxide contents of from 5% by weight to 18% by weight, in particular tin oxide contents from 8 to 14% by weight after the internal oxidation. With tin contents of above 7% by weight, in particular above 8% by weight or 9% by weight, it is advantageous to add up to 5% by weight of indium. Zinc and tin are sufficiently similar so that in the present invention tin can be substituted with zinc. In this case, when using zinc instead of tin, the addition of indium is often unnecessary.

Einsatz von Legierungen aus Silber und Zinn oder Silber und Zink ergeben Kontaktwerkstoffe, die bereits für viele Zwecke gut geeignet sind, auch bei Zinn- bzw. Zinkgehalten von 6,7 Gew.-% bis 8,5 Gew.-%.Use of alloys of silver and tin or silver and zinc results in contact materials that are already well suited for many purposes, even at tin or zinc contents of 6.7 wt .-% to 8.5 wt .-%.

Der Indiumgehalt kann von 2 Gew.-% bis 15 Gew.-%, insbesondere von 1 Gew.-% bis 5 Gew.-% oder von 1,5 Gew.-% bis 3 Gew.-% betragen. Vorteilhaft ist außerdem der Zusatz von Tellur in Mengen von 0,05 Gew.-% bis 4 Gew.-%, vorteilhaft 0,05 Gew.-% bis 0,8 Gew.-% oder von 0,1 Gew.-% bis 1 Gew.-%. Statt Tellur kann auch Wismut prinzipiell in gleichen Mengen eingesetzt werden, besonders bevorzugt in Mengen von 0,005 Gew.-% bis 0,06 Gew.-%.The indium content may be from 2 wt% to 15 wt%, more preferably from 1 wt% to 5 wt%, or from 1.5 wt% to 3 wt%. Also advantageous is the addition of tellurium in amounts of 0.05 wt .-% to 4 wt .-%, advantageously 0.05 wt .-% to 0.8 wt .-% or from 0.1 wt .-% to 1% by weight. Instead of tellurium, bismuth can also be used in principle in equal amounts, more preferably in amounts of from 0.005% by weight to 0.06% by weight.

Weitere vorteilhaft zugesetzte Elemente sind Eisen, Nickel, Cobalt oder Kupfer, einzeln oder in Kombination miteinander. Jedes dieser Elemente kann in Mengen von 0,001 Gew.-% bis 1 Gew.-%., vorteilhaft von 0,05 bis 0,2 oder von 0,03 bis 0,5 Gew.-% verwendet werden. Besonders bevorzugt sind Nickel und Kupfer. Besonders bevorzugt werden 0,03 Gew.-% bis 0,5 Gew.-% Nickel oder 0,05 Gew.-% bis 0,9 Gew.-% Kupfer eingesetzt.Further advantageous added elements are iron, nickel, cobalt or copper, individually or in combination with each other. Each of these elements may be used in amounts of from 0.001% to 1% by weight, preferably from 0.05 to 0.2 or from 0.03 to 0.5 wt .-% are used. Particularly preferred are nickel and copper. Particular preference is given to using 0.03% by weight to 0.5% by weight of nickel or 0.05% by weight to 0.9% by weight of copper.

Diese Elemente (Eisen, Nickel, Cobalt, Kupfer) sind zusammen in Mengen von meist weniger als 1,5 Gew.-% vorhanden.These elements (iron, nickel, cobalt, copper) are present together in amounts of usually less than 1.5 wt .-%.

Die erste Legierung ist vorteilhaft eine Legierung aus 4-11 Gew.-% Zinn, 1-6 Gew.-% Indium, 0,05 bis 4 Gew.-% Tellur sowie optional 0,01-1 Gew.-% Eisen, Nickel, Cobalt oder deren Kombinationen, und/oder 0,05 bis 3 Gew.-% Cadmium, ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen. Cadmium wird wegen dessen Giftigkeit heute meist nicht mehr verwendet und wird daher vorteilhaft nicht eingesetzt.The first alloy is advantageously an alloy of 4-11% by weight of tin, 1-6% by weight of indium, 0.05 to 4% by weight of tellurium, and optionally 0.01-1% by weight of iron, nickel , Cobalt or combinations thereof, and / or 0.05 to 3 wt .-% cadmium, ad 100 wt .-% silver and unavoidable impurities. Because of its toxicity, cadmium is generally no longer used today and is therefore advantageously not used.

Insbesondere geeignet als erste Legierung sind Silberlegierungen aus 5,1 bis 9 Gew.-% Zinn, 1,5 bis 5 Gew.-% Indium, 0,05 bis 0,8 Gew.-% Tellur, optional mit 0,03 bis 0,5 Gew.-% Nickel, 0,05 bis 0,9 Gew.-% Kupfer und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen. Alternativ kann statt Tellur 0,005 bis 0,06 Gew.-% Wismut eingesetzt werden.Particularly suitable as a first alloy are silver alloys of 5.1 to 9 wt% tin, 1.5 to 5 wt% indium, 0.05 to 0.8 wt% tellurium, optionally 0.03 to 0 , 5% by weight of nickel, 0.05 to 0.9% by weight of copper and ad 100% by weight of silver and unavoidable impurities. Alternatively, instead of tellurium 0.005 to 0.06 wt .-% bismuth can be used.

Weiter geeignet als erste Legierung sind Legierungen mit 5 Gew.-% bis 8 Gew.-% Zinn, 1,5 Gew.-% bis 3 Gew.-% Indium, 0,1 Gew.-% bis 1 Gew.-% Tellur, 0,05 Gew.-% bis 0,2 Gew.-% Eisen und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen.Further suitable as a first alloy are alloys with 5 wt .-% to 8 wt .-% tin, 1.5 wt .-% to 3 wt .-% indium, 0.1 wt .-% to 1 wt .-% tellurium , 0.05% to 0.2% by weight iron and 100% by weight silver and unavoidable impurities.

Insbesondere geeignet als erste Legierung sind Silberlegierungen aus 5,1 bis 9 Gew.-% Zinn, 1,5 bis 5 Gew.-% Indium, 0,05 bis 0,8 Gew.-% Tellur, optional mit 0,03 bis 0,5 Gew.-% Nickel, 0,05 bis 0,9 Gew.-% Kupfer und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen. Alternativ kann statt Tellur 0,005 bis 0,06 Gew.-% Wismut eingesetzt werden.Particularly suitable as a first alloy are silver alloys of 5.1 to 9 wt% tin, 1.5 to 5 wt% indium, 0.05 to 0.8 wt% tellurium, optionally 0.03 to 0 , 5% by weight of nickel, 0.05 to 0.9% by weight of copper and ad 100% by weight of silver and unavoidable impurities. Alternatively, instead of tellurium 0.005 to 0.06 wt .-% bismuth can be used.

