EP2627749B1 - Laundry detergent particles - Google Patents
Laundry detergent particles Download PDFInfo
- Publication number
- EP2627749B1 EP2627749B1 EP11771079.8A EP11771079A EP2627749B1 EP 2627749 B1 EP2627749 B1 EP 2627749B1 EP 11771079 A EP11771079 A EP 11771079A EP 2627749 B1 EP2627749 B1 EP 2627749B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- surfactant
- detergent particle
- sodium
- coated detergent
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/66—Non-ionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/08—Silicates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/10—Carbonates ; Bicarbonates
Definitions
- the present invention relates to large laundry detergent particles.
- WO9932599 describes a method of manufacturing laundry detergent particles, being an extrusion method in which a builder and surfactant, the latter comprising as a major component a sulphated or sulphonated anionic surfactant, are fed into an extruder, mechanically worked at a temperature of at least 40 °C, preferably at least 60°C, and extruded through an extrusion head having a multiplicity of extrusion apertures.
- the surfactant is fed to the extruder along with builder in a weight ratio of more than 1 part builder to 2 parts surfactant.
- the extrudate apparently required further drying.
- PAS paste was dried and extruded.
- Such PAS noodles are well known in the prior art. The noodles are typically cylindrical in shape and their length exceeds their diameter, as described in example 2.
- US 7,022,660 discloses a process for the preparation of a detergent particle having a coating.
- the present invention provides a coated detergent particle that is a concentrated formulation with more surfactant than inorganic solid. Only by having the coating encasing the surfactant which is soft can one have such a particulate concentrate where the unit dose required for a wash is reduced. Adding solvent to the core would result by converting the particle into a liquid formulation. On the other hand, having a greater amount of inorganic solid would result in a less concentrated formulation; a high inorganic content would take one back to conventional low surfactant concentration granular powder.
- the coated detergent particle of the present invention sits in the middle of the two conventional (liquid and granular) formats.
- the present invention provides a coated detergent particle having perpendicular dimensions x, y and z, wherein x is from 1 to 2 mm, y is from 2 to 8mm, and z is from 2 to 8 mm, wherein the particle comprises:
- the ratio of sodium carbonate:sodium silicate in the coating is preferably 2:1.
- sodium carbonate and sodium silicate comprise from 80 to 100 wt %, preferably 90 to 100 wt %, and most preferably 95 to 100 wt % of the coating. Unless otherwise stated all wt % refer to the total percentage in the particle as dry weights.
- the coated laundry detergent particle is curved.
- the coated laundry detergent particle may be shaped as a disc.
- the coated laundry detergent particle does not have hole; that is to say, the coated laundry detergent particle does not have a conduit passing there though that passes through the core, i.e., the coated detergent particle has a topologic genus of zero.
- the coated laundry detergent particle comprises between 40 to 90 wt%, preferably 50 to 90 wt% of a surfactant, most preferably 70 to 90 wt %.
- a surfactant preferably 70 to 90 wt %.
- the nonionic and anionic surfactants of the surfactant system may be chosen from the surfactants described " Surface Active Agents" Vol. 1, by Schwartz & Perry, Interscience 1949 , Vol. 2 by Schwartz, Perry & Berch, Interscience 1958 , in the current edition of "McCutcheon's Emulsifiers and Detergents” published by Manufacturing Confectioners Company or in " Tenside-Taschenbuch", H. Stache, 2nd Edn., Carl Hauser Verlag, 1981 .
- the surfactants used are saturated.
- Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher acyl radicals.
- suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher C 8 to C 18 alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl C 9 to C 20 benzene sulphonates, particularly sodium linear secondary alkyl C 10 to C 15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.
- anionic surfactants are sodium lauryl ether sulfate (SLES), particularly preferred with 1 to 3 ethoxy groups, sodium C 10 to C 15 alkyl benzene sulphonates and sodium C 12 to C 18 alkyl sulphates. Also applicable are surfactants such as those described in EP-A-328 177 (Unilever), which show resistance to salting-out, the alkyl polyglycoside surfactants described in EP-A-070 074 , and alkyl monoglycosides. The chains of the surfactants may be branched or linear.
