EP2607295B1 - Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge - Google Patents

Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge Download PDF

Info

Publication number
EP2607295B1
EP2607295B1 EP12191745.4A EP12191745A EP2607295B1 EP 2607295 B1 EP2607295 B1 EP 2607295B1 EP 12191745 A EP12191745 A EP 12191745A EP 2607295 B1 EP2607295 B1 EP 2607295B1
Authority
EP
European Patent Office
Prior art keywords
tilt
torque
lifting frame
determined
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12191745.4A
Other languages
English (en)
French (fr)
Other versions
EP2607295A1 (de
Inventor
Dr. Georg Fromme
Marc Wede
Henning Delius
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STILL GmbH
Original Assignee
STILL GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STILL GmbH filed Critical STILL GmbH
Publication of EP2607295A1 publication Critical patent/EP2607295A1/de
Application granted granted Critical
Publication of EP2607295B1 publication Critical patent/EP2607295B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F17/00Safety devices, e.g. for limiting or indicating lifting force
    • B66F17/003Safety devices, e.g. for limiting or indicating lifting force for fork-lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/08Masts; Guides; Chains
    • B66F9/082Masts; Guides; Chains inclinable

Definitions

  • the invention relates to a method for determining the overturning moment forward about the front axle of a truck.
  • the present invention relates to a method for determining the overturning moment of a truck with tiltable mast for lifting a load, wherein the mast is rotatably mounted in mast mounting points and guided in pitch support points with respect to a vehicle body distance.
  • the tipping moment of a truck may vary with respect to different tipping lines caused by the contact points of the wheels be considered.
  • One of the most important of these tipping lines represents the connecting line of the two contact points of the front wheels on the front axle, this tilting line corresponds to the axis of rotation of a tilting with braked, locked wheels.
  • the tipping line in the axis of rotation of the front wheels is above this line on the ground. Due to the vehicle weight and the counterweight, the forklift truck is turned around this tilting line in the direction of the rear axle.
  • a pitch supporting torque is determined from holding forces in the tilting support points, the direction of the holding forces and the lever arm of the front axle perpendicular to these holding forces, and a mullion bearing torque from an effective lever arm of the mast supporting points with respect to the front axle and the supporting force introduced in the mast supporting points.
  • the tilting moment is thereby continuously calculated by means of a simple sensor system and displayed to the driver in a suitable form and / or an intervention in the control of the industrial truck takes place. If appropriate, only a warning of the driver when a critical loading state has been reached and / or also an intervention in the control of the industrial truck can take place. Only the forward torque around the tipping line is considered.
  • the mast tilt and the supporting forces in the mast mounting points are required. As a result, very few sensors are required.
  • the holding forces in the tilt support points are usually transmitted via variable-length tilt drives, which are rotatably mounted both on the mast and on the vehicle body of the truck. As a result, the force direction with the inclination of the mast also changes with the holding forces in the tilt support points.
  • the angle change is relatively small, depending on the specific embodiment of the mast and the positioning of the tilt support points.
  • the direction of the force can be calculated by the mechanical arrangement and the mast tilt, or can be assumed to be of a fixed value for the sake of simplicity.
  • a method for determining the tipping stability which requires little computational effort and is easy to implement with a few sensors. It is possible, if appropriate, to further simplify the method by adopting fixed values for the direction of the forces for the holding forces in the tilt support points and for the support force in the mast mounting points. As a rule, the directions of the forces are taken into account.
  • the method determines the substantial torque forces around the front axle to calculate the resulting torque at the front axle. The torque results in each case from the product of the lever arm and the torque-forming component of the force vector.
  • the distance between the center of the axis and the point of application of the force vector corresponds to the lever arm.
  • the vehicle weight torque corresponds to the weight of the truck without mast and load multiplied by the horizontal distance between the front axle and the center of gravity of the truck without mast and load.
  • the weight and the center of gravity can be determined once from the mass distribution and the resulting vehicle weight torque is then available for the method as an already determined value.
  • the method can be realized in many cases without additional effort, since a measurement of the load is already provided and from this, the total weight of the mast and the load can be determined.
  • the holding forces in the tilt support points can be determined by force sensors.
  • a simple way of detecting the holding forces are for example Druckmeßbolzen, but also strain gauges or piezo elements. These can be arranged in the suspension points of actuators for the tilt adjustment.
  • the mast is supported in the tilt support points by hydraulic tilt cylinders and the holding forces in the tilt support points are determined by a differential pressure of the tilt cylinders.
  • reaching the end stops of the tilting cylinder can be prevented, in particular by an electronic control with cushioning.
  • the differential pressure does not detect the transmitted forces.
  • an electronic control in particular in conjunction with a cushioning damping, which brakes the tilting cylinder shortly before the end positions, the hydraulic tilting cylinder can be stopped in a position with a slight distance from the respective end position.