Weiter geeignet als erste Legierung sind Legierungen mit 5 Gew.-% bis 8 Gew.-% Zinn, 1,5 Gew.-% bis 3 Gew.-% Indium, 0,1 Gew.-% bis 1 Gew.-% Tellur, 0,05 Gew.-% bis 0,2 Gew.-% Eisen und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen; oder
5 Gew.-% bis 8 Gew.-% Zinn, 1,5 Gew.-% bis 3 Gew.-% Indium, 0,1 Gew.-% bis 1 Gew.-% Tellur, 0,05 Gew.-% bis 0,2 Gew.-% Cobalt und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen;
oder
5,2 Gew.-% bis 8 Gew.-% Zinn, 2,8 Gew.-% bis 3,9 Gew.-% Indium, 0,5 Gew.-% bis 0,75 Gew.-% Tellur, 0,08 Gew.-% bis 1,2 Gew.-% Nickel und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen;
oder
5,2 Gew.-% bis 8 Gew.-% Zinn, 2,8 Gew.-% bis 3,9 Gew.-% Indium, 0,5 Gew.-% bis 0,75 Gew.-% Tellur, 0,05 Gew.-% bis 0,9 Gew.-% Kupfer und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen; oder
5 Gew.-% bis 8 Gew.-% Zinn, 1,5 Gew.-% bis 3 Gew.-% Indium, 0,1 Gew.-% bis 1 Gew.-% Tellur, 0,05 Gew.-% bis 0,9 Gew.-% Kupfer und ad 100 Gew.-% Silber und unvermeidbare Verunreinigungen.
Further suitable as a first alloy are alloys with 5 wt .-% to 8 wt .-% tin, 1.5 wt .-% to 3 wt .-% indium, 0.1 wt .-% to 1 wt .-% tellurium 0.05% to 0.2% by weight iron and 100% by weight silver and unavoidable impurities; or
5 wt% to 8 wt% tin, 1.5 wt% to 3 wt% indium, 0.1 wt% to 1 wt% tellurium, 0.05 wt% to 0.2% by weight of cobalt and 100% by weight of silver and unavoidable impurities;
or
5.2 wt% to 8 wt% tin, 2.8 wt% to 3.9 wt% indium, 0.5 wt% to 0.75 wt% tellurium, 0 From 0.8% to 1.2% by weight of nickel and from 100% by weight of silver and unavoidable impurities;
or
5.2 wt% to 8 wt% tin, 2.8 wt% to 3.9 wt% indium, 0.5 wt% to 0.75 wt% tellurium, 0 From 05% to 0.9% by weight of copper and from 100% by weight of silver and unavoidable impurities; or
5 wt% to 8 wt% tin, 1.5 wt% to 3 wt% indium, 0.1 wt% to 1 wt% tellurium, 0.05 wt% to 0.9% by weight of copper and ad 100% by weight of silver and unavoidable impurities.

Derartige Zusammensetzungen und daraus resultierende Kontaktwerkstoffe sind im Prinzip bekannt.Such compositions and resulting contact materials are known in principle.

Die Vergrößerung der Oberfläche der ersten Legierung kann durch Mahlen, Gasverdüsen, Flüssigkeitsverdüsen, Granulieren, Drahtziehen, Walzen von Blechen, Strangpressen, Zerschneiden, Extrudieren, Strangpressen und deren Kombinationen bewirkt wird. Beispielsweise kann die erste Legierung zu Draht oder einem Blechprofil stranggepreßt und anschließend zerschnitten werden, oder es können Bleche bzw. Platten gewalzt und anschließend in Streifen geschnitten werden. Hierbei ist einerseits eine Vergrößerung der Oberfläche wichtig, aber auch eine Verringerung der Dicke der von außen mit Sauerstoff zu durchdringenden Dicke der Metallpartikel, welche der inneren Oxidation in der zweiten Wärmebehandlung unterworfen werden sollen. In einer spezifischen Ausgestaltung der Erfindung weist die zweite Legierung eine spezifische Oberfläche von 0,75 bis 100 cm2/g nach BET auf.The enlargement of the surface of the first alloy may be effected by grinding, gas atomizing, liquid atomizing, granulating, wire drawing, sheet metal rolling, extrusion, cutting, extruding, extrusion and combinations thereof. For example, the first alloy may be extruded into wire or a sheet metal profile and then cut, or sheets may be rolled and then cut into strips. Here, on the one hand, an enlargement of the surface is important, but also a reduction in the thickness of the outside to be penetrated with oxygen thickness of the metal particles, which are to be subjected to the internal oxidation in the second heat treatment. In a specific embodiment of the invention, the second alloy has a BET specific surface area of 0.75 to 100 cm 2 / g.

In einer weiteren spezifischen Ausgestaltung der Erfindung kann die zweite Legierung mit Silber beschichtet werden. Hier kann beispielsweise ein Metallprofil stranggepresst, mit Silber in an sich bekannter Weise beschichtet (beispielsweise plattiert) und dann weiter dem Verfahren der Erfindung unterworfen werden, so dass mit dem Verfahren der Erfindung sogar direkt ein Kontaktwerkstück erhalten wird, welches entweder als Halbzeug oder sogar als Endprodukt zur direkten Verwendung in einem Schaltgerät geeignet ist.In a further specific embodiment of the invention, the second alloy may be coated with silver. Here, for example, a metal profile extruded, coated with silver in a conventional manner (for example clad) and then further subjected to the method of the invention, so that the method of the invention even directly a contact workpiece is obtained, either as a semi-finished or even as End product for direct use in a switching device is suitable.

