EP2616181B1 - Dispositif pour générer des champs électriques dans un système d'échappement - Google Patents

Dispositif pour générer des champs électriques dans un système d'échappement Download PDF

Info

Publication number
EP2616181B1
EP2616181B1 EP11767659.3A EP11767659A EP2616181B1 EP 2616181 B1 EP2616181 B1 EP 2616181B1 EP 11767659 A EP11767659 A EP 11767659A EP 2616181 B1 EP2616181 B1 EP 2616181B1
Authority
EP
European Patent Office
Prior art keywords
electrode
exhaust gas
projections
electric field
flow direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11767659.3A
Other languages
German (de)
English (en)
Other versions
EP2616181A1 (fr
Inventor
Rolf BRÜCK
Jan Hodgson
Christian Vorsmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Emitec Gesellschaft fuer Emissionstechnologie mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emitec Gesellschaft fuer Emissionstechnologie mbH filed Critical Emitec Gesellschaft fuer Emissionstechnologie mbH
Publication of EP2616181A1 publication Critical patent/EP2616181A1/fr
Application granted granted Critical
Publication of EP2616181B1 publication Critical patent/EP2616181B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/86Electrode-carrying means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/01Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust by means of electric or electrostatic separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/08Plant or installations having external electricity supply dry type characterised by presence of stationary flat electrodes arranged with their flat surfaces parallel to the gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • B03C1/08Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/02Plant or installations having external electricity supply
    • B03C3/04Plant or installations having external electricity supply dry type
    • B03C3/12Plant or installations having external electricity supply dry type characterised by separation of ionising and collecting stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/41Ionising-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/47Collecting-electrodes flat, e.g. plates, discs, gratings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/34Constructional details or accessories or operation thereof
    • B03C3/40Electrode constructions
    • B03C3/45Collecting-electrodes
    • B03C3/49Collecting-electrodes tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/0231Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using special exhaust apparatus upstream of the filter for producing nitrogen dioxide, e.g. for continuous filter regeneration systems [CRT]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/10Ionising electrode with two or more serrated ends or sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/30Details of magnetic or electrostatic separation for use in or with vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/12Metallic wire mesh fabric or knitting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/42Honeycomb supports characterised by their structural details made of three or more different sheets, foils or plates stacked one on the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Definitions

