EP2633290B1 - Charakterisierungszelle für rauchanalyse - Google Patents

Charakterisierungszelle für rauchanalyse Download PDF

Info

Publication number
EP2633290B1
EP2633290B1 EP11776773.1A EP11776773A EP2633290B1 EP 2633290 B1 EP2633290 B1 EP 2633290B1 EP 11776773 A EP11776773 A EP 11776773A EP 2633290 B1 EP2633290 B1 EP 2633290B1
Authority
EP
European Patent Office
Prior art keywords
cell
smoke
reaction chamber
inert gas
libs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11776773.1A
Other languages
English (en)
French (fr)
Other versions
EP2633290A1 (de
Inventor
Hicham Maskrot
Jean-Baptiste Sirven
Pascale Dewalle
Benoît GUIZARD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2633290A1 publication Critical patent/EP2633290A1/de
Application granted granted Critical
Publication of EP2633290B1 publication Critical patent/EP2633290B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/718Laser microanalysis, i.e. with formation of sample plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • G01N2021/151Gas blown
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/74Optical detectors
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating

Definitions

  • the invention relates to the field of on-line material analysis.
  • the material analyzed using this means may be in the form of an aerosol or a gas laden with constituent particles of this material, thus forming smoke.
  • the invention relates to the field of optical analysis systems for the study of particles formed by pyrolysis inside a characterization cell.
  • the description below is based on the use of laser-induced plasma spectrometry, or LIBS (“laser-induced breakdown spectroscopy ”) analysis.
  • LIBS laser-induced breakdown spectroscopy
  • This method consists in focusing a pulsed laser beam in a reaction mixture to be analyzed and in forming a plasma which is analyzed by emission spectrometry. This makes it possible to determine the composition of said reaction mixture.
  • This technique is applied in the description below to the control of fumes from the production of nanometric particles by laser pyrolysis.
  • An LIBS system for an LIBS analysis is illustrated by the figure 1 and includes an A5 nanoparticle synthesis reactor, a LIBS A1 cell, an A2 laser to emit a laser beam, an A3 lens to converge the laser beam inside the LIBS A1 cell, an A4 optical system to collect signals from the LIBS A1 cell, and an A7 spectrometer.
  • the production of nanometric particles within the A5 reactor is based on the cross-flow interaction between a beam emitted by a laser, for example a carbon dioxide CO 2 power laser, and a reaction mixture.
  • a laser for example a carbon dioxide CO 2 power laser
  • the beam excites vibrational states of the molecules (called precursors) of the reaction mixture.
  • the energy which has been transmitted from the beam to the molecules is redistributed by collision throughout the reaction mixture.
  • a very rapid rise in the temperature of the reaction mixture is observed, which induces the thermal decomposition of the molecules. This gives rise to a so-called “supersaturated” vapor in terms of radicals and energy.
  • Nanoparticles are then formed by homogeneous germination from the radicals. By a phenomenon of growth by collision / coalescence, the nanoparticles grow.
  • the dissociation and the formation of the nanoparticles take place in an overlap volume between the beam and the flow of the reaction mixture which can be observed thanks to the production of a flame at this location.
  • the nanoparticles are then brought into the LIBS A1 cell via an inlet duct A6 .
  • the LIBS A1 cell also includes an A15 viewing window for viewing plasma with the naked eye.
  • the nanoparticles behave like a gas and therefore spread inside the reaction chamber and occupy all the available space there, forming a smoke.
  • the laser beam F laser generated by the laser A2 is focused by the lens A3 .
  • the laser beam F laser is focused in the mixture to be analyzed, there is vaporization of the nanoparticles causing the ejection of atoms and forming an expanding plasma.
  • the atoms de-excite causing the emission of light.
  • This light is then received by the adapted optical system A4 and placed on the same side as the laser A2.