  • the supporting force introduced into the mast mounting points can be determined from the pressure of a hydraulic lifting cylinder of the mast and the known weight of the mast.
  • the weight of an overlying load can be determined.
  • the supporting force introduced into the mast mounting points can be determined by force sensors.
  • the inclination of the mast is determined and determines the direction of the holding forces in the tilt support points from the inclination of the mast.
  • the direction and magnitude of the support force provided in the mast storage points can be determined by the inclination of the mast, the direction and amount of holding forces in the tilt support points and a determined load weight.
  • the support force in the mast mounting points can be calculated in the direction and magnitude by the holding forces known in terms of amount and direction in the tilt support points and a measured proportion of the support force.
  • the vertical portion of the supporting force can be determined for example via the load measurement and a known weight of the mast.
  • accelerations or decelerations and / or an inclination of the industrial truck are detected.
  • the inclination of the truck such as when a forklift truck is mounted on a ramp, must be considered.
  • the detection of the inclination of the entire truck can be done for example by its own tilt sensor.
  • the acceleration and deceleration of the truck must be taken into account and included in the determination of the tipping stability. This can e.g. via an acceleration sensor.
  • an acceleration sensor can also determine the vehicle inclination, if there is additional information about the speed of the drive or its change. This can advantageously improve the accuracy of the determination of the tilt stability,
  • a resulting torque is determined as an axis of rotation about a tilting line shifted from the front axle in the direction of the contact point of the front wheels.
  • the tipping line shifts from the axis of rotation of the direction of the point of the front wheel support.
  • the torques for determining the stalling stability during braking must be formed around this shifted tilting line, whereas in the previously described method the torques have always been determined around the axis of rotation of the front axle as a tilting line.
  • the falling below the resulting torque can be monitored below a minimum torque, the minimum torque turns the truck on the rear axle.
  • a distance until reaching the minimum torque or falling below the minimum torque can be advantageously displayed by a display device.
  • an intervention in the vehicle control takes place when the minimum torque is undershot, in particular by limiting parameters such as braking deceleration and / or driving speed and / or steering angle and / or lifting height and / or inclining speed.
  • sabstützmosmoment and the mast bearing torque are each determined from measured values.
  • the weight distribution and the center of gravity of the vehicle body can be determined relatively accurately without the mast.
  • the vehicle weight torque can be stored as a fixed value in a control and determined by this value.
  • a large number of different embodiments of masts are often attached, which lead to different values for the tipping stability.
  • no adjustment of a software control or the like required because automatically determined by the detected and determined forces even with different and different masts a correct calculation of the tipping stability, if only the torques are considered around the front axle and a certain required for the tilting stability resulting total torque in the direction of the rear axle is required.
  • the lifting height can also be included.
  • the evaluation of the distance up to the tipping limit and thus the tipping stability can be evaluated differently. For example, a warning at high lift can be done earlier than at low lift heights
  • the driver can be supported in its transport task and the reliability can be increased in use.
  • the method described requires a small number of sensors, some of which have already been installed for other functions in an industrial truck. As a result, the process can be implemented inexpensively.
  • the Fig. 1 schematically shows a side view of a forklift 1 as an embodiment of a truck 2, in which the inventive method is used.
  • the forklift 1 has a mast 4 arranged on a front axle 3 on which a load fork 5 for lifting a load 6 is guided.
  • the forklift 1 has a counterweight 8 above a rear axle 7.
  • a driver's cab 9 a driver's workplace 10 is arranged.
  • the mast 4 is supported at its lower end in mast mounting points 13 and is guided by the tilt drive 11 in tilt support points 14 relative to the forklift 1 distance variable to tilt the mast 4 can.
  • the weight of the forklift 2 without the load 6 and the weight of the mast 4 acts in a vehicle center of gravity 15th
  • the Fig. 2 schematically shows a representation of the forces occurring. Shown are the front axle 3 and the rear axle 7 and the mast mounting points 13, the tilt support points 14 and the vehicle center of gravity 15.
  • the vertical distances h A , h cyl , h St and horizontal distances S A , S cyl , S St of the supporting force A, the holding forces F zyl and the weight F St, z are shown.
  • the Fig. 3 schematically shows a representation of the torques occurring about the front axle 3. Shown are the front axle 3 and the rear axle 7 and the Hubgerüstlagerungsange 13 Ne Trentabstützen 14 and the vehicle center of gravity 15.
  • the supporting force A generated by a lever arm I A, the Hubgerüstlagerungsfiltermoment, the holding forces F cyl produce with a lever arm I zyl the Neistsabsection and the force acting in the center of gravity 15 force F St generated with a lever arm I St is the vehicle weight torque, which can alternatively be regarded as generated by the purely vertical weight F St, z of the vehicle center of gravity with the horizontal portion of the lever arm L St, z .
  • the tilting moment can be easily and quickly adapted to different masts (4).
  • the method according to the invention has advantages when a large number of different mast designs are used on an industrial truck (2).

