EP2633026A2 - Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues - Google Patents

Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues

Info

Publication number
EP2633026A2
EP2633026A2 EP11832134.8A EP11832134A EP2633026A2 EP 2633026 A2 EP2633026 A2 EP 2633026A2 EP 11832134 A EP11832134 A EP 11832134A EP 2633026 A2 EP2633026 A2 EP 2633026A2
Authority
EP
European Patent Office
Prior art keywords
microalgae
botryococcus
strains
mixotrophic
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11832134.8A
Other languages
German (de)
English (en)
Inventor
Pierre Calleja
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fermentalg SA
Original Assignee
Fermentalg SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fermentalg SA filed Critical Fermentalg SA
Publication of EP2633026A2 publication Critical patent/EP2633026A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N13/00Treatment of microorganisms or enzymes with electrical or wave energy, e.g. magnetism, sonic waves
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Definitions

  • the invention relates to a method for culturing microalgae of the Botryococcus genus using a discontinuous or variable light input over time, in particular in the form of flashes, as well as to new strains of microalgae of the Botryococcus genus which are particularly adapted the production of hydrocarbons in mixotrophic mode.
  • Unicellular algae are photosynthetic microorganisms with an autotrophic character, that is, they have the ability to grow autonomously by photosynthesis.
  • heterotrophic are able to develop in the total absence of light, by fermentation, that is to say by exploiting the organic matter.
  • mixotrophs Other species of algae, for which photosynthesis remains essential for their development, are able to take advantage of both photosynthesis and the organic matter present in their environment. These intermediate species, called mixotrophs, can be grown both in the presence of light and organic matter.
  • Unicellular algae are currently the subject of many industrial projects because some species are able to accumulate or secrete significant amounts of lipids, including polyunsaturated fatty acids.
  • microalgae can thus accumulate up to 80% of their dry weight in fatty acids and, as a result, offer a credible alternative to the cultivation of land-based oil plants, in particular for the production of biofuels [Li, Y and al., 2008 Biotechnol. Prog., 24: 815-820].
  • microalgae strains of the genus Botryococcus (Chlorophyta, Chlorophyceae, Chlorococcales, Disctyosphaericae) [ITIS, Catalog of Life, 2010] are capable of producing hydrocarbons in a significant quantity, in particular n-alkadienes, trienes, methylated squalenes, triterpenoids, tetraterpenoid and lycopadienes.
  • These strains produce, in addition, particular hydrocarbons with long carbon chains, grouped under the name of botryococcenes.
  • These hydrocarbons consist mainly of unbranched isoprenoid triterpenes of formula C n H 2n-10 .
  • Botryococcus strains A, B and L are distinguished according to the lipid profile constituting the botryococci [Metzger, P et al. (2005) Applied Microbiology and Biotechnology 6 (25): 486-496].
  • Botryococcus braunii is the species that has so far been the most studied because of the quality of its hydrocarbons and its ability to be grown in autotrophic mode.
  • the cultivation of this green algae, ponderedly highly pigmented, is generally carried out under conditions of high brightness, between 500 and 1500 ⁇ . m “2 , s " 1 .
  • botryococcenes 30% of its dry weight in botryococcenes.
  • the fatty chains of these botryococcenes comprise between 30 and 37 carbon atoms [Plant Patent US 6, 169]. The genome of this strain is currently being sequenced.
  • the applicant has selected new strains of Botryococcus from his personal collections. Amongst these strains, those with the capacity to grow both in mixotrophic mode and in the presence of discontinuous illumination, especially in the form of flashes, were searched for.
  • the close alternation of lighted phases and dark phases, generally perceived as stressful for micro-algae such as Botryococcus, has, unexpectedly, allowed the isolation of new strains of Botryococcus with a greater ability to evolve under mixotrophy and to adapt to light fluctuations.
  • These new strains of Botryococcus able to withstand repeated changes in light intensity, are particularly suitable for the production of lipids and hydrocarbons in mixotrophic mode.
  • they are content with a discontinuous light input, whose intensity is generally lower than that required by cultures in autotrophic mode, or whose illumination is permanent.
  • part of the energy consumed by algae in this system comes from supplementation of the culture medium with carbon substrates, such as glycerol or acetate, which can come from by-products from various industries. .
  • the inventor hypothesizes that the selection of the strains by flashing, makes it possible to isolate strains having a mixed metabolism, that is to say more able to simultaneously practice photosynthesis and the fermentation.
  • the three strains of Botryococcus braunii are original in that one (827) appeared to be both mixotrophic and heterotrophic, which is not the case with the other known mixotrophic strains of Botryococcus braunii and the other two (828). and 829) as strictly mixotrophic (total inhibition of growth in heterotrophic) in the presence of glycerol, sucrose and lactose in their culture medium. These last two strains, 828 and 829, seem to have the same characteristics.
  • the strain of Botryococcus sudeticus 841 for its part, has a strict mixotrophy in the presence of glucose and acetate in the culture medium, which distinguishes it from other strains and strains of the state of the art.
  • the two strains of Botryococcus braunii, 827 and 828 received the CCAP 807/5 and CCAP 807/6 deposit numbers, respectively.
  • the strain of Botryococcus sudeticus, 841 has received the deposit number CCAP 807/4.
  • strains are found to be particularly suitable for the production of lipids in mixotrophic culture conditions, especially when they are cultivated in the presence of a light input whose intensity is variable or discontinuous.
  • Figure 1 Graph showing the evolution of the biomass of microalgae (g / L) in culture, in f / 10 culture medium, supplemented with 10% of soil extract over time (days) for the different modes of culture: autotrophy, ()) mixotrophy ( ⁇ ) and flash mode mixotrophy according to the invention ( ⁇ ).
  • the cultures are carried out using strain 828, as described in Example 2.
  • Figure 2 Graph showing the evolution of the biomass of microalgae (g / L) in culture, in f / 10 culture medium, supplemented with 10% of soil extract over time (days) for different culture modes: autotrophy, ( ⁇ ), mixotrophy ( ⁇ ) and mixotrophy in flash mode according to the invention ( ⁇ ).
  • the cultures are carried out using strain 829, as described in Example 2.