  • This light is then analyzed by the spectrometer A7 connected to the optical system A4 by an optical fiber A8 suitable for transporting the signal.
  • a drawback of this LIBS cell results from the fact that the nanoparticles behave like a gas within the reaction chamber. This is why the analysis window A131 of the third arm A13 becomes dirty.
  • the dirty A131 analysis window acts as a filter which blocks part of the laser beam F laser . All the energy of the laser beam F laser is therefore not efficient and only a part is used to form the plasma. The plasma formed is therefore less energetic and emits a weaker signal. This already weakened signal is further attenuated when it passes through the analysis window A131 from the third arm back to the optical system A4 .
  • the plasma formed is not limited to the location of focusing of the laser beam F laser , and therefore where it is most concentrated. Indeed, as particles are present throughout the reaction chamber, secondary PI dry plasmas can form between the focal point of the laser beam, where the main plasma PI pr is formed , and the analysis window A131 through which the laser beam F laser enters inside the reaction chamber as shown in the figure 2 .
  • the secondary PI dry plasmas can be located outside the observation zone by the optical system A4.
  • the object of the invention is to remedy at least one of the drawbacks of the prior art presented above by way of example.
  • the advantage is that the signal obtained at the output (light emitted by the plasma and passing through the analysis window) is stabilized compared to the prior art.
  • the invention also relates to a characterization system comprising a cell as described above and furthermore a collector downstream of the outlet of the cell recovering the powder after analysis thereof and a pressure regulator to maintain constant pressure in the reaction chamber of the cell.
  • the characterization cell is a LIBS system.
  • the LIBS cell for laser generated plasma smoke analysis comprises a LIBS 1 cell.
  • the LIBS cell 1 comprises a reaction chamber in which the plasma is formed, a first arm 11 with at its free end an inlet orifice 111 for the arrival of the smoke inside the reaction chamber, a second arm 12 with at its free end an outlet opening 121 for evacuating the smoke from the reaction chamber.
  • the inlet 111 and outlet 121 orifices may be opposed and are advantageously arranged respectively on the upper part and the lower part of the LIBS cell 1 .
  • the LIBS cell 1 further comprises a third arm 13 closed by an analysis window 131 for the entry of a laser beam F laser intended to form the plasma inside the reaction chamber.
  • a fourth arm 14 In front of the third arm 13 can be provided a fourth arm 14 closed by a cover 141 .
  • the four arms 11 , 12, 13 and 14 can be advantageously arranged in a cross, so the beam entering through the analysis window 131 intersects the smoke entering through the inlet orifice 111 and exiting through the opposite outlet 121. to the latter.
  • the laser F laser beam can ablate the material forming the LIBS 1 cell.
  • the fourth arm 14 is therefore chosen to be longer than the third arm 13 .
  • the particles which result from the ablation by the laser beam F of the laser cover 141 of the fourth arm 14 are less likely to pollute the measurements made on the smoke.
  • the LIBS cell 1 can also include a viewing window 15 to allow an operator to observe the inside of the reaction chamber with the naked eye or by means of a viewing device, for example a video camera connected to the reaction chamber. a screen.
  • This viewing window 15 can be placed on the LIBS cell 1 so that the angle of sight through the viewing window 15 is perpendicular to the incident direction of the beam.
  • the LIBS cell further comprises a blower 16 to ensure a sweep of inert gas in the vicinity of at least the analysis window 131.
  • the blower 16 may be a pump connected by pipes to a reservoir of inert gas, for example argon, on one side, and on the other to an inert gas inlet 132 located in the third arm. 13 in the vicinity of its end closed by the analysis window 131.
  • inert gas for example argon