  • the present invention relates to a device for generating an electric field in an exhaust system, in particular in the exhaust system of a motor vehicle.
  • the invention relates to a device for the treatment of soot particles containing exhaust gas, which can be used in particular with a so-called electrostatic filter or electrostatic precipitator.
  • the invention is preferably used in the treatment of exhaust gases of mobile internal combustion engines in the automotive sector.
  • a central spray electrode which extends approximately centrally through the exhaust pipe, and a surrounding jacket surface of the exhaust pipe as a collector electrode used to form a capacitor.
  • the spray electrode for example, can be operated with a high voltage which is in the range of about 15 kV.
  • corona discharges can be formed by which the particles flowing with the exhaust gas through the electric field are charged in a unipolar manner. Due to this charge, the particles migrate to the collector electrode due to the electrostatic Coulomb forces.
  • the exhaust pipe is designed as a collector electrode
  • the collector electrode for example, is designed as a wire grid.
  • the addition of particles takes place on the wire grid for the purpose of possibly combining the particles with other particles, so as to achieve an agglomeration.
  • the exhaust gas flowing through the grid then tears the larger particle agglomerates again and leads them to classical filter systems.
  • the EP-A2-0 862 949 describes an exhaust treatment device that can be ionized by generating an electric field soot particles and disposed in an exhaust pipe of a diesel engine.
  • the device comprises a plurality of tip electrodes connected to a tip electrode holder, wherein a row of tip electrode holders are each formed from a sheet metal.
  • a row of tip electrode holders are each formed from a sheet metal.
  • a device for the electrostatic cleaning of air comprises an ionization section and a separating section, through which air flows successively.
  • the ionization device comprises a discharge electrode plate and ground electrode plate, which are arranged alternately transversely to the flow direction.
  • the DE 23 63 149 discloses an electrostatic precipitator for collecting dust from industrial exhaust gases comprising a plurality of discharge electrode plates juxtaposed in a gas flow and collecting electrode plates arranged substantially parallel to the gas flow. At the upstream edge of the discharge electrode plate and at the downstream edge of the collecting electrode plate, respectively, needle tips are attached via hollow profiles as discharge electrodes.
  • a fan which has an air treatment device in which fresh air and room air are mixed together and treated by an ionization unit.
  • a device for generating an electric field in an exhaust system is to be proposed, which can be provided by simple means and known technologies as part of a series production.
  • the device should be easy to integrate into an exhaust pipe, in particular so that a targeted alignment of the electrodes is made possible towards the desired electric field or the associated particle trap.
  • the inventive device for generating an electric field in an exhaust system of a mobile internal combustion engine has an exhaust pipe, in which at least one electrode is arranged, which is contacted with a power supply.
  • the at least one electrode is formed with at least one metal sheet, the at least one electrode extends in the flow direction of the exhaust gas and all electrodes have in the flow direction of the exhaust gas a plurality of projections, which were generated by removing material of at least one metal sheet near the front edge, wherein the at least one electrode is integrated in a honeycomb copper.
  • This device is in particular a pole of an electrostatic filter. It is preferred that the electric field (possibly a pulsed) DC field is. In particular, voltages in the range of 10 kV to 30 kV [kilo-volts] can be generated.
  • the exhaust system is in particular that of a mobile internal combustion engine, in particular that of a diesel engine of a motor vehicle.
  • the region of the exhaust pipe, which is performed with a corresponding electric field, may optionally be electrically isolated, which may be realized in the axial direction of the exhaust pipe, as well as radially outward.
  • the at least one electrode is positioned in the interior of the exhaust pipe, ie in the space through which the exhaust gas flows.
  • the at least one electrode is electrically contacted with a power supply, for example by means of appropriate electrical conductors, connectors, solder joints, etc.
  • an electrically encapsulated implementation of the power supply through the exhaust pipe is preferred.
  • the electrode is formed with at least one metal sheet.
  • a "metal sheet” is understood in particular to mean a (flat) strip of metallic flat material.
  • the metal sheet can be made substantially smooth or flat, but it is also possible that the metal sheet is structured, so for example. has a corrugation.
  • the series production is already very advanced, so that here a precise design of similarly shaped metal sheets has already been implemented. This manufacturing knowledge can now be used to perform such metal sheets as electrodes and to use for generating a corresponding electric field.
  • the metal sheet with corresponding contact conductors, electrical conductors, soldering points and the like is executed, so that possibly even with the use of insulating coatings or deposits for the metal sheet, a predetermined current path can be formed by the metal sheet itself.
  • correspondingly electrically conductive materials come into consideration here.
  • a flat side of the metal sheet is arranged parallel to the flow direction of the exhaust gas.
  • the metal sheet represents the smallest possible flow resistance for the flowing exhaust gas.
  • the metal sheet is in particular of a material with a low ohmic resistance, which cumulatively or alternatively has only a low oxidation capacity.
  • the metal sheet should preferably consist of a homogeneous material, so that a uniform field with a good ionizing ability is formed on the projections.
  • the metal sheet preferably has a thickness of less than 0.1 mm, more preferably less than 0.065 mm, most preferably less than 0.035 mm.
  • the at least one electrode extends in the flow direction of the exhaust gas. In other words, that means that the metal sheet is arranged to the flow direction of the exhaust gas, that it represents the smallest possible flow resistance.
  • the flat side of the metal sheet is arranged in particular parallel to the flow direction of the exhaust gas.