- the fatty acid soap used preferably contains from about 16 to about 22 carbon atoms, preferably in a straight chain configuration.
- the anionic contribution from soap is preferably from 0 to 30 wt% of the total anionic.
- At least 50 wt % of the anionic surfactant is selected from: sodium C 11 to C 15 alkyl benzene sulphonates; and, sodium C 12 to C 18 alkyl sulphates. Even more preferably, the anionic surfactant is sodium C 11 to C 15 alkyl benzene sulphonates.
- the anionic surfactant is present in the coated laundry detergent particle at levels between 15 to 85 wt%, more preferably 50 to 80 wt% on total surfactant.
- Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having a hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids, amides or alkyl phenols with alkylene oxides, especially ethylene oxide either alone or with propylene oxide.
- Preferred nonionic detergent compounds are C 6 to C 22 alkyl phenol-ethylene oxide condensates, generally 5 to 25 EO, i.e. 5 to 25 units of ethylene oxide per molecule, and the condensation products of aliphatic C 8 to C 18 primary or secondary linear or branched alcohols with ethylene oxide, generally 5 to 50 EO.
- the non-ionic is 10 to 50 EO, more preferably 20 to 35 EO.
- Alkyl ethoxylates are particularly preferred.
- the nonionic surfactant is present in the coated laundry detergent particle at levels between 5 to 75 wt% on total surfactant, more preferably 10 to 40 wt% on total surfactant.
- Cationic surfactant may be present as minor ingredients at levels preferably between 0 to 5 wt% on total surfactant.
- surfactants are mixed together before being dried. Conventional mixing equipment may be used.
- the surfactant core of the laundry detergent particle may be formed by extrusion or roller compaction and subsequently coated with an inorganic salt.
- the surfactant system used is calcium tolerant and this is a preferred aspect because this reduces the need for builder.
- Surfactant blends that do not require builders to be present for effective detergency in hard water are preferred. Such blends are called calcium tolerant surfactant blends if they pass the test set out hereinafter. However, the invention may also be of use for washing with soft water, either naturally occurring or made using a water softener. In this case, calcium tolerance is no longer important and blends other than calcium tolerant ones may be used.
- Suitable calcium tolerant co-surfactants include SLES 1-7EO, and alkyl-ethoxylate nonionic surfactants, particularly those with melting points less than 40°C.
- a LAS/SLES surfactant blend has a superior foam profile to a LAS nonionic surfactant blend and is therefore preferred for hand washing formulations requiring high levels of foam.
- SLES may be used at levels of up to 30 wt% of the surfactant blend.
- the water-soluble inorganic salt is present as a coating on the particle.
- the water-soluble inorganic salt is preferably present at a level that reduces the stickiness of the laundry detergent particle to a point where the particles are free flowing.
- the coating is preferably applied to the surface of the surfactant core, by deposition from an aqueous solution of the water soluble inorganic salt.
- an aqueous solution of the water soluble inorganic salt can be performed using a slurry.
- the aqueous solution preferably contains greater than 50g/L, more preferably 200 g/L of the salt.
- An aqueous spray-on of the coating solution in a fluidised bed has been found to give good results and may also generate a slight rounding of the detergent particles during the fluidisation process. Drying and/or cooling may be needed to finish the process.
- a preferred calcium tolerant coated laundry detergent particle comprises 15 to 100 wt% on surfactant of anionic surfactant of which 20 to 30 wt% on surfactant is sodium lauryl ether sulphate.
- the coating is applied as a solution rather than a suspension.
- the coated laundry detergent particle is the coated laundry detergent particle
- the coated laundry detergent particle comprises from 10 to 100 wt %, more preferably 50 to 100 wt %, even more preferably 80 to 100 wt %, most preferably 90 to 100 wt % of a laundry detergent formulation in a package.
- the package is that of a commercial formulation for sale to the general public and is preferably in the range of 0.01 kg to 5 kg, preferably 0.02 kg to 2 kg, most preferably 0.5 kg to 2 kg.