  • the third arm 13 may have the shape of a venturi, as illustrated in FIG. figure 4 , ie the third arm 13 is divided into two parts of different sections S1, S2 .
  • the first part 134 on the side of its free end, has a section S1 that is larger than the section S2 of the second part 135 on the side of the reaction chamber.
  • An overpressure ⁇ P is then generated in the first part 134 further limiting the quantity of smoke in the vicinity of the analysis window 131.
  • the blower 16 can also be connected to an intake port located near the end of the fourth arm 14 which is closed by a cover. This makes it possible to balance the argon gas flows inside the LIBS 1 cell.
  • the blower 16 can also be connected to an intake port located in the vicinity of the viewing window 15. This also reduces the fouling of the viewing window 15. In this case, in order to balance the flow of inert gas inside the LIBS 1 cell, scanning can also be ensured in the same way on the side opposite to the viewing window 15.
  • the flow of inert gas from the blower 16 can be adjustable.
  • the LIBS cell further comprises an injector 17 for the coaxial sheathed injection of the smoke inside the reaction chamber, the sheathing being provided by a jet of inert gas coaxial with the smoke and surrounding the latter.
  • the sheathing of the smoke makes it possible to confine the latter inside the reaction chamber.
  • the smoke of nanoparticles will not tend to occupy all the space available inside the LIBS cell 1 and in particular towards the analysis window 131 and the viewing window 15.
  • the formation of secondary plasmas outside the focal point of the laser beam F laser is also avoided.
  • the injector 17 can be, as illustrated in the figure 5 , a double frustoconical nozzle 17 having two coaxial orifices 171 and 172, a first 171 with a disc-shaped section for the arrival of the smoke Fu and a second 172 with an annular-shaped section surrounding the first orifice 171 for the arrival of inert gas.
  • the injected inert gas surrounds the smoke which is confined inside the cylinder formed by the inert gas.
  • the inert gas is for example argon Ar.
  • the LIBS cell 1 can form part of an LIBS system further comprising a LIBS manifold 18 downstream of the outlet port 121 of the LIBS cell 1 and a pressure regulator 19 to maintain the pressure constant in the reaction chamber.
  • the pressure regulator 19 may be a regulating valve placed downstream of the LIBS manifold 18 to compensate for the pressure drop due to the clogging of the filters thereof.
  • the LIBS regulation valve 19 is connected to a pressure probe S1 placed inside the LIBS cell 1 in order to measure the pressure there.
  • a servo control is provided to control the LIBS 19 control valve according to the pressure measured inside the LIBS 1 cell.
  • the LIBS 19 control valve opens progressively as the LIBS 18 manifold clogs up due to the fumes.
  • the LIBS system also comprises a reactor 5 for the generation of smoke as described in the technological background part.
  • the outlet of the reactor 5 is connected to a pump 9 which generates a flow of smoke.
  • the smoke is conducted partly to the LIBS 1 cell and partly to a manifold 5 1 of the reactor.
  • a regulating valve 5 2 At the outlet of the manifold 5 1 is arranged a regulating valve 5 2 to regulate the pressure inside the reactor 5 which must be kept constant.
  • the regulating valve 52 is connected to a pressure probe S2 placed inside the reactor 5 in order to measure the pressure therein.
  • a servo-control is provided to control the regulating valve 52 as a function of the pressure measured inside the reactor 5.
  • the regulating valve 52 opens progressively as the filters of the manifold 51 of the reactor 5 become clogged. because of nanoparticles.
  • the collectors 18 and 51 collect the nanoparticles from the smoke so that they are not released into the atmosphere.
  • the presence of the LIBS 19 control valve is necessary to maintain a stable observed signal.
  • the clogging of the reactor manifold 51 causes the opening of the control valve 52 increasing the flow rate in the channel outside the LIBS cell and reducing the flow rate in the channel of the reactor. LIBS cell.