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Structural Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur Bestimmung des Kippmoments nach vorne um die Vorderachse eines Flurförderzeugs. Insbesondere betrifft die vorliegende Erfindung ein Verfahren zur Bestimmung des Kippmoments eines Flurförderzeugs mit neigbaren Hubgerüst zum Anheben einer Last, wobei das Hubgerüst in Hubgerüstlagerungspunkten drehbar gelagert und in Neigungsabstützpunkten gegenüber einem Fahrzeugkörper abstandsveränderlich geführt ist.
  • Flurförderfahrzeuge mit einem Hubgerüst zum Anheben von Lasten werden mit unterschiedlichen Tragfähigkeiten hergestellt. Die Tragfähigkeit und insbesondere die maximale Traglast des Flurförderzeuges werden dabei über das sogenannte Traglastdiagramm angegeben, in das sowohl der Lastabstand einer Last zu dem Hubgerüst wie auch die Hubhöhe einbezogen werden. So kann dem Traglastdiagramm entnommen werden, dass eine Last X bei einem Lastabstand Y bis zur Höhe Z angehoben werden darf.
  • Diese Werte sind jedoch nur für Eckpunkte des Traglastdiagramms, wie zum Beispiel bestimmte Lasten, angegeben und vom Fahrer müssen die Werte für die aktuelle Situation etwa durch das Ablesen von Liniendiagrammen des Traglastdiagramms interpoliert werden. Häufig sind dem Fahrer die Last, der Lastschwerpunkt sowie die Hubhöhe nicht bekannt, so dass er die Stabilität des Flurförderzeugs nur schätzen kann.
  • Zur Unterstützung des Fahrers sind Systeme zur Messung und Anzeige der aktuellen Last bzw. der aktuellen Hubhöhe bekannt. Durch die Anzeige dieser Werte kann der Fahrer die Resttragfähigkeit des Flurförderzeugs besser, aber immer noch nicht genau bestimmen, da ihm die Lage des Schwerpunkts nicht bekannt ist und er die Angaben in dem Traglastdiagramm interpolieren muss.
  • Das Kippmoment eines Flurförderzeugs, insbesondere eines Gabelstaplers, kann in Bezug auf verschiedene Kipplinien, die durch die Aufstandspunkte der Räder festgelegt werden, betrachtet werden. Eine der wichtigsten dieser Kipplinien stellt die Verbindungslinie der beiden Aufstandspunkte der Vorderräder an der Vorderachse dar, wobei diese Kipplinie der Drehachse eines Kippens bei gebremsten, blockierten Rädern entspricht. Bei gelösten Bremsen ist die Kipplinie in der Drehachse der Vorderräder oberhalb dieser Linie auf dem Boden. Durch das Fahrzeuggewicht sowie das Gegengewicht wird der Gabelstapler um diese Kipplinie gedreht in Richtung auf die Hinterachse. Durch das Eigengewicht des Hubgerüstes, an dem mittels einer Lastgabel Lasten aufgenommen und angehoben werden können, wird auf den Gabelstapler ein Drehmoment in Gegenrichtung um diese Kipplinie bzw. bei gelösten Bremsen um die Vorderachse ausgeübt, insbesondere wenn eine Last auf der Lastgabel auffliegt, die vor der Vorderachse angeordnet ist.
  • Aus der EP 916527 A2 ist ein Verfahren zur Verbesserung der Kippstabilität von Flurförderzeugen bekannt. Durch eine hydraulische Sperrvorrichtung wird die Hinterachse arretiert und die Standsicherheit für ein seitliches Umkippen erhöht. Für ein Kippen nach vorne bringt das beschriebene Verfahren keine Verbesserung.
  • Aus der DE 10304658 A1 ist ein Verfahren zur Steuerung der Fahrstabilität bekannt, bei dem die Kippkräfte sowie die in Längs- und Querrichtung wirkenden Beschleunigungen bestimmt werden. Nachteilig an diesem Verfahren ist, dass eine Vielzahl von Sensoren benötigt wird.
  • Aus der EP 0 483 493 A2 ist ein Flurförderzeug mit einer Überwachung des Beladungszustands bekannt, bei dem bei vertikal ausgerichtetem Hubgerüst und waagerechter Stellung der das Lastmoment aufnehmenden Hubgerüst-Neigezylinder die vertikalen Lagerungskräfte und die horizontalen Kräfte der Neigezylinderlagerung bestimmt werden.
  • Es ist daher Aufgabe der vorliegenden Erfindung, ein Verfahren zur Bestimmung des Kippmoments nach vorne um die Vorderachse eines Flurförderzeugs mit einem Hubgerüst zur Verfügung zu stellen, das die Kippstabilität des Flurförderzeugs auf möglichst einfache Art und Weise und mit geringem baulichen Aufwand bestimmen kann und zu einer möglichst weitgehenden Entlastung eines Fahrers führt.
