EP2621246B1 - Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung - Google Patents

Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung Download PDF

Info

Publication number
EP2621246B1
EP2621246B1 EP13152019.9A EP13152019A EP2621246B1 EP 2621246 B1 EP2621246 B1 EP 2621246B1 EP 13152019 A EP13152019 A EP 13152019A EP 2621246 B1 EP2621246 B1 EP 2621246B1
Authority
EP
European Patent Office
Prior art keywords
medium
working space
microwave radiation
radiation
microwave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13152019.9A
Other languages
English (en)
French (fr)
Other versions
EP2621246A1 (de
Inventor
Ronald Krippendorf
Thomas Dr. Krech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik Katasorb GmbH
Original Assignee
Jenoptik Katasorb GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Katasorb GmbH filed Critical Jenoptik Katasorb GmbH
Publication of EP2621246A1 publication Critical patent/EP2621246A1/de
Application granted granted Critical
Publication of EP2621246B1 publication Critical patent/EP2621246B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • H05B6/66Circuits
    • H05B6/68Circuits for monitoring or control
    • H05B6/686Circuits comprising a signal generator and power amplifier, e.g. using solid state oscillators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/64Heating using microwaves
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/04Heating using microwaves
    • H05B2206/044Microwave heating devices provided with two or more magnetrons or microwave sources of other kind