  • the LIBS manifold 18 also becomes clogged, which causes the pressure in the channel of the LIBS cell to vary and therefore inside the LIBS 1 cell. The decrease in flow and the variation in pressure in the LIBS cell pathway then makes the plasma produced unstable.
  • the pressure inside the reactor 5 is kept below atmospheric pressure in order to prevent the nanoparticles produced from escaping into the ambient atmosphere, for example, the pressure is controlled at 900 mbar.
  • Reactor 5 is configured so as to have a production of 400 g / h of nanoparticles.
  • the pump 9 imposes a flow rate of 160 m 3 / h.
  • the pressure inside the LIBS 1 cell can be slaved to 850 mbar.
  • the overall flow of inert gas (argon) used for the scanning of windows 131 and 15 and of the smoke ducting is 30 L / min distributed as follows: 20 L / min for the scanning of windows 131 and 15 and 10 L / min for sheathing.
  • the laser 2 used is a nanosecond laser of the Nd: YAG type.
  • the energy per pulse of laser 2 is set at 50 mJ.
  • a converging lens 3 is positioned between the laser 2 and the analysis window 131.
  • the laser 2 and the converging lens 3 are positioned so that the focal point of the laser beam F laser emitted by the laser 2 is located at the intersection between the four arms 11 , 12 , 13 and 14 , i.e. under the flow d 'arrival of the smoke, and next to the viewing window 15 if this is provided on the LIBS 2 cell.
  • the signal emitted by the plasma is collected by the optical system 4 placed at the output, facing the analysis window 131.
  • the optical system 4 sends the collected signal to a spectrometer 7 which analyzes the spectrum of the emitted signal (which is the light of the plasma).
  • the dimensions of the cell are (from the end of the arms to the center of the cell, i.e. where plasma is created): - first arm 11: 53 mm - second arm 12: 160 mm - third arm 13: 50 mm - fourth arm 14: 100 mm
  • FIG. 6 is shown a graph illustrating the intensity of the measured signal (in arbitrary units) as a function of the scanning flow rate used (in L / min) for four different elements: silicon Si, hydrogen H, argon Ar and carbon C.
  • the signal strength for silicon Si and hydrogen H can be read on the ordinate scale on the left.
  • the signal strength for argon Ar and carbon C can be read on the ordinate scale to the right.
  • the sheath flow rate is chosen so that the combined flow rate of the sheathing and sweeping is 30 L / min.
  • the sheath flow rate is 30 L / min. If the sweep flow rate is 10 L / min, the sheath flow rate is 20 L / min.
  • the figure 6 therefore shows that with the cladding alone (zero sweep flow), the signal intensities for the four elements are much lower than for a cladding flow rate of 10 L / min (i.e. a sweep flow of 20 L / min) .
  • This figure 6 further shows that with scanning alone (zero cladding flow rate), the signal intensities for the four elements are lower than for a sheathing flow rate of 10 L / min (ie a scanning flow rate of 20 L / min).
  • the conditions for the sheath flow rate at 10 L / min and the sweep flow rate at 20 L / min are close to the optimum and make it possible to obtain signal intensities close to the maximum.
  • the figure 7 shows the combined effect of cladding and sweeping on signal repeatability.
  • the repeatability is given on the y-axis for four elements (the same as for the figure 6 ) and is expressed as the relative standard deviation of the intensity of the lines calculated over fifty spectra, a spectrum resulting from the integration of the signal over thirty laser shots. The lower the standard deviation, the better the repeatability.
  • the sheath flow rate is chosen so that the combined flow rate of the sheathing and sweeping is 30 L / min.
  • the repeatability of the measured signals is better when the cladding and the sweep are combined compared to the use of the cladding alone or of the sweep alone with a low value indicating a high repeatability.
  • the sweep flow rate is 20 L / min and the sheathing flow rate is 10 L / min, the repeatability is close to the minimum.
  • the two figures 6 and 7 therefore show that the effect of cladding alone and scanning alone do not add up, but moreover, the quality of the signals is unexpectedly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Claims (12)