  • Diese Aufgabe wird durch ein Verfahren zur Bestimmung des Kippmoments eines Flurförderzeugs mit den Merkmalen des unabhängigen Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen des Verfahrens werden in den Unteransprüchen angegeben.
  • Vorteilhaft wird bei einem Verfahren zur Bestimmung des Kippmoments nach vorne um die Vorderachse eines Flurförderzeugs mit einem neigbaren Hubgerüst zum Anheben einer Last, wobei das Hubgerüst in Hubgerüstlagerungspunkten drehbar gelagert und in Neigungsabstützpunkten gegenüber einem Fahrzeugkörper abstandsveränderlich geführt ist und ein resultierendes Drehmoment der Kräfte um eine Kipplinie als Drehachse der Vorderachse bestimmt wird, in einem ersten Schritt ein Fahrzeuggewichtsdrehmoment aus dem Hebelarm eines Fahrzeugschwerpunkts des Fahrzeugkörpers ohne Hubgerüst und ohne Last sowie der Gewichtskraft des Fahrzeugschwerpunkts bestimmt. Sodann wird ein Neigungsabstützdrehmoment aus Haltekräften in den Neigungsabstützpunkten, der Richtung der Haltekräfte und dem Hebelarm der Vorderachse senkrecht zu diesen Haltekräften sowie ein Hubgerüstlagerungsdrehmoments aus einem wirksamen Hebelarm der Hubgerüstlagerungspunkte gegenüber der Vorderachse und der in den Hubgerüstlagerungsunkten eingeleiteten Abstützkraft bestimmt.
  • Zur Entlastung des Fahrers wird dadurch mittels eines einfachen Sensorsystems das Kippmoment kontinuierlich berechnet und dem Fahrer in geeigneter Form angezeigt und/oder es erfolgt ein Eingriff in die Steuerung des Flurförderzeugs. Es kann gegebenenfalls nur eine Warnung des Fahrers bei Erreichen eines kritischen Beladungszustands und/oder auch ein Eingriff in die Steuerung des Flurförderzeugen erfolgen. Betrachtet wird hierbei nur das Drehmoment nach vorne um die Kipplinie Für die Bestimmung und Berechnung der an der Vorderachse angreifenden Drehmomente sind allein Messwerte der Haltekräfte in den Neigungsabstützpunkten, die Hubgerüstneigung und die Abstützkräfte in den Hubgerüstlagerungspunkten erforderlich. Dadurch sind nur sehr wenige Sensoren erforderlich. Die Haltekräfte in den Neigungsabstützpunkten werden im Regelfall über längenveränderliche Neigungsantriebe übertragen, die sowohl am Hubgerüst wie auch am Fahrzeugkörper des Flurförderzeugs drehbar gelagert sind. Dadurch ändert sich auch bei den Haltekräften in den Neigungsabstützpunkten die Kraftrichtung mit der Neigung des Hubgerüstes. Jedoch ist auch hier die Winkeländerung relativ gering, abhängig von der konkreten Ausführungsform des Hubgerüstes und der Positionierung der Neigungabstützpunkte.
  • Wenn die genauen Richtungen dieser beiden Kräfte bekannt sind, lassen sich genauere Werte für die Drehmomente bestimmen. Da jedoch die Neigung des Hubgerüstes nur um einen kleinen Winkelwert erfolgt, kann eventuell auch bereits ein ausreichend genauer Wert für das durch die Abstützkräfte erzeugte Drehmoment um die Vorderachse bestimmt werden, wenn die in Hubgerüstlagerungspunkten eingeleitete Abstützkraft als senkrecht angenommen wird.
  • Die Richtung der Kraft kann durch die mechanische Anordnung und die Hubgerüstneigung berechnet werden oder vereinfachend mit einem festen Wert angenommen werden. Vorteilhaft ergibt sich ein Verfahren zur Bestimmung der Kippstabilität, das einen geringen Rechenaufwand erfordert und einfach und mit wenigen Sensoren umzusetzen ist. Dabei ist es möglich, das Verfahren gegebenenfalls noch weiter zu vereinfachen, indem für die Haltekräfte in den Neigungsabstützpunkten sowie für die Abstützkraft in den Hubgerüstlagerungspunkten feste Werte für die Richtung der Kräfte angenommen werden. Im Regelfall werden die Richtungen der Kräfte berücksichtigt. Zur Bestimmung des Kippmoments werden durch das Verfahren die wesentlichen Drehmomentkräfte um die Vorderachse bestimmt, um das resultierende Drehmoment an der Vorderachse zu berechnen. Das Drehmoment ergibt sich jeweils aus dem Produkt von Hebelarm und drehmomentbildender Komponente des Kraftvektors. Dabei entspricht der Abstand zwischen Achsmittelpunkt und Angriffspunkt des