Die erste Wärmebehandlung wird unter reduzierenden Bedingungen bei einer Temperatur von mindestens 350°C durchgeführt. Die Obergrenze der Temperatur für diesen Verfahrensschritt liegt bei 5°C unterhalb der Solidustemperatur der ersten oder zweiten Legierung. Im Allgemeinen ist ein Tem peraturbereich von etwa 550 °C bis 700 °C, insbesondere 630 °C bis 670°C, beispielhaft 650°C, geeignet. Diese erste Wärmebehandlung wird für eine Zeitdauer von 15 Sekunden bis 3 Stunden, insbesondere 30 Minuten bis 90 Minuten durchgeführt. Eine längere Wärmebehandlung ist unschädlich, bringt aber meist keine weiteren Vorteile mit sich. Die Wärmebehandlung der zweiten Legierung wird unter einer reduzierenden Atmosphäre durchgeführt. Als reduzierenden Atmosphäre geeignet sind beispielsweise Wasserstoff, Kohlenmonoxid, Kohlenwasserstoffe, Methan, Stickstoff, Edelgas oder deren Mischungen. Vorzugsweise wird Wasserstoff oder eine Mischung von Wasserstoff mit einem Inertgas wie Stickstoff oder einem Edelgas verwendet. Preiswert ist Formiergas einsetzbar, welches als Gemisch aus Wasserstoff und Stickstoff, meist mit einem Wasserstoffgehalt von 5% bis 25%, insbesondere von 5% bis 10% kommerziell erhältlich ist. Der Druck bei der ersten Wärmebehandlung beträgt weniger als 2 bar, vorzugsweise wird bei Normaldruck gearbeitet. Am einfachsten ist meist eine Verfahrensweise, bei welcher die zweite Legierung in einem Strom der reduzierenden Atmosphäre, also z.B. Formiergas, bei Normaldruck wärmebehandelt wird. Durch diesen Verfahrensschritt wird die dritte Legierung erhalten, welche im Anschluß an die erste Wärmebehandlung vorteilhaft in einer inerten oder reduzierenden Atmosphäre auf eine Temperatur von kleiner als 200°C, bevorzugt Raumtemperatur, abgekühlt wird.The first heat treatment is carried out under reducing conditions at a temperature of at least 350 ° C. The upper limit of the temperature for this process step is 5 ° C below the solidus temperature of the first or second alloy. In general, a temperature range of about 550 ° C to 700 ° C, in particular 630 ° C to 670 ° C, for example 650 ° C suitable. This first heat treatment is carried out for a period of 15 seconds to 3 hours, especially 30 minutes to 90 minutes. A longer heat treatment is harmless, but usually brings no further benefits. The heat treatment of the second alloy is carried out under a reducing atmosphere. Suitable as a reducing atmosphere are, for example, hydrogen, carbon monoxide, hydrocarbons, methane, nitrogen, noble gas or mixtures thereof. Preferably, hydrogen or a mixture of hydrogen with an inert gas such as nitrogen or a noble gas is used. Inexpensive forming gas can be used, which is commercially available as a mixture of hydrogen and nitrogen, usually with a hydrogen content of 5% to 25%, in particular from 5% to 10%. The pressure in the first heat treatment is less than 2 bar, preferably is carried out at atmospheric pressure. The easiest way is usually a procedure in which the second alloy is heat-treated at atmospheric pressure in a stream of the reducing atmosphere, that is, for example, forming gas. By this method step, the third alloy is obtained, which is advantageously after the first heat treatment in an inert or reducing atmosphere to a temperature of less than 200 ° C, preferably room temperature, cooled.

Sodann erfolgt die zweite Wärmebehandlung, die direkt im Anschluß erfolgen kann. Die dritte Legierung muß nicht unmittelbar weiterverarbeitet werden und kann eine begrenzte Zeit auch an Luft gehandhabt oder aufbewahrt werden und zu einem späteren Zeitpunkt diesem Verfahrensschritt unterworfen werden. Eine rasche Weiterverarbeitung, insbesondere direkt im Anschluß an die erste Wärmebehandlung ist jedoch vorteilhaft. So kann in einem batchweisen Verfahren beispielsweise die erste Wärmebehandlung in einem Retortenofen durchgeführt werden, nach dem Abkühlen wird die reduzierende Atmosphäre durch eine oxidierende Atmosphäre ersetzt und die zweite Wärmebehandlung durchgeführt, so dass kein Kontakt mit der Luft stattfindet. Alternativ kann die erste Wärmebehandlung in einem Durchschubofen mit einem Temperaturgradienten durchgeführt werden. Hierbei wird üblicherweise das Reaktionsgut z.B. in einem Graphittiegel durch den Ofen geschoben. Nach den Durchlaufen des Durchschubofens in einer reduzierenden Atmosphäre kann der Tiegel nach Abkühlen auf 200°C oder darunter entnommen werden und nach kurzer Zeit an der Luft einen zweiten Durchschubofen mit einer oxidierenden Atmosphäre zur Durchführung der zweiten Wärmebehandlung durchlaufen. Bei dieser Vorgehensweise findet ein mehr oder weniger langer Kontakt mit der Luft statt.Then there is the second heat treatment, which can be done directly afterwards. The third alloy need not be further processed immediately and may be handled or stored in air for a limited time and subjected to this process step at a later date. However, rapid further processing, in particular directly following the first heat treatment, is advantageous. For example, in a batchwise process, the first heat treatment may be performed in a retort furnace, after cooling, the reducing atmosphere is replaced by an oxidizing atmosphere, and the second heat treatment is performed so that no contact with the air takes place. Alternatively, the first heat treatment may be performed in a push-through furnace with a temperature gradient. Here, usually, the reaction mixture is e.g. pushed through the oven in a graphite crucible. After passing through the push-through furnace in a reducing atmosphere, the crucible, after cooling to 200 ° C. or below, can be taken out and, after a short time in the air, passed through a second push-through furnace having an oxidizing atmosphere for carrying out the second heat treatment. In this procedure, a more or less long contact with the air takes place.

Bei dieser zweiten Wärmebehandlung findet die innere Oxidation der dritten Legierung in einer oxidierenden Atmosphäre statt und es wird die vierte Legierung erhalten. Diese innere Oxidation bewirkt die Umwandlung einer Legierung in einen Verbundwerkstoff aus Silber und den Oxiden der oxidierbaren Legierungselementen (hier als vierte Legierung bezeichnet). Die zweite Wärmebehandlung wird bei einer Temperatur von mindestens etwa 500°C durchgeführt. Maximal sollte bei 150°C unterhalb der Solidustemperatur gearbeitet werden, vorteilhaft bei bis zu 5°C unterhalb der Solidustemperatur der ersten, zweiten oder dritten Legierung. Diese Temperaturen unterscheiden sich nicht wesentlich, da die erste, zweite und dritte Legierung chemisch im Wesentlichen gleich sind. Im Allgemeinen wird die zweite Wärmebehandlung bei Temperaturen von etwa 500°C bis etwa 800°C, vorteilhaft 600°C bis 750 °C, insbesondere 650 °C bis 730 °C durchgeführt. Die Wärmebehandlung wird fortgesetzt, bis die innere Oxidation vollständig abgelaufen ist. Die Zeitdauer der zweiten Wärmebehandlung beträgt etwa 10 Stunden bis etwa 7 Tage, vorteilhaft 12 bis 72 Stunden, insbesondere 12 bis 48 Stunden, beispielsweise 24 Stunden. Die Zeitdauer kann aber auch je nach Auswahl der Verfahrensparameter und der Legierungszusammensetzung berechnet oder im Verlauf der Reaktion verfolgt werden. Die Reaktion lässt sich gut gravimetrisch verfolgen. Der Abschluß der Reaktion kann im fertigen (Zwischen-)Produkt durch die Anfertigung eines Schliffs und lichtmikroskopische Untersuchung festgestellt werden.In this second heat treatment, the internal oxidation of the third alloy takes place in an oxidizing atmosphere and the fourth alloy is obtained. This internal oxidation causes the conversion of an alloy into a composite of silver and the oxides of the oxidizable alloying elements (referred to herein as the fourth alloy). The second heat treatment is carried out at a temperature of at least about 500 ° C. Maximum should be worked at 150 ° C below the solidus, advantageously up to 5 ° C below the solidus temperature of the first, second or third alloy. These temperatures are not significantly different since the first, second and third alloys are chemically substantially equal. In general, the second heat treatment is carried out at temperatures of about 500 ° C to about 800 ° C, preferably 600 ° C to 750 ° C, especially 650 ° C to 730 ° C. The heat treatment is continued until the internal oxidation has completely expired. The duration of the second heat treatment is about 10 hours to about 7 days, advantageously 12 to 72 hours, especially 12 to 48 hours, for example 24 hours. However, the time may also be calculated depending on the selection of the process parameters and the alloy composition or be tracked in the course of the reaction. The reaction can be followed well gravimetrically. The completion of the reaction can be detected in the finished (intermediate) product by making a cut and a light microscopic examination.