  • Figure 3 Graph showing the evolution of the biomass of microalgae (g / L) in culture, in f / 10 culture medium, supplemented with 10% of soil extract over time (days) for the different modes of culture: autotrophy ( ⁇ ), mixotrophy ( ⁇ ) and mixotrophy in flash mode according to the invention ( ⁇ ).
  • the cultures are carried out using strain 841, as described in Example 2.
  • Figure 4 Diagram showing the fatty acid content of strains 828 and 841 after 5 days of culture according to the different culture modes (% fatty acids / dry matter) in autotrophy (auto), mixotrophy (mixo) and mixotrophy in flash mode ( mixo flash). detailed description
  • the present invention therefore relates to a method for screening or selection strains of unicellular algae (microalgae), including the genus Botryococcus, capable of ensuring a high production yield of lipids and hydrocarbons.
  • microalgae unicellular algae
  • Botryococcus the genus Botryococcus
  • the selected algae are both capable of growing in mixotrophic mode, thus of using one or more carbonaceous substrates as energy source, and of taking advantage, by photosynthesis, of a variable or discontinuous light input. Algae with these properties are considered to have higher lipid and hydrocarbon production potential than the others.
  • the subject of the invention is also a process for the cultivation of microalgae of the genus Botryococcus, using a variable or discontinuous light supply under conditions similar to those used for the selection of microalgae.
  • This method is characterized in that the light flux supplied to the algae in culture is variable or discontinuous over time. Contrary to popular belief, it appeared that a variable or discontinuous illumination of crops, especially in mixotrophic mode, had a favorable impact on the development of algae and allowed, in particular, to increase the production of lipids by the latter.
  • the inventor believes that a discontinuous or variable light input has the effect of causing stress in the algae favorable to lipid synthesis. Indeed, it is common in nature that algae accumulate lipid reserves to withstand the stresses of their environment.
  • the periods of darkness may occupy more than a quarter of the time, preferably half or more of the time, during which the algae are grown.
  • the illumination is discontinuous. It is provided, for example, in the form of flashes, that is to say on short periods of time.
  • the successive phases of illumination are then generally between 5 seconds and 10 minutes, preferably between 10 seconds and 2 minutes, more preferably between 20 seconds and 1 minute.
  • the illumination may be variable, that is to say that the illumination is not interrupted by dark phases, but the light intensity varies over time.
  • This light variation can be periodic, cyclic or even random.
  • the illumination can vary continuously, that is to say that the light intensity is not constant and varies continuously over time (dpmol (photons) / dt ⁇ 0), in a controlled and controlled way.
  • the invention relates to a method for cultivating unicellular algae, characterized in that said algae are cultivated in the dark with a discontinuous or variable light input over time, the intensity of which in micromoles of photons varies by an amplitude equal to or greater than 10 pmol. m “2 , s " 1 several times an hour, preferably equal to or greater than 40 pmol. m “2 , s " 1 , more preferably equal to or greater than 50 pmol. m “2 , s " 1 .
  • the common point of these different modes of illumination lies in the fact that, according to the invention, the light intensity provided to the algae in culture, expressed in micromoles of photons per second per square meter (pmol.m “2 , s " 1 ), varies at least once in the same hour.
  • the amplitude of this variation of light intensity is generally greater than 10 pmol. m “2 , s “ 1 , preferably greater than or equal to 20 pmol. m “2 , s " 1 , more preferably greater than or equal to 50 ⁇ . m “2. s " 1 .
  • the light intensity reaches, each hour, preferably several times in the hour, a high and low value, whose difference is equal to or greater than that indicated above.
  • said luminous intensity successively reaches 50 pmol. m “2 , s " 1 and 100 pmol. m “2 , s " 1 every hour, more preferably the values 0 and 50 pmol. RRI 2 s "1, more preferably the values 0 and 100 pmol. m" 2. s 1 .
  • the contribution of light in the cultures can be obtained by lamps distributed around the external wall of the fermenters.
  • a clock triggers these lamps for defined lighting times.
  • Fermentors are preferably located in an enclosure away from daylight, which can control the ambient temperature.
  • the selection and culture method according to the invention is more particularly applicable to microalgae of the genus Botryococcus in order to select high yield lipid strains.
  • the cultivation method according to the invention aims to increase the production of lipids and / or hydrocarbons, in particular via the recovery of lipids and hydrocarbons contained or excreted by microalgae, more particularly botryococcal type hydrocarbons.
  • strains of microalgae in particular of the genus Botryococcus, can be cultured, in parallel, on microplates in the same enclosure with precise monitoring of the conditions and the evolution of the different cultures. It is thus easy to know the response of the various strains to the discontinuous illumination and, where appropriate, the addition of one or more carbon substrates in the culture medium. Strains that respond favorably to discontinuous illumination and carbon substrates, generally offer a better yield for the production of lipids and hydrocarbons in terms of quality (lipid profile) and quantitative (lipids or total hydrocarbons produced).
  • the microalgae can be selected in a fermentor from a pool of microalgae diversified and which we seek to select the variants favored by the mode of selection according to the invention, combining discontinuous or variable light with mixotrophic culture conditions.
  • the culture is practiced by maintaining the microalgae in cultures over many generations, then an isolation of the components that have become the majority in the culture medium is carried out at the end of the culture.
  • the cultivation method according to the invention is characterized more particularly in that the culture of the strains is carried out over several generations, preferably in a mixotrophic mode, and in that the cells loaded with lipids or hydrocarbons are harvested.
  • a species of algae is considered to be mixotrophic, since it can be grown in the light, in a minimum medium (for example MM or f / 10 supplemented with 10% of soil extract) in which a carbon substrate is added at a rate of, for example, a concentration of carbon or glycerol, equivalent or greater than 5 mM, without observing growth inhibition, it is that is to say without noting a loss of biomass in dry weight relative to a culture carried out in the same minimum medium lacking a carbon substrate (that is to say in autotrophic mode).