Kraftvektors dem Hebelarm. Das Fahrzeuggewichtsdrehmoment entspricht dabei der Gewichtskraft des Flurförderzeugs ohne Hubgerüst und Last multipliziert mit dem horizontalen Abstand zwischen der Vorderachse und dem Schwerpunkt des Flurförderzeugs ohne Hubgerüst und Last. Die Gewichtskraft und der Schwerpunkt können aus der Massenverteilung einmal ermittelt werden und das daraus resultierende Fahrzeuggewichtsdrehmoment steht für das Verfahren dann als bereits bestimmter Wert zur Verfügung. Vorteilhaft kann das Verfahren in vielen Fällen ohne zusätzlichen Aufwand verwirklicht werden, da bereits eine Messung der Last vorgesehen ist und aus dieser die Gesamtgewichtskraft des Hubgerüstes sowie der Last bestimmt werden kann.
  • Vorteilhaft können die Haltekräfte in den Neigungsabstützungspunkten durch Kraftsensoren bestimmt werden.
  • Eine einfache Möglichkeit der Erfassung der Haltekräfte stellen beispielsweise Druckmeßbolzen, aber auch Dehnmeßstreifen oder Piezoelemente dar. Diese können in den Aufhängungspunkten von Stellelementen für die Neigungsverstellung angeordnet sein.
  • In einer günstigen Weiterbildung des Verfahrens ist das Hubgerüst in den Neigungsabstützungspunkten durch hydraulische Neigezylinder gelagert und die Haltekräfte in den Neigungsabstützpunkten werden durch einen Differenzdruck der Neigezylinder bestimmt.
  • Dadurch können die Haltekräfte im Fall von hydraulischen Neigezylindern ohne größeren Mehraufwand erfasst werden.
  • Vorteilhaft kann ein Erreichen der Endanschläge der Neigezylinder verhindert werden, insbesondere durch eine elektronische Steuerung mit Endlagendämpfung.
  • Wenn ein hydraulischer Neigezylinder an seinem Endanschlag steht, erfasst der Differenzdruck nicht die übertragenen Kräfte. Durch eine elektronische Steuerung, insbesondere in Verbindung mit einer Entlagendämpfung, die den Neigezylinder kurz vor den Endlagen abbremst, kann der hydraulische Neigezylinder in einer Position mit einem geringfügigen Abstand zu der jeweiligen Endlage angehalten werden.
  • Die in die Hubgerüstlagerungspunkte eingeleitete Abstützkraft kann aus dem Druck eines hydraulischen Hubzylinders des Hubgerüstes sowie der bekannten Gewichtskraft des Hubgerüstes bestimmt werden.
  • Durch den Druck im hydraulischen Hubzylinder kann die Gewichtskraft einer aufliegenden Last bestimmt werden.
  • In einer Weiterbildung des Verfahrens kann die in die Hubgerüstlagerungspunkte eingeleitete Abstützkraft durch Kraftsensoren bestimmt werden.
  • Eine einfache Möglichkeit der Erfassung der Abstützkraft stellen beispielsweise Druckmeßbolzen, aber auch Dehnmeßstreifen oder Piezoelemente dar.
  • Vorteilhaft wird die Neigung des Hubgerüstes bestimmt und die Richtung der Haltekräfte in den Neigungsabstützungspunkten aus der Neigung des Hubgerüstes bestimmt.
  • Dadurch kann die Bestimmung der drehmomentbildenden Haltekräfte in den Neigungsabstützpunkten genauer erfolgen.
  • Richtung und Betrag der in den Hubgerüstlagerungspunkten eingeleiten Abstützkraft können durch die Neigung des Hubgerüstes, der Richtung und dem Betrag der Haltekräfte in den Neigungsabstützpunkte und einem ermittelten Lastgewicht bestimmt werden.
  • Die Abstützkraft in den Hubgerüstlagerungspunkten kann in Richtung und Betrag über die nach Betrag und Richtung bekannten Haltekräfte in den Neigungsabstützungspunkten sowie einem gemessenen Anteil der Abstützkraft berechnet werden. Der senkrechte Anteil der Abstützkraft kann beispielsweise über die Lastmessung und ein bekanntes Gewicht des Hubgerüstes bestimmt werden.
  • In einer günstigen Ausgestaltung des Verfahrens werden Beschleunigungen bzw. Verzögerungen und/oder eine Neigung des Flurförderzeugs erfasst.