- the coated laundry detergent particle is such that at least 90 to 100 % of the coated laundry detergent particles in the in the x, y and z dimensions are within a 20 %, preferably 10%, variable from the largest to the smallest coated laundry detergent particle.
- the particle preferably comprises from 0 to 15 wt % water, more preferably 0 to 10 wt %, most preferably from 1 to 5 wt % water, at 293K and 50% relative humidity. This facilitates the storage stability of the particle and its mechanical properties.
- adjuncts as described below may be present in the coating or the core. These may be in the core or the coating.
- the coated laundry detergent particle preferably comprises a fluorescent agent (optical brightener).
- fluorescent agents are well known and many such fluorescent agents are available commercially. Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.
- the total amount of the fluorescent agent or agents used in the composition is generally from 0.005 to 2 wt %, more preferably 0.01 to 0.1 wt %. Suitable Fluorescer for use in the invention is described in chapter 7 of Industrial Dyes edited by K. Hunger 2003 Wiley-VCH ISBN 3-527-30426-6 .
- Preferred fluorescers are selected from the classes distyrylbiphenyls, triazinylaminostilbenes, bis(1,2,3-triazol-2-yl)stilbenes, bis(benzo[b]furan-2-yl)biphenyls, 1,3-diphenyl-2-pyrazolines and courmarins.
- the fluorescer is preferably sulfonated.
- Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN.
- Di-styryl biphenyl compounds e.g. Tinopal (Trade Mark) CBS-X
- Di-amine stilbene di-sulphonic acid compounds e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH
- Pyrazoline compounds e.g. Blankophor SN.
- Preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1,2-d]triazole, disodium 4,4'-bis ⁇ [(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yl)]amino ⁇ stilbene-2-2' disulfonate, and disodium 4,4'-bis(2-sulfostyryl)biphenyl.
- Tinopal® DMS is the disodium salt of disodium 4,4'-bis ⁇ [(4-anilino-6-morpholino-1,3,5-triazin-2-yi)]amino ⁇ stilbene-2-2' disulfonate.
- Tinopal® CBS is the disodium salt of disodium 4,4'-bis(2-sulfostyryl)biphenyl.
- the composition comprises a perfume.
- the perfume is preferably in the range from 0.001 to 3 wt %, most preferably 0.1 to 1 wt %.
- CTFA Cosmetic, Toiletry and Fragrance Association
- compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.
- top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955 ]).
- Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.
- the perfume serves to disaggregate the dye to make the dye more visible.
- the coated laundry detergent particle does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.
- a peroxygen bleach e.g., sodium percarbonate, sodium perborate, and peracid.
- the composition may comprise one or more further polymers.
- further polymers are carboxymethylcellulose, poly (ethylene glycol), poly(vinyl alcohol), polyethylene imines, ethoxylated polyethylene imines, water soluble polyester polymers polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- One or more enzymes are preferred present in a composition of the invention.
- the level of each enzyme is from 0.0001 wt% to 0.5 wt% protein on product.
- enzymes include proteases, alpha-amylases, cellulases, lipases, peroxidases/oxidases, pectate lyases, and mannanases, or mixtures thereof.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful lipases include lipases from Humicola (synonym Thermomyces ) , e.g. from H. lanuginosa ( T. lanuginosus) as described in EP 258 068 and EP 305 216 or from H. insolens as described in WO 96/13580 , a Pseudomonas lipase, e.g. from P. alcaligenes or P. pseudoalcaligenes ( EP 218 272 ), P. cepacia ( EP 331 376 ), P. stutzeri ( GB 1,372,034 ), P.
- lipase variants such as those described in WO 92/05249 , WO 94/01541 , EP 407 225 , EP 260 105 , WO 95/35381 , WO 96/00292 , WO 95/30744 , WO 94/25578 , WO 95/14783 , WO 95/22615 , WO 97/04079 and WO 97/07202 , WO 00/60063 , WO 09/107091 and WO09/111258 .
- LipolaseTM and Lipolase UltraTM LipexTM (Novozymes A/S) and LipocleanTM.