  • a minimum medium for example MM or f / 10 supplemented with 10% of soil extract
  • a carbon substrate is added at a rate of, for example, a concentration of carbon or glycerol, equivalent or greater than 5 mM
  • Preferred carbon substrates include acetate, glucose, cellulose, starch, lactose, sucrose, and glycerol.
  • Products derived from the biotransformation of starch for example from maize, wheat or potato, in particular starch hydrolysates, which consist of small molecules, constitute carbon substrates of choice.
  • the microalgae are selected from the species Botryococcus braunii and Botryococcus sudeticus. The membership of one or the other of these species being established on the usual criteria of classification of microalgae.
  • the invention also relates to microalgae strains with a high hydrocarbon and / or lipid yield, which can be selected according to the method of the invention, characterized in that they are mixotrophic and capable of growing in discontinuous or variable light.
  • the implementation of the method according to the invention more particularly made it possible to isolate new strains of the genus Botryococcus.
  • These strains which were deposited in the Culture Collection of Algae and Protozoa (CCAP) collection, on October 20, 2010, according to the provisions of the Budapest Treaty, are as follows:
  • This strain of the species sudeticus has the characteristic of being mixotrophic. To the applicant's knowledge, this is the first strain of this species described as being mixotrophic. Moreover, as for the preceding strains, this strain has the characteristic of being mixotrophic without being heterotrophic. This is particularly observed when the carbon substrate added in the minimum culture medium is glucose or acetate.
  • the culture method according to the invention is applicable to any strain of the genus Botryococcus cultivable in a mixotrophic condition and is not limited only to the use of the new strains described in the present application.
  • the inventors have been able to observe a productivity gain in the crops, particularly in terms of biomass, in all the strains of Botryococcus previously identified as being able to grow under mixotrophic conditions compared to the same cultures produced in the autotrophic mode.
  • Botryococcus strains were selected from a collection of applicant strains consisting of strains taken from freshwater, isolated and characterized according to common criteria [Komarek, J. et al. (1992) P. Morphological differences in natural populations of the genus Botryococcus (chlorophyceae). Archiv fur Protistenischen, 141 (1-2): 65-100] [Dayananda C. et al. (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus hraunii from Indian freshwater bodies. Elect. J. Biotechnol., 10: 1-14].
  • Botryococcus braunii and Botryococcus sudeticus were first cultured at 22 ° C in autotrophic (200 ⁇ l light) in Minimum Medium (MM) liquid [50 mL / L Beijerink Solution (NH 4 CI 8g / L, CaCl 2 ( 1 g / L, MgSO 4 2 g / L), 1 mL / L Buffer Phosphate (K 2 HPO 4 106 g / L KH 2 PO 4 53 g / L), 1 mL / L solution of trace elements (B0 3 H).
  • MM Minimum Medium
  • Cultures were carried out in mixotrophic mode (200 ⁇ l) in continuous and discontinuous light, as well as in heterotrophic mode (control at 0 ⁇ l of light) at 22 ° C on MM medium supplemented with carbon substrates: acetate 1 g / L, glucose 5g / L, lactose 10g / L, sucrose 10g / L or glycerol 5g / L.
  • the 24-well microplates were placed in an incubation chamber (SANYO MLR-351 H) at 22 ° C, 60% humidity and 200 ⁇ light intensity for autotrophic and mixotrophic cultures and incubation chamber (BINDER). KB53) at 22 ° C, 60% humidity and in the dark ( ⁇ ) for heterotrophic cultures.
  • SANYO MLR-351 H incubation chamber
  • BINDER incubation chamber
  • KB53 at 22 ° C, 60% humidity and in the dark ( ⁇ ) for heterotrophic cultures.
  • strains whose culture in discontinuous light was more favorable than in continuous light were selected.
  • 4 were more particularly studied: 3 strains of Botryococcus braunii (827, 828 and 829) and a strain of Botryococcus sudeticus (841).
  • the two strains B. braunii 827 and B. sudeticus 841 have a strict heterotrophic character in the presence of sucrose.
  • the other 2 strains B. braunii 828 and ⁇ . braunii 829 are strictly mixotrophic at 200 ⁇ in the presence of sucrose, and B. sudeticus strain 841 is strictly mixotrophic at 200 ⁇ in the presence of acetate.
  • the two strains B. braunii 827 and B. sudeticus 841 show a significant growth at 0 ⁇ in the presence of 10 g / l of sucrose, growth greater than that in autotrophy.
  • strains B. braunii 828 and B. braunii 829 when adding 10 g / L of sucrose in the culture medium and increased growth of the strain B sudeticus 841 when adding 1 g / L of acetate in the culture medium, compared to their growth in autotrophy (200 ⁇ of light intensity).
  • the cultures of each of the strains isolated in Example 1 (828, 829 and 841) were carried out in fermenters (bioreactors) of 2L useful with dedicated automata and supervision by computer station.
  • the system is regulated in pH via addition of base (1N sodium hydroxide solution) and / or acid (1N sulfuric acid solution).
  • the culture temperature was set at 23 ° C.
  • Stirring was carried out by means of 3 stirring rods placed on the shaft according to the Rushton configuration (three-bladed pumping propellers).
  • the bioreactor is equipped with an external lighting system surrounding the transparent tank. The intensity as well as the light cycles are controlled and regulated by a dedicated automaton supervised by a computer station.
  • the contribution of light in the bioreactor cultures was obtained from the LED lamps distributed around the outer wall of the fermenters.
  • a clock triggers these LEDs for illumination times or pulses between 8 and 50 ⁇ .
  • the luminous intensity of the flash system used in mixotrophy is equal to that used in autotrophy (control).
  • the reactors were inoculated using a pre-culture performed on a shaking table (140 rpm) in a thermostatically controlled enclosure (22 ° C.) and continuously lit at 100 ⁇ E.
  • Pre-cultures and cultures in bioreactors were performed in the middle f / 10 supplemented with 10% soil extract and 10 mM NaHCO 3.
  • the carbonaceous substrate used for the bioreactor mixotrophic culture is sodium acetate at concentrations of between 20 mM and 50 mM. 2 - Crop monitoring
  • the total biomass concentration was monitored by measuring the dry mass (filtration on GFC filter, Whatman, then drying in a vacuum oven, 65 ° C and -0.8 bar, for 24 hours minimum before weighing).
  • Lipid content The ratio of the quantity of fatty acids present in the cells after 5 days of culture, relative to the total dry matter, was established for each culture mode: autotrophy (auto), mixotrophy (mixo) and mixotrophy in flash mode (mix-flash).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