  • Damit das beschriebene Verfahren nicht nur mit einem stehenden Fahrzeug in der Ebene genügend genaue Werte für die Kippstabilität liefert, muss die die Neigung des Flurförderzeugs, etwa wenn ein Gabelstapler auf einer Rampe steht mit betrachtete werden. Die Erfassung der Neigung des gesamten Flurförderzeugs kann zum Beispiel durch einen eigenen Neigungssensor erfolgen. Ebenso müssen Beschleunigung und Verzögerung des Flurförderzeugs berücksichtigt werden und in die Bestimmung der Kippstabilität mit einbezogen werden. Dies kann z.B. über einen Beschleunigungssensor erfolgen. Durch einen Beschleunigungssensor lässt sich zugleich auch die Fahrzeugneigung bestimmen, wenn eine zusätzliche Information über die Drehzahl des Fahrantriebs bzw. dessen Änderung vorliegt. Dadurch lässt sich vorteilhaft die Genauigkeit der Bestimmung der Kippstabilität verbessern,
  • In einer Weiterbildung des Verfahrens wird während einer Bremswirkung an der Vorderachse ein resultierendes Drehmoment um einen von der Vorderachse in Richtung auf den Aufstandspunkt der Vorderräder verschobenen Kipplinie als Drehachse bestimmt.
  • Bei einem gebremsten Flurförderzeug, etwa wenn die Handbremse oder Fußbremse betätigt ist, verschiebt sich die Kipplinie aus der Drehachse der in Richtung des Punktes der Vorderradauflage. Somit müssen die Drehmomente für die Bestimmung der Kippstabilität beim Bremsen um diese verschobene Kipplinie gebildet werden, während bei dem zuvor beschriebenen Verfahren die Drehmomente stets um die Drehachse der Vorderachse als Kipplinie bestimmt wurden. Bei bis zur Blockade abgebremster Vorderachse können sich die Räder der Vorderachse nicht mehr drehen und die Kipplinie entspricht der Verbindungslinie der beiden Aufstandspunkte der Vorderachse. Mit sich verstärkender Abbremsung werden die Zwischenwerte zwischen der Drehachse der Vorderachse und dieser Linie eingenommen.
  • Als Stabilitätskriterium kann das Unterschreiten des resultierenden Drehmoments unter ein Mindestdrehmoment überwacht werden, wobei das Mindestdrehmoment das Flurförderzeug auf die Hinterachse dreht.
  • Damit ein Flurförderzeugen mit einem Hubgerüst, das an, oder vor der Vorderachse angeordnet ist, in allen Betriebssituationen sowohl mit Last, als auch ohne Last und auch auf schrägen Ebenen sich immer in einem stabilen Bereich in Bezug auf das Kippen über die Vorderachse befindet, muss das resultierende Gesamtdrehmoment stets das Flurförderzeug auf die Hinterachse drehen und einen gewissen Mindestwert aufweisen.
  • Ein Abstand bis zum Erreichen des Mindestdrehmoments bzw. ein Unterschreiten des Mindestdrehmoments kann vorteilhaft durch eine Anzeigevorrichtung angezeigt werden.
  • Dadurch kann ein Warnhinweis an einen Fahrer gegeben werden.
  • In einer Weiterbildung des Verfahrens erfolgt bei einem Unterschreiten des Mindestdrehmoments ein Eingriff in die Fahrzeugsteuerung, insbesondere durch Begrenzen von Parametern, wie Bremsverzögerung und/oder Fahrgeschwindigkeit und/oder Lenkeinschlag und/oder Hubhöhe und/oder Neigegeschwindigkeit.
  • In einer vorteilhaften Ausgestaltung der Erfindung verwendet bei einem System bestehend aus einem Flurförderzeug und einer Mehrzahl verschiedener Hubgerüste für dieses Flurförderzeug eine Steuerung für das Fahrzeuggewichtsdrehmoment einen zuvor ermittelten und abgespeicherten Wert und werden das Neigungsabstützdrehmoment sowie das Hubgerüstlagerungsdrehmoment jeweils aus Messwerten bestimmt.
  • Besonders vorteilhaft ist, dass im Rahmen der Entwicklung eines Flurförderzeugs die Gewichtsverteilung und der Schwerpunkt des Fahrzeugkörpers ohne das Hubgerüst relativ genau ermittelt werden kann. Dadurch kann das Fahrzeuggewichtsdrehmoment als fester Wert in einer Steuerung abgespeichert werden und durch diesen Wert bestimmt werden. An einem bestimmten Typ eines Flurförderzeugs werden oft eine große Anzahl verschiedener Ausführungsformen von Hubgerüsten angebracht, die zu abweichenden Werten für die Kippstabilität führen. Besonders vorteilhaft ist mit dem erfindungsgemäßen Verfahren dann keine Anpassung einer Software der Steuerung oder ähnliches erforderlich, da durch die erfassten und bestimmten Kräfte auch bei abweichenden und unterschiedlichen Hubgerüsten sich automatisch eine korrekte Berechnung der Kippstabilität ergibt, wenn allein die Drehmomente um die Vorderachse betrachtet werden und ein gewisses für die Kippstabilität erforderliches resultierendes Gesamtdrehmoment in Richtung der Hinterachse gefordert wird.