  • the at least one electrode has a plurality of projections in the flow direction of the exhaust gas.
  • a corresponding projection can be generated, for example, by the material of the metal sheets being removed near an end edge, for example being punched out.
  • the remaining projections which are directed in particular in the direction of the electric field, are suitable for forming local centers for the electric field. Possibly. It may also be useful that only these projections are contacted with corresponding electrical conductors, while remaining parts of the metal sheet are electrically insulated. So the power line can be targeted to these projections.
  • the metal sheet or, the projections are arranged or aligned with respect to the exhaust pipe so that they have a uniform electric field towards a collector electrode, in particular a downstream particle trap result.
  • the at least one projection has a length of 15 mm [millimeter] to 20 mm [millimeter] in the flow direction, so that oscillation of the projections during operation is avoided.
  • At least three projections are each formed at a distance from at least two adjacent projections, wherein the distances are substantially equal.
  • the distances differ by no more than 10%.
  • the distances are at least 10 mm, more preferably at least 30 mm, most preferably at least 50 mm.
  • the projections on the metal sheet with a winding corresponding distance must be arranged to each other.
  • the relatively large distances also prevent an (undesired) electric field from forming between the projections.
  • the at least one projection forms a tapered electrode, wherein the tip of the projection has an angle of at most 30 °, preferably of at most 20 °, particularly preferably of at most 10 °.
  • the at least one tip of the projection is oriented transversely to the flow direction, wherein tips of different projections can be aligned in different directions.
  • the at least one electrode is integrated in a honeycomb body.
  • a honeycomb body For example, it is known to provide metallic honeycomb bodies in which at least partially structured layers of metal foils are stacked, wound and / or wound to form substantially parallel channels.
  • these metal foils of the honeycomb body may possibly be designed with a thinner material thickness, the honeycomb structure as a whole must be considered relatively stiff, so that the electrode can be securely fixed to the metal sheet with these metal foils or the honeycomb body.
  • the honeycomb body is a kind of support structure for the electrode or the metal sheet.
  • the electrode may need to be electrically insulated from the honeycomb body. If, for example, electrically insulating coatings are provided here, they can also serve as a basis for electrical conductors to the electrode, which are simply applied to this electrical insulating coating.
  • the at least one electrode is arranged downstream of a particle trap in the flow direction of the exhaust gas.
  • the here (directly) downstream particle trap serves as a kind of collector electrode.
  • the particulate trap is in particular a so-called open bypass filter in which there are no completely closed flow channels.
  • the particle trap is rather formed with a metallic fleece and metallic corrugated layers in which openings, conductive structures, etc. are provided.
  • the guide structures form flow bottlenecks in the flow passages, so that the residence time or impact probability for soot particles in the interior of the particle trap is increased.
  • WO-A-01/80978 WO-A-02/00326 ; WO-A-2005/099867 ; WO-A-2005/066469 ; WO 2006/136431 ; WO 2007/140932 ,
  • the regeneration of such a particle trap is preferably carried out continuously based on the CRT method.
  • an oxidatively acting coating is realized in the particle trap itself, either in a zone thereof or in all areas of the particle trap.
  • Fig. 1 shows a first embodiment of the device 1 according to the invention for generating an electric field 2 in an exhaust system 3.
  • the device 1 also includes a region of an exhaust pipe 4, in which at least one electrode 5 is arranged.
  • a plurality of electrodes 5 are integrated into a (single) honeycomb body 10.
  • a power supply 6 is provided, which is electrically isolated from the exhaust pipe 4 is passed through the electrical contact 12.
  • the electrodes 5 are in this case formed with a (optionally separate) metal sheet 7, which extends substantially parallel in the flow direction 8 of the exhaust gas and the front side has a plurality of projections 9.
  • the desired electric field 2 is formed between the electrodes 5 and the particle trap 11 following in the flow direction 8, in which the soot particles can agglomerate or be charged.
  • the electrically charged particles then strike the particle trap 11, where they are preferably stored in or on the filter material and converted into gaseous constituents as part of a regeneration.
  • Fig. 2 now illustrates a variant of the device 1, wherein the electrodes 5 are again integrated in a honeycomb body 10.
  • Shown here is a perspective view of a cylindrical housing 13, in which a plurality of at least partially structured (electrically inactive) metal foils (shown in white) and (electrically at least partially active) metal sheets (indicated in black) is arranged. Between the structures of the metal foils or metal sheets, passages are provided which are longitudinally passable and run essentially parallel to one another.
  • the electrodes 5 extend beyond an end face, wherein preferably a uniform distribution over the cross section of the honeycomb body 10 is preferred.
  • Fig. 3 schematically shows a plan view in or against the flow direction of the exhaust gas to an embodiment of the device according to the invention 1.
  • a honeycomb body 10 is arranged in a housing 13.
  • the honeycomb body 10 contains at least one metal sheet 7, which forms projections 9, which serve as an electrode 5. Via an electrical contact 12, the electrodes can be subjected to a voltage.
  • Each projection 9 has at least a first distance 14 and a second distance 15 to adjacent electrodes 5. The first distance 14 and the second distance 15 are substantially equal, the projections 9 being distributed uniformly over an end face of the honeycomb body 10.
  • an apparatus for generating an electric field in an exhaust system, which can be provided by simple means and known technologies as part of a series production.
  • the device can be easily integrated into an exhaust pipe, in particular so that a targeted alignment of the electrodes is made possible towards the desired electric field or the associated particle trap.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Electrostatic Separation (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Claims (4)