L'invention se rapporte à de nouvelles souches de microalgues appartenant au genre Botryococcus, capables de croître en mode mixotrophe, ainsi qu'à un procédé de culture faisant appel à un apport de lumière sous forme de flashs pour la production de lipides et d'hydrocarbures, notamment sous forme de botryococcènes, utiles pour la production de biocarburants.

Description

Nouvelles souches de microalgues du genre Botryococcus et procédé de culture en mode mixotrophe desdites microalgues
L'invention se rapporte à un procédé de culture de microalgues du genre Botryococcus faisant appel à un apport de lumière discontinu ou variable au cours du temps, notamment sous forme de flashs, ainsi qu'à de nouvelles souches de microalgues du genre Botryococcus particulièrement adaptées à la production d'hydrocarbures en mode mixotrophe.
Préambule
Les algues unicellulaires se présentent comme des microorganismes photosynthétiques ayant un caractère autotrophe, c'est-à-dire qu'elles ont l'aptitude de croître de manière autonome par photosynthèse.
La plupart des espèces d'algues unicellulaires rencontrées dans l'eau douce ou les océans sont strictement autotrophes, c'est-à-dire qu'elles ne peuvent croître autrement que par photosynthèse. Pour celles-ci, la présence dans leur milieu de substrats carbonés ou de matières organiques ne leur est pas favorable et tend même à inhiber leur croissance.
Cependant, un certain nombre d'espèces d'algues unicellulaires, de familles et d'origines très diverses, s'avèrent ne pas être strictement autotrophes. Certaines d'entre-elles, dites hétérotrophes, sont capables de se développer en l'absence totale de lumière, par fermentation, c'est-à- dire en exploitant la matière organique.
D'autres espèces d'algues, pour lesquelles la photosynthèse reste indispensable à leur développement, sont capables à la fois de tirer partie de la photosynthèse et de la matière organique présente dans leur milieu. Ces espèces intermédiaires, dites mixotrophes, peuvent être cultivées à la fois en présence de lumière et de matière organique.
Cette particularité des algues dites « mixotrophes » semble être liée à leur métabolisme, qui leur permet d'opérer simultanément photosynthèse et fermentation. Les deux types de métabolisme co-existent avec un effet global positif sur la croissance des algues [Yang C. et al. (2000) Biochemical Engineering Journal 6 :87-102].
A l'heure actuelle, la classification des algues se fonde encore largement sur des critères morphologiques et sur la nature des pigments photosynthétiques que contiennent leurs cellules. De ce fait, elle est peu indicative du caractère autotrophe, hétérotrophe ou mixotrophe des algues, alors que celles-ci recouvrent une très grande diversité d'espèces et dé formes [Dubinsky et al. 2010, hydrobiologia, 639:153-171]. De ce fait, une souche est considérée comme étant mixotrophe dès lors que, de manière expérimentale, il peut être prouvé qu'elle a la capacité de croître par photosynthèse dans un milieu minimum, dans lequel est ajouté un substrat carboné tel que du glucose, de l'acétate ou du glycérol. Si cette supplémentation en substrat carboné ne donne pas lieu à une inhibition de croissance durant la phase éclairée, alors la souche peut être considérée comme ayant un caractère mixotrophe.
Les algues unicellulaires font l'objet actuellement de nombreux projets industriels car certaines espèces sont capables d'accumuler ou de sécréter des quantités importantes de lipides, notamment d'acides gras polyinsaturés.
En conditions favorables, les microalgues peuvent ainsi accumuler jusqu'à 80 % de leur poids sec en acides gras et, de ce fait, offrent une alternative crédible à la culture des plantes terrestres oléagineuses, notamment pour la production de biocarburants [Li, Y et al., 2008 Biotechnol. Prog., 24 : 815-820].
II est connu, en outre, que certaines souches de microalgues du genre Botryococcus (Chlorophyta, Chlorophyceae, Chlorococcales, Disctyosphaericae) [ITIS, Catalogue of Life, 2010] sont capables de produire des hydrocarbures en quantité non négligeable, notamment des n- alkadiènes, triènes, squalènes méthylés, triterpénoïdes, tétraterpénoïdes et des lycopadiènes. Ces souches produisent, en outre, des hydrocarbures particuliers à longues chaînes carbonées, regroupés sous le nom de botryococcènes. Ces hydrocarbures consistent majoritairement en des triterpènes isoprénoïdes non ramifiés de formule CnH2n-io. Us peuvent être transformés par craquage et raffinage en kérosène ou gasoil. On distingue différents groupes de souches de Botryococcus (A, B et L) selon le profil des lipides constituant les botryococcènes [Metzger, P et al. (2005) Applied Microbiology and Biotechnology 6(25): 486-496].
Botryococcus braunii est l'espèce, qui, à ce jour, a été la plus étudiée, en raison de la qualité de ses hydrocarbures, et sa facilité à être cultivée en mode autotrophe. La culture de cette algue verte, réputée fortement pigmentée, s'opère généralement en conditions de forte luminosité, entre 500 et 1500 μιηοΙ. m"2, s"1.
La souche B. braunii var. Showa est connue pour accumuler jusqu'à
30 % de son poids sec en botryococcènes. Les chaînes grasses de ces botryococcènes comprennent entre 30 et 37 atomes de carbone [Plant Patent US 6 ,169]. Le génome de cette souche est actuellement en cours de séquençage.
Une variété mutante de cette souche, Botryococcus braunii var.
Ninsei a été décrite comme pouvant sécréter les botryococcènes vers la matrice extracellulaire [US 2006/0265800]. Cette sécrétion a pour effet de rendre les colonies de Botryococcus flottantes par rapport à leur milieu de culture liquide, ce qui permet avantageusement de récolter les algues chargées en botryococcènes à la surface du milieu de culture.
Les rendements en lipides obtenus à l'aide de ces algues sont toutefois actuellement insuffisants pour pouvoir envisager une production rentable d'hydrocarbures à l'échelle industrielle. En effet, pour que le bilan énergétique de l'exploitation des microalgues du genre Botryococcus soit satisfaisant, il conviendrait de diminuer l'énergie apportée aux cultures sous forme de lumière, tout en augmenter la quantité et la qualité des lipides ou des hydrocarbures convertibles en bio-carburants.
Pour atteindre cet objectif, le demandeur a sélectionné de nouvelles souches de Botryococcus, issues de ses collections personnelles. li a recherché parmi ces souches celles ayant la capacité de croître, à la fois, en mode mixotrophe, et en présence d'un éclairement discontinu, notamment sous la forme de flashs. L'alternance rapprochée de phase éclairées et de phases obscures, perçue généralement comme stressante pour des micro-algues telles que Botryococcus, a permis, de manière inattendue, d'isoler de nouvelles souches de Botryococcus ayant une plus grande capacité à évoluer en conditions de mixotrophie et à s'adapter aux fluctuations de lumière. Ces nouvelles souches de Botryococcus, aptes à résister à des changements d'intensité lumineuse répétés, se trouvent particulièrement adaptées pour la production de lipides et d'hydrocarbures en mode mixotrophe. En particulier, elles se contentent d'un apport lumineux discontinu, dont l'intensité est globalement inférieure à celle que nécessitent des cultures en mode autotrophe, ou dont l'éclairement est permanent. En outre, une partie de l'énergie consommée par les algues dans ce système, provient d'une supplémentation du milieu de culture en substrats carbonés, tels que le glycérol ou l'acétate, lesquels peuvent provenir de sous-produits issus de diverses industries.
Sans être lié par la théorie, l'inventeur émet l'hypothèse que la sélection des souches par flashage, permet d'isoler des souches ayant un métabolisme mixte, c'est-à-dire davantage en mesure de pratiquer simultanément la photosynthèse et la fermentation.
Par ailleurs, selon lui, c'est lorsque les souches passent d'un type de métabolisme à l'autre, au gré des variations d'intensité lumineuse, qu'elles ont tendance à stocker des réserves lipidiques, notamment sous la forme d'hydrocarbures.