  • Zur weiteren Verbesserung der Genauigkeit des Verfahrens kann zusätzlich die Hubhöhe mit einbezogen werden. So kann durch Erfassung der Hubhöhe die Bewertung des Abstands bis zu der Kippgrenze und somit der Kippstabilität abweichend bewertet werden. Zum Beispiel kann eine Warnung bei großer Hubhöhe schon früher als bei kleinen Hubhöhen erfolgen
  • Durch das Verfahren zur Bestimmung der Kippstabilität von Flurförderzeugen kann der Fahrer bei seiner Transportaufgabe unterstützt werden und die Betriebssicherheit im Einsatz erhöht werden. Das beschriebene Verfahren kommt mit einer geringen Anzahl von Sensoren aus, welche zum Teil bereits schon für andere Funktionen in einem Flurförderzeug verbaut sind. Hierdurch kann das Verfahren kostengünstig umgesetzt werden.
  • Weitere Vorteile und Einzelheiten der Erfindung werden anhand der in den schematischen Figuren dargestellten Ausführungsbeispiele näher erläutert. Hierbei zeigt
  • Fig. 1
    schematisch in Seitenansicht einen Gabelstapler als Ausführungsbeispiel eines Flurförderzeugs, bei dem das erfindungsgemäße Verfahren zur Anwendung kommt,
    Fig. 2
    schematisch eine Darstellung der auftretenden Kräfte und
    Fig. 3
    schematisch eine Darstellung der auftretenden Drehmomente um die Vorderachse.
  • Die Fig. 1 zeigt schematisch in Seitenansicht einen Gabelstapler 1 als Ausführungsbeispiel eines Flurförderzeugs 2, bei dem das erfindungsgemäße Verfahren zur Anwendung kommt. Der Gabelstapler 1 hat ein an einer Vorderachse 3 angeordnetes Hubgerüst 4, an dem eine Lastgabel 5 zum Anheben einer Last 6 geführt ist. Der Gabelstapler 1 weist über einer Hinterachse 7 ein Gegengewicht 8 auf. Innerhalb einer Fahrerschutzkabine 9 ist ein Fahrerarbeitsplatz 10 angeordnet. Über einen Neigeantrieb 11, der als hydraulischer Neigezylinder 12 ausgeführt ist, kann das Hubgerüst 4 geneigt werden. Das Hubgerüst 4 ist an seinem unteren Ende in Hubgerüstlagerungspunkten 13 abgestützt und wird durch den Neigeantrieb 11 in Neigungsabstützpunkten 14 gegenüber dem Gabelstapler 1 abstandsveränderlich geführt, um das Hubgerüst 4 neigen zu können. Die Gewichtskraft des Gabelstaplers 2 ohne die Last 6 und das Gewicht des Hubgerüstes 4 wirkt in einem Fahrzeugschwerpunkt 15.
  • Die Fig. 2 zeigt schematisch eine Darstellung der auftretenden Kräfte. Dargestellt sind die Vorderachse 3 und die Hinterachse 7 sowie die Hubgerüstlagerungspunkte 13, die Neigungsabstützpunkte 14 sowie der Fahrzeugschwerpunkt 15. In der Darstellung der Fig. 2 sind die auftretenden Kräfte der Abstützkraft A in den Hubgerüstlagerungspunkten 13, der Haltekräfte Fzyl in den Neigungabstützpunkten 14 und der Gewichtskraft FSt in dem Fahrzeug Schwerpunkt 15 zerlegt in ihre horizontale Komponente x und ihre vertikalen Komponente z dargestellt. Weiter sind noch jeweils die vertikalen Abstände hA, hzyl, hSt und horizontalen Abstände SA, Szyl, SSt der Abstützkraft A, der Haltekräfte Fzyl und der Gewichtskraft FSt,z dargestellt.
  • Die Fig. 3 zeigt schematisch eine Darstellung der auftretenden Drehmomente um die Vorderachse 3. Dargestellt sind die Vorderachse 3 und die Hinterachse 7 sowie die Hubgerüstlagerungspunkte 13, die Neigungabstützpunkte 14 sowie der Fahrzeugschwerpunkt 15. Die Abstützkraft A erzeugt mit einem Hebelarm IA das Hubgerüstlagerungsdrehmoment, die Haltekräfte Fzyl erzeugen mit einem Hebelarm Izyl das Neigungsabstütztdrehmoment und die in dem Fahrzeugschwerpunkt 15 wirkende Kraft FSt erzeugt mit einem Hebelarm ISt das Fahrzeuggewichtsdrehmoment, das ersatzweise als durch die rein senkrechte Gewichtskraft FSt,z des Fahrzeugschwerpunkts mit dem horizontalen Anteil des Hebelarms LSt,z erzeugt angesehen werden kann. Durch die hier schematisch dargestellte Betrachtung allein der wirkenden Drehmomente um die Vorderachse 7, kann einfach und schnell an unterschiedliche Hubgerüste (4) anpassbar das Kippmoment bestimmt werden. Insbesondere weist das erfindungsgemäße Verfahren Vorteile auf, wenn eine Vielzahl unterschiedlicher Hubgerüstausführungen an einem Flurförderzeug (2) zum Einsatz kommt.