  1. Charakterisierungszelle für Rauchanalyse durch optische Spektrometrie, umfassend:
    - eine Reaktionskammer;
    - eine Eingangsöffnung (111) für die Ankunft des Rauchs (Fu) im Inneren der Reaktionskammer;
    - eine Ausgangsöffnung (121) für die Ausleitung des Rauchs (Fu) aus der Reaktionskammer;
    - ein Analysefenster (131) für den Eingang eines Laserstrahls (Flaser), der bestimmt ist, das Plasma im Inneren der Reaktionskammer zu bilden; und
    - ein Gebläse (16);
    dadurch gekennzeichnet, dass:
    das Gebläse (16) ausgelegt ist, um eine Inertgasabastung in der Nähe des Analysefensters (131) sicherzustellen; und die Zelle ferner umfasst:
    - einen Injektor (17), der für die koaxiale umhüllte Einleitung des Rauchs in das Innere der Reaktionskammer ausgelegt ist, wobei die Umhüllung von einem Strahl desselben, zum Rauch koaxialen Inertgases sichergestellt wird und diesen umgibt.
  2. Zelle nach Anspruch 1, umfassend ferner einen Arm (13), der sich ab der Reaktionskammer erstreckt und von dem ein freies Ende durch das Analysefenster (131) verschlossen ist, wobei dieser Arm aus zwei Teilen (134, 135) mit unterschiedlichen geraden Querschnitten gebildet ist, wobei der Teil (134) mit dem größeren Querschnitt auf der Seite des Analysefensters (131) angeordnet ist und der Teil (135) mit dem kleineren Querschnitt auf der Seite der Reaktionskammer angeordnet ist, um ein Venturi zu bilden und um einen Überdruck auf der Seite des Fensters (131) sicherzustellen.
  3. Zelle nach Anspruch 1 oder 2, wobei der von dem Gebläse (16) und eventuell dem Venturi erzeugte Inertgasdurchsatz einstellbar ist.
  4. Zelle nach einem der Ansprüche 1 bis 3, wobei der von dem Injektor (17) erzeugte Inertgasdurchsatz einstellbar ist.
  5. Zelle nach einem der Ansprüche 1 bis 4, wobei der Injektor (17) eine kreisförmige Doppeldüse ist, die zwei koaxiale Öffnungen (171, 172) aufweist, wobei eine erste (171) einen scheibenförmigen Querschnitt für die Ankunft des Rauchs und eine zweite (172) einen ringförmigen Querschnitt, die die erste (171) umgibt, für die Ankunft eines Inertgases hat.
  6. Zelle nach einem der Ansprüche 1 bis 5, umfassend ferner ein Visualisierungsfenster (15) für die Beobachtung des im Inneren der Reaktionskammer bei ihrem Betrieb produzierten Plasmas.
  7. Zelle nach einem der Ansprüche 1 bis 6, wobei das Inertgas Argon ist.
  8. Zelle nach einem der Ansprüche 1 bis 7, wobei ein von dem Plasma gesendetes Signal von einem optischen System (4) gesammelt wird, das am Ausgang gegenüber dem Analysefenster (131) platziert ist.
  9. Charakterisierungssystem, umfassend eine Zelle nach einem der Ansprüche 1 bis 8 und ferner einen der Ausgangsöffnung (121) der Zelle (1) nachgeordneten Sammler (18), der Nanopartikel des Rauchs nach dessen Analyse zurückgewinnt und einen Druckregler (19), um den Druck in der Reaktionskammer der Zelle (1) konstant zu halten.
  10. System nach Anspruch 9, wobei der Druckregler (19) umfasst:
    ein Regulierventil, das dem Sammler nachgeordnet platziert ist, um den Lastverlust aufgrund einer Verstopfung der Filter desselben zu kompensieren.
  11. System nach Anspruch 10, wobei das Regulierventil (19) mit einer Drucksonde (S1) verbunden ist, die in der Zelle (1) für deren Steuerung platziert ist.
  12. System nach den Ansprüchen 11 und 6, wobei das Gebläse (16) ausgelegt ist, um ebenfalls eine Inertgasabtastung in der Nähe des Visualisierungsfensters (15) sicherzustellen.
EP11776773.1A 2010-10-27 2011-10-27 Charakterisierungszelle für rauchanalyse Active EP2633290B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058851A FR2966931B1 (fr) 2010-10-27 2010-10-27 Cellule de caracterisation pour analyse de fumee
PCT/EP2011/068900 WO2012055978A1 (fr) 2010-10-27 2011-10-27 Cellule de caracterisation pour analyse de fumee