La mise en œuvre du procédé de sélection selon l'invention décrit ci- après, appliqué plus particulièrement à des souches de microalgues du genre Botryococcus, a permis d'isoler trois nouvelles souches de l'espèce Botryococcus braunii et une autre de l'espèce Botryococcus sudeticus, particulièrement adaptées à la production de lipides et d'hydrocarbures.
Les trois souches de Botryococcus braunii sont originales en ce que l'une (827) est apparue comme étant à la fois mixotrophe et hétérotrophe, ce qui n'est pas le cas des autres souches mixotrophes connues de Botryococcus braunii et les deux autres (828 et 829) comme étant strictement mixotrophes (inhibition totale de croissance en mode hétérotrophe) en présence de glycérol, de saccharose et de lactose dans leur milieu de culture. Ces deux dernières souches, 828 et 829, semblent avoir les mêmes caractéristiques.
La souche de Botryococcus sudeticus 841 présente, pour sa part, une mixotrophie stricte en présence de glucose et d'acétate dans le milieu de culture, ce qui la distingue des autres souches et des souches de l'état de la technique.
Ces nouvelles souches ont fait l'objet, pour trois d'entre-elles, d'un dépôt de souches selon le Traité de Budapest le 20 octobre 2010, auprès du CCAP (Culture Collection of Algae and Protozoa, Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA371QA, Ecosse, Royaume-Uni).
Les deux souches de Botryococcus braunii, 827 et 828 ont reçu respectivement les numéros de dépôt CCAP 807/5 et CCAP 807/6. La souche de Botryococcus sudeticus, 841 a reçu, quant à elle, le numéro de dépôt CCAP 807/4.
Ces souches se trouvent être particulièrement adaptées pour la production de lipides en conditions de culture mixotrophe, notamment lorsque celles-ci sont cultivées en présence d'un apport de lumière dont l'intensité est variable ou discontinue.
Les différents aspects et avantages de l'invention sont détaillés ci- après.
Figure 1 : Graphique représentant l'évolution de la biomasse des microalgues (g/L) en culture, en milieu de culture f/10, supplémenté avec 10% d'extrait de sol au cours du temps (jours) pour les différents modes de culture : autotrophie,(^) mixotrophie (■) et mixotrophie en mode flash selon l'invention (Δ). Les cultures sont réalisées à l'aide de la souche 828, de la façon décrite dans l'exemple 2.
Figure 2 : Graphique représentant l'évolution de la biomasse des microalgues (g/L) en culture, en milieu de culture f/10, supplémenté avec 10% d'extrait de sol au cours du temps (jours) pour les différents modes de culture : autotrophie, (♦), mixotrophie (■) et mixotrophie en mode flash selon l'invention (Δ). Les cultures sont réalisées à l'aide de la souche 829, de la façon décrite dans l'exemple 2.
Figure 3 : Graphique représentant l'évolution de la biomasse des microalgues (g/L) en culture, en milieu de culture f/10, supplémenté avec 10% d'extrait de sol au cours du temps (jours) pour les différents modes de culture : autotrophie (♦), mixotrophie (■) et mixotrophie en mode flash selon l'invention (Δ). Les cultures sont réalisées à l'aide de la souche 841 , de la façon décrite dans l'exemple 2.
Figure 4 : Diagramme représentant la teneur en acides gras des souches 828 et 841 après 5 jours de culture selon les différents modes de culture (% acides gras/matière sèche) en autotrophie (auto), mixotrophie (mixo) et mixotrophie en mode flash (mixo-flash). Description détaillée
La présente invention a donc pour objet un procédé permettant de cribler ou de sélectionner des souches d'algues unicellulaires (microalgues), notamment du genre Botryococcus, capables d'assurer un haut rendement de production en lipides et en hydrocarbures.
Les algues sélectionnées sont à la fois capables de croître en mode mixotrophe, donc d'utiliser un ou plusieurs substrats carbonés comme source d'énergie, et de tirer parti, par photosynthèse, d'un apport lumineux variable ou discontinu. Les algues ayant ces propriétés sont considérées comme présentant un potentiel de production de lipides et d'hydrocarbures plus élevé que les autres.
L'invention a également pour objet un procédé de culture de microalgues du genre Botryococcus, mettant en oeuvre un apport lumineux variable ou discontinu dans des conditions similaires de celles mises en oeuvre pour la sélection des microalgues.
Ce procédé est caractérisé en ce que le flux de lumière apporté aux algues en culture est variable ou discontinu au cours du temps. Contrairement aux idées reçues, il est apparu qu'un éclairement variable ou discontinu des cultures, notamment en mode mixotrophe, avait un impact favorable sur le développement des algues et permettait, notamment, d'accroître la production de lipides par ces dernières.
Sans être lié par la théorie, l'inventeur estime qu'un apport discontinu ou variable de lumière a pour effet de provoquer un stress chez les algues favorable à la synthèse des lipides. En effet, il est fréquent, dans la nature, que les algues accumulent des réserves lipidiques pour résister aux contraintes de leur environnement.
Par éclairement discontinu, il faut entendre un éclairement ponctué par des périodes d'obscurité. Les périodes d'obscurité peuvent occuper plus d'un quart du temps, de préférence la moitié du temps ou plus, durant lequel les algues sont cultivées.
Selon un aspect préféré de l'invention, l'éclairement est discontinu. II est apporté, par exemple, sous forme de flashs, c'est-à-dire sur des périodes de courtes durées. Les phases successives d'éclairement sont alors généralement comprises entre 5 secondes et 10 minutes, de préférence entre 10 secondes et 2 minutes, plus préférentiellement entre 20 secondes et 1 minute.
Selon un autre mode de l'invention, l'éclairement peut être variable, c'est-à-dire que l'éclairement n'est pas interrompu par des phases d'obscurité, mais l'intensité lumineuse varie au cours du temps. Cette variation de lumière peut être périodique, cyclique, voire aléatoire.
Selon l'invention, l'éclairement peut varier de manière continue, c'est- à-dire que l'intensité lumineuse n'est pas constante et varie en permanence au cours du temps (dpmol(photons)/dt≠ 0), de manière régulée et contrôlée.
Selon l'invention, on peut aussi procéder à un apport lumineux alliant des phases d'éclairement continues et discontinues.
L'invention vise, en particulier, un procédé de culture d'algues unicellulaires, caractérisé en ce que lesdites algues sont cultivées dans l'obscurité avec un apport de lumière discontinu ou variable au cours du temps, dont l'intensité en micromoles de photons varie d'une amplitude égale ou supérieure à 10 pmol. m"2, s"1 à raison de plusieurs fois par heure, de préférence égale ou supérieure à 40 pmol. m"2, s"1, plus préférentiellement égale ou supérieure à 50 pmol. m"2, s"1. Le point commun de ces différents modes d'éclairement, discontinu ou variable, réside dans le fait que, selon l'invention, l'intensité lumineuse apportée aux algues en culture, exprimée en micromoles de photons par seconde par mètre carré (pmol. m"2, s"1), varie au moins une fois dans une même heure. L'amplitude de cette variation d'intensité de lumière est généralement supérieure à 10 pmol. m"2, s"1, préférentiellement supérieure ou égale à 20 pmol. m"2, s"1, plus préférentiellement supérieure ou égale à 50 μιηοΙ. m"2. s"1. Autrement dit, l'intensité lumineuse atteint, chaque heure, de préférence plusieurs fois dans l'heure, une valeur haute et basse, dont la différence est égale ou supérieure à celle indiquée ci-dessus. De préférence, ladite intensité lumineuse atteint successivement les valeurs 50 pmol. m"2, s"1 et 100 pmol. m"2, s"1 à chaque heure, plus préférentiellement les valeurs 0 et 50 pmol. rrï2 s"1, plus préférentiellement encore les valeurs 0 et 100 pmol. m"2. s 1.
Il est rappelé que 1 pmol. m"2, s"1 correspond à 1 μΕ m"2, s"1 (Einstein), unité utilisée dans les exemples de la présente demande.