Definitions

  • the invention relates to an arrangement and a method for heating a medium located in a working space by means of microwave radiation, as this generic from the EP 1 471 773 A2 are known.
  • the dimensions of the space in which the medium to be heated (henceforth working space), unequal to the wavelength or a multiple of the wavelength of the microwave radiation. This avoids that in the working space radiated microwave radiation is reflected on a wall of the working space in itself and a standing wave is generated.
  • a combination of static reflections of the microwave radiation at the, an interior bounding walls of a housing and a dynamic reflection of the microwave radiation by means of at least one mode stirrer is in the DE 103 29 411 B4 disclosed.
  • each radiation source includes an oscillator operating at a preset microwave frequency, a power amplifier amplifying signals generated by the oscillator, and means, e.g. As an antenna, for emitting the amplified signals as microwave radiation in the working space.
  • Each power amplifier of the number of radiation sources is individually controllable, whereby the degree of amplification is controlled.
  • the solution is according to the EP 1 471 773 A2 very expensive and expensive.
  • the EP 1 471 773 A2 only possible to generate by each of the oscillators signals of a preset microwave frequency (henceforth: frequency).
  • the frequency of the entire arrangement is fixed and no variation of the frequency possible.
  • a change in the frequency of the arrangement would be possible only by an exchange of the number of oscillators.
  • the doctrine of EP 1 471 773 A2 apart from its advantages, the question of how the individual contributions of frequencies and amplitudes of the microwave radiation and their interactions with each other and with the medium are to be separated.
  • EP 2 051 564 A1 and EP 2 205 043 A1 Arrangements are known in which deliberately causes a change in the phases of the radiated microwaves.
  • phase rotators are provided in the arrangement, through which a targeted rotation of the phase angle can be effected.
  • the EP 2 051 564 A1 discloses the use of a microwave generator which communicates with power amplifiers per one antenna. Each of the power amplifiers, as well as the phase rotators are directly controlled by a controller controllable. Sensors are assigned to the antennas, by means of which measurement data in the working space can be detected and fed to the control. The sensors detect the reflected microwave radiation.
  • a particular advantage of the solution according to the EP 2 051 564 A1 is that an object located stationary in the working space can be specifically processed, for example heated, without having to move the object into or through the working space.
  • Microwaves of different properties are disclosed according to the disclosure of EP 2 326 142 A1 radiated into a work space to heat an object of irregular shape. In this, as in the two solutions mentioned occurring phase shifts are expected and even desired.
  • the invention has for its object to propose a way to heat media by means of microwave radiation can be avoided by means of the phase shifts between the radiated microwave radiation.
  • an arrangement for heating a medium located in a working space by means of microwave radiation comprising at least two radiation sources for providing microwave radiation, each with an individually controllable power amplifier, by which a signal generated by a generator, a microwave frequency exhibiting signal is amplified and with means for the radiation of the amplified signal as microwave radiation in a working space, which is determined by the arrangement of the radiation sources to each other in its spatial dimension, solved.
  • the arrangement is characterized, the working space is designed along a longitudinal axis and the means for emitting the microwave radiation are waveguides.
  • the waveguides are like that aligned so that the radiation of the microwave radiation takes place in planes that are extended perpendicular to the longitudinal axis.
  • the generator is in signal communication with all power amplifiers so that the signal generated by the generator is applied to all power amplifiers.
  • the generator is tunable over a range of a certain frequency section within the microwave frequency range.
  • measuring means are provided with which measurement data can be detected in the working space.
  • Each microwave source has at least one measuring device each for acquiring measured data.
  • the measuring means for acquiring measured data are signal-technically connected to a control, by means of which at least the power amplifiers (5.2) can be controlled individually and there is at least one means for passing a medium through the working space, which is a guide element with a longitudinal axis of the elements, which runs parallel is aligned to the longitudinal axis.
  • the microwave frequency range is from 300 MHz to 300 GHz (wavelengths from 1 m to 1 mm).
  • the frequency section may be any section of the microwave frequency range.
  • the electromagnetic waves generated by the generator are referred to as signals, while microwave radiation refers to the radiated signals amplified by one of the power amplifiers.
  • a gain preferably causes the low-energy signals to be amplified into microwave radiation whose energy is sufficient for an intended use of the arrangement according to the invention.
  • the microwave radiation is emitted in the form of fields, wherein the fields can be directed radiated.
  • the generator and the power amplifier are matched to one another.
  • the maximum variability of the generator and power amplifier frequencies is +/- 100 MHz.
  • the core of the invention is the frequency of the radiated from the at least two radiation sources microwave radiation by only a single generator produce. It is furthermore essential to the invention that the generator can be tuned so that a controlled change of the frequency is made possible even during an ongoing heating process.
  • the generator may comprise several components. For example, there may be a means for generating the signals (eg, a means for generating signals based on semiconductor devices) and a tunable means for selectively passing (eg, an oscillator, a filter or rectifier) the selected frequency.
  • a radiation source in the sense of this description does not include a generator.
  • a work space may be a closed space such as the interior of a household or industrial microwave oven in which the medium is stationary. It can also be an open region through which the medium can pass and whose size is determined by an effective range of the emitted microwave radiation. Since media frequency-dependent and temperature-dependent, and thus also power-dependent, react differently to microwave radiation, an effective range is dependent on an interaction between the frequency and amplitude of the microwave radiation and the medium.
  • the range of action is to be understood as the distance between the radiation source and the farthest point of the medium on which an effect can be detected, and is always different from a penetration depth of the microwave radiation into the medium, if the radiation source does not touch directly on the surface of the medium , While an effective range in the vacuum is theoretically infinite, with an irradiation of media as well as solid bodies, effective ranges can only exist in the range of a few nanometers or micrometers.
  • the working space can be enclosed, for example, by a grid made of a material reflecting microwave radiation whose grid width a passage of microwave radiation is not allowed, a passage of a, z.
  • a grid made of a material reflecting microwave radiation whose grid width a passage of microwave radiation is not allowed, a passage of a, z.
  • Media may be all solid, liquid and gaseous substances and mixtures or plasmas and combinations thereof.
  • each microwave source for the acquisition of measured data allow the detection and evaluation of variables specific to the measuring means. This can be advantageously used to protect individual, some or all radiation sources. For example, a power amplification by a control can be individually reduced or prevented if the variables detected by the measuring means exceed a predetermined threshold value.
  • each measuring means for detecting quantities for other evaluations, for. B. for investigations of the behavior of a medium when heated by means of microwave radiation be provided. Also for this purpose, the measuring means is signal-technically connected to the controller.
  • controller is preferably designed as a computing, control and storage unit. From the controller there may be direct control lines to each of the power amplifiers as well as to each measuring means and to every other measuring means. It is also possible for the power amplifiers, the measuring means and the further measuring means to be controlled with addressed control signals, whereby the number of required control lines and measuring data lines can be reduced.
  • the measuring means and the further measuring means are shielded and arranged at the edge of the working space.
  • the measuring means and the other measuring means may be, for example, infrared pyrometers or fiber optic sensors.
  • the radiation sources with respect to their position relative to the working space are freely selectable.
  • they may be designed to be manually placed directly on a surface of the medium, e.g. B. a body to be heated, can be arranged.
  • the radiation sources are designed as a compact and easy to handle unit. They may preferably be arranged in a respective housing and with this on a respective carrier.
  • the spatial dimension, ie the specific spatial shape, of the working space is determined by the freely selectable positioning of the radiation sources.
  • a further embodiment of the arrangement according to the invention is characterized in that at least the means for emitting the microwave radiation are arranged in the working space in at least one support structure.
  • a support structure can limit the spatial dimension of the working space in at least one direction.
  • a support structure may in a simple case be a wall or walls of a working space and the means for radiation may be distributed in a certain way on or in the wall or the walls.
  • the support structure may for example also be a support such as a scaffold or a flexible mat.
  • the support structure can completely or partially enclose the working space. It is also possible that the support structure limits the working space in one direction and the spatial dimension of the working space is determined by the support structure and the effective width of the emitted microwave radiation.
  • Waveguides are usually used to a z. B. to conduct microwave radiation.
  • microwave radiation is emitted via an antenna or transmitter into a waveguide.
  • the microwave radiation is passed through the waveguide to an opening, which is preferably formed as a slot. Through the opening, the microwave radiation is radiated into the working space.
  • the advantage is that the slot harmful back reflections are greatly reduced in the waveguide.
  • a means for emitting the microwave radiation in the working space may be formed in an advantageous embodiment as a so-called slot radiator.
  • a waveguide delimited by walls at least one antenna head of an antenna for coupling microwave radiation into the waveguide is arranged. It is preferred if, in addition, a tuner for influencing the propagation and reflection behavior of the coupled-in microwave radiation is arranged in the waveguide.
  • the coupled-in microwave radiation propagates in the waveguide in a propagation direction.
  • a slot for emitting the microwave radiation from the slot radiator is present in a wall of the waveguide.
  • the slot preferably extends transversely to the propagation direction and is preferably at a distance from the antenna head which corresponds to half the wavelength (lambda / 2) of the microwave radiation.
  • the length of the slot radiator is greater than half the wavelength (lambda / 2) and smaller than the wavelength (lambda) of the microwave radiation.
  • the antenna may have an inner conductor for conducting and coupling in a microwave radiation.
  • the antenna can also be realized without an inner conductor.
  • the antenna may, for example, be contacted by means of a detachable plug connection (eg SMA plug or N plug). It is also possible that a non-detachable contact, for example by a coaxial cable with a direct transition into the antenna, is present.
  • the antenna head is preferably made of an electrically conductive material such as copper, iron, gold or brass.
  • the antenna or the antenna head is mounted in the waveguide without fastening elements projecting into the waveguide.
  • at least one blind hole may be present in one of the walls of the waveguide into which a region of the antenna or of the antenna head, for example the inner conductor, engages or is inserted.
  • the Antenna or the antenna head can be locked by a device located on the waveguide or outside of the waveguide.
  • a plug connection for example an SMA plug
  • the means for passing the medium through the working space is a bundle of guide elements with a bundle longitudinal axis
  • this bundle longitudinal axis is preferably aligned parallel to the longitudinal axis.
  • Guide elements can be, for example, pipes, shafts or channels through which a liquid or gaseous medium flows. But it may also be conveyors by means of solids as z.
  • B. bulk material or as a body through the working space are to lead (dynamic case).
  • a passage of the medium through the working space can take place arbitrarily in time (for example, continuously, discontinuously) and spatially (route of execution). It is also possible that the medium is introduced into the working space, where it remains during its heating and is removed again (static case). For example, a body or a container with the medium to be heated (eg a filled autoclave) can be introduced into the working space.
  • the generator is interchangeable with at least one additional generator.
  • a simple interchangeability can be achieved, for example, that the generator, for. B. in a board, can be inserted.
  • the generator is easily replaceable in the event of a defect.
  • Particularly favorable is the simple interchangeability in experimental arrangements in which, for example, a region of another frequency section becomes available by exchanging only one component of the arrangement. A physical exchange is a possibility to switch to another generator.
  • the arrangement can be used in addition to the heating of a medium by means of microwave radiation, for example, to investigate the response of the medium in the heating.
  • the object is further by a method for heating a medium located in a working space by means of microwave radiation and under Use of a device according to the invention solved.
  • the steps of the method according to the invention are successively introducing a medium into a working space. This is followed by the selection of a microwave frequency as a function of properties of the medium from a specific frequency range within the microwave frequency range. Subsequently, a generator is driven with control signals, which lead to generation of a signal with the selected microwave frequency. This is followed by generating the signal at the selected microwave frequency, passing the signal to at least one radiation source, amplifying the signal by means of the at least one radiation source to at least one amplified signal and emitting the at least one amplified signal as microwave radiation into the working space. At each of the radiation sources measurement data is detected, based on which control signals are generated at least for driving the gain of the signal.
  • the selection of the microwave frequency can be based on the knowledge of the material, the dimensioning and other properties (eg state of matter, temperature) of the medium. It is also possible to select a certain frequency on the basis of empirical sentences or arbitrarily. The frequency can be selected in further embodiments of the method before or with the introduction of the medium.
  • the working space is determined by an arrangement of a plurality of radiation sources in its spatial dimensions.
  • the method according to the invention is extremely advantageous for investigating a behavior of the medium when heated by means of microwave radiation.
  • microwave radiations of at least one first to nth characteristic expression of a certain range of property characteristics of a property of the microwave radiation are radiated into the working space one after the other.
  • the first to nth measurement data assigned to the first to nth property characteristics are recorded and compared with each other. From the measured data and their comparison, the behavior of the medium when heated by means of microwave radiation first to n-th Property characteristic derived. It is possible to investigate the behavior of the medium over time, in different areas of the working space and under different combinations of the first to nth characteristics of the microwave radiation.
  • Properties can be, for example, the power of the microwave radiation or the frequency.
  • the property expression is the respective concrete value of the property, eg. B. a concrete representable amplitude of the microwave as the first property characteristic and a specific frequency as a second property characteristic of the power of the microwave radiation.
  • the method makes it possible to examine media, for example, by irradiating the medium with microwave radiation of the first to nth properties and recording measured data. Thus, for example, optimized combinations of the first to nth property characteristics for a heating of the medium can be found.
  • the method can also be used to search for a suitable spatial positioning of the radiation sources in which, for example, an efficient heating of the medium with simultaneous protection of all radiation sources against damaging influences can be achieved.
  • a voltage source 1 for supplying the device
  • a tunable generator 2 for generating a signal
  • a distributor 3 for directing the signal via one microwave line 4 to two radiation sources 5, each with a power amplifier 5.1 and a measuring means for Detection of measurement data 5.3, and designed as a computing, control and storage unit controller 6 is present, which is connected to the generator 2 and the radiation sources 5 via control lines 6.1 in combination.
  • the supplied from the voltage source 1 and controllable by the controller 6 generator 2 includes a vibration generator 2.1, which is composed of semiconductor devices, and an oscillator as a frequency filter 2.2.
  • the generator 2 can be continuously tuned over the range of the frequency range 1.8 to 2.8 GHz.
  • the generator 2 is tunable to a selected frequency from a frequency section of the microwave frequency range.
  • a signal with the selected frequency can be generated. Any generated signals whose frequencies do not correspond to the selected frequency are suppressed by the function of the frequency filter 2.2.
  • the distributor 3 the signal is distributed to the microwave lines 4.
  • the signal provided in the arrangement according to the invention after the frequency filter 2.2 is applied to each of the existing radiation sources 5.
  • the signal is to be amplified by the power amplifier 5.1 and by means of a waveguide 5.2 as a microwave radiation 11th to radiate into a working space 7.
  • the working space 7 is bounded in one of its spatial dimensions by a wall of metal reflecting a microwave radiation 11 as a support structure 8, in which the radiation sources 5 are arranged in parallel planes E in the working space 7.
  • the planes E extend perpendicular to a longitudinal axis 7.1 of the working space 7.
  • dimensions of the working space 7 is determined by an effective width of the microwave radiation 11, the temperature, the frequency and an amplitude of the microwave radiation 11 and the Interactions with an irradiated medium 10 depends.
  • a solid body to be heated is introduced as the medium 10.
  • the medium 10 remains during the heating with respect to the working space 7 in an always same, stationary position.
  • the measuring means for detecting measured data 5.3 arranged in the radiation source 5 is a diode and serves to detect microwave radiation 11 which is reflected back from the medium 10 to the measuring means for acquiring measured data 5.3.
  • the measuring means for acquiring measured data 5.3 of each radiation source 5 is connected to the controller 6 via a respective measurement data line 5.4.
  • Each power amplifier 5.1 can be controlled directly and individually by the controller 6 via the control lines 6.1.
  • a control takes place as a function of the measurement data of the measuring means for acquiring measured data 5.3 in order to prevent damage to the radiation sources 5 by reflected microwave radiation 11.
  • a second embodiment of the inventive arrangement according to Fig. 2 corresponds to the basic structure according to Fig. 1 ,
  • a temperature sensor is arranged as a further measuring means 12 for determining the temperature within the working space 7 and connected to the control 6 via a measuring data line 5.4.
  • the working space 7 is delimited in all its dimensions by walls (shown in simplified form as lines) which serve as support structures 8 for the radiation sources 5 (only two radiation sources 5 of a support structure 8 are shown) and through which the working space 7 is closed.
  • a trained as a pipe guide element 9.1 as a means for carrying the medium through the working space 9 along a longitudinal axis element 9.11 available.
  • the element longitudinal axis 9.11 runs parallel to the longitudinal axis 7.1.
  • the guide element 9.1 spans the working space 7 from a support structure 8 opening the media supply opening 9.2 to a judgmentab Operationsö réelle 9.3.In other embodiments of the arrangement can also outside the working space 7 and / or at the media supply port 9.2 and / or the media discharge opening 9.3 further measuring means 12, z , B. sensors, by which a state of the medium 10 as temperature, physical or chemical composition can be detected, be arranged.
  • a design of a radiation source 5 according to Fig. 3 is characterized by a carrier structure formed as a support structure 8, on which the power amplifier 5.1, the waveguide 5.2 and the measuring means for detecting measurement data 5.3 are enclosed by a housing 5.5.
  • the radiation source 5 is connected via the microwave line 4 to the distributor 3 (not shown) and via the control line 6.1 and the measurement data line 5.4 to the controller 6.
  • the radiation source 5 is to be mounted manually at a freely selectable position on the surface of a body to be heated as a medium 10.
  • a working space 7 is determined by the radiation source 5 and by the penetration depth of the microwave radiation 11 into the medium 10 (symbolized by dashed microwave radiation 11), which in this case is to be regarded as the effective width.
  • This design can be used, for example, as a flexible system for the gentle drying of wood or other natural substances, as well as all synthetically produced educts and products, wherein the use of microwave radiation 11 causes a controllable heating of the medium 10 in the interior. Water or other solvents are not trapped by already dried layers of the medium 10, but transported by still moist layers to the outside. By heating inside cracking in the medium 10 are largely avoided.
  • the slot radiator consists of a waveguide 5.2 with a rectangular cross section and has a length L, a width B and a height H.
  • the waveguide 5.2 is bounded by walls 16. Opposite each other are, as walls 16, a first cover 16.1 and a second cover 16.2, a first side wall 16.3 and a second one Side wall 16.4 and an upper wall 16.5 and a lower wall 6.6 available.
  • the upper wall 16.6 has a slot 15 through which the microwave radiation 11 can be emitted from the slot radiator.
  • the slot 15 extends in the direction of the width B and is closer to the second lid 16.2 than on the first lid 16.1 available. According to Fig.
  • the slot 15 is one tenth of the length L from the second lid 16.2.
  • the spatial position of the walls 16 and other elements of the slot radiator is not relevant to the operation of the slot radiator. Only their relative position to each other and their dimensions is important. All information on the spatial orientation of the walls 16 are therefore exemplary.
  • a tuner 17 is arranged in the waveguide 5.2, which serves to selectively influence the propagation and reflection behavior of the coupled microwave radiation 11 and projects into the waveguide 5.2.
  • the tuner 17 is disposed opposite to the slot 15.
  • an antenna 13 is present, which is guided by the lower wall 16.5 and which has an antenna head 13.1.
  • the antenna head 13.1 protrudes into the waveguide 5.2 and serves to couple the microwave radiation 11 into the waveguide 5.2.
  • the distance d is around lambda / 2, which corresponds to 6.1 cm in a microwave radiation 11 with a frequency of about 6.1 cm.
  • the direction of the length L is at the same time the propagation direction of the microwave radiation 11.
  • the antenna head 13.1 is designed as a sleeve made of brass. Inside the antenna head 13.1 there is a connector 18 in the form of a copper rod. The connector 18 protrudes from the antenna head 13.1 through the lower wall 16.5 and is contacted there by a receiving part of a connector 19. On the receiving part of the connector 19, a microwave line 4 can be connected. The receiving part of the connector 19 is disposed directly on the lower wall 16.5, whereby the antenna 13 is fixed.
  • the antenna head 13.1 protrudes from the lower wall 16.5 a first distance l1 perpendicular to the waveguide 5.2 inside.
  • an inner conductor 14 is inserted laterally, which extends in the direction of the length L over a second distance l2 to the first lid 16.1.
  • first cover 16.1 is a blind hole (only indicated) introduced, in which the inner conductor 14 is inserted with one end. Over the second distance l2 the inner conductor 14 is exposed.
  • the antenna head 13.1 may be designed differently in further embodiments of the invention.
  • the connector 18 may be replaced by a wire or a strand of a microwave feed line 4.
  • the receiving part of the connector 19 is not required.
  • the connector 18 it is possible for the connector 18 to be implemented as an element of the receiving part of the plug connection 19 or for the connector 18 to be realized as an element of a plug (not shown) of the plug connection 19.
  • the application of the method according to the invention for investigating a behavior of the medium 10 during its heating by means of microwave radiation 11, is based on the second embodiment according to Fig. 2 explained.
  • a frequency section of the microwave frequency range at which heating of the medium 10 is known to be selected is selected.
  • frequency sections can also be selected in which no heating takes place or heating is (still) questionable.
  • the vibration generator 2.1 and the frequency filter 2.2 are controlled so that a signal with the selected frequency is provided.
  • the signal is an electromagnetic wave that vibrates at the selected frequency and has an amplitude.
  • the distributor 3 the signal is distributed to the microwave lines 4, so that this is applied to each of the radiation sources 5.
  • Each of the power amplifiers 5.1 is controlled by the controller 6 via the control lines 6.1 so that the amplitude of the signal amplified by each power amplifier 5.1 equal and the amplified signal is emitted via each waveguide 5.2 as microwave radiation 11 in the working space 7.
  • the incident on the medium 10 microwave radiation 11 is absorbed by the medium 10 according to its properties and / or reflected wholly or proportionately.
  • Reflected and detected by one of the measuring means for the detection of measurement data 5.3 microwave radiation 11 causes at least one response signal whose height as measured data via the measurement data line 5.4 to the controller. 6 is sent and evaluated there.
  • the power amplifier 5.1 is activated and a lower amplification is effected. Since the microwave radiation 11 impinging on the measuring device for acquiring measured data 5.3 can also originate from other radiation sources 5, in a further embodiment of the method the power amplifiers 5.1 of some or all of the other radiation sources 5 are also activated. By a controlled and systematic variation of the amplifications of the signal effected by the power amplifiers 5.1, a desired pattern of the control of the power amplifiers 5.1 for a respective combination of medium 10, positioning of the radiation sources 5 and dimensioning of the working space 7 can be sought.
  • a "standard reflection profile" of the working space 7 can be determined and stored. It is also possible to design the dimensioning of the working space 7 so that reflections of the microwave radiation 11 have no or a negligible influence on the measured data. Also, the walls of the working space 7 can be configured from material that is not reflective for microwave radiation 11, or the working space 7 can be designed in a number of directions of its dimensioning without walls.
  • the frequency is changed by driving the generator 2 by means of the controller 6.
  • the frequency can be set to specific values be set. Temperature-time curves can be recorded under constant conditions with variation of the frequency in order to determine an optimum frequency for a desired effect.
  • the frequency is tuned to the material. But it can also be changed continuously or discontinuously over a range of the frequency section. Such a change can also take place several times, for example at different temperatures of the medium 10 or of the working space 7.
  • the first to nth properties can be set individually or in any combination.
  • the measurement data acquired by the further measuring means 12 are likewise transmitted to the controller 6 via measurement data lines 5.4.
  • the acquired measurement data are assigned to the information about the location of the detection of the first to nth property characteristics of the properties, evaluated and stored.
  • the method according to the invention it is possible to investigate the behavior of a medium 10 when it is heated in a wide variety of combinations of property characteristics. It is also possible to change the characteristic values controlled during a heating process and to investigate the resulting behavioral responses of the medium 10 associated with the characteristics, the positioning of the microwave sources 5, the design of the working space 7, the material and the dimension of the medium 10, and a default setting an assembly after its installation or repair to check or set up. Also, interactions based on common approaches to conducting scientific experiments can be used to investigate interactions between the above parameters.
  • the method may also be used to optimize the process of fractionating a mixture of substances, activating ingredients of the medium, catalytic reactions, generating a plasma, or aligning molecules. The arrangement and the method can also be used when heating z. As contaminated soil or for the drying of bodies such. B. of fruits, are used, wherein an expulsion of water or Volatile substances and compounds such as alcohols, acetone, phenols, toluene, oils and the like primary goal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Constitution Of High-Frequency Heating (AREA)
  • Control Of High-Frequency Heating Circuits (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

  • Die Erfindung betrifft eine Anordnung und ein Verfahren zur Erwärmung eines in einem Arbeitsraum befindlichen Mediums mittels Mikrowellenstrahlung, wie diese gattungsgemäß aus der EP 1 471 773 A2 bekannt sind.
  • In einer Vielzahl von bekannten Lösungen zur Erwärmung von Medien mittels Mikrowellenstrahlung besteht das Erfordernis, eine homogene Verteilung der Mikrowellenstrahlung in und um ein zu erwärmendes Medium herum zu erzeugen. Insbesondere soll die Ausbildung stehender Wellen vermieden werden, um lokale Überhitzungen (hot-spots) und lokale Bereiche zu vermeiden, an denen keine Erwärmung erfolgt.
  • So ist es beispielsweise bei der Konstruktion von Mikrowellengeräten zur Erwärmung von Speisen üblich, die Abmessungen des Raumes, in dem sich das zu erwärmende Medium befindet (fortan: Arbeitsraum), ungleich der Wellenlänge oder eines Vielfachen der Wellenlänge der Mikrowellenstrahlung zu dimensionieren. Dadurch wird vermieden, dass in den Arbeitsraum abgestrahlte Mikrowellenstrahlung an einer Wand des Arbeitsraumes in sich selbst reflektiert und eine stehende Welle erzeugt wird.
  • Eine Kombination von statischen Reflexionen der Mikrowellenstrahlung an den, einen Innenraum begrenzenden, Wänden eines Gehäuses und einer dynamischen Reflexion der Mikrowellenstrahlung mittels mindestens eines Modenrührers ist in der DE 103 29 411 B4 offenbart.
  • Um eine gleichmäßige Verteilung von Mikrowellenstrahlung in einen Arbeitsraum zu erreichen, wird in der technischen Lehre der EP 1 471 773 A2 der Ansatz verfolgt, eine Anzahl von Strahlungsquellen für Mikrowellenstrahlung (fortan: Strahlungsquellen) an oder um einen Arbeitsraum anzuordnen. Dabei beinhaltet jede Strahlungsquelle jeweils einen mit einer voreingestellten Mikrowellenfrequenz arbeitenden Oszillator, einen Leistungsverstärker, der von dem Oszillator erzeugte Signale verstärkt sowie Mittel, z. B. eine Antenne, zur Abstrahlung der verstärkten Signale als Mikrowellenstrahlung in den Arbeitsraum. Jeder Leistungsverstärker der Anzahl von Strahlungsquellen ist individuell ansteuerbar, wobei der Grad der Verstärkung gesteuert wird. Mit der Lösung nach der EP 1 471 773 A2 ist es grundsätzlich möglich, eine auf ein Medium abgestimmtes Abstrahlungsmuster in den Arbeitsraum zu bewirken.
  • Nachteilig an der angeführten Lösung ist, wie in der EP 1 471 773 A2 selbst ausgeführt, dass durch die Anzahl von Oszillatoren, die unabhängig voneinander Signale generieren, Phasenverschiebungen der abgestrahlten Mikrowellenstrahlung zueinander auftreten können. Wenn eine solche Phasenverschiebung nicht erwünscht ist, müssen die Oszillatoren voreingestellt oder angesteuert werden, womit neben der Ansteuerung der Leistungsverstärker eine weitere Ansteuerung jeder der Mikrowellenquellen erforderlich ist.
  • Für Anwendungen, bei denen eine Phasenverschiebung der Mikrowellenstrahlung nicht erwünscht ist, beispielsweise in experimentellen Anordnungen in der Werkstoffkunde oder der Verfahrenstechnik, ist die Lösung nach der EP 1 471 773 A2 sehr aufwendig und kostenintensiv. Außerdem ist es mit einer Anordnung gemäß der EP 1 471 773 A2 lediglich möglich, durch jeden der Oszillatoren Signale einer voreingestellten Mikrowellenfrequenz (fortan: Frequenz) zu erzeugen. Damit ist die Frequenz der gesamten Anordnung festgelegt und keine Variation der Frequenz möglich. Außerdem ist es sehr wahrscheinlich, dass bei der Anzahl der Oszillatoren Mikrowellenstrahlungen mit voneinander leicht verschiedenen Frequenzen abgestrahlt werden, wodurch eine Reproduzierbarkeit von Experimenten stark beeinträchtigt oder gar aufgehoben wird. Eine Änderung der Frequenz der Anordnung wäre nur durch einen Austausch der Anzahl von Oszillatoren möglich. Gerade in Hinblick auf experimentelle Ansätze wirft die Lehre der EP 1 471 773 A2 neben ihren Vorteilen die Frage auf, wie die einzelnen Beiträge von Frequenzen und Amplituden der Mikrowellenstrahlung sowie deren Wechselwirkungen untereinander und mit dem Medium zu separieren sind.
  • Aus den Schriften EP 2 051 564 A1 und EP 2 205 043 A1 sind Anordnungen bekannt, bei denen bewusst eine Veränderung der Phasen der abgestrahlten Mikrowellen hervorgerufen wird. Dazu sind in der Anordnung Phasendreher vorgesehen, durch die eine gezielte Drehung der Phasenlage bewirkt werden kann. Die EP 2 051 564 A1 offenbart dabei die Verwendung eines Mikrowellengenerators, der mit Leistungsverstärkern je einer Antenne in Verbindung steht. Jeder der Leistungsverstärker, sowie die Phasendreher sind durch eine Steuerung direkt ansteuerbar. Den Antennen sind jeweils Sensoren zugeordnet, durch die Messdaten in dem Arbeitsraum erfassbar sind und der Steuerung zugeleitet werden. Die Sensoren erfassen dabei die reflektierte Mikrowellenstrahlung. Ein besonderer Vorteil der Lösung gemäß der EP 2 051 564 A1 liegt darin, dass ein stationär in dem Arbeitsraum befindliches Objekt gezielt prozessiert, beispielsweise erwärmt, werden kann, ohne das Objekt in oder durch den Arbeitsraum bewegen zu müssen.
  • Durch die EP 2 205 043 A1 ist eine Möglichkeit offenbart, mittels der rückreflektierte Strahlung aus dem Arbeitsraum wieder auf das zu erwärmende Objekt gerichtet werden kann und diese rückreflektierte Strahlung nutzbar wird.
  • Mikrowellen unterschiedlicher Eigenschaften werden gemäß der Offenbarung der EP 2 326 142 A1 in einen Arbeitsraum abgestrahlt, um ein Objekt mit unregelmäßiger Form zu erwärmen. Bei dieser, wie bei den beiden vorgenannten Lösungen sind auftretende Phasenverschiebungen zu erwarten und sogar gewünscht.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Möglichkeit zur Erwärmung von Medien mittels Mikrowellenstrahlung vorzuschlagen, mittels der Phasenverschiebungen zwischen der abgestrahlten Mikrowellenstrahlung vermieden werden.
  • Die Aufgabe wird durch eine Anordnung zur Erwärmung eines in einem Arbeitsraum befindlichen Mediums mittels Mikrowellenstrahlung, umfassend mindestens zwei Strahlungsquellen zur Bereitstellung von Mikrowellenstrahlung mit je einem individuell ansteuerbaren Leistungsverstärker, durch welchen ein von einem Generator generiertes, eine Mikrowellenfrequenz aufweisendes, Signal verstärkt wird sowie mit Mitteln zur Abstrahlung des verstärkten Signals als Mikrowellenstrahlung in einen Arbeitsraum, der durch die Anordnung der Strahlungsquellen zueinander in seiner räumlichen Dimension bestimmt ist, gelöst. Die Anordnung ist dadurch gekennzeichnet, der Arbeitsraum entlang einer Längsachse gestaltet ist und die Mittel zur Abstrahlung der Mikrowellenstrahlung Hohlleiter sind. Die Hohlleiter sind so ausgerichtet, dass die Abstrahlung der Mikrowellenstrahlung in Ebenen erfolgt, die senkrecht zur Längsachse ausgedehnt sind. Der Generator steht mit allen Leistungsverstärkern signaltechnisch in Verbindung, so dass das von dem Generator generierte Signal an allen Leistungsverstärkern anliegt. Außerdem ist der Generator über einen Bereich eines bestimmten Frequenzabschnitts innerhalb des Mikrowellenfrequenzbereiches durchstimmbar. In der Anordnung sind Messmittel vorhanden, mit denen Messdaten in dem Arbeitsraum erfassbar sind. Jede Mikrowellenquelle weist mindestens jeweils ein Messmittel zur Erfassung von Messdaten auf. Dabei sind die Messmittel zur Erfassung von Messdaten mit einer Steuerung signaltechnisch verbunden, durch die mindestens die Leistungsverstärker (5.2) individuell ansteuerbar sind und es ist mindestens ein Mittel zur Durchführung eines Mediums durch den Arbeitsraum vorhanden, das ein Führungselement mit einer Elementenlängsachse ist, die parallel zur Längsachse ausgerichtet ist.
  • Der Mikrowellenfrequenzbereich reicht von 300 MHz bis 300 GHz (Wellenlängen von 1 m bis 1 mm). Der Frequenzabschnitt kann jeder Abschnitt des Mikrowellenfrequenzbereichs sein. Die von dem Generator generierten elektromagnetischen Wellen werden als Signale bezeichnet, während als Mikrowellenstrahlung die abgestrahlten, durch einen der Leistungsverstärker verstärkten, Signale bezeichnet werden. Eine Verstärkung bewirkt vorzugsweise, dass die niedrig energetischen Signale zu Mikrowellenstrahlung verstärkt werden, deren Energie für einen vorgesehenen Verwendungszweck der erfindungsgemäßen Anordnung ausreichend ist. Die Mikrowellenstrahlung wird in Form von Feldern abgestrahlt, wobei die Felder gerichtet abgestrahlt sein können.
  • Je höher der erreichte Wirkungsgrad der Anordnung sein soll, desto kleiner ist der wählbare Frequenzabschnitt. Um vorteilhaft einen möglichst hohen Wirkungsgrad zu erreichen, sind der Generator und der Leistungsverstärker aufeinander abgestimmt. Die maximale Variabilität der Frequenzen von Generator und Leistungsverstärker liegt bei +/- 100 MHz.
  • Kern der Erfindung ist, die Frequenz der von den mindestens zwei Strahlungsquellen abgestrahlten Mikrowellenstrahlung durch nur einen einzigen Generator zu erzeugen. Es ist ferner erfindungswesentlich, dass der Generator durchstimmbar ist, so dass selbst während eines laufenden Erwärmungsvorgangs eine gesteuerte Veränderung der Frequenz ermöglicht ist.
  • Durch die Verbindung nur eines Generators mit den Strahlungsquellen ist vorteilhaft eine Phasenverschiebung der abgestrahlten Mikrowellenstrahlung vermieden. Zusammen mit einer individuellen Ansteuerbarkeit jedes Leistungsverstärkers ist es mittels der erfindungsgemäßen Anordnung möglich, Mikrowellenstrahlung nur einer einzigen Frequenz durch eine Anzahl von Strahlungsquellen in den Arbeitsraum abzustrahlen. Der Generator kann mehrere Bauteile umfassen. Beispielsweise kann ein Mittel zur Generierung der Signale (z. B. ein Mittel zur Generierung von Signalen auf Basis von Halbleiterbauelementen) und ein durchstimmbares Mittel zum selektiven Durchlass (z. B. ein Oszillator, ein Filter oder Gleichrichter) der ausgewählten Frequenz vorhanden sein. Abweichend von dem vorgenannten Stand der Technik beinhaltet eine Strahlungsquelle im Sinne dieser Beschreibung keinen Generator.
  • Ein Arbeitsraum kann ein geschlossener Raum wie der Innenraum eines Haushalts- oder Industrie-Mikrowellengerätes sein, in dem das Medium stationär angeordnet ist. Er kann auch ein offener Bereich sein, durch den das Medium hindurchtreten kann und dessen Größe durch eine Wirkungsweite der abgestrahlten Mikrowellenstrahlung bestimmt ist. Da Medien frequenzabhängig und temperaturabhängig, und somit auch leistungsabhängig, unterschiedlich auf Mikrowellenstrahlung reagieren, ist eine Wirkungsweite abhängig von einer Wechselwirkung zwischen Frequenz und Amplitude der Mikrowellenstrahlung sowie dem Medium. Die Wirkungsweite ist als Distanz zwischen Strahlungsquelle und dem am weitest entfernten Punkt des Mediums, an dem eine Wirkung feststellbar ist, zu verstehen und ist immer dann verschieden von einer Eindringtiefe der Mikrowellenstrahlung in das Medium, wenn die Strahlungsquelle nicht unmittelbar auf der Oberfläche des Mediums aufsetzt. Während eine Wirkungsweite im Vakuum theoretisch unendlich ist, können bei einer Bestrahlung von Medien sowie festen Körpern Wirkungsweiten lediglich im Bereich weniger Nano- oder Mikrometer vorliegen.
  • Der Arbeitsraum kann beispielsweise von einem Gitter aus einem für Mikrowellenstrahlung reflektierenden Material umschlossen sein, dessen Gitterweite einen Durchtritt von Mikrowellenstrahlung nicht erlaubt, ein Durchtritt eines, z. B. flüssigen oder gasförmigen, Mediums aber möglich ist. Medien können alle festen, flüssigen und gasförmigen Stoffe und Stoffgemische oder Plasmen sowie deren Kombinationen sein.
  • Die in jeder Mikrowellenquelle enthaltenen Messmittel zur Erfassung von Messdaten erlauben eine Erfassung und Auswertung von für die Messmittel spezifischen Größen. Dies kann vorteilhaft zum Schutz einzelner, einiger oder aller Strahlungsquellen genutzt werden. Beispielsweise kann eine Leistungsverstärkung durch eine Steuerung individuell reduziert oder unterbunden sein, wenn die durch die Messmittel erfassten Größen einen vorbestimmten Schwellwert überschreiten. Des Weiteren kann jedes Messmittel zur Erfassung von Größen für andere Auswertungen, z. B. für Untersuchungen des Verhaltens eines Mediums bei seiner Erwärmung mittels Mikrowellenstrahlung, bereitgestellt sein. Auch dazu ist das Messmittel signaltechnisch mit der Steuerung verbunden.
  • Es ist ebenfalls eine vorteilhafte Ausführung der erfindungsgemäßen Anordnung, wenn in dem Arbeitsraum weitere Messmittel vorhanden und mit der Steuerung signaltechnisch, z. B. über bedrahtete oder unbedrahtete Messdatenleitungen, verbunden sind. Beispielsweise können durch weitere Messmittel Größen wie Temperaturen, Strahlungen, chemische Zusammensetzungen und Druck ortsaufgelöst erfasst sein. Die Steuerung ist vorzugsweise als Rechen-, Steuer- und Speichereinheit ausgebildet. Von der Steuerung können direkte Steuerleitungen zu jedem der Leistungsverstärker sowie zu jedem Messmittel und zu jedem weiteren Messmittel vorhanden sein. Es ist auch möglich, dass die Leistungsverstärker, die Messmittel und die weiteren Messmittel mit adressierten Steuersignalen ansteuerbar sind, wodurch die Anzahl von erforderlichen Steuerleitungen und Messdatenleitungen reduziert werden kann.
  • Günstig ist es, wenn die Messmittel und die weiteren Messmittel geschirmt und am Rand des Arbeitsraums angeordnet sind. Die Messmittel sowie die weiteren Messmittel können beispielsweise Infrarot-Pyrometer oder faseroptische Sensoren sein.
  • In einer ersten Ausführung der erfindungsgemäßen Anordnung sind die Strahlungsquellen bezüglich ihrer Position relativ zum Arbeitsraum frei wählbar. Sie können beispielsweise so gestaltet sein, dass sie manuell direkt auf einer Oberfläche des Mediums, z. B. eines zu erwärmenden Körpers, angeordnet werden können. Es ist von Vorteil, wenn die Strahlungsquellen als kompakte und leicht handhabbare Einheit gestaltet sind. Sie können vorzugsweise in je einem Gehäuse und mit diesem auf je einem Träger angeordnet sein. In einer solchen Ausführung der Anordnung ist die räumliche Dimension, also die konkrete räumliche Form, des Arbeitsraums durch die frei wählbare Positionierung der Strahlungsquellen bestimmt.
  • Eine weitere Ausgestaltung der erfindungsgemäßen Anordnung zeichnet sich dadurch aus, dass mindestens die Mittel zur Abstrahlung der Mikrowellenstrahlung in den Arbeitsraum in mindestens einer Halterungsstruktur angeordnet sind. Eine solche Halterungsstruktur kann die räumliche Dimension des Arbeitsraums in mindestens einer Richtung begrenzen. Eine Halterungsstruktur kann in einem einfachen Fall eine Wand oder Wände eines Arbeitsraums sein und die Mittel zur Abstrahlung können in einer bestimmten Weise auf oder in der Wand oder den Wänden verteilt sein. Die Halterungsstruktur kann beispielsweise auch eine Halterung wie ein Gerüst oder eine flexible Matte sein.
  • Die Halterungsstruktur kann den Arbeitsraum ganz oder teilweise umschließen. Es ist auch möglich, dass die Halterungsstruktur den Arbeitsraum in einer Richtung begrenzt und die räumliche Dimension des Arbeitsraums durch die Halterungsstruktur und die Wirkungsweite der abgestrahlten Mikrowellenstrahlung bestimmt ist.
  • Hohlleiter werden üblicherweise dazu eingesetzt um eine z. B. Mikrowellenstrahlung zu leiten. In einer bevorzugten Ausführung der erfindungsgemäßen Anordnung wird Mikrowellenstrahlung über eine Antenne oder Sender in einen Hohlleiter abgestrahlt. Die Mikrowellenstrahlung ist durch den Hohlleiter bis zu einer Öffnung, die vorzugsweise als ein Schlitz ausgebildet ist, geleitet. Durch die Öffnung wird die Mikrowellenstrahlung in den Arbeitsraum abgestrahlt. Von Vorteil ist, dass durch den Schlitz schädliche Rückreflexionen in den Hohlleiter stark reduziert sind.
  • Ein Mittel zur Abstrahlung der Mikrowellenstrahlung in den Arbeitsraum kann in einer vorteilhaften Ausführung als ein sogenannter Schlitzstrahler ausgebildet sein. In einem von Wänden begrenztem Hohlleiter ist dabei mindestens ein Antennenkopf einer Antenne zur Einkopplung von Mikrowellenstrahlung in den Hohlleiter angeordnet. Es ist bevorzugt, wenn außerdem ein Tuner zur Beeinflussung des Ausbreitungs- und Reflexionsverhaltens der eingekoppelten Mikrowellenstrahlung in dem Hohlleiter angeordnet ist. Die eingekoppelte Mikrowellenstrahlung breitet sich in dem Hohlleiter in einer Ausbreitungsrichtung aus. In einer Wand des Hohlleiters ist ein Schlitz zum Abstrahlen der Mikrowellenstrahlung aus dem Schlitzstrahler vorhanden. Der Schlitz verläuft vorzugsweise quer zur Ausbreitungsrichtung und ist vorzugsweise in einem Abstand von dem Antennenkopf entfernt, welcher der halben Wellenlänge (Lambda / 2) der Mikrowellenstrahlung entspricht. Die Länge des Schlitzstrahlers ist größer als die halbe Wellenlänge (Lambda / 2) und kleiner als die Wellenlänge (Lambda) der Mikrowellenstrahlung. Bei einer optimalen Abstimmung aller Elemente des Schlitzstrahlers aufeinander und auf eine Frequenz und Leistung der Mikrowellenstrahlung sind Wirkungsgrade des Schlitzstrahlers von mehr als 75% bis über 99%, beispielsweise 99,7% erreicht.
  • Die Antenne kann einen Innenleiter zur Leitung und Einkopplung einer Mikrowellenstrahlung aufweisen. In weiteren Ausführungen kann die Antenne auch ohne einen Innenleiter realisiert sein. Die Antenne kann beispielsweise mittels einer lösbaren Steckerverbindung (z. B. SMA-Stecker oder N-Stecker) kontaktiert sein. Es ist auch möglich, dass eine nicht-lösbare Kontaktierung, beispielsweise durch ein Koaxialkabel mit einem direkten Übergang in die Antenne, vorhanden ist. Der Antennenkopf besteht vorzugsweise aus einem elektrisch leitenden Material wie Kupfer, Eisen, Gold oder Messing.
  • Es ist günstig, wenn die Antenne bzw. der Antennenkopf in dem Hohlleiter angebracht ist, ohne dass Befestigungselemente in den Hohlleiter ragen. Beispielsweise kann mindestens ein Sackloch in einer der Wände des Hohlleiters vorhanden sein, in den ein Bereich der Antenne bzw. des Antennenkopfs, beispielsweise der Innenleiter, eingreift oder eingesteckt ist. Durch mindestens eine solche Lagerung sind nachteilige Beeinflussungen des Ausbreitungs- und Reflexionsverhaltens der eingekoppelten Mikrowellenstrahlung stark reduziert. Die Antenne bzw. der Antennenkopf kann durch eine an dem Hohlleiter oder außerhalb des Hohlleiters befindliche Vorrichtung arretiert sein. Beispielsweise kann an einem aus dem Hohlleiter ragendem Bereich der Antenne eine Steckverbindung (z. B. ein SMA-Stecker) vorgesehen sein, durch welche die Antenne räumlich festgelegt ist.
  • Ist das Mittel zur Durchführung des Mediums durch den Arbeitsraum ein Bündel von Führungselementen mit einer Bündellängsachse, so ist diese Bündellängsachse vorzugsweise parallel zur Längsachse ausgerichtet. Führungselemente können beispielweise Rohre, Schächte oder Kanäle sein, die von einem flüssigen oder gasförmigen Medium durchströmt werden. Es können aber auch Fördereinrichtungen sein, mittels der feste Stoffe als z. B. Schüttgut oder als Körper durch den Arbeitsraum zu führen sind (dynamischer Fall). Eine Durchführung des Mediums durch den Arbeitsraum kann in zeitlich (z. B. kontinuierlich, diskontinuierlich) und räumlich (Streckenverlauf der Durchführung) beliebiger Weise erfolgen. Es ist auch möglich, dass das Medium in den Arbeitsraum eingebracht ist, dort während seiner Erwärmung verbleibt und wieder entnommen wird (statischer Fall). Beispielsweise kann ein Körper oder ein Behältnis mit dem zu erwärmenden Medium (z. B. ein befüllter Autoklav) in den Arbeitsraum eingebracht sein.
  • Sehr vorteilhaft ist es, wenn der Generator gegen mindestens einen weiteren Generator austauschbar ist. Eine einfache Austauschbarkeit kann beispielsweise dadurch erreicht sein, dass der Generator, z. B. in eine Platine, einsteckbar ist. Dadurch ist im Fall eines Defekts der Generator leicht auswechselbar. Besonders günstig ist die einfache Austauschbarkeit in Experimentieranordnungen, in denen durch den Austausch nur einer Komponente der Anordnung beispielsweise ein Bereich eines anderen Frequenzabschnitts verfügbar wird. Einem physischen Austausch steht eine Möglichkeit zur Umschaltung auf einen anderen Generator gleich.
  • Die Anordnung kann neben der Erwärmung eines Mediums mittels Mikrowellenstrahlung beispielsweise zur Untersuchung des Ansprechverhaltens des Mediums bei der Erwärmung verwendet werden.
  • Die Aufgabe wird ferner durch ein Verfahren zur Erwärmung eines in einem Arbeitsraum befindlichen Mediums mittels Mikrowellenstrahlung und unter Verwendung einer erfindungsgemäßen Vorrichtung gelöst. Die Schritte des erfindungsgemäßen Verfahrens sind nacheinander das Einbringen eines Mediums in einen Arbeitsraum. Es folgt die Auswahl einer Mikrowellenfrequenz in Abhängigkeit von Eigenschaften des Mediums aus einem bestimmten Frequenzabschnitt innerhalb des Mikrowellenfrequenzbereiches. Anschließend wird ein Generator mit Steuersignalen angesteuert, die zu einer Generierung eines Signals mit der ausgewählten Mikrowellenfrequenz führen. Es folgen das Generieren des Signals mit der ausgewählten Mikrowellenfrequenz, das Leiten des Signals an wenigstens eine Strahlungsquelle, das Verstärken des Signals mittels der wenigstens einen Strahlungsquelle zu wenigstens einem verstärkten Signal und das Abstrahlen des wenigstens einen verstärkten Signals als Mikrowellenstrahlung in den Arbeitsraum. An jeder der Strahlungsquellen werden Messdaten erfasst, auf deren Grundlage Steuersignale mindestens zur Ansteuerung der Verstärkung des Signals erzeugt werden.
  • Die Auswahl der Mikrowellenfrequenz (Frequenz) kann aufgrund der Kenntnisse über das Material, die Dimensionierung und weiterer Eigenschaften (z. B. Aggregatzustand, Temperatur) des Mediums erfolgen. Es ist auch möglich, eine bestimmte Frequenz aufgrund von Erfahrungssätzen oder aber willkürlich auszuwählen. Die Frequenz kann in weiteren Ausführungen des Verfahrens auch vor oder mit dem Einbringen des Mediums ausgewählt werden.
  • In einer bevorzugten Variante des erfindungsgemäßen Verfahrens ist der Arbeitsraum durch eine Anordnung mehrerer Strahlungsquellen in seinen räumlichen Dimensionen bestimmt.
  • Das erfindungsgemäße Verfahren ist äußerst vorteilhaft zur Untersuchung eines Verhaltens des Mediums bei seiner Erwärmung mittels Mikrowellenstrahlung geeignet. Dabei werden nacheinander Mikrowellenstrahlungen mindestens je einer ersten bis n-ten Eigenschaftsausprägung einer bestimmten Bandbreite von Eigenschaftsausprägungen einer Eigenschaft der Mikrowellenstrahlung in den Arbeitsraum abgestrahlt. Die der ersten bis n-ten Eigenschaftsausprägung zugeordneten ersten bis n-ten Messdaten werden erfasst und miteinander verglichen. Aus den Messdaten sowie deren Vergleich wird das Verhalten des Mediums bei seiner Erwärmung mittels Mikrowellenstrahlung erster bis n-ter Eigenschaftsausprägung abgeleitet. Es lässt sich das Verhalten des Mediums über die Zeit, an verschiedenen Bereichen des Arbeitsraums sowie unter verschiedenen Kombinationen der ersten bis n-ten Eigenschaftsausprägung der Mikrowellenstrahlung untersuchen.
  • Eigenschaften können beispielsweise die Leistung der Mikrowellenstrahlung oder die Frequenz sein. Die Eigenschaftsausprägung ist der jeweils konkrete Wert der Eigenschaft, z. B. eine konkret darstellbare Amplitude der Mikrowelle als erste Eigenschaftsausprägung und eine konkrete Frequenz als zweite Eigenschaftsausprägung der Leistung der Mikrowellenstrahlung.
  • Mit dem Verfahren ist eine Untersuchung von Medien beispielsweise dadurch möglich, dass das Medium mit Mikrowellenstrahlung der ersten bis n-ten Eigenschaftsausprägung bestrahlt und Messdaten erfasst werden. So können beispielsweise optimierte Kombinationen der ersten bis n-ten Eigenschaftsausprägung für eine Erwärmung des Mediums gefunden werden. Mit dem Verfahren kann außerdem eine geeignete räumliche Positionierung der Strahlungsquellen gesucht werden, bei der beispielsweise eine effiziente Erwärmung des Mediums bei gleichzeitigem Schutz aller Strahlungsquellen vor schädigenden Einflüssen erzielbar ist.
  • Steuerungstechnisch günstig ist es, wenn die Auswahl einer Frequenz, die Erzeugung der Mikrowellenstrahlung, die Ansteuerung der Strahlungsquellen und die Auswertung der Messdaten mittels einer zentralen Steuerung erfolgt.
  • Mittels des erfindungsgemäßen Verfahrens können Medien beliebiger Aggregatzustände oder deren Mischung erwärmt werden. Es ist möglich, das Verfahren zur Fraktionierung eines aus einem Stoffgemisch bestehenden Mediums zu nutzen. Es kann damit auch mindestens ein Inhaltsstoff des Mediums aktiviert, sowie katalytische Reaktionen des Mediums durchgeführt werden. Es ist auch möglich, mittels des erfindungsgemäßen Verfahrens aus dem Medium ein Plasma zu erzeugen. In Bezug auf spezielle Methoden der Oberflächenbehandlung, wie z. B. der PVD (physical vapour deposition) oder der CVD (chemical vapour deposition), wird es möglich sein, Prozessabläufe präziser zu gestalten und dadurch die Homogenität von z. B. auf einem Objekt aufgebrachter Schichten weiter zu steigern. Auch können mittels Mikrowellenstrahlung Moleküle oder Molekülgruppen ausgerichtet bzw. auch erst polarisiert werden.Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und Abbildungen näher erläutert. Es zeigen die Abbildungen:
  • Fig. 1
    eine erste Ausführung der erfindungsgemäßen Anordnung;
    Fig. 2
    eine zweite Ausführung der erfindungsgemäßen Anordnung;
    Fig. 3
    eine Strahlungsquelle einer dritten erfindungsgemäßen Anordnung und
    Fig. 4
    ein Ausführungsbeispiel eines Schlitzstrahlers.
  • Als wesentliche Elemente der in Fig. 1 stark schematisch gezeigten ersten Ausführung der Anordnung sind eine Spannungsquelle 1 zur Versorgung der Anordnung, ein durchstimmbarer Generator 2 zur Generierung eines Signals, ein Verteiler 3 zum Leiten des Signals über je eine Mikrowellenleitung 4 an zwei Strahlungsquellen 5 mit je einem Leistungsverstärker 5.1 und einem Messmittel zur Erfassung von Messdaten 5.3, sowie eine als Rechen-, Steuer- und Speichereinheit ausgebildete Steuerung 6 vorhanden, die mit dem Generator 2 und den Strahlungsquellen 5 über Steuerleitungen 6.1 in Verbindung steht.
  • Der von der Spannungsquelle 1 versorgte und durch die Steuerung 6 ansteuerbare Generator 2 beinhaltet einen Schwingungsgenerator 2.1, der aus Halbleiterbauelementen aufgebaut ist, sowie einen Oszillator als Frequenzfilter 2.2. Der Generator 2 ist über den Bereich des Frequenzabschnittes 1,8 bis 2,8 GHz kontinuierlich durchstimmbar. Durch von der Steuerung 6 übermittelte Steuersignale ist der Generator 2 auf eine ausgewählte Frequenz aus einem Frequenzabschnitt des Mikrowellenfrequenzbereichs abstimmbar. Mittels des Schwingungsgenerators 2.1 ist ein Signal mit der ausgewählten Frequenz generierbar. Eventuell erzeugte Signale, deren Frequenzen nicht der ausgewählten Frequenz entsprechen, sind durch die Funktion des Frequenzfilters 2.2 unterdrückt. Durch den Verteiler 3 ist das Signal auf die Mikrowellenleitungen 4 verteilt. Das in der erfindungsgemäßen Anordnung nach dem Frequenzfilter 2.2 bereitgestellte Signal liegt an jeder der vorhandenen Strahlungsquellen 5 an. Das Signal ist durch den Leistungsverstärker 5.1 zu verstärken und mittels eines Hohlleiters 5.2 als eine Mikrowellenstrahlung 11 in einen Arbeitsraum 7 abzustrahlen. Der Arbeitsraum 7 ist durch eine für Mikrowellenstrahlung 11 reflektierende Wand aus Metall als eine Halterungsstruktur 8, in der die Strahlungsquellen 5 in parallel zueinander verlaufenden Ebenen E in den Arbeitsraum 7 gerichtet angeordnet sind, in einer seiner räumlichen Dimensionen begrenzt. Die Ebenen E erstrecken sich senkrecht zu einer Längsachse 7.1 des Arbeitsraums 7. In seinen nicht von der Halterungsstruktur 8 begrenzten Dimensionen ist der Arbeitsraum 7 durch eine Wirkungsweite der Mikrowellenstrahlung 11 bestimmt, die von der Temperatur, der Frequenz und einer Amplitude der Mikrowellenstrahlung 11 sowie den Wechselwirkungen mit einem bestrahlten Medium 10 abhängt. In dem Arbeitsraum 7 ist ein zu erwärmender fester Körper als Medium 10 eingebracht. Das Medium 10 verbleibt während der Erwärmung bezüglich des Arbeitsraumes 7 in einer immer gleichen, stationären Lage. Das in der Strahlungsquelle 5 angeordnete Messmittel zur Erfassung von Messdaten 5.3 ist eine Diode und dient der Erfassung von Mikrowellenstrahlung 11, die von dem Medium 10 auf das Messmittel zur Erfassung von Messdaten 5.3 zurück reflektiert sind. Das Messmittel zur Erfassung von Messdaten 5.3 jeder Strahlungsquelle 5 ist über je eine Messdatenleitung 5.4 mit der Steuerung 6 verbunden. Jeder Leistungsverstärker 5.1 ist durch die Steuerung 6 über die Steuerleitungen 6.1 direkt und individuell ansteuerbar. Eine Ansteuerung erfolgt in Abhängigkeit der Messdaten des Messmittels zur Erfassung von Messdaten 5.3, um Schädigungen der Strahlungsquellen 5 durch reflektierte Mikrowellenstrahlung 11 zu verhindern.
  • Eine zweite Ausführung der erfindungsgemäßen Anordnung gemäß Fig. 2 entspricht dem grundsätzlichen Aufbau gemäß Fig. 1. Zusätzlich ist ein Temperatursensor als ein weiteres Messmittel 12 zur Bestimmung der Temperatur innerhalb des Arbeitsraums 7 angeordnet und über eine Messdatenleitung 5.4 mit der Steuerung 6 verbunden. Der Arbeitsraum 7 ist in allen seinen Dimensionen von Wänden (vereinfacht als Linien gezeigt) begrenzt, die für die Strahlungsquellen 5 als Halterungsstrukturen 8 dienen (nur zwei Strahlungsquellen 5 einer Halterungsstruktur 8 gezeigt) und durch die der Arbeitsraum 7 abgeschlossen ist. In dem Arbeitsraum 7 ist, diesen in seiner gesamten Länge durchspannend, ein als Rohr ausgebildetes Führungselement 9.1 als ein Mittel zur Durchführung des Mediums durch den Arbeitsraum 9 entlang einer Elementenlängsachse 9.11 vorhanden. Die Elementenlängsachse 9.11 verläuft parallel zu der Längsachse 7.1. Das Führungselement 9.1 durchspannt den Arbeitsraum 7 von einer die Halterungsstruktur 8 eröffnenden Medienzuführungsöffnung 9.2 zu einer Medienabführungsöffnung 9.3.In weiteren Ausführungen der Anordnung können auch außen an dem Arbeitsraum 7 und / oder an der Medienzuführungsöffnung 9.2 und / oder der Medienabführungsöffnung 9.3 weitere Messmittel 12, z. B. Sensoren, durch die ein Zustand des Mediums 10 wie Temperatur, physikalische oder chemische Zusammensetzung erfassbar sind, angeordnet sein.
  • Eine Gestaltung einer Strahlungsquelle 5 gemäß Fig. 3 zeichnet sich durch eine als Träger ausgebildete Halterungsstruktur 8 aus, auf der der Leistungsverstärker 5.1, der Hohlleiter 5.2 und das Messmittel zur Erfassung von Messdaten 5.3 von einem Gehäuse 5.5 umschlossen angeordnet sind. Die Strahlungsquelle 5 ist über die Mikrowellenleitung 4 mit dem Verteiler 3 (nicht gezeigt) und über die Steuerleitung 6.1 und die Messdatenleitung 5.4 mit der Steuerung 6 verbunden. Die Strahlungsquelle 5 ist manuell an einer frei wählbaren Position auf der Oberfläche eines zu erwärmenden Körpers als Medium 10 anzubringen. Ein Arbeitsraum 7 ist durch die Strahlungsquelle 5 und durch die in diesem Fall als Wirkungsweite anzusehende Eindringtiefe der Mikrowellenstrahlung 11 in das Medium 10 (durch gestrichelte Mikrowellenstrahlung 11 symbolisiert) bestimmt. Diese Gestaltung kann beispielsweise als flexibles System zur schonenden Trocknung von Holz oder anderen Naturstoffen, sowie allen künstlichen erzeugten Edukten und Produkten eingesetzt werden, wobei durch den Einsatz von Mikrowellenstrahlung 11 eine steuerbare Erwärmung des Mediums 10 im Inneren bewirkt ist. Wasser oder andere Lösungsmittel werden dabei nicht von bereits getrockneten Schichten des Mediums 10 eingeschlossen, sondern durch noch feuchte Schichten nach außen transportiert. Durch eine Erwärmung im Inneren werden Rissbildungen im Medium 10 weitestgehend vermieden.
  • Ein Ausführungsbeispiel eines Schlitzstrahlers ist in Fig. 4 vereinfacht gezeigt. Der Schlitzstrahler besteht aus einem Hohlleiter 5.2 mit rechteckigem Querschnitt und besitzt eine Länge L, eine Breite B und eine Höhe H. Der Hohlleiter 5.2 ist durch Wände 16 begrenzt. Sich jeweils gegenüberliegend sind als Wände 16 ein erster Deckel 16.1 und ein zweiter Deckel 16.2, eine erste Seitenwand 16.3 und eine zweite Seitenwand 16.4 sowie eine obere Wand 16.5 und eine untere Wand 6.6 vorhanden. Die obere Wand 16.6 weist einen Schlitz 15 auf, durch den die Mikrowellenstrahlung 11 aus dem Schlitzstrahler abstrahlbar ist. Der Schlitz 15 verläuft in Richtung der Breite B und ist näher an dem zweiten Deckel 16.2 als an dem ersten Deckel 16.1 vorhanden. Gemäß Fig. 4 ist der Schlitz 15 ein Zehntel der Länge L von dem zweiten Deckel 16.2 entfernt. Die räumliche Lage der Wände 16 und weiterer Elemente des Schlitzstrahlers ist für die Funktionsweise des Schlitzstrahlers nicht relevant. Lediglich deren relative Lage zueinander und deren Dimensionierung ist von Bedeutung. Alle Angaben zur räumlichen Ausrichtung der Wände 16 sind daher beispielhaft.
  • Auf der unteren Wand 16.5 ist in dem Hohlleiter 5.2 ein Tuner 17 angeordnet, der zur gezielten Beeinflussung des Ausbreitungs- und Reflexionsverhaltens der eingekoppelten Mikrowellenstrahlung 11 dient und in den Hohlleiter 5.2 ragt. Der Tuner 17 ist gegenüber dem Schlitz 15 angeordnet. Weiterhin ist eine Antenne 13 vorhanden, die durch die untere Wand 16.5 geführt ist und die einen Antennenkopf 13.1 aufweist. Der Antennenkopf 13.1 ragt in den Hohlleiter 5.2 hinein und dient der Einkopplung der Mikrowellenstrahlung 11 in den Hohlleiter 5.2. In Richtung der Länge L ist der Antennenkopf 13.1 von dem Schlitz 15 (jeweils bezogen auf deren Mittellinie) mit einem Abstand d angeordnet. Der Abstand d beträgt rund Lambda / 2, was bei einer Mikrowellenstrahlung 11 mit einer Frequenz von 2,45 GHz rund 6,1 cm entspricht. Die Richtung der Länge L ist zugleich die Ausbreitungsrichtung der Mikrowellenstrahlung 11.
  • Der Antennenkopf 13.1 ist als eine Hülse aus Messing ausgebildet. Im Inneren des Antennenkopfs 13.1 ist ein Verbinder 18 in Form eines Kupferstabs vorhanden. Der Verbinder 18 ragt aus dem Antennenkopf 13.1 durch die untere Wand 16.5 hindurch und ist dort durch einen Aufnahmeteil einer Steckverbindung 19 kontaktiert. An dem Aufnahmeteil der Steckverbindung 19 kann eine Mikrowellenleitung 4 angeschlossen werden. Das Aufnahmeteil der Steckverbindung 19 ist direkt an der unteren Wand 16.5 angeordnet, wodurch die Antenne 13 fixiert ist. Der Antennenkopf 13.1 ragt von der unteren Wand 16.5 eine erste Strecke l1 senkrecht in den Hohlleiter 5.2 hinein. In den Antennenkopf 13.1 ist seitlich ein Innenleiter 14 eingesteckt, der in Richtung der Länge L über eine zweite Strecke l2 bis zu dem ersten Deckel 16.1 verläuft. In dem ersten Deckel 16.1 ist ein Sackloch (nur angedeutet) eingebracht, in das der Innenleiter 14 mit einem Ende eingesteckt ist. Über die zweite Strecke l2 liegt der Innenleiter 14 frei.
  • Der Antennenkopf 13.1 kann in weiteren Ausführungen der Erfindung anders gestaltet sein.
  • In weiteren Ausführungen des Schlitzstrahlers kann der Verbinder 18 durch einen Draht oder eine Litze einer Mikrowellenzuleitung 4 ersetzt sein. In einer solchen Ausführung ist das Aufnahmeteil der Steckverbindung 19 nicht erforderlich. Außerdem ist es möglich, dass der Verbinder 18 als ein Element des Aufnahmeteils der Steckverbindung 19 ausgeführt ist oder dass der Verbinder 18 ein Element eines Steckers (nicht gezeigt) der Steckverbindung 19 realisiert ist.
  • Die Anwendung des erfindungsgemäßen Verfahrens zur Untersuchung eines Verhaltens des Mediums 10 bei seiner Erwärmung mittels Mikrowellenstrahlung 11, wird anhand des zweiten Ausführungsbeispiels gemäß Fig. 2 erläutert. Anhand von Erfahrungswerten wird ein Frequenzabschnitt des Mikrowellenfrequenzbereichs, bei dem eine Erwärmung des Mediums 10 bekanntermaßen erfolgt, ausgewählt. In weiteren Ausführungen können auch Frequenzabschnitte ausgewählt werden, in denen keine Erwärmung erfolgt oder eine Erwärmung (noch) fraglich ist. Mittels der Steuerung 6 werden der Schwingungsgenerator 2.1 und der Frequenzfilter 2.2 so angesteuert, dass ein Signal mit der ausgewählten Frequenz bereitgestellt wird. Das Signal ist eine elektromagnetische Welle, die mit der ausgewählten Frequenz schwingt und eine Amplitude aufweist. Über den Verteiler 3 wird das Signal auf die Mikrowellenleitungen 4 verteilt, so dass diese an jeder der Strahlungsquellen 5 anliegt. Jeder der Leistungsverstärker 5.1 wird mittels der Steuerung 6 über die Steuerleitungen 6.1 so angesteuert, dass die Amplitude des Signals durch jeden Leistungsverstärker 5.1 gleich verstärkt und das verstärkte Signal über jeden Hohlleiter 5.2 als Mikrowellenstrahlung 11 in den Arbeitsraum 7 abgestrahlt wird. Die auf dem Medium 10 auftreffende Mikrowellenstrahlung 11 wird von dem Medium 10 entsprechend seiner Eigenschaften absorbiert und/oder gänzlich oder anteilig reflektiert. Reflektierte und von einem der Messmittel zur Erfassung von Messdaten 5.3 erfasste Mikrowellenstrahlung 11 verursacht mindestens ein Antwortsignal, dessen Höhe als Messdaten über die Messdatenleitung 5.4 an die Steuerung 6 gesendet und dort ausgewertet wird. Zeigen die Messdaten, dass auf die Messmittel zur Erfassung von Messdaten 5.3 Mikrowellenstrahlung 11 einer Leistung oberhalb eines vorbestimmten Schwellwertes auftreffen, wird der Leistungsverstärker 5.1 angesteuert und eine geringere Verstärkung bewirkt. Da die auf dem Messmittel zur Erfassung von Messdaten 5.3 auftreffenden Mikrowellenstrahlung 11 auch von anderen Strahlungsquellen 5 herrühren kann, werden in einer weiteren Ausführung des Verfahrens auch die Leistungsverstärker 5.1 einiger oder aller anderen Strahlungsquellen 5 angesteuert. Durch eine kontrollierte und systematische Variation der durch die Leistungsverstärker 5.1 bewirkten Verstärkungen des Signals kann ein gewünschtes Muster der Ansteuerung der Leistungsverstärker 5.1 für eine jeweilige Kombination von Medium 10, Positionierung der Strahlungsquellen 5 und Dimensionierung des Arbeitsraums 7 gesucht werden. Es ist in weiteren Ausführungen des Verfahrens auch möglich, das Verhalten des Mediums 10 bei unterschiedlichen Positionierungen der Strahlungsquellen 5 zu untersuchen. Die erläuterte individuelle Wahl der Verstärkung des Signals ist als eine erste Eigenschaftsausprägung der Eigenschaft "Leistung / Amplitude" der Mikrowellenstrahlung 11 anzusehen. Die Erfassung der Messdaten durch die Messmittel zur Erfassung von Messdaten 5.3 und deren Auswertung dient einmal dem Schutz der jeweiligen Strahlungsquelle 5 vor überhöhter Rückstrahlung und kann außerdem zur Untersuchung des Verhaltens des Mediums 10 bei seiner Erwärmung mit Mikrowellenstrahlung 11 dienen.
  • Um Wirkungen des Arbeitsraums 7 (z. B. Reflexionen an dessen Wänden) bei einer Untersuchung zu berücksichtigen bzw. auszuschließen, kann ein "Standard-Reflexionsprofil" des Arbeitsraums 7 ermittelt und abgespeichert werden. Es ist auch möglich, die Dimensionierung des Arbeitsraumes 7 so zu gestalten, dass Reflexionen der Mikrowellenstrahlung 11 keine oder einen vernachlässigbaren Einfluss auf die Messdaten haben. Auch können die Wände des Arbeitsraums 7 aus für Mikrowellenstrahlung 11 nicht reflektierendem Material ausgestaltet oder der Arbeitsraum 7 in einer Anzahl von Richtungen seiner Dimensionierung ohne Wände ausgeführt sein.
  • Als eine zweite Eigenschaft wird die Frequenz durch Ansteuerung des Generators 2 mittels der Steuerung 6 verändert. Die Frequenz kann auf bestimmte Werte eingestellt werden. Es können Temperatur-Zeit-Kurven bei konstanten Bedingungen unter Variation der Frequenz aufgenommen werden, um eine für eine angestrebte Wirkung optimale Frequenz zu ermitteln. Die Frequenz wird also auf das Material abgestimmt. Sie kann aber auch kontinuierlich oder diskontinuierlich über einen Bereich des Frequenzabschnittes verändert werden. Eine solche Veränderung kann auch mehrmals, beispielsweise bei unterschiedlichen Temperaturen des Mediums 10 oder des Arbeitsraums 7 erfolgen. Die ersten bis n-ten Eigenschaften können einzeln oder in beliebigen Kombinationen eingestellt werden.
  • Sind weitere Messmittel 12 vorhanden, werden die durch die weiteren Messmittel 12 erfassten Messdaten ebenfalls über Messdatenleitungen 5.4 an die Steuerung 6 übermittelt.
  • In allen Fällen werden die erfassten Messdaten den Informationen über den Ort der Erfassung den ersten bis n-ten Eigenschaftsausprägungen der Eigenschaften zugeordnet, ausgewertet und gespeichert.
  • Mittels des erfindungsgemäßen Verfahrens ist es möglich, das Verhalten eines Mediums 10 bei seiner Erwärmung bei unterschiedlichsten Kombinationen von Eigenschaftsausprägungen zu untersuchen. Es ist möglich, die Eigenschaftsausprägungen auch während eines Erwärmungsvorgangs gesteuert zu verändern und die resultierenden Verhaltensantworten des Mediums 10 zugeordnet zu den Eigenschaftsausprägungen, der Positionierung der Mikrowellenquellen 5, der Gestaltung des Arbeitsraums 7, dem Material und der Dimension des Mediums 10 zu untersuchen sowie eine Grundeinstellung einer Anordnung nach ihrer Installation oder Reparatur zu überprüfen oder einzurichten. Auch können unter Zugrundelegung üblicher Vorgehensweisen bei der Durchführung wissenschaftlicher Experimente Wechselwirkungen zwischen den oben angeführten Parametern untersucht werden. Das Verfahren kann auch zur Optimierung der Verfahrensführung der Fraktionierung eines Stoffgemisches, der Aktivierung von Inhaltsstoffen des Mediums, von katalytischen Reaktionen, der Erzeugung eines Plasmas oder der Ausrichtung von Molekülen angewendet werden. Die Anordnung und das Verfahren können auch bei der Erwärmung z. B. kontaminierten Bodens oder für die Trocknung von Körpern wie z. B. von Früchten, verwendet werden, wobei ein Austreiben von Wasser oder flüchtiger Stoffe und Verbindungen wie Alkoholen, Aceton, Phenolen, Toluol, Öle und dergleichen primäres Ziel ist.
  • Bezugszeichenliste
  • 1
    Spannungsquelle
    2
    Generator
    2.1
    Schwingungsgenerator
    2.2
    Frequenzfilter
    3
    Verteiler
    4
    Mikrowellenleitung
    5
    Strahlungsquelle
    5.1
    Leistungsverstärker
    5.2
    Hohlleiter
    5.3
    Messmittel zur Erfassung von Messdaten
    5.4
    Messdatenleitung
    5.5
    Gehäuse
    6
    Steuerung
    6.1
    Steuerleitung
    7
    Arbeitsraum
    7.1
    Längsachse
    8
    Halterungstruktur
    9
    Mittel zur Durchführung des Mediums durch den Arbeitsraum
    9.1
    Führungselement
    9.11
    Elementenlängsachse
    9.2
    Medienzuführungsöffnung
    9.3
    Medienabführungsöffnung
    10
    Medium
    11
    Mikrowellenstrahlung
    12
    weitere Messmittel
    13
    Antenne
    13.1
    Antennenkopf
    14
    Innenleiter
    15
    Schlitz
    16
    Wand (des Hohlleiters 5.2)
    16.1
    erster Deckel
    16.2
    zweiter Deckel
    16.3
    erste Seitenwand
    16.4
    zweite Seitenwand
    16.5
    untere Wand
    16.6
    obere Wand
    17
    Tuner
    18
    Verbinder
    19
    Aufnahmeteil der Steckverbindung
    L
    Länge (des Hohlleiters 5.2)
    B
    Breite (des Hohlleiters 5.2)
    H
    Höhe (des Hohlleiters 5.2)
    d
    Abstand
    l1
    erste Strecke
    l2
    zweite Strecke
    E
    Ebene

Claims (10)

  1. Anordnung zur Erwärmung eines Mediums mittels Mikrowellenstrahlung, umfassend
    mindestens zwei Strahlungsquellen (5) mit je einem individuell ansteuerbaren Leistungsverstärker (5.1), welcher ein von einem Generator (2) generiertes, eine Mikrowellenfrequenz aufweisendes, Signal verstärkt sowie mit Mitteln zur Abstrahlung des verstärkten Signals als eine Mikrowellenstrahlung (11) in einen Arbeitsraum (7), der durch die Anordnung der Strahlungsquellen (5) zueinander in seiner räumlichen Dimension bestimmt ist,
    dadurch gekennzeichnet, dass
    der Arbeitsraum (7) entlang einer Längsachse (7.1) gestaltet ist,
    die Mittel zur Abstrahlung der Mikrowellenstrahlung Hohlleiter (5.2) sind und die Hohlleiter (5.2) so ausgerichtet sind, dass die Abstrahlung der Mikrowellenstrahlung in Ebenen (E) erfolgt, die senkrecht zur Längsachse (7.1) ausgedehnt sind,
    der Generator (2) mit allen Leistungsverstärkern (5.1) signaltechnisch in Verbindung steht, so dass das von dem Generator (2) generierte Signal an allen Leistungsverstärkern (5.1) anliegt;
    der Generator (2) über einen Bereich eines bestimmten Frequenzabschnitts innerhalb des Mikrowellenfrequenzbereiches durchstimmbar ist und Messmittel zur Erfassung von Messdaten (5.3) vorhanden sind, mit denen Messdaten in dem Arbeitsraum (7) erfassbar sind und jede Strahlungsquelle (5) mindestens jeweils eines der Messmittel zur Erfassung von Messdaten (5.3) aufweist, wobei die Messmittel zur Erfassung von Messdaten (5.3) mit einer Steuerung (6) signaltechnisch verbunden sind, durch die mindestens die Leistungsverstärker (5.2) individuell ansteuerbar sind und
    mindestens ein Mittel zur Durchführung eines Mediums durch den Arbeitsraum (9) vorhanden ist, das ein Führungselement (9.1) mit einer Elementenlängsachse (9.11) ist, die parallel zur Längsachse (7.1) ausgerichtet ist.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass in dem Arbeitsraum (7) weitere Messmittel (12) vorhanden und mit der Steuerung (6) signaltechnisch verbunden sind.
  3. Anordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass
    der Generator (2) gegen mindestens einen weiteren Generator (2) austauschbar ist.
  4. Verwendung der Anordnung nach einem der vorhergehenden Ansprüche zur Untersuchung des Verhaltens des Mediums (10) bei der Erwärmung mittels Mikrowellenstrahlung (11).
  5. Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung mit einer Anordnung nach einem der Ansprüche 1 bis 3, mit den Schritten:
    Einbringen eines Mediums (10) in einen Arbeitsraum (7),
    Auswählen einer Mikrowellenfrequenz in Abhängigkeit von Eigenschaften des Mediums (10) aus einem bestimmten Frequenzabschnitt innerhalb des Mikrowellenfrequenzbereiches;
    Ansteuern eines Generators (2) mit Steuersignalen, die zu einer Generierung eines Signals mit der ausgewählten Mikrowellenfrequenz führen;
    Generieren des Signals mit der ausgewählten Mikrowellenfrequenz; Leitung des Signals an wenigstens eine Strahlungsquelle (5);
    Verstärken des Signals mittels der wenigstens einen Strahlungsquelle (5) zu wenigstens einem verstärkten Signal;
    Abstrahlen des wenigstens einen verstärkten Signals als Mikrowellenstrahlung (11) in den Arbeitsraum (7);
    Erfassen von Messdaten an jeder der Strahlungsquellen (5) und Erzeugen von Steuersignalen mindestens zur Ansteuerung der Verstärkung des Signals.
  6. Verfahren nach Anspruch 5 zur Untersuchung eines Verhaltens des Mediums (10) bei seiner Erwärmung,
    wobei nacheinander Mikrowellenstrahlung (11) mindestens je einer ersten bis n-ten Eigenschaftsausprägung einer bestimmten Bandbreite von Eigenschaftsausprägungen mindestens einer Eigenschaft in den Arbeitsraum (7) abgestrahlt werden,
    den ersten bis n-ten Eigenschaftsausprägung zugeordnete erste bis n-te Messdaten erfasst werden,
    die Messdaten miteinander verglichen werden und
    aus den Messdaten das Verhalten des Mediums (10) bei seiner Erwärmung mittels Mikrowellenstrahlung (11) erster bis n-ter Eigenschaftsausprägung abgeleitet wird.
  7. Verfahren nach Anspruch 5 zur Fraktionierung eines aus einem Stoffgemisch bestehenden Mediums (10).
  8. Verfahren nach einem der Ansprüche 5 bis 7 zur Aktivierung mindestens eines Inhaltsstoffes des Mediums (10).
  9. Verfahren nach einem der Ansprüche 5 bis 8 zur Durchführung einer katalytischen Reaktion des Mediums (10).
  10. Verfahren nach einem der Ansprüche 5 oder 6 zur Erzeugung eines Plasmas aus dem Medium (10).
EP13152019.9A 2012-01-24 2013-01-21 Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung Active EP2621246B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012100591A DE102012100591A1 (de) 2012-01-24 2012-01-24 Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung

Publications (2)

Publication Number Publication Date
EP2621246A1 EP2621246A1 (de) 2013-07-31
EP2621246B1 true EP2621246B1 (de) 2016-01-20

Family

ID=47603392

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13152019.9A Active EP2621246B1 (de) 2012-01-24 2013-01-21 Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung

Country Status (5)

Country Link
EP (1) EP2621246B1 (de)
KR (1) KR20130086316A (de)
DE (1) DE102012100591A1 (de)
ES (1) ES2566605T3 (de)
PL (1) PL2621246T3 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368404B2 (en) 2014-03-21 2019-07-30 Whirlpool Corporation Solid-state microwave device
DE102017210261A1 (de) * 2017-06-20 2018-12-20 Homag Gmbh Verfahren und Vorrichtung zum thermischen Aktivieren einer Funktionsschicht eines Beschichtungsmaterials
DE102018115827A1 (de) * 2018-06-29 2020-01-02 Gerlach Maschinenbau Gmbh Vorrichtung zum Vernetzen mit geregelten Mikrowellen
CN110493906B (zh) * 2019-08-30 2022-03-15 九阳股份有限公司 一种电磁加热系统的辐射控制方法及电磁加热系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445690B2 (en) * 2002-10-07 2008-11-04 Tokyo Electron Limited Plasma processing apparatus
US20040206755A1 (en) 2003-04-18 2004-10-21 Hadinger Peter James Microwave heating using distributed semiconductor sources
EP1625775A1 (de) * 2003-05-20 2006-02-15 Biotage AB Mikrowellen heizvorrichtung
DE10329411B4 (de) 2003-07-01 2006-01-19 Forschungszentrum Karlsruhe Gmbh Mikrowellenresonator, eine aus einem solchen Mikrowellenresonator modular aufgebaute Prozessstraße, ein Verfahren zum Betreiben und nach diesem Verfahren thermisch prozessierte Gegenstände/Werkstücke mittels Mikrowelle
JP5064924B2 (ja) * 2006-08-08 2012-10-31 パナソニック株式会社 マイクロ波処理装置
JP5167678B2 (ja) * 2007-04-16 2013-03-21 パナソニック株式会社 マイクロ波処理装置
CN101828427A (zh) * 2007-10-18 2010-09-08 松下电器产业株式会社 微波加热装置
JP5127038B2 (ja) * 2007-12-03 2013-01-23 パナソニック株式会社 高周波処理装置
KR20110057134A (ko) * 2008-09-17 2011-05-31 파나소닉 주식회사 마이크로파 가열 장치
CN102124814B (zh) * 2009-06-01 2013-10-23 松下电器产业株式会社 高频加热装置及高频加热方法
US9215756B2 (en) * 2009-11-10 2015-12-15 Goji Limited Device and method for controlling energy
DE202010005946U1 (de) * 2010-04-19 2010-08-19 Jenoptik Katasorb Gmbh Mikrowellenreaktor zur mikrowellenunterstützten katalytischen Stoffumsetzung
FR2974701B1 (fr) * 2011-04-27 2014-03-21 Sairem Soc Pour L Applic Ind De La Rech En Electronique Et Micro Ondes Installation de production d'un plasma micro-onde

Also Published As

Publication number Publication date
KR20130086316A (ko) 2013-08-01
DE102012100591A1 (de) 2013-07-25
ES2566605T3 (es) 2016-04-14
PL2621246T3 (pl) 2016-09-30
EP2621246A1 (de) 2013-07-31

Similar Documents

Publication Publication Date Title
EP2621246B1 (de) Anordnung und Verfahren zur Erwärmung eines Mediums mittels Mikrowellenstrahlung
DE19628954B4 (de) Vorrichtung zur Erzeugung von Plasma
EP3035773B1 (de) Mikrowellengenerator und mikrowellenofen
DE102009040772A1 (de) Wellenleiterelement
EP3338515B1 (de) Kerntemperaturfühler, mikrowellen-gargerät und system
DE69909303T2 (de) Mikrowellensondeapplikator für physische und chemische verfahren
DE112015000981T5 (de) Mikrowellen-Behandlungsvorrichtung
DE102015225928A1 (de) Heizkörperanordnung für ein Gargerät sowie Gargerät mit einer entsprechenden Heizkörperanordnung
DE102005052276B4 (de) Verfahren und Vorrichtung zur selektiven dielektrischen Erwärmung eines Feststoffbettes mittels stabförmiger Elektroden
DE60208915T2 (de) Mikrowellen-heizvorrichtung
EP3685425B1 (de) Vorrichtung zur behandlung eines produkts mit mikrowellen
EP3323273B1 (de) Anordnung zur behandlung von materialien mit mikrowellen
EP3168194A1 (de) Verfahren zum trocknen von feuchten substanzmengen durch mikrowellen
DE102013009064B3 (de) Mikrowellen-Durchlaufofen
DE102015107380B4 (de) Vorrichtung zum kontinuierlichen Erwärmen von Material
DE3907248A1 (de) Muldentrockner fuer schuettgut, insbesondere asphaltgranulat
DE3912569A1 (de) Verfahren und vorrichtung zur erzeugung eines elektrischen hochfrequenzfeldes in einem nutzraum
DE102016107550B4 (de) Verfahren und Vorrichtung zur thermischen Behandlung von Feststoffen
EP2559514B1 (de) Verfahren zur Herstellung einer Hausgerätevorrichtung und Hausgerätevorrichtung
DE202015102422U1 (de) Vorrichtung zum kontinuierlichen Erwärmen von Material
EP3685424B1 (de) Vorrichtung zur behandlung eines produkts mit mikrowellen
DE102020113578A1 (de) Mikrowellenbehandlungseinrichtung
DE3242638A1 (de) Wellenleiter fuer hochfrequenzuebertragung
EP1063678A2 (de) Vorrichtung zur Erzeugung eines Plasmas in einer Kammer durch Mikrowellenanregung
DE102017114102A1 (de) Vorrichtung und Verfahren zum Erhitzen eines Materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502013001825

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0006700000

Ipc: H05B0006680000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/68 20060101AFI20151030BHEP

INTG Intention to grant announced

Effective date: 20151117

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KRIPPENDORF, RONALD

Inventor name: KRECH, THOMAS, DR.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 772219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013001825

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2566605

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160414

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Ref country code: NL

Ref legal event code: MP

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160421

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160520

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013001825

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

26N No opposition filed

Effective date: 20161021

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170121

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130121

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160121

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160120

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 772219

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180121

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180121

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013001825

Country of ref document: DE

Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013001825

Country of ref document: DE

Representative=s name: GLEIM PETRI OEHMKE PATENT- UND RECHTSANWALTSPA, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013001825

Country of ref document: DE

Owner name: IVOC-X GMBH, DE

Free format text: FORMER OWNER: JENOPTIK KATASORB GMBH, 07745 JENA, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013001825

Country of ref document: DE

Representative=s name: GLEIM PETRI OEHMKE PATENT- UND RECHTSANWALTSPA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013001825

Country of ref document: DE

Owner name: JENOPTIK AUTOMATISIERUNGSTECHNIK GMBH, DE

Free format text: FORMER OWNER: JENOPTIK KATASORB GMBH, 07745 JENA, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210120

Year of fee payment: 9

Ref country code: IT

Payment date: 20210129

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20210122

Year of fee payment: 9

Ref country code: PL

Payment date: 20210107

Year of fee payment: 9

Ref country code: ES

Payment date: 20210217

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502013001825

Country of ref document: DE

Owner name: IVOC-X GMBH, DE

Free format text: FORMER OWNER: JENOPTIK AUTOMATISIERUNGSTECHNIK GMBH, 07745 JENA, DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220121

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220121

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502013001825

Country of ref document: DE

Representative=s name: GLEIM PETRI PATENT- UND RECHTSANWALTSPARTNERSC, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 12