Publications (2)

Publication Number Publication Date
EP2633290A1 EP2633290A1 (de) 2013-09-04
EP2633290B1 true EP2633290B1 (de) 2021-10-13

Family

ID=43639148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11776773.1A Active EP2633290B1 (de) 2010-10-27 2011-10-27 Charakterisierungszelle für rauchanalyse

Country Status (8)

Country Link
US (1) US9733189B2 (de)
EP (1) EP2633290B1 (de)
JP (1) JP5795644B2 (de)
CN (1) CN103189738B (de)
ES (1) ES2901531T3 (de)
FR (1) FR2966931B1 (de)
RU (1) RU2555210C2 (de)
WO (1) WO2012055978A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103398987B (zh) * 2013-08-06 2015-04-15 中国科学院合肥物质科学研究院 一种灰霾成分在线监测装置
JP6561587B2 (ja) * 2015-05-29 2019-08-21 富士電機株式会社 分析装置および排ガス処理システム
CN105137500A (zh) * 2015-07-25 2015-12-09 皖江新兴产业技术发展中心 一种烟气前处理装置堵塞监测装置和方法
CN105445152A (zh) * 2015-12-20 2016-03-30 华南理工大学 一种使用激光方法检测固体物料颗粒流成分的测量室
JP6734061B2 (ja) * 2016-01-29 2020-08-05 アジレント・テクノロジーズ・インクAgilent Technologies, Inc. プラズマ分光分析装置
US10508976B1 (en) 2017-03-31 2019-12-17 Advanced Micro Instruments, Inc. Gas sampling device and method
CN107870164A (zh) * 2017-10-16 2018-04-03 合肥学院 一种基于激光诱导荧光技术的材料检测系统及使用方法
CN108760687B (zh) * 2018-04-08 2021-08-17 深圳市天得一环境科技有限公司 激光散射油烟监测仪

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075051A1 (en) * 2005-03-11 2007-04-05 Perkinelmer, Inc. Plasmas and methods of using them

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117437B2 (de) * 1972-05-08 1976-06-02
US3985505A (en) * 1974-11-21 1976-10-12 Leco Corporation Combustion system
US4443072A (en) * 1982-04-05 1984-04-17 The United States Of America As Represented By The United States Department Of Energy Purged window apparatus utilizing heated purge gas
JPH05200266A (ja) * 1991-12-27 1993-08-10 Victor Co Of Japan Ltd 超微粒子製造装置
JPH10115210A (ja) * 1996-10-09 1998-05-06 Saginomiya Seisakusho Inc エンジン用ミスト検出装置
JP3513342B2 (ja) * 1996-12-02 2004-03-31 三菱重工業株式会社 光学的計測装置
RU2157988C2 (ru) * 1998-06-15 2000-10-20 Томский политехнический университет Способ атомно-абсорбционного спектрального анализа элементного состава вещества и устройство для его осуществления
US6421127B1 (en) * 1999-07-19 2002-07-16 American Air Liquide, Inc. Method and system for preventing deposition on an optical component in a spectroscopic sensor
US6741345B2 (en) * 2001-02-08 2004-05-25 National Research Council Of Canada Method and apparatus for in-process liquid analysis by laser induced plasma spectroscopy
JP3500126B2 (ja) * 2001-03-01 2004-02-23 三菱重工業株式会社 粉体のモニタリング装置及び該装置を備えたセメントプラント
GB0131126D0 (en) * 2001-12-05 2002-12-11 Secr Defence Detection method and apparatus
JP2004012255A (ja) * 2002-06-06 2004-01-15 Yokogawa Electric Corp 微粒子成分分析装置
JP3917943B2 (ja) * 2003-02-14 2007-05-23 東北電力株式会社 灰中未燃分計測システム
JP2004264146A (ja) * 2003-02-28 2004-09-24 Horiba Ltd 簡易な汚れ防止および補正機能を有する光学装置および分析計
US6847446B2 (en) * 2003-03-25 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Chemical analysis and detection by selective adsorbent sampling and laser induced breakdown spectroscopy
JP4119823B2 (ja) * 2003-11-28 2008-07-16 三菱重工業株式会社 ガス中の微量成分計測装置及び方法
JP4768468B2 (ja) * 2005-05-26 2011-09-07 株式会社東芝 元素分析方法および装置、並びに分析試料作成方法
WO2006138632A2 (en) * 2005-06-16 2006-12-28 Thermo Gamma-Metrics Llc In-stream spectroscopic elemental analysis of particles being conducted within a gaseous stream
JP4873954B2 (ja) * 2006-01-20 2012-02-08 新日本製鐵株式会社 観察用窓装置
RU105459U1 (ru) * 2011-02-07 2011-06-10 Учреждение Российской академии наук Институт оптики атмосферы им. В.Е. Зуева Сибирского отделения РАН (ИОА СО РАН) Малогабаритная аэрозольная камера для контроля работоспособности спектроскопических лидаров