- the method of the invention may be carried out in the presence of phospholipase classified as EC 3.1.1.4 and/or EC 3.1.1.32.
- phospholipase is an enzyme which has activity towards phospholipids.
- Phospholipids such as lecithin or phosphatidylcholine, consist of glycerol esterified with two fatty acids in an outer (sn-1) and the middle (sn-2) positions and esterified with phosphoric acid in the third position; the phosphoric acid, in turn, may be esterified to an amino-alcohol.
- Phospholipases are enzymes which participate in the hydrolysis of phospholipids.
- phospholipases A 1 and A 2 which hydrolyze one fatty acyl group (in the sn-1 and sn-2 position, respectively) to form lysophospholipid
- lysophospholipase or phospholipase B
- Phospholipase C and phospholipase D release diacyl glycerol or phosphatidic acid respectively.
- proteases include those of animal, vegetable or microbial origin. Microbial origin is preferred. Chemically modified or protein engineered mutants are included.
- the protease may be a serine protease or a metallo protease, preferably an alkaline microbial protease or a trypsin-like protease.
- Preferred commercially available protease enzymes include AlcalaseTM, SavinaseTM, PrimaseTM, DuralaseTM, DyrazymTM, EsperaseTM, EverlaseTM, PolarzymeTM, and KannaseTM, (Novozymes A/S), MaxataseTM, MaxacalTM, MaxapemTM, ProperaseTM, PurafectTM, Purafect OxPTM, FN2TM, and FN3TM (Genencor International Inc.).
- the method of the invention may be carried out in the presence of cutinase. classified in EC 3.1.1.74.
- the cutinase used according to the invention may be of any origin.
- Preferably cutinases are of microbial origin, in particular of bacterial, of fungal or of yeast origin.
- Suitable amylases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Amylases include, for example, alpha-amylases obtained from Bacillus, e.g. a special strain of B. licheniformis, described in more detail in GB 1,296,839 , or the Bacillus sp. strains disclosed in WO 95/026397 or WO 00/060060 .
- amylases are DuramylTM, TermamylTM, Termamyl UltraTM, NatalaseTM, StainzymeTM, FungamylTM and BANTM (Novozymes A/S), RapidaseTM and PurastarTM (from Genencor International Inc.).
- Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium, e.g. the fungal cellulases produced from Humicola insolens, Thielavia terrestris, Myceliophthora thermophila, and Fusarium oxysporum disclosed in US 4,435,307 , US 5,648,263 , US 5,691,178 , US 5,776,757 , WO 89/09259 , WO 96/029397 , and WO 98/012307 .
- cellulases include CelluzymeTM, CarezymeTM, EndolaseTM, RenozymeTM (Novozymes A/S), ClazinaseTM and Puradax HATM (Genencor International Inc.), and KAC-500(B)TM (Kao Corporation).
- Suitable peroxidases/oxidases include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus, e.g. from C. cinereus, and variants thereof as those described in WO 93/24618 , WO 95/10602 , and WO 98/15257 . Commercially available peroxidases include GuardzymeTM and NovozymTM 51004 (Novozymes A/S).
- Any enzyme present in the composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol, a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid, and the composition may be formulated as described in e.g. WO 92/19709 and WO 92/19708 .
- a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid
- alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains.
- the alkyl groups are preferably linear or branched, most preferably linear.
- Sequesterants may be present in the coated laundry detergent particles.
- the coated detergent particle has a core to shell ratio of from 3 to 1:1, most preferably 2.5 to 1.5:1; the optimal ratio of core to shell is 2:1.
- Core particle 1 -1962.5g of dried, milled surfactant blend (LAS/PAS/SLES.3eo (58.3-14.6-27.1 by weight) was thoroughly mixed with 37.38g of perfume oil and 30.1 g of Sodium Carboxymethyl cellulose.
- the mixtures were then extruded using a ThermoFisher 24HC twin screw extruder, operated at a rate of 8kg/hr.
- Inlet temperature of the extruder was set at 20°C, rising to 40°C just prior to the die-plate.
- the die-plate used was drilled with 6 circular orifices of 5mm diameter.