Claims (14)

  1. Verfahren zur Bestimmung des Kippmoments nach vorne um die Vorderachse eines Flurförderzeugs (2) mit einem neigbaren Hubgerüst (4) zum Anheben einer Last (6),
    wobei das Hubegrüst (4) in Hubgerüstlagerungspunkten (13) drehbar gelagert und in Neigungsabstützpunkten (14) gegenüber einem Fahrzeugkörper abstandsveränderlich geführt ist,
    wobei ein resultierendes Drehmoment der Kräfte um eine Kipplinie als Drehachse der Vorderachse (3) bestimmt wird, mit den Schritten:
    - Bestimmen eines Fahrzeuggewichtsdrehmoments aus dem Hebelarm (ISt) eines Fahrzeugschwerpunkts (15) des Fahrzeugkörpers ohne Hubgerüst (4) und ohne Last (6) sowie der Gewichtskraft (FSt,z) des Fahrzeugschwerpunkts (15),
    - Bestimmen eines Neigungsabstützdrehmoments aus Haltekräften (Fzyl) in den Neigungsabstützpunkten (14), der Richtung der Haltekräfte (Fzyl) und dem Hebelarm (Izyl) der Vorderachse senkrecht zu diesen Haltekräften (Fzyl),
    - Bestimmen eines Hubgerüstlagerungsdrehmoments aus einem wirksamen Hebelarm (IA) der Hubgerüstlagerungspunkte (13) gegenüber der Vorderachse (7) und der in den Hubgerüstlagerungspunkten (13) eingeleiteten Abstützkraft (A).
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die Haltekräfte in den Neigungsabstützungspunkten (14) durch Kraftsensoren bestimmt werden.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass das Hubgerüst (4) in den Neigungsabstützungspunkten (14) durch hydraulische Neigezylinder gelagert ist und die Haltekräfte (Fzyl) in den Neigungsabstützpunkten (14) durch einen Differenzdruck der Neigezylinder bestimmt werden.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    dass ein Erreichen der Endanschläge der Neigezylinder verhindert wird, insbesondere durch eine elektronische Steuerung mit Endlagendämpfung.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die in die Hubgerüstlagerungspunkte (13) eingeleitete Abstützkraft (A) aus dem Druck eines hydraulischen Hubzylinder des Hubgerüstes (4) sowie der bekannten Gewichtskraft des Hubgerüstes (4) bestimmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die in die Hubgerüstlagerungspunkte (13) eingeleitete Abstützkraft (A) durch Kraftsensoren bestimmt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Neigung des Hubgerüstes (4) bestimmt wird und die Richtung der Haltekräfte (Fzyl) in den Neigungsabstützungspunkten (14) aus der Neigung des Hubgerüstes (4) bestimmt wird.
  8. Verfahren nach Anspruch 7,
    dadurch gekennzeichnet,
    dass Richtung und Betrag der in den Hubgerüstlagerungspunkten (13) eingeleiten Abstützkraft (A) durch die Neigung des Hubgerüstes (4), der Richtung und dem Betrag der Haltekräfte (Fzyl) in die Neigungsabstützpunkte (14) und einem ermittelten Lastgewicht bestimmt werden.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass Beschleunigungen bzw. Verzögerungen und/oder eine Neigung des
    Flurförderzeugs (2) erfasst werden.
  10. Verfahren nach Anspruch 9,
    dadurch gekennzeichnet,
    dass während einer Bremswirkung an der Vorderachse (3) ein resultierendes Drehmoment um eine von der Vorderachse (3) in Richtung auf den Aufstandspunkt der Vorderräder verschobene Kipplinie als Drehachse bestimmt wird, wobei die Drehmomente für die Bestimmung der Kippstabilität, bestehend aus Fahrzeuggewichtsdrehmoment, Neigungsabstützdrehmoment und Hubgerüstlagerungsdrehmoment, beim Bremsen um diese verschobene Kipplinie gebildet werden.
  11. Verfahren nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass als Stabilitätskriterium das Unterschreiten des resultierenden Drehmoments unter ein Mindestdrehmoment überwacht wird, wobei das Mindestdrehmoment das Flurförderzeug (2) auf die Hinterachse (7) dreht.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet,
    dass ein Abstand bis zum Erreichen des Mindestdrehmoments bzw. ein Unterschreiten des Mindestdrehmoments durch eine Anzeigevorrichtung angezeigt wird.
  13. Verfahren nach einem der Ansprüche 11 oder 12,
    dadurch gekennzeichnet,
    dass bei einem Unterschreiten des Mindestdrehmoments ein Eingriff in die Fahrzeugsteuerung erfolgt, insbesondere durch Begrenzen von Parametern, wie Bremsverzögerung und/oder Fahrgeschwindigkeit und/oder Lenkeinschlag und/oder Hubhöhe und/oder Neigegeschwindigkeit.
  14. Verfahren nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet,
    dass bei einem System bestehend aus einem Flurförderzeug (2) und einer Mehrzahl verschiedener Hubgerüste (4) für dieses Flurförderzeug (2) eine Steuerung für das Fahrzeuggewichtsdrehmoment einen zuvor ermittelten und abgespeicherten Wert verwendet und das Neigungsabstützdrehmoment sowie das Hubgerüstlagerungsdrehmoment jeweils aus Messwerten bestimmt.
EP12191745.4A 2011-12-21 2012-11-08 Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge Active EP2607295B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE201110056752 DE102011056752A1 (de) 2011-12-21 2011-12-21 Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge

Publications (2)

Publication Number Publication Date
EP2607295A1 EP2607295A1 (de) 2013-06-26
EP2607295B1 true EP2607295B1 (de) 2015-07-29

Family

ID=47227509

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12191745.4A Active EP2607295B1 (de) 2011-12-21 2012-11-08 Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge

Country Status (2)

Country Link
EP (1) EP2607295B1 (de)
DE (1) DE102011056752A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220267131A1 (en) * 2021-02-23 2022-08-25 Phantom Auto Inc. Smart warehouse safety mechanisms

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2551299A (en) * 2013-07-26 2017-12-13 Jc Bamford Excavators Ltd A method of weighing a load
DE102015201671A1 (de) * 2015-01-30 2016-08-04 Jungheinrich Aktiengesellschaft Kenngrößenbestimmung für Flurförderzeuge
DE102015118472A1 (de) * 2015-10-29 2017-05-04 Jungheinrich Aktiengesellschaft Flurförderzeug mit einem Lastteil und einem Antriebsteil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831492A (en) * 1972-12-04 1974-08-27 Eaton Corp Overload protection device for counterbalance vehicles
US4511974A (en) * 1981-02-04 1985-04-16 Kabushiki Kaisha Toyoda Jidoshokki Seisakusho Load