Die zweite Wärmebehandlung kann im Prinzip in allen Öfen durchgeführt werden, welche unter den Temperaturen, Atmosphären und Zeiten benutzbar sind. Die dritte Legierung kann hierzu in verschiedenen Gefäßen den Bedingungen der zweiten Wärmebehandlung ausgesetzt werden, beispielsweise kann die dritte Legierung als Schüttung von Pulver bzw. Granalien, Draht- oder Blechabschnitten in einem offenen Tiegel, Keramiktiegel oder Metallbehälter der zweiten Wärmebehandlung unterworfen werden, wobei ein poröser, lockerer Sinterkörper bzw. Formkörper entsteht. Insbesondere bei Blech- oder Drahtabschnitten kann aber auch eine Vereinzelung in einem Reaktionsbehälter erfolgen oder aber die Wärmebehandlung in einem Drehrohrofen durchgeführt werden. Hierdurch wird der Kontakt mit der oxidierenden Atmosphäre optimiert und eine rasche und vollständige innere Oxidation erleichtert.The second heat treatment can in principle be carried out in all furnaces which are usable under the temperatures, atmospheres and times. For this purpose, the third alloy may be subjected to the conditions of the second heat treatment in various vessels, for example the third alloy may be subjected to the second heat treatment as a bed of powders, wire or sheet sections in an open crucible, ceramic crucible or metal container, a porous one , loose sintered body or molded body is formed. In particular, in the case of sheet metal or wire sections, however, it is also possible to singulate in a reaction vessel or to carry out the heat treatment in a rotary kiln. This optimizes contact with the oxidizing atmosphere and facilitates rapid and complete internal oxidation.

Die zweite Wärmebehandlung wird in einer oxidierenden Atmosphäre, vorteilhaft einer sauerstoffhaltigen Atmosphäre enthaltend elementaren Sauerstoff (O2), naszierenden Sauerstoff, Ozon, Stickstoff, Edelgas oder deren Mischungen durchgeführt. Vorteilhaft sind Sauerstoff oder Luft. Die zweite Wärmebehandlung wird bei einem Druck von weniger als 2 bar durchgeführt, vorteilhaft in etwa bei Normaldruck. Am einfachsten ist es oft, die zweite Wärmebehandlung in einem Strom der sauerstoffhaltigen Atmosphäre (also Luft oder Sauerstoff) in etwa bei Normaldruck wie z.B. unter Umgebungsdruck durchzuführen. Hierbei liegt der Partialdruck an Sauerstoff bei mindestens 80% des Gesamtdrucks.The second heat treatment is carried out in an oxidizing atmosphere, advantageously an oxygen-containing atmosphere containing elemental oxygen (O 2 ), nascent oxygen, ozone, nitrogen, noble gas or mixtures thereof. Advantageous are oxygen or air. The second heat treatment is carried out at a pressure of less than 2 bar, advantageously at about atmospheric pressure. It is often simplest to carry out the second heat treatment in a stream of the oxygen-containing atmosphere (ie air or oxygen) at approximately atmospheric pressure, for example under ambient pressure. Here, the partial pressure of oxygen is at least 80% of the total pressure.

Vorteilhaft wird die zweite Wärmebehandlung in zwei Temperaturstufen durchgeführt, wobei diese bei einer ersten Temperatur im Bereich von mindestens 500°C bis maximal 150°C unterhalb der Solidustemperatur der ersten Legierung für eine erste Zeitdauer durchgeführt wird und bei einer zweiten Temperatur von 500°C bis 40°C unterhalb der Solidustemperatur, aber maximal bis 5°C unterhalb der Solidustemperatur der ersten Legierung für eine zweite Zeitdauer durchgeführt wird.Advantageously, the second heat treatment is carried out in two temperature stages, wherein this is carried out at a first temperature in the range of at least 500 ° C to at most 150 ° C below the solidus temperature of the first alloy for a first period of time and at a second temperature of 500 ° C to 40 ° C below the solidus temperature, but a maximum of 5 ° C below the solidus temperature of the first alloy for a second period of time is performed.

Auch bei dieser Verfahrensvariante wird bei einem Druck von weniger als 2 bar, vorteilhaft in etwa bei Normaldruck gearbeitet und vorteilhaft in einem Strom der sauerstoffhaltigen Atmosphäre (also Luft oder Sauerstoff) bei etwa Normaldruck wie z.B. unter Umgebungsdruck. Hierbei liegt der Partialdruck an Sauerstoff ebenfalls bei mindestens 80% des Gesamtdrucks.Also in this process variant is carried out at a pressure of less than 2 bar, advantageously approximately at atmospheric pressure and advantageously in a stream of the oxygen-containing atmosphere (ie air or oxygen) at about atmospheric pressure such. under ambient pressure. Here, the partial pressure of oxygen is also at least 80% of the total pressure.

Die zweite Temperatur ist höher als die erste Temperatur und beträgt etwa 500°C bis etwa 800°C, vorteilhaft 600°C bis 750°C, insbesondere 650°C bis 730°C. In diesem Fall beträgt die erste Zeitdauer 30 bis 240 Minuten und die zweite Zeitdauer 10 Stunden bis 7 Tage vorteilhaft 12 bis 72 Stunden, insbesondere 12 bis 48 Stunden, beispielsweise 24 Stunden. Wie oben beschrieben kann die erforderliche Zeitdauer berechnet oder aber der Reaktionsverlauf meßtechnisch verfolgt werden, beispielsweise durch Gravimetrie, bis die Reaktion abgeschlossen ist. Beispielsweise ist die innere Oxidation bei Verwendung eines Drahts mit einer Dicke von 2,1 mm nach etwa 100 Stunden abgeschlossen, bei einem Draht einer Dicke von 1,4 mm schon bei 60 Stunden, wenn von einem Material mit 14 Gew.-% Gesamtoxidgehalt ausgegangen wird. Bei einem Gesamtoxidgehalt von 10 Gew.-% ist die erforderliche Reaktionszeit ca. 30 % kürzer.The second temperature is higher than the first temperature and is about 500 ° C to about 800 ° C, preferably 600 ° C to 750 ° C, especially 650 ° C to 730 ° C. In this case, the first time period is 30 to 240 minutes and the second time period 10 hours to 7 days is advantageously 12 to 72 hours, in particular 12 to 48 hours, for example 24 hours. As described above, the required time period can be calculated or the course of the reaction can be followed by measurement, for example by gravimetry, until the reaction is complete. For example, with a wire having a thickness of 2.1 mm, the internal oxidation is completed after about 100 hours, with a wire having a thickness of 1.4 mm as early as 60 hours when starting from a material with 14% by weight total oxide content becomes. At a total oxide content of 10 wt .-%, the required reaction time is about 30% shorter.