L'apport de lumière dans les cultures peut être obtenu par des lampes réparties autour de la paroi externe des fermenteurs. Une horloge déclenche ces lampes pour des temps d'éclairement définis. Les fermenteurs se situent préférentiellement dans une enceinte à l'abri de la lumière du jour, dont on peut contrôler la température ambiante.
Le procédé de sélection et de culture selon l'invention s'applique plus particulièrement aux microalgues du genre Botryococcus afin de sélectionner des souches à haut rendement en lipides.
Le procédé de culture est caractérisé en ce qu'il comprend une ou plusieurs des étapes suivantes :
- la culture de différentes souches du genre Botryococcus dans l'obscurité avec un apport de lumière discontinu ou variable au cours du temps, dont l'intensité en micromoles de photons varie préférentiellement d'une amplitude égale ou supérieure à 50 pmol. m"2, s"1 à raison d'au moins une fois par heure; - le maintien de ladite culture sur plusieurs générations;
- l'isolement de la ou des souches dont le nombre de cellules s'est accru le plus au cours desdites générations.
Le procédé de culture selon l'invention a pour but d'augmenter la production de lipides et/ou d'hydrocarbures, notamment via la récupération des lipides et hydrocarbures contenus ou excrétés par les microalgues, plus particulièrement les hydrocarbures de type botryococcènes.
Pour réaliser le criblage de souches, différentes souches de microalgues, notamment du genre Botryococcus, peuvent être cultivées, en parallèle, sur des microplaques dans une même enceinte avec un suivi précis des conditions et de l'évolution des différentes cultures. Il est ainsi aisé de connaître la réponse des différentes souches à l'éclairement discontinu et, le cas échéant, à l'adjonction d'un ou plusieurs substrats carbonés dans le milieu de culture. Les souches qui répondent favorablement à l'éclairement discontinu et aux substrats carbonés, offrent généralement un meilleur rendement pour la production de lipides et d'hydrocarbures sur le plan qualitatif (profil lipidique) et quantitatif (lipides ou hydrocarbures totaux produits).
Alternativement, les microalgues peuvent être sélectionnées dans un fermenteur à partir d'un pool de microalgues diversifié et dont on cherche à sélectionner les variants avantagés par le mode de sélection selon l'invention, alliant lumière discontinue ou variable avec des conditions de culture mixotrophes. Dans ce cas, la culture est pratiquée en maintenant les microalgues en cultures sur de nombreuses générations, puis un isolement des composantes devenues majoritaires dans le milieu de culture est effectué au terme de la culture.
Le procédé de culture selon l'invention se caractérisé plus particulièrement, en ce que la culture des souches s'effectue sur plusieurs générations, de préférence en mode mixotrophe, et en ce qu'on récolte les cellules chargées en lipides ou hydrocarbures.
Au sens de la présente invention, une espèce d'algue est considérée comme étant mixotrophe, dès lors qu'elle peut être cultivée à la lumière, dans un milieu minimum (par exemple MM ou f/10 supplémenté avec 10% d'extrait de sol) dans lequel est ajouté un substrat carboné à raison, par exemple, d'une concentration en carbone ou en glycérol, équivalente ou supérieure à 5 mM, sans observer d'inhibition de croissance, c'est-à-dire sans constater de perte de biomasse en poids sec par rapport à une culture effectuée dans un même milieu minimum dépourvu de substrat carboné (c'est-à-dire en mode autotrophe).
Les substrats carbonés préférés comprennent l'acétate, le glucose, la cellulose, l'amidon, le lactose, le saccharose et le glycérol. Les produits issus de la biotransformation de l'amidon, par exemple à partir de maïs, de blé ou de pomme de terre, notamment les hydrolysats de l'amidon, qui sont constitués de molécules de petite taille, constituent des substrats carbonés de choix.
De préférence, les microalgues sont choisies parmi les espèces Botryococcus braunii et Botryococcus sudeticus. L'appartenance à l'une ou l'autre de ces espèces étant établie sur les critères habituels de classification des microalgues.
L'invention vise également les souches de microalgues à haut rendement en hydrocarbures et/ou lipides, susceptibles d'être sélectionnées selon le procédé de l'invention, caractérisées en ce qu'elles sont mixotrophes et capables de croître en lumière discontinue ou variable.
Comme l'indique les exemples de la présente demande, la mise en œuvre du procédé selon l'invention a permis plus particulièrement d'isoler de nouvelles souches du genre Botryococcus. Ces souches, qui ont fait l'objet d'un dépôt dans la collection de la CCAP (Culture Collection of Algae and Protozoa), le 20 octobre 2010, suivant les dispositions du Traité de Budapest, sont les suivantes :
- Souche de Botryococcus braunii 827, déposée sous le numéro CCAP 807/5.
- Souche de Botryococcus braunii 828, déposée sous le numéro CCAP 807/6.
Ces deux souches présentent la caractéristique d'être mixotrophes mais ne sont pas hétérotrophes, c'est-à-dire qu'elles sont cultivables en milieu minimum supplémenté en substrat carboné, en présence d'un apport lumineux, mais qu'elles ne le sont pas en l'absence de lumière. Ce comportement s'observe, notamment, lorsque le substrat carboné ajouté dans le milieu de culture est le saccharose, le lactose ou le glycérol. A la connaissance de l'inventeur, c'est la première fois que des souches de Botryococcus présentent cette particularité.
- Souche de Botryococcus sudeticus 841 , déposée sous le numéro CCAP 807/4.
Cette souche de l'espèce sudeticus présente la caractéristique d'être mixotrophe. A la connaissance du déposant, c'est la première souche de cette espèce décrite comme étant mixotrophe. Par ailleurs, comme pour les souches précédentes, cette souche présente la caractéristique d'être mixotrophe sans être hétérotrophe. Cela s'observe notamment lorsque le substrat carboné ajouté dans le milieu de culture minimum est le glucose ou l'acétate.
Ainsi qu'a pu le constater le déposant, le fait que les souches ainsi sélectionnées présentent de bonnes aptitudes à croître en mode mixotrophe, en présence d'une lumière discontinue, prédispose lesdites souches à une production plus élevée de lipides et d'hydrocarbures, notamment de botryococcènes.
Néanmoins, le procédé de culture selon l'invention est applicable à toute souche du genre Botryococcus cultivable en condition de mixotrophie et ne se limite pas seulement à l'utilisation des nouvelles souches décrites dans la présente demande. En effet, les inventeurs ont pu observer un gain de productivité dans les cultures, notamment en termes de biomasse, chez toutes les souches de Botryococcus préalablement identifiées comme pouvant croître en conditions de mixotrophie par rapport aux mêmes cultures réalisées en mode autotrophe.
Les exemples qui suivent ont pour but de compléter la description et illustrer l'invention. Ils ne sauraient conférer une quelconque limitation à l'invention. Exemple 1
1 - Souches : Les souches de Botryococcus ont été sélectionnées parmi une collection de souches du demandeur constituée des souches prélevées en eau douce, isolées et caractérisées selon les critères courants [Komarek, J. et al. (1992) P. Morphological différences in natural populations of the genus Botryococcus (chlorophyceae). Archiv fur Protistenkunde, 141 (1 -2):65-100] [Dayananda C. et al. (2007) Isolation and characterization of hydrocarbon producing green alga Botryococcus hraunii from Indian freshwater bodies. Elect. J. Biotechnol., 10: 1 -14].
2- Conditions de culture :
Plusieurs isolats de Botryococcus braunii et de Botryococcus sudeticus ont, dans un premier temps, été cultivés à 22°C en autotrophie (200 μΕ de lumière) en Milieu Minimum (MM) liquide [50 mL/L Solution Beijerink (NH4CI 8g/L, CaCI2 1g/L, MgS04 2g/L), 1 mL/L Tampon Phosphate (K2HP04 106g/L KH2P04 53g/L), 1 mL/L solution d'oligoéléments (B03H3 1 1 .4g/L, ZnS04 7H20 22g/L, MnCI2 4H2O 5.06g/L, FeS04 7H2O 4.99g/L, CoCI2 6H20 1 .61 g/L, CuS04 5H2O 1 .57g/L, Mo7O2 (NH4)6 4H20 1 .1 g/L, EDTA 50g/L), 2.42g/L Trizma base, pH ajusté entre 7.2 et 7.4 par HCI, 1 .2mg/L Vitamine B-i et 0.01 mg /L Vitamine Bi2 (ajoutées extemporanément)].