  1. Dispositif (1) pour produire un champ (2) électrique dans un système (3) de gaz d'échappement d'une machine à combustion interne mobile, comportant un conduit (4) pour les gaz d'échappement par lequel il est fixé une direction (8) de flux des gaz d'échappement et dans lequel est disposé au moins une électrode (5), qui est en contact avec une alimentation (6) en courant, et un corps (10) alvéolaire, dans lequel la au moins une électrode (5) est formée avec au moins une tôle (7) métallique, dans lequel la au moins une électrode (5) s'étend dans la direction (8) de flux du gaz d'échappement, dans lequel la au moins une électrode (5) est intégrée dans le corps (10) alvéolaire et dans lequel toutes les électrodes (5) dans la direction (8) de flux du gaz d'échappement comportent plusieurs saillies (9), caractérisé en ce que les saillies (9) ont été produites par suppression de matière de la au moins une tôle (7) métallique à proximité d'un bord frontal.
  2. Dispositif (1) suivant la revendication 1, dans lequel au maximum trois électrodes (5) sont prévues.
  3. Dispositif (1) suivant la revendication 1 ou 2, dans lequel sont formées au moins trois saillies (9) avec une distance (14, 15) respective par rapport à au moins deux saillies (9) voisines, les distances (14, 15) étant égales.
  4. Dispositif (1) suivant l'une des revendications précédentes, dans lequel un piège (11) à particules est disposé en aval de la au moins une électrode (5) dans la direction (8) de flux du gaz d'échappement.
EP11767659.3A 2010-09-15 2011-09-13 Dispositif pour générer des champs électriques dans un système d'échappement Not-in-force EP2616181B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010045506A DE102010045506A1 (de) 2010-09-15 2010-09-15 Vorrichtung zur Erzeugung eines elektrischen Feldes in einem Abgassystem
PCT/EP2011/065883 WO2012035033A1 (fr) 2010-09-15 2011-09-13 Dispositif pour générer des champs électriques dans un système d'échappement