Nach der zweiten Wärmebehandlung liegt die vierte Legierung vor. Die vierte Legierung enthält mindestens ein Oxid ausgewählt aus der Gruppe bestehend aus Zinnoxid, Indiumoxid, Telluroxid, Wismutoxid, Nickeloxid, Kupferoxid, Zinkoxid, Galliumoxid, Germaniumoxid, Selendioxid, Mangandioxid, Magnesiumoxid, Aluminiumoxid, Bleioxid und deren Mischungen. Diese Oxide sind im Verlauf der zweiten Wärmebehandlung, während der die innere Oxidation stattfand, aus den Legierungsbestandteilen der dritten Legierung entstanden. Die vierte Legierung enthält vorteilhaft mehr als 12 Gew.-% Oxid. Die vierte Legierung wird nach der zweiten Wärmebehandlung abgekühlt, meist auf eine Temperatur von weniger als 200°C oder auf Raumtemperatur.After the second heat treatment, the fourth alloy is present. The fourth alloy contains at least one oxide selected from the group consisting of tin oxide, indium oxide, tellurium oxide, bismuth oxide, nickel oxide, copper oxide, zinc oxide, gallium oxide, germanium oxide, selenium dioxide, manganese dioxide, magnesium oxide, aluminum oxide, lead oxide and mixtures thereof. These oxides were formed from the alloy components of the third alloy in the course of the second heat treatment during which the internal oxidation took place. The fourth alloy advantageously contains more than 12% by weight of oxide. The fourth alloy is cooled after the second heat treatment, usually to a temperature of less than 200 ° C or to room temperature.

Da die vierte Legierung wegen der fein verteilten Oxide oft sehr hart ist und kaum weiterverarbeitet werden kann, wird diese vierte Legierung vorzugsweise einer dritten Wärmebehandlung unterzogen wird, um eine fünfte Legierung zu erhalten Die dritte Wärmebehandlung wird bei 900°C bis 970°C, oder 910°C bis 960°C durchgeführt. Die dritte Wärmebehandlung wird für 2 bis 40, insbesondere 10 bis 20 Stunden durchgeführt. Hierbei tritt eine Ostwald-Reifung der feinverteilten Oxide auf, wodurch Leitfähigkeit und Duktilität erhöht werden, so dass die Verarbeitbarkeit erheblich verbessert wird. Diese dritte Wärmebehandlung wirdSince the fourth alloy is often very hard due to the finely divided oxides and can hardly be further processed, this fourth alloy is preferably subjected to a third heat treatment to obtain a fifth alloy. The third heat treatment is carried out at 900 ° C to 970 ° C, or 910 ° C to 960 ° C performed. The third heat treatment is carried out for 2 to 40, especially 10 to 20 hours. In this case, Ostwald ripening of the finely divided oxides occurs, thereby increasing conductivity and ductility, so that workability is greatly improved. This third heat treatment will

Je nach Verarbeitbarkeit der vierten Legierung ohne eine dritte Wärmebehandlung kann die vierte oder fünfte Legierung weiterverarbeitet werden, um Kontaktwerkstücke herzustellen. Hierzu wird die vierte oder gegebenenfalls die fünfte Legierung stranggepresst und durch plattierwalzen oder Drahtzug weiterverformt, abhängig von der Form der gewünschten Kontaktwerkstücke.Depending on the processability of the fourth alloy without a third heat treatment, the fourth or fifth alloy may be further processed to produce contact workpieces. For this purpose, the fourth or possibly the fifth alloy is extruded and further deformed by plating or wire drawing, depending on the shape of the desired contact workpieces.

Beispiele:Examples:

Die in den Tabellen aufgeführten Silberlegierungen werden in einem Induktionsofen erschmolzen und zu Bolzen gegossen. Die angegebenen Gehalte an oxidierbaren Legierungslementen sind in Gew.-% angegeben, der Silbergehalt beträgt ad 100 Gew.-%. Diese Bolzen werden zu Drähten mit einem mittleren Durchmesser von etwa 2 mm stranggepreßt und zu Abschnitten von etwa 7 mm Länge zerschnitten. Anschließend wurden diese Drahtabschnitte in einem Kammerofen in einem Strom von Formiergas mit einem Wasserstoffgehalt von 5% bei Umgebungsdruck einer ersten Wärmebehandlung (1. WB) unter den in der Tabelle angegebenen Zeiten (t) und Temperaturen (T) unterzogen, dann der Ofen abgeschaltet und die Abkühlung unter strömendem Formiergas auf weniger als 200°C gestattet, dann in fließendem, reinen Sauerstoff wieder erhitzt und der zweiten Wärmebehandlung (2. WB) unter den in der Tabelle angegebenen Zeiten (t) und Temperaturen (T) unterzogen. Anschließend wurde gegebenenfalls eine dritte Wärmebehandlung unter Luft durchgeführt, (3. WB) unter den in der Tabelle angegebenen Zeiten (t) und Temperaturen (T) unterzogen. Zeiten sind in Stunden, Temperaturen in Grad Celsius angegeben. Nach dem Abkühlen wurde das Produkt zu einem ca 6mm dicken Draht stranggepreßt und über Drahtzug auf Enddurchmesser von 1 - 2mm weiter verarbeitet. Alle Legierungen zeigten unter den angegebenen Reaktionsbedingungen vollständigen Umsatz der oxidierbaren Legierungselemente, was durch lichtmikroskopische Schliffbilder bestätigt wurde. Nr. Sn Zn In Te Ni Fe Co Cu 1. WB 2.WB Stufe 1 2.WB Stufe 2 3.WB t T t T t T t T 1 6,5 3,9 0,6 0,1 1 660 2 650 100 730 24 920 2 5,2 2,8 0,1 1 660 2 650 80 750 24 920 3 6,5 3,9 0,6 0,1 1 660 2 650 100 730 24 920 4 5,2 2,8 0,1 1 660 2 650 80 750 24 920 5 6,5 3,9 0,6 0,1 1 660 2 650 100 730 24 920 6 5,2 2,8 0,1 1 660 2 650 80 750 24 920 7 6,5 3,9 0,6 0,1 1 660 2 650 100 730 24 920 8 5,2 2,8 0,1 1 660 2 650 80 750 24 920 9 7,5 1 600 3 620 60 780 24 950 10 7,5 1 600 2 680 60 780 11 8,2 1 660 2 650 90 730 12 8,2 2 660 2 650 90 730 24 920 15 5,1 3,1 0,4 0,3 2 640 3 680 80 750 16 6,0 3,1 0,4 0,2 2 640 3 660 90 740 17 6,9 3,1 0,4 0,3 2 640 3 620 120 720 18 8,0 3,0 0,4 0,3 2 640 3 620 150 700 12 930 19 7,0 1,5 0,4 0,2 2 640 3 680 80 750 12 930 20 7,0 5,0 0,4 0,3 2 640 3 600 160 700 21 7,0 3,1 0,4 0,2 1 660 2 650 90 730 24 910 22 7,0 3,1 0,4 0,04 0,3 1 660 2 650 90 730 24 910 23 7,0 3,1 0,4 0,3 0,3 1 600 3 640 90 730 24 910 24 7,1 3,0 0,4 0,4 0,3 1 600 3 640 90 730 24 920 25 7,1 3,0 0,4 0,5 0,3 1 660 3 640 90 730 24 920 26 7,0 3,1 0,4 0,3 0,3 1 660 3 640 90 730 24 920 27 7,0 3,1 0,4 0,4 0,3 1 660 3 640 90 730 24 920 30 4,1 2,0 0,3 1 660 2 640 60 750 24 920 31 7,0 2,1 0,3 1 600 2 640 60 750 24 920 32 10,8 1,9 0,3 1 660 3 630 180 690 24 920 33 6,9 2,2 0,3 0,9 1 660 2 650 80 740 24 920 34 6,8 1,9 0,3 0,3 1 660 2 660 60 750 35 7,1 2,0 0,3 0,16 0,25 1 660 2 650 80 740 36 7,0 2,1 0,3 0,04 0,24 1 660 2 650 80 740 37 7,0 2,1 0,3 0,12 0,11 0,10 2 650 2 650 80 740 24 920 38 7,2 2,0 0,5 2 650 2 660 70 740 The silver alloys listed in the tables are melted in an induction furnace and cast into bolts. The stated contents of oxidizable alloying elements are given in% by weight, the silver content is ad 100% by weight. These bolts are extruded into wires having an average diameter of about 2 mm and cut into sections about 7 mm in length. Subsequently, these wire sections were placed in a box furnace in a stream of forming gas having a hydrogen content of 5% at ambient pressure of a first heat treatment (1st WB) below the times (t) and Temperatures (T), then shut off the furnace and allowed to cool to less than 200 ° C under flowing forming gas, then reheated in flowing, clean oxygen and subjected to the second heat treatment (2nd WB) under the times indicated in the table (t ) and temperatures (T). Subsequently, if necessary, a third heat treatment was carried out under air, (3. WB) under the times given in the table (t) and temperatures (T). Times are given in hours, temperatures in degrees Celsius. After cooling, the product was extruded to a wire about 6mm thick and further processed by wire to a final diameter of 1 - 2mm. All alloys showed complete conversion of the oxidizable alloying elements under the reaction conditions indicated, which was confirmed by photomicrographs. No. sn Zn In Te Ni Fe Co Cu 1st WB 2.WB Level 1 2.WB Level 2 3.WB t T t T t T t T 1 6.5 3.9 0.6 0.1 1 660 2 650 100 730 24 920 2 5.2 2.8 0.1 1 660 2 650 80 750 24 920 3 6.5 3.9 0.6 0.1 1 660 2 650 100 730 24 920 4 5.2 2.8 0.1 1 660 2 650 80 750 24 920 5 6.5 3.9 0.6 0.1 1 660 2 650 100 730 24 920 6 5.2 2.8 0.1 1 660 2 650 80 750 24 920 7 6.5 3.9 0.6 0.1 1 660 2 650 100 730 24 920 8th 5.2 2.8 0.1 1 660 2 650 80 750 24 920 9 7.5 1 600 3 620 60 780 24 950 10 7.5 1 600 2 680 60 780 11 8.2 1 660 2 650 90 730 12 8.2 2 660 2 650 90 730 24 920 15 5.1 3.1 0.4 0.3 2 640 3 680 80 750 16 6.0 3.1 0.4 0.2 2 640 3 660 90 740 17 6.9 3.1 0.4 0.3 2 640 3 620 120 720 18 8.0 3.0 0.4 0.3 2 640 3 620 150 700 12 930 19 7.0 1.5 0.4 0.2 2 640 3 680 80 750 12 930 20 7.0 5.0 0.4 0.3 2 640 3 600 160 700 21 7.0 3.1 0.4 0.2 1 660 2 650 90 730 24 910 22 7.0 3.1 0.4 0.04 0.3 1 660 2 650 90 730 24 910 23 7.0 3.1 0.4 0.3 0.3 1 600 3 640 90 730 24 910 24 7.1 3.0 0.4 0.4 0.3 1 600 3 640 90 730 24 920 25 7.1 3.0 0.4 0.5 0.3 1 660 3 640 90 730 24 920 26 7.0 3.1 0.4 0.3 0.3 1 660 3 640 90 730 24 920 27 7.0 3.1 0.4 0.4 0.3 1 660 3 640 90 730 24 920 30 4.1 2.0 0.3 1 660 2 640 60 750 24 920 31 7.0 2.1 0.3 1 600 2 640 60 750 24 920 32 10.8 1.9 0.3 1 660 3 630 180 690 24 920 33 6.9 2.2 0.3 0.9 1 660 2 650 80 740 24 920 34 6.8 1.9 0.3 0.3 1 660 2 660 60 750 35 7.1 2.0 0.3 0.16 0.25 1 660 2 650 80 740 36 7.0 2.1 0.3 0.04 0.24 1 660 2 650 80 740 37 7.0 2.1 0.3 0.12 0.11 0.10 2 650 2 650 80 740 24 920 38 7.2 2.0 0.5 2 650 2 660 70 740

Claims (13)