Des cultures ont été effectuées en mode mixotrophe (200 μΕ) en lumière continue et discontinue, ainsi qu'en mode hétérotrophe (témoin à 0 μΕ de lumière) à 22°C sur milieu MM additionné de substrats carbonés : acétate 1 g/L, glucose 5g/L, lactose 10g/L, saccharose 10g/L ou glycérol 5g/L.
Le caractère hétérotrophe et/ou mixotrophe des souches de Botryococcus a été évalué par une mise en culture des souches de microalgues en milieu MM + substrat carboné en microplaques 24 puits (V=2mL). Un contrôle de croissance en autotrophie (MM) a été systématiquement effectué pour servir de référence aux cultures en mixotrophie et hétérotrophie.
Les microplaques 24 puits ont été placées en chambre d'incubation (SANYO MLR-351 H) à 22°C, 60% d'humidité et 200μΕ d'intensité lumineuse pour les cultures en autotrophie et mixotrophie et en chambre d'incubation (BINDER KB53) à 22°C, 60% d'humidité et à l'obscurité (ΟμΕ) pour les cultures en hétérotrophie.
La croissance cellulaire a été évaluée par comparaison de la turbidité et/ou de la teneur en chlorophylle par rapport à la référence en autotrophie. Un suivi bi-hebdomadaire a été assuré pendant une durée de 2 semaines pour les cultures en autotrophie et mixotrophie et pendant une durée de 2 à 3 semaines pour les cultures en hétérotrophie. La mobilité et la pigmentation des microalgues cultivées en autotrophie/mixotrophie (auto/mixo) et hétérotrophie ont observées et comparées au moyen d'un microscope binoculaire, objectifs 10X et 32X.
Pour les cultures réalisées en mode mixotrophe en lumière discontinue, l'apport de lumière a consisté en des flashs à raison de 30 flashs de 30 secondes par heure.
Les souches dont la culture en lumière discontinue s'est avérée plus favorable qu'en lumière continue, ont été sélectionnées. Parmi ces souches, 4 ont été plus particulièrement étudiées : 3 souches de Botryococcus braunii (827, 828 et 829) et une souche de Botryococcus sudeticus (841).
3 - Propriétés des quatre souches du genre Botryococcus sélectionnées :
L'effet de la lumière (colonnes autotrophie et mixotrophie) et de substrats carbonés (colonnes mixotrophie et hétérotrophie) tels que le glucose (Glc 5g/L), l'acétate (Ac 1g/L), le saccharose (Sac 10g/L), le lactose (Lac 10g/L) et le glycérol (Gly 5g/L) sur la croissance de 4 souches du genre Botryococcus a été évalué par criblage en microplaques 24 puits sur milieu liquide MM (cf. tableau ci-dessous). Le suivi de croissance a été réalisé durant 3 à 4 semaines de façon bi-hebdomadaire par observation macroscopique des cultures et microscopique à la binoculaire (objectifs 10X et 32X).
Tableau 1 : croissance des souches sélectionnées en mixotrophie
- : croissance inhibée ; + : croissance modérée;
++ : croissance significative ; +++ : croissance forte
Sur les 4 souches testées du genre Botryococcus, les 2 souches B. braunii 827 et B. sudeticus 841 présentent un caractère hétérotrophe strict en présence de saccharose. Les 2 autres souches B. braunii 828 et β. braunii 829 sont strictement mixotrophes à 200 μΕ en présence de saccharose, et la souche B. sudeticus 841 est strictement mixotrophe à 200 μΕ en présence d'acétate. On observe, en effet, que les 2 souches B. braunii 827 et B. sudeticus 841 présentent une croissance significative à 0 μΕ en présence de 10g/L de saccharose, croissance supérieure à celle en autotrophie. On observe également une croissance accrue à 200 μΕ d'intensité lumineuse des souches B. braunii 828 et B. braunii 829 lors de l'ajout de 10g/L de saccharose dans le milieu de culture et une croissance accrue de la souche B sudeticus 841 lors de l'ajout d'1 g/L d'acétate dans le milieu de culture, comparée à leur croissance en autotrophie (200 μΕ d'intensité lumineuse).
4 - Conclusion :
Cette étude a permis de mettre en évidence de nouvelles souches de Botryococcus braunii et de Botryococcus sudeticus présentant un caractère mixotrophe vis-à-vis de certains substrats carbonés. L'ajout de substrats carbonés tels que le saccharose et l'acétate, améliore significativement la croissance respective de ces souches.
Exemple 2
1 - Culture des souches de Botryococcus en bioréacteur selon le procédé Mixo/flash
Les cultures de chacune des souches isolées dans l'exemple 1 (828, 829 et 841 ) ont été réalisées dans des fermenteurs (bioréacteurs) de 2L utiles avec automates dédiés et supervision par station informatique. Le système est régulé en pH via l'ajout de base (solution d'hydroxyde de sodium à 1 N) et/ou d'acide (solution d'acide sulfurique à 1 N). La température de culture a été fixée à 23°C. L'agitation a été réalisée grâce à 3 mobiles d'agitation placés sur l'arbre selon la configuration de Rushton (hélices tripales à pompage descendant). La vitesse d'agitation et le débit d'aération ont été régulés pour un minimum de 100 rpm et un maximum de 250 rpm avec Qmini =0,5 vvm / Qmaxi = 2 vvm respectivement. Le bioréacteur est équipé d'un système luminaire externe entourant la cuve transparente. L'intensité ainsi que les cycles de lumière sont contrôlés et régulés par un automate dédié et supervisé par station informatique.
L'apport de la lumière dans les cultures en bioréacteur a été obtenu des lampes LED réparties autour de la paroi externe des fermenteurs. Une horloge déclenche ces LED pour des temps d'éclairement ou des pulsations entre 8 et 50 μΕ. L'intensité lumineuse du système flash utilisé en mixotrophie est égale à celle utilisée en autotrophie (témoin).
Les réacteurs ont été inoculés à l'aide d'une pré-culture réalisée sur table d'agitation (140 rpm) en enceinte thermostatée (22°C) et éclairée en continue à 100 uE. Pré-cultures et cultures en bioréacteurs ont été réalisées dans le milieu f/10 supplémenté avec 10% d'extrait de sol et 10mM en NaHCO3. Le substrat carboné utilisé pour la culture en mixotrophie en bioréacteur est l'acétate de sodium à des concentrations comprises entre 20 mM et 50 mM. 2 - Suivi des cultures
La concentration en biomasse totale a été suivie par mesure de la masse sèche (filtration sur filtre GFC, Whatman, puis séchage à l'étuve sous vide, 65°C et -0,8 bar, pendant 24h minimum avant pesée).
La quantification des lipides totaux a été effectuée sur échantillons de cellules (107 cellules/mL) extraites des cultures âgées de 5 jours. Les lipides ont été extraits selon les méthodes d'extraction des lipides décrites par Bligh, E.G. et Dyer, W.J. [A rapid method of total lipid extraction and purification (1959) Can. J.Biochem. Physiol 37:91 1 -917].
3 - Résultats Evolution de la biomasse :
Les mesures de biomasse réalisées dans les différents prélèvements effectués quotidiennement dans les cultures pendant 15 jours ont été reportées dans les graphiques des figures 1 à 3 pour chacune des souches 828, 829 et 841. Les graphiques permettent de comparer l'évolution de la biomasse sèche par volume de culture dans les différents modes de culture autotrophe, mixotrophe (lumière continue) et mixotrophe avec flash.
Il ressort de ces mesures que, pour chacune des souches, un gain substantiel de biomasse est obtenu en mode flash. L'accroissement est de l'ordre de 30 % par rapport à la mixotrophie en lumière continue et de l'ordre de 120 % par rapport au régime autotrophe.
Teneur en lipides : Le rapport de la quantité d'acides gras présente dans les cellules après 5 jours de culture, par rapport à la matière sèche totale, a été établi pour chaque mode de culture : autotrophie (auto), mixotrophie (mixo) et mixotrophie en mode flash (mixo-flash).
Les résultats sont représentés sous forme de diagrammes dans la figure 4, pour les deux souches analysées 828 et 841 . Ces résultats montrent un accroissement de la teneur des souches en acides gras d'un facteur 4 à 5 lorsque les microalgues sont cultivées en mode mixotrophe par rapport aux cultures en mode autotrophe. La teneur obtenue en mode mixotrophe avec flash et sans flash est comparable au bout de 5 jours.