- the extruded products were cut after the die-plate using a high speed cutter set up to produce particle with a thickness of ⁇ 1.1 mm.
- the coating solution was fed to the spray nozzle of the Strea 1 via a peristaltic pump (Watson-Marlow model 101 U/R) at an initial rate of 3.3g/min, rising to 9.1g/min during the course of the coating trial.
- a peristaltic pump Wood-Marlow model 101 U/R
- the Fluid bed coater was operated with an initial air inlet air temperature of 55°C increasing to 90 °C during the course of the coating trial whilst maintaining the outlet temperature in the range 45-50°C throughout the coating process.
- Coated granules, 200g were put into a plain card box, open at the lid.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Detergent Compositions (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11771079.8A EP2627749B1 (en) | 2010-10-14 | 2011-10-11 | Laundry detergent particles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10187520 | 2010-10-14 | ||
PCT/EP2011/067735 WO2012049178A1 (en) | 2010-10-14 | 2011-10-11 | Laundry detergent particles |
EP11771079.8A EP2627749B1 (en) | 2010-10-14 | 2011-10-11 | Laundry detergent particles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2627749A1 EP2627749A1 (en) | 2013-08-21 |
EP2627749B1 true EP2627749B1 (en) | 2015-03-04 |
Family
ID=43629268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11771079.8A Active EP2627749B1 (en) | 2010-10-14 | 2011-10-11 | Laundry detergent particles |
Country Status (7)
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104662140B (zh) * | 2012-09-25 | 2018-07-31 | 荷兰联合利华有限公司 | 洗衣洗涤剂颗粒 |
EP3320076B1 (en) * | 2015-07-08 | 2019-01-02 | Unilever PLC | Large particles |
EP3190167B1 (en) | 2016-01-07 | 2018-06-06 | Unilever PLC | Bitter pill |
WO2018234056A1 (en) * | 2017-06-20 | 2018-12-27 | Unilever N.V. | PARTICULATE DETERGENT COMPOSITION COMPRISING A FRAGRANCE |
WO2020109227A1 (en) | 2018-11-28 | 2020-06-04 | Unilever N.V. | Large particles |
Family Cites Families (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1296839A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 1969-05-29 | 1972-11-22 | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
JPS5335568B2 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) * | 1973-09-10 | 1978-09-28 | ||
DK187280A (da) | 1980-04-30 | 1981-10-31 | Novo Industri As | Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode |
EP0070074B2 (en) | 1981-07-13 | 1997-06-25 | THE PROCTER & GAMBLE COMPANY | Foaming surfactant compositions |
US4933287A (en) | 1985-08-09 | 1990-06-12 | Gist-Brocades N.V. | Novel lipolytic enzymes and their use in detergent compositions |
US4810414A (en) | 1986-08-29 | 1989-03-07 | Novo Industri A/S | Enzymatic detergent additive |
NZ221627A (en) | 1986-09-09 | 1993-04-28 | Genencor Inc | Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios |
ES2076939T3 (es) | 1987-08-28 | 1995-11-16 | Novo Nordisk As | Lipasa recombinante de humicola y procedimiento para la produccion de lipasas recombinantes de humicola. |
GB8803036D0 (en) | 1988-02-10 | 1988-03-09 | Unilever Plc | Liquid detergents |
JP3079276B2 (ja) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法 |
US5776757A (en) | 1988-03-24 | 1998-07-07 | Novo Nordisk A/S | Fungal cellulase composition containing alkaline CMC-endoglucanase and essentially no cellobiohydrolase and method of making thereof |
EP0406314B1 (en) | 1988-03-24 | 1993-12-01 | Novo Nordisk A/S | A cellulase preparation |
GB8915658D0 (en) | 1989-07-07 | 1989-08-23 | Unilever Plc | Enzymes,their production and use |
EP0528828B2 (de) | 1990-04-14 | 1997-12-03 | Genencor International GmbH | Alkalische bacillus-lipasen, hierfür codierende dna-sequenzen sowie bacilli, die diese lipasen produzieren |
WO1992005249A1 (en) | 1990-09-13 | 1992-04-02 | Novo Nordisk A/S | Lipase variants |