Verfahren zur Herstellung von Materialien auf Basis von Silber, enthaltend die Schritte - Bereitstellen einer ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement; - Vergrößerung der Oberfläche der ersten Legierung enthaltend Silber und mindestens einem oxidierbaren Legierungselement, um eine zweite Legierung zu erhalten; - Erste Wärmebehandlung der zweiten Legierung, wobei die Wärmebehandlung in einer reduzierenden Atmosphäre durchgeführt wird, um eine dritte Legierung zu erhalten; - Zweite Wärmebehandlung der dritten Legierung, wobei die Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre durchgeführt wird, um eine vierte Legierung zu erhalten,
wobei die zweite Wärmebehandlung in zwei Temperaturstufen durchgeführt wird, wobei diese bei einer ersten Temperatur von 500°C bis 150°C unterhalb der Solidustemperatur der ersten Legierung für eine erste Zeitdauer durchgeführt wird und bei einer Temperatur von 500°C bis 5°C unterhalb der Solidustemperatur der ersten Legierung für eine zweite Zeitdauer durchgeführt wird und die zweite Temperatur höher ist als die erste Temperatur.
Process for the preparation of materials based on silver, comprising the steps Providing a first alloy containing silver and at least one oxidizable alloying element; Increasing the surface of the first alloy containing silver and at least one oxidizable alloying element to obtain a second alloy; The first heat treatment of the second alloy, wherein the heat treatment is carried out in a reducing atmosphere to obtain a third alloy; Second heat treatment of the third alloy, wherein the heat treatment is carried out in an oxygen-containing atmosphere to obtain a fourth alloy,
wherein the second heat treatment is carried out in two temperature stages carried out at a first temperature of 500 ° C to 150 ° C below the solidus temperature of the first alloy for a first period of time and at a temperature of 500 ° C to 5 ° C below the Solidus temperature of the first alloy is performed for a second period of time and the second temperature is higher than the first temperature.
Verfahren nach Anspruch 1, wobei die erste Wärmebehandlung bei einer Temperatur von 350°C bis zu einer Temperatur von 5°C unterhalb der Solidustemperatur der ersten Legierung, für eine Zeitdauer von 15 Sekunden bis 3h durchgeführt wird.The method of claim 1, wherein the first heat treatment is performed at a temperature of 350 ° C to a temperature of 5 ° C below the solidus temperature of the first alloy, for a period of 15 seconds to 3 hours. Verfahren nach einem der vorstehenden Ansprüche, wobei die zweite Wärmebehandlung in einer sauerstoffhaltigen Atmosphäre enthaltend elementaren Sauerstoff, naszierenden Sauerstoff, Ozon, Stickstoff, Edelgas oder deren Mischungen durchgeführt wird.Method according to one of the preceding claims, wherein the second heat treatment in an oxygen-containing atmosphere containing elemental oxygen, nascent oxygen, ozone, nitrogen, noble gas or mixtures thereof. Verfahren nach einem der vorstehenden Ansprüche, wobei die zweite Wärmebehandlung unter einem Druck von weniger als 2 bar durchgeführt wird.A method according to any one of the preceding claims, wherein the second heat treatment is carried out under a pressure of less than 2 bar. Verfahren nach einem der vorstehenden Ansprüche, wobei das oxidierbare Legierungselement der ersten Legierung ausgewählt ist aus der Gruppe bestehend aus Indium, Tellur, Wismut, Nickel, Kupfer, Zink, Zinn, Gallium, Germanium, Selen, Mangan, Magnesium, Aluminium, Antimon, Blei, und deren Kombinationen.The method of any one of the preceding claims wherein the oxidizable alloying element of the first alloy is selected from the group consisting of indium, tellurium, bismuth, nickel, copper, zinc, tin, gallium, germanium, selenium, manganese, magnesium, aluminum, antimony, lead , and their combinations. Verfahren nach einem der vorstehenden Ansprüche, wobei die erste Legierung kein Cadmium enthält.Method according to one of the preceding claims, wherein the first alloy does not contain cadmium. Verfahren nach einem der vorstehenden Ansprüche, wobei die erste Wärmebehandlung in einer reduzierenden Atmosphäre durchgeführt wird, die Wasserstoff, Kohlenmonoxid, Kohlenwasserstoffe, Methan, Stickstoff, ein Edelgas oder deren Mischungen enthält und in einem Strom der reduzierenden Atmosphäre bei einem Druck von weniger als 2 bar durchgeführt wird.A process according to any one of the preceding claims wherein the first heat treatment is carried out in a reducing atmosphere containing hydrogen, carbon monoxide, hydrocarbons, methane, nitrogen, a noble gas or mixtures thereof and in a reducing atmosphere stream at a pressure of less than 2 bar is carried out. Verfahren nach einem der vorstehenden Ansprüche, wobei die erste Zeitdauer 30 bis 240 Minuten und/oder die zweite Zeitdauer 10 Stunden bis 7 Tage beträgt.Method according to one of the preceding claims, wherein the first time period is 30 to 240 minutes and / or the second time period is 10 hours to 7 days. Verfahren nach einem der vorstehenden Ansprüche, wobei die erste Legierung bis zu 8 Gew.-% Zinn oder Zink, oder 8 Gew.-% bis 12 Gew.-% Zink, oder 8 Gew.-% bis 12 Gew.-% Zinn in Kombination mit Indium in Mengen von vorteilhaft 2 bis 15 Gew.-% enthält.A method according to any one of the preceding claims, wherein the first alloy comprises up to 8% by weight of tin or zinc, or 8% to 12% by weight of zinc, or 8% to 12% by weight of tin in Combination with indium in amounts of advantageously 2 to 15 wt .-%. Verfahren nach einem der vorstehenden Ansprüche, wobei die erste Legierung 0,05 Gew.-% bis 4 Gew.-% Tellur oder Wismut enthält.A method according to any one of the preceding claims, wherein the first alloy contains from 0.05% to 4% by weight of tellurium or bismuth. Verfahren nach einem der vorstehenden Ansprüche, wobei die vierte Legierung einer dritten Wärmebehandlung, vorteilhaft bei 900 bis 970°C für 2 bis 40 Stunden unterzogen wird, um eine fünfte Legierung zu erhalten.A method according to any one of the preceding claims, wherein the fourth alloy is subjected to a third heat treatment, advantageously at 900 to 970 ° C for 2 to 40 hours to obtain a fifth alloy. Verfahren nach einem der vorstehenden Ansprüche, wobei die Vergrößerung der Oberfläche der ersten Legierung durch Mahlen, Gasverdüsen, Flüssigkeitsverdüsen, Granulieren, Drahtziehen, Walzen von Blechen, Strangpressen, Zerschneiden, Extrudieren oder Strangpressen und deren Kombinationen bewirkt wird.A method according to any one of the preceding claims, wherein the enlargement of the surface of the first alloy is effected by milling, gas atomising, liquid atomising, granulating, wire drawing, sheet rolling, extrusion, cutting, extruding or extruding and combinations thereof. Verfahren nach einem der vorstehenden Ansprüche, wobei die vierte oder fünfte Legierung gepresst, gesintert und gegebenenfalls durch Strangpressen umgeformt wird.Method according to one of the preceding claims, wherein the fourth or fifth alloy is pressed, sintered and optionally formed by extrusion.
EP13162488.4A 2010-10-29 2010-10-29 Oxidation method Not-in-force EP2634273B8 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13162488.4A EP2634273B8 (en) 2010-10-29 2010-10-29 Oxidation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13162488.4A EP2634273B8 (en) 2010-10-29 2010-10-29 Oxidation method
EP10014118A EP2447379A1 (en) 2010-10-29 2010-10-29 Oxidation method