Claims

REVENDICATIONS
1 . Procédé de culture de microalgues du genre Botryococcus pour la production de lipides ou d'hydrocarbures, caractérisé en ce qu'on procède aux étapes comprenant :
- la culture d'une ou plusieurs souches de microalgues du genre Botryococcus dans l'obscurité en présence d'un apport de lumière discontinu ou variable au cours du temps, dont l'intensité en micromoles de photons varie d'une amplitude de plus de 10 μιτιοΙ. m"2, s"1, à raison d'au moins une fois par heure;
- le maintien de ladite culture sur plusieurs générations en présence d'un substrat carboné dans le milieu de culture;
- la récolte des cellules chargées en hydrocarbures ou lipides.
2. Procédé selon la revendication 1 , caractérisé en ce que l'apport de lumière est discontinu.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que l'apport de lumière varie de plus de 40, de préférence plus de 50 μιτιοΙ. m"2, s'1.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'il comprend, en outre, la récupération des lipides ou hydrocarbures contenus ou excrétés par les microalgues.
5. Procédé selon la revendication 4, caractérisé en ce que les hydrocarbures contenus ou excrétés par les microalgues comprennent des botryococcènes.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que le milieu de culture est un milieu minimum comprenant un substrat carboné.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce que le substrat carboné comprend de l'acétate, du glucose, de la cellulose, de l'amidon, du lactose, du saccharose ou du glycérol.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que l'apport de lumière s'effectue sous forme de flash.
9. Procédé selon la revendication 8, caractérisé en ce que ledit flashage consiste en des phases successives d'éclairement d'un durée comprise entre 5 secondes et 10 minutes, de préférence entre 10 secondes et 2 minutes, plus préférentiellement entre 20 secondes et 1 minute.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les microalgues sont choisies parmi l'espèce Botryococcus braunii.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les microalgues sont choisies parmi l'espèce Botryococcus sudeticus.
12. Microalgue cultivable selon le procédé de l'une quelconque des revendications 1 à 11 , correspondant à l'une des souches suivantes déposées auprès de la CCAP :
- Souche de Botryococcus sudeticus déposée sous le N°CCAP 807/4 ;
- Souche de Botryococcus braunii déposée sous le N°CCAP 807/5 ; ou
- Souche de Botryococcus braunii déposée sous le N°CCAP 807/6.
EP11832134.8A 2010-10-28 2011-10-27 Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues Withdrawn EP2633026A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058912A FR2966840B1 (fr) 2010-10-28 2010-10-28 Souches de microalgues du genre botryococcus a caractere mixotrophe
PCT/FR2011/052524 WO2012056187A2 (fr) 2010-10-28 2011-10-27 Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues

Publications (1)

Publication Number Publication Date
EP2633026A2 true EP2633026A2 (fr) 2013-09-04

Family

ID=44166503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11832134.8A Withdrawn EP2633026A2 (fr) 2010-10-28 2011-10-27 Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues

Country Status (6)

Country Link
US (1) US20130210095A1 (fr)
EP (1) EP2633026A2 (fr)
BR (1) BR112013010341A2 (fr)
CA (1) CA2812579A1 (fr)
FR (1) FR2966840B1 (fr)
WO (1) WO2012056187A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2988099B1 (fr) * 2012-03-16 2016-03-04 Fermentalg Production de l'acide caprique par botryococcus en conditions de culture mixotrophe
WO2014074770A2 (fr) 2012-11-09 2014-05-15 Heliae Development, Llc Procédés à mixotrophie équilibrée
WO2014074772A1 (fr) 2012-11-09 2014-05-15 Heliae Development, Llc Procédés et systèmes de combinaisons de mixotrophes, phototrophes et hétérotrophes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3444647A (en) * 1961-08-08 1969-05-20 Masahito Takahashi Process of cultivating algae
US3316674A (en) * 1964-09-11 1967-05-02 Yakult Honsha Kk Method of new industrial cultivation of unicellular green algae such as chlorella
USPP6169P (en) 1986-04-15 1988-05-03 The Regents Of The University Of Ca Botryococcus braunii var. Showa
US5381075A (en) * 1992-03-20 1995-01-10 Unisyn Method and apparatus for driving a flashing light systems using substantially square power pulses
AUPN060095A0 (en) * 1995-01-13 1995-02-09 Enviro Research Pty Ltd Apparatus for biomass production
WO2006020177A1 (fr) * 2004-07-16 2006-02-23 Greenfuel Technologies Corporation Systemes photobioreacteurs de culture cellulaire, procedes de preconditionnement d'organismes photosynthetiques et cultures d'organismes photosynthetiques ainsi produits
AU2003903453A0 (en) * 2003-07-07 2003-07-17 The University Of Queensland Production of hydrogen
US8802422B2 (en) * 2007-06-01 2014-08-12 Solazyme, Inc. Renewable diesel and jet fuel from microbial sources
AU2009234176B2 (en) * 2008-04-09 2014-08-07 Corbion Biotech, Inc. Direct chemical modification of microbial biomass and microbial oils
US7705209B2 (en) 2008-04-17 2010-04-27 Mertec Llc Soybean cultivar S070149
MY143769A (en) * 2008-04-30 2011-07-15 Ho Tet Shin An apparatus for mass cultivation of microalgae and a method for cultivating the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012056187A2 *

Also Published As

Publication number Publication date
CA2812579A1 (fr) 2012-05-03
US20130210095A1 (en) 2013-08-15
BR112013010341A2 (pt) 2016-07-05
FR2966840A1 (fr) 2012-05-04
FR2966840B1 (fr) 2015-01-02
WO2012056187A2 (fr) 2012-05-03
WO2012056187A3 (fr) 2012-10-26

Similar Documents

Publication Publication Date Title
EP2616536B1 (fr) Procédé de culture d'algues unicellulaires mixotrophes en présence d'un apport lumineux discontinu sous forme de flashs
EP2825631B1 (fr) Production d'acide docosahexaénoïque et d'astaxanthine en mode mixotrophe par schizochytrium.
EP2825629B1 (fr) Production d'acide docosahexaenoique et/ou d'acide eicosapentaenoique et/ou de carotenoides en mode mixotrophe par nitzschia
WO2012168663A1 (fr) Nouvelle souche de microalgue du genre odontella pour la production d'epa et de dha en mode de culture mixotrophe
EP2844734B1 (fr) Production de lutéine en mode mixotrophe par scenedesmus
Gao et al. Bilateral and simultaneous accumulation of lipid and biomass in the novel oleaginous green microalga Tetradesmus bernardii under mixotrophic growth
EP2723876A1 (fr) Nouvelles souches de microalgues du genre isochrysis pour la production d'epa et de dha en mode mixotrophe
KR101575208B1 (ko) 북극 해양에서 분리한 전분 및 지질 고생산 미세조류 클로렐라 세포주 및 이의 용도
WO2013136023A1 (fr) Production d'acide eicosapentaenoïque et/ou d'acide arachidonique en mode mixotrophe par euglena.
EP2633026A2 (fr) Nouvelles souches de microalgues du genre botryococcus et procede de culture en mode mixotrophe desdites microalgues
EP2718418A1 (fr) Procede d'enrichissement en epa de microalgues du genre monodus, cultivees en mode mixotrophe
KR101654219B1 (ko) 고 함량의 다중불포화지방산을 함유하는 트라우스토키트리대 속 균주 및 이의 용도
WO2013136026A1 (fr) Production d'acide caprique en mode mixotrophe par botryococcus
FR2988097A1 (fr) Production d'acide eicosapentaenoique et/ou d'acide docosahexaenoique en mode mixotrophe par cyclotella
EP2825632A1 (fr) Production de polysaccharides en mode mixotrophe par nostoc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130425

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20160303