EP0511456A1 (en) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Liquid detergents with aromatic borate ester to inhibit proteolytic enzyme |
SK120893A3 (en) | 1991-04-30 | 1994-08-10 | Procter & Gamble | Liquid detergent mixtures with boric-polyol complex for inhibition of proteolytic enzyme |
US5332518A (en) * | 1992-04-23 | 1994-07-26 | Kao Corporation | Stable slurry-coated sodium percarbonate, process for producing the same and bleach detergent composition containing the same |
DK72992D0 (da) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | Enzym |
DK88892D0 (da) | 1992-07-06 | 1992-07-06 | Novo Nordisk As | Forbindelse |
CA2138519C (en) | 1993-04-27 | 2007-06-12 | Jan Metske Van Der Laan | New lipase variants for use in detergent applications |
JP2859520B2 (ja) | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物 |
KR100338786B1 (ko) | 1993-10-13 | 2002-12-02 | 노보자임스 에이/에스 | H2o2-안정한퍼록시다제변이체 |
JPH07143883A (ja) | 1993-11-24 | 1995-06-06 | Showa Denko Kk | リパーゼ遺伝子及び変異体リパーゼ |
JP3553958B2 (ja) | 1994-02-22 | 2004-08-11 | ノボザイムス アクティーゼルスカブ | 脂質分解酵素の変異体の製造方法 |
US5824531A (en) | 1994-03-29 | 1998-10-20 | Novid Nordisk | Alkaline bacilus amylase |
EP0755442B1 (en) | 1994-05-04 | 2002-10-09 | Genencor International, Inc. | Lipases with improved surfactant resistance |
WO1995035381A1 (en) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Modified pseudomonas lipases and their use |
AU2884695A (en) | 1994-06-23 | 1996-01-19 | Unilever Plc | Modified pseudomonas lipases and their use |
BE1008998A3 (fr) | 1994-10-14 | 1996-10-01 | Solvay | Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci. |
FI971749L (fi) | 1994-10-26 | 1997-06-24 | Novo Nordisk As | Lipolyyttistä aktiivisuutta omaava entsyymi |
JPH08228778A (ja) | 1995-02-27 | 1996-09-10 | Showa Denko Kk | 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法 |
BRPI9607646B1 (pt) | 1995-03-17 | 2016-07-05 | Novo Nordisk As | vetor de expressão recombinante, célula fúngica, método para produzir uma enzima apresentando atividade de endoglucanase e para prover clarificação da cor nas roupas de lavagem, composição de lavanderia , uso da enzima, e, composição de enzima |
WO1997004079A1 (en) | 1995-07-14 | 1997-02-06 | Novo Nordisk A/S | A modified enzyme with lipolytic activity |
CN1192780B (zh) | 1995-08-11 | 2010-08-04 | 诺沃奇梅兹有限公司 | 新的脂解酶 |
EP0937138B1 (en) | 1996-09-17 | 2006-04-26 | Novozymes A/S | Cellulase variants |
DE69718351T2 (de) | 1996-10-08 | 2003-11-20 | Novozymes A/S, Bagsvaerd | Diaminobenzoesäure derivate als farbstoffvorläufer |
GB9726824D0 (en) | 1997-12-19 | 1998-02-18 | Manro Performance Chemicals Lt | Method of manufacturing particles |
EP0962424A1 (en) * | 1998-06-05 | 1999-12-08 | SOLVAY (Société Anonyme) | Coated sodium percarbonate particles, process for their preparation, their use in detergent compositions and detergent compositions containing them |
US7022660B1 (en) | 1999-03-09 | 2006-04-04 | The Procter & Gamble Company | Process for preparing detergent particles having coating or partial coating layers |
BR0009392B1 (pt) | 1999-03-31 | 2012-06-12 | mutante de um polipeptÍdeo com atividade de alfa-amilase, e, uso do polipeptÍdeo ou variante. | |
EP1171581A1 (en) | 1999-03-31 | 2002-01-16 | Novozymes A/S | Lipase variant |
EP1876226B1 (en) | 2006-07-07 | 2011-03-23 | The Procter & Gamble Company | Detergent compositions |
WO2009087524A1 (en) | 2008-01-04 | 2009-07-16 | The Procter & Gamble Company | Enzyme and fabric hueing agent containing compositions |
EP2085070A1 (en) | 2008-01-11 | 2009-08-05 | Procter & Gamble International Operations SA. | Cleaning and/or treatment compositions |
CN102112602A (zh) | 2008-02-29 | 2011-06-29 | 宝洁公司 | 包含脂肪酶的洗涤剂组合物 |
EP2247720A2 (en) | 2008-02-29 | 2010-11-10 | The Procter & Gamble Company | Detergent composition comprising lipase |
HUE070901T2 (hu) | 2008-06-06 | 2025-07-28 | Procter & Gamble | A 44 xiloglukanáz család egyik variánsát tartalmazó felületaktív készítmény |
-
2011