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP10014118.3 Division 2010-10-29
EP10014118A Division EP2447379A1 (en) 2010-10-29 2010-10-29 Oxidation method

Publications (3)

Publication Number Publication Date
EP2634273A1 true EP2634273A1 (en) 2013-09-04
EP2634273B1 EP2634273B1 (en) 2018-07-04
EP2634273B8 EP2634273B8 (en) 2018-08-22

Family

ID=43770431

Family Applications (2)

Application Number Title Priority Date Filing Date
EP13162488.4A Not-in-force EP2634273B8 (en) 2010-10-29 2010-10-29 Oxidation method
EP10014118A Withdrawn EP2447379A1 (en) 2010-10-29 2010-10-29 Oxidation method

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10014118A Withdrawn EP2447379A1 (en) 2010-10-29 2010-10-29 Oxidation method

Country Status (2)

Country Link
EP (2) EP2634273B8 (en)
JP (1) JP6073054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248936A (en) * 2018-09-03 2019-01-22 江西理工大学 A kind of production method of the highly conductive copper rod of charging pile plug Cutting free

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3933485A (en) * 1973-07-20 1976-01-20 Chugai Denki Kogyo Kabushiki-Kaisha Electrical contact material
US3970451A (en) * 1972-08-25 1976-07-20 Square D Company Electrical contact materials and methods of making the same
US4243413A (en) 1979-02-26 1981-01-06 Chugai Denki Kogyo Kabushiki-Kaisha Integrated Ag-SnO alloy electrical contact materials
US4472211A (en) * 1982-05-20 1984-09-18 Chugai Denki Kogyo Kobushiki Kaisha Method of internally oxidizing Ag-Sn alloy contact material
EP0508055A1 (en) 1991-04-12 1992-10-14 Mitsubishi Materials Corporation Silver-oxide based electric contact material
US5207842A (en) 1989-03-10 1993-05-04 Comptoir Lyon-Alemand Louyot Material based on silver and tin oxide for the production of electrical contacts; electrical contacts thus produced

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06184664A (en) * 1992-07-06 1994-07-05 Sumitomo Metal Mining Co Ltd Production of silver-oxide composite material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3970451A (en) * 1972-08-25 1976-07-20 Square D Company Electrical contact materials and methods of making the same
US3933485A (en) * 1973-07-20 1976-01-20 Chugai Denki Kogyo Kabushiki-Kaisha Electrical contact material
US4243413A (en) 1979-02-26 1981-01-06 Chugai Denki Kogyo Kabushiki-Kaisha Integrated Ag-SnO alloy electrical contact materials
US4472211A (en) * 1982-05-20 1984-09-18 Chugai Denki Kogyo Kobushiki Kaisha Method of internally oxidizing Ag-Sn alloy contact material
US5207842A (en) 1989-03-10 1993-05-04 Comptoir Lyon-Alemand Louyot Material based on silver and tin oxide for the production of electrical contacts; electrical contacts thus produced
EP0508055A1 (en) 1991-04-12 1992-10-14 Mitsubishi Materials Corporation Silver-oxide based electric contact material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAKAIRI ET AL., HOLM CONFERENCES ON ELECTRICAL CONTACTS, 1982, pages 77 - 85
WU C P ET AL: "Oxidation of Agâ Snâ La Alloy Powders", OXIDATION OF METALS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 70, no. 3-4, 22 July 2008 (2008-07-22), pages 121 - 136, XP019612898, ISSN: 1573-4889 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109248936A (en) * 2018-09-03 2019-01-22 江西理工大学 A kind of production method of the highly conductive copper rod of charging pile plug Cutting free

Also Published As

Publication number Publication date
EP2634273B1 (en) 2018-07-04
EP2634273B8 (en) 2018-08-22
JP2012097357A (en) 2012-05-24
EP2447379A1 (en) 2012-05-02
JP6073054B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
DE3017782C2 (en) Process for the production of sinterable alloy powders based on titanium
US3779714A (en) Dispersion strengthening of metals by internal oxidation
DE60033018T2 (en) METHOD FOR PRODUCING METAL PRODUCTS, SUCH AS PANELS BY COLD FORMING AND FLASH MOUNTING
DE69032065T2 (en) Composite of silver and metal oxide and method of manufacturing the same
EP2945772B1 (en) Solder alloys
EP3247530B1 (en) Alloy for hard soldering
EP0362351B1 (en) Process for producing an ODS sintered alloy and alloy obtainable by this process
EP3994289B1 (en) Nickel based alloy for powder and method to produce such powder
DE69221398T2 (en) Process for the production of contact materials for vacuum switches
EP2831298B1 (en) Composite material
DE2049546C3 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
AT406349B (en) METHOD FOR PRODUCING A METAL POWDER WITH AN OXYGEN CONTENT LESS THAN 300 PPM, AND METHOD FOR PRODUCING MOLDED POWDER METALURGICAL METAL PRODUCTS FROM THIS METAL POWDER
DE960930C (en) Process for the production of castings from molybdenum and / or tungsten alloys
EP2634273B1 (en) Oxidation method
DE643567C (en) Process for the production of two- or multi-substance bodies
DE102009059690A1 (en) oxidation process
EP0035070A1 (en) Memory alloy based on a highly cupriferous or nickelous mixed crystal
EP2326457B1 (en) Solder material comprising a reactive filler material, carrier element or component comprising said type of solder material and use of a fluxing agent
DE2711071C2 (en) Process for powder production for oxide dispersion hardened copper materials
DE2355122C3 (en) Process for the production of a dispersion strengthened metal
DE102005038235A1 (en) Use of indium-tin mixed oxide for silver-based materials
US9028586B2 (en) Oxidation method
EP3319753A1 (en) Alloys
AT345569B (en) PROCESS FOR PRODUCING A DISPERSION STRENGTHENED METAL
EP0338401A1 (en) Powder-metallurgical process for the production of a semi-finished product for electrical contacts made from a composite material based on silver and iron

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 2447379

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17P Request for examination filed

Effective date: 20140304

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOCH, ANDREAS

Inventor name: NIEDERREUTHER, RALF

Inventor name: WIEHL, GUNTHER

Inventor name: BRAUMANN, PETER, DR.

Inventor name: ROTH, WERNER

Inventor name: KEMPF, BERND, DR.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180131

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 2447379

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAXONIA TECHNICAL MATERIALS GMBH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010015142

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502010015142

Country of ref document: DE

Representative=s name: PFENNING, MEINIG & PARTNER MBB PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010015142

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190405

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181029

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181029

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181029

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181029

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1014592

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101029

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20221031

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010015142

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231031