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070075051A1 (en) * 2005-03-11 2007-04-05 Perkinelmer, Inc. Plasmas and methods of using them

Also Published As

Publication number Publication date
FR2966931B1 (fr) 2012-11-16
RU2555210C2 (ru) 2015-07-10
US9733189B2 (en) 2017-08-15
CN103189738A (zh) 2013-07-03
JP5795644B2 (ja) 2015-10-14
CN103189738B (zh) 2016-06-29
WO2012055978A1 (fr) 2012-05-03
JP2014500485A (ja) 2014-01-09
US20130280132A1 (en) 2013-10-24
RU2013122759A (ru) 2014-12-10
ES2901531T3 (es) 2022-03-22
EP2633290A1 (de) 2013-09-04
FR2966931A1 (fr) 2012-05-04

Similar Documents

Publication Publication Date Title
EP2633290B1 (de) Charakterisierungszelle für rauchanalyse
EP2614363B1 (de) Gerät zum kartieren und hochauflösender analyse von elementen in feststoffen
EP1147403A1 (de) Elementaranalysevorrichtung, basierend auf plasmaemissionsspektrometrie, wobei das plasma durch einen laser erzeugt wird
EP2901139B1 (de) Verfahren und system zur analyse von partikeln in kaltplasma
EP1706727A1 (de) Verfahren zur messung gasförmiger spezies durch derivation
EP3441750A1 (de) Verfahren zur isotopenmessung
EP3878755A1 (de) System zur probenahme und analyse der von einem flugzeug erzeugten kondensstreifen
EP1549933B1 (de) Verfahren und vorrichtung zur optischen emissionsspektroskopie für die direktanalyse von laserangeregten flüssigkeiten
EP1914535B1 (de) Gascharakterisierung für optische Emissionsspektrometrie
FR3005737A1 (fr) Dispositif de controle de l'opacite et des oxydes d'azote dans les gaz d'echappement
WO2010046595A1 (fr) Methode et systeme d'analyse de la stoechiometrie de particules; procede de fabrication de particules avec controle de stoechiometrie
EP3134723A1 (de) System zur messung der zusammensetzung einer flüssigkeit durch laserinduzierte plasmaspektroskopie
WO2020104744A1 (fr) Methode d'analyse de fumees d'evaporation, produit programme d'ordinateur, systeme d'analyse et installation de fabrication additive associes
FR2859283A1 (fr) Procede de mesure d'especes gazeuses par derivation
BE1018123A3 (fr) Tete de mesure de type libs optimisee pour l'analyse de composes liquides et/ou a haute temperature.
Park et al. Mechanisms of graphite ablation by sub-millisecond ytterbium fiber laser pulses
FR3089299A1 (fr) Methode d’analyse de fumees d’evaporation, produit programme d’ordinateur, systeme d’analyse et installation de fabrication additive associes
CA2212976C (fr) Procede et dispositif pour l'analyse en continu de la composition d'une atmosphere gazeuse contenant des particules de matiere en suspension
FR3112386A1 (fr) Système de caractérisation de particules se présentant sous la forme d’un aérosol dans un gaz ambiant et procédé associé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130524

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190418

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011071934

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01N0021710000

Ipc: G01N0021050000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/71 20060101ALI20210607BHEP

Ipc: G01N 21/15 20060101ALI20210607BHEP

Ipc: G01N 21/03 20060101ALI20210607BHEP

Ipc: G01N 21/05 20060101AFI20210607BHEP

INTG Intention to grant announced

Effective date: 20210624

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011071934

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1438519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20210403265

Country of ref document: GR

Effective date: 20220113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1438519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211013

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2901531

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220213

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220214

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220113

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011071934

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

26N No opposition filed

Effective date: 20220714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211027

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111027

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 13

Ref country code: GR

Payment date: 20231019

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231117

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231031

Year of fee payment: 13

Ref country code: FR

Payment date: 20231023

Year of fee payment: 13

Ref country code: DE

Payment date: 20231018

Year of fee payment: 13

Ref country code: CZ

Payment date: 20231016

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211013