- 2011-10-11 BR BR112013009129-0A patent/BR112013009129B1/pt not_active IP Right Cessation
- 2011-10-11 ES ES11771079.8T patent/ES2537714T3/es active Active
- 2011-10-11 CN CN201180049090.8A patent/CN103154225B/zh active Active
- 2011-10-11 WO PCT/EP2011/067735 patent/WO2012049178A1/en active Application Filing
- 2011-10-11 EP EP11771079.8A patent/EP2627749B1/en active Active
- 2011-10-11 IN IN625MUN2013 patent/IN2013MN00625A/en unknown
-
2013
- 2013-03-27 ZA ZA2013/02293A patent/ZA201302293B/en unknown
Also Published As
Publication number | Publication date |
---|---|
ZA201302293B (en) | 2014-06-25 |
WO2012049178A1 (en) | 2012-04-19 |
CN103154225B (zh) | 2015-02-04 |
BR112013009129B1 (pt) | 2020-10-13 |
EP2627749A1 (en) | 2013-08-21 |
CN103154225A (zh) | 2013-06-12 |
ES2537714T3 (es) | 2015-06-11 |
BR112013009129A2 (pt) | 2016-07-19 |
IN2013MN00625A (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2015-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2813789C (en) | Laundry detergent particles | |
EP2627754B1 (en) | Laundry detergent particles | |
AU2011315791B2 (en) | Laundry detergent particles | |
EP2834335B1 (en) | Laundry detergent particles | |
WO2013149753A9 (en) | Laundry detergent particles | |
WO2013149754A1 (en) | Laundry detergent particle | |
EP2627749B1 (en) | Laundry detergent particles | |
EP2627758B1 (en) | Laundry detergent particles | |
US9688948B2 (en) | Laundry detergent particles | |
EP2627753B1 (en) | Laundry detergent particle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130410 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C11D 1/02 20060101ALI20140923BHEP Ipc: C11D 3/10 20060101ALI20140923BHEP Ipc: C11D 17/00 20060101ALI20140923BHEP Ipc: C11D 3/08 20060101AFI20140923BHEP Ipc: C11D 1/66 20060101ALI20140923BHEP |
|
INTG | Intention to grant announced |
Effective date: 20141021 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 713912 Country of ref document: AT Kind code of ref document: T Effective date: 20150415 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011014414 Country of ref document: DE Effective date: 20150416 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2537714 Country of ref document: ES Kind code of ref document: T3 Effective date: 20150611 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 713912 Country of ref document: AT Kind code of ref document: T Effective date: 20150304 Ref country code: NL Ref legal event code: VDEP Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150604 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150605 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150706 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150704 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011014414 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
26N | No opposition filed |
Effective date: 20151207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151011 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151011 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20161020 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20161011 Year of fee payment: 6 Ref country code: IT Payment date: 20161024 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20111011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011014414 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180501 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171011 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20181220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20220127 AND 20220202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231020 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231009 Year of fee payment: 13 Ref country code: FR Payment date: 20231025 Year of fee payment: 13 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20241011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241011 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20241031 |