Publications (2)

Publication Number Publication Date
EP2616181A1 EP2616181A1 (fr) 2013-07-24
EP2616181B1 true EP2616181B1 (fr) 2016-01-13

Family

ID=44785827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11767659.3A Not-in-force EP2616181B1 (fr) 2010-09-15 2011-09-13 Dispositif pour générer des champs électriques dans un système d'échappement

Country Status (8)

Country Link
US (1) US8790448B2 (fr)
EP (1) EP2616181B1 (fr)
JP (1) JP5960700B2 (fr)
KR (1) KR101444628B1 (fr)
CN (1) CN103118790B (fr)
DE (1) DE102010045506A1 (fr)
RU (1) RU2555711C2 (fr)
WO (1) WO2012035033A1 (fr)

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020170C1 (de) 2000-04-25 2001-09-06 Emitec Emissionstechnologie Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement
JPS4989962A (fr) * 1972-12-30 1974-08-28
BR9106611A (pt) * 1990-07-02 1993-06-01 Carl M Fleck Processo e dispositivo para purificacao de gases de escapamento
DE4236271C2 (de) * 1991-10-28 1994-09-22 Toyota Motor Co Ltd Abgasemissionssteuervorrichtung unter Einsatz eines katalytischen Konverters mit einem Kohlenwasserstoffadsorptionsmittel
RU2026751C1 (ru) * 1992-05-13 1995-01-20 Елена Владимировна Володина Устройство для стерилизации и тонкой фильтрации газа
US5465573A (en) * 1992-07-29 1995-11-14 Ngk Insulators, Ltd. Multi-stage honeycomb heater
US5707428A (en) * 1995-08-07 1998-01-13 Environmental Elements Corp. Laminar flow electrostatic precipitation system
US5733360A (en) * 1996-04-05 1998-03-31 Environmental Elements Corp. Corona discharge reactor and method of chemically activating constituents thereby
JP3004938B2 (ja) 1997-03-07 2000-01-31 株式会社オーデン 電気集塵装置及びその製造方法
DE10026696A1 (de) * 2000-05-30 2001-12-20 Emitec Emissionstechnologie Partikelfalle
DE10031200A1 (de) 2000-06-27 2002-01-17 Emitec Emissionstechnologie Partikelfalle zum Abscheiden von Partikeln aus dem Strom eines Fluids, Verfahren zum Abscheiden von Partikeln aus dem Strom eines Fluids und Verwendung einer Partikelfalle
DE20117659U1 (de) 2001-10-29 2002-01-10 Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar Offener Partikelfilter mit Heizelement
JP4292868B2 (ja) * 2003-05-27 2009-07-08 トヨタ自動車株式会社 排ガス浄化装置
JP2005083346A (ja) 2003-09-11 2005-03-31 Hino Motors Ltd 排気浄化装置
DE102004001417A1 (de) 2004-01-09 2005-08-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Partikelfilter umfassend eine metallische Faserlage
US7959868B2 (en) 2004-04-12 2011-06-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifying apparatus
WO2005102535A1 (fr) * 2004-04-22 2005-11-03 Techin Ag Procede et dispositif d'affaiblissement de particules de gaz d'echappement emis par des moteurs
DE102005029338A1 (de) 2005-06-24 2007-02-08 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren zum Betrieb einer Partikelfalle sowie Vorrichtung zur Durchführung des Verfahrens
JP4479610B2 (ja) * 2005-07-01 2010-06-09 トヨタ自動車株式会社 排ガス浄化装置
JP4980601B2 (ja) * 2005-10-05 2012-07-18 ダイハツ工業株式会社 プラズマ反応器用電極
DE102006001831A1 (de) 2006-01-13 2007-09-20 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zur Verringerung der Partikelanzahl im Abgas einer Verbrennungskraftmaschine
DE102006026324A1 (de) * 2006-06-02 2007-12-06 Emitec Gesellschaft Für Emissionstechnologie Mbh Nebenstromfilter mit verbessertem Filterwirkungsgrad
US8003058B2 (en) * 2006-08-09 2011-08-23 Airinspace B.V. Air purification devices
RU2330726C1 (ru) * 2006-10-20 2008-08-10 ЗАО "Кондор-Эко" Электрофильтр с электродами волнового профиля
JP2009074438A (ja) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc 排気浄化装置
JP2010007871A (ja) 2008-06-24 2010-01-14 Daikin Ind Ltd 換気装置
JP5527208B2 (ja) * 2008-08-21 2014-06-18 パナソニック株式会社 電気集じん機
DE102009041092A1 (de) 2009-09-14 2011-03-24 Emitec Gesellschaft Für Emissionstechnologie Mbh Abgasbehandlungsvorrichtung mit zwei Wabenkörpern zur Erzeugung eines elektrischen Potentials

Also Published As

Publication number Publication date
DE102010045506A1 (de) 2012-03-15
WO2012035033A1 (fr) 2012-03-22
CN103118790B (zh) 2015-12-09
US8790448B2 (en) 2014-07-29
JP5960700B2 (ja) 2016-08-02
RU2013116737A (ru) 2014-10-20
KR101444628B1 (ko) 2014-09-26
US20130291731A1 (en) 2013-11-07
CN103118790A (zh) 2013-05-22
KR20130062355A (ko) 2013-06-12
RU2555711C2 (ru) 2015-07-10
JP2013540936A (ja) 2013-11-07
EP2616181A1 (fr) 2013-07-24

Similar Documents

Publication Publication Date Title
EP2478194B1 (fr) Dispositif pour purifier des gaz d'échappement avec deux corps en forme de nid d'abeilles pour génerer un potentiel électrique
DE602004000467T2 (de) Abgasreinigungsvorrichtung
EP2640939B1 (fr) Dispositif permettant le traitement des gaz d'échappement contenant des particules de suie
WO2006050546A1 (fr) Procede et systeme de filtre destine a extraire des particules de suies
EP2443325B1 (fr) Dispositif et procédé de traitement de gaz d'échappement présentant des particules
EP2477749B1 (fr) Dispositif et procédé de traitement de gaz d'échappement contenant des particules de suie
EP2616646B1 (fr) Dispositif pour traiter des gaz d'échappement contenant des particules de suie
EP2477748B1 (fr) Dispositif de traitement de gaz d'échappement chargés des particules
DE3804779A1 (de) Vorrichtung zum entfernen von russpartikeln aus dem abgasstrom einer dieselbrennkraftmaschine
EP2603678B1 (fr) Procédé et dispositif pour réduire les particules de suie dans les gaz d'échappement d'un moteur à combustion interne
EP2948253A1 (fr) Dispositif et procédé destinés à traiter un gaz d'échappement comportant des particules
DE10229881A1 (de) Plasma-Russfilter
EP2616648B1 (fr) Système d'alimentation en courant d'un élément d'un système d'échappement
EP2616181B1 (fr) Dispositif pour générer des champs électriques dans un système d'échappement
EP0658685B1 (fr) Dispositif pour séparer de particules de suie contenues dans le gaz d'échappement d'un moteur à combustion interne
EP2761145B1 (fr) Support muni d'au moins une électrode
DE102010052003A1 (de) Vorrichtung zur Behandlung von Rußpartikel enthaltendem Abgas
EP2603677B1 (fr) Dispositif pour soutenir une electrode dans un conduit de gaz d'echappement
DE102009059933A1 (de) Verfahren und Vorrichtung zur Agglomeration von Partikeln in einem Abgassystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502011008681

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B03C0001080000

Ipc: F01N0003023000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B03C 3/49 20060101ALI20150323BHEP

Ipc: B03C 3/08 20060101ALI20150323BHEP

Ipc: F01N 13/00 20100101ALI20150323BHEP

Ipc: B03C 3/41 20060101ALI20150323BHEP

Ipc: F01N 3/01 20060101ALI20150323BHEP

Ipc: F01N 3/023 20060101AFI20150323BHEP

Ipc: F01N 3/035 20060101ALI20150323BHEP

Ipc: B03C 3/47 20060101ALI20150323BHEP

Ipc: B03C 3/12 20060101ALI20150323BHEP

INTG Intention to grant announced

Effective date: 20150409

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 770675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011008681

Country of ref document: DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160414

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160513

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011008681

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

26N No opposition filed

Effective date: 20161014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160413

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160913

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160913

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160913

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160913

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 770675

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160913

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210930

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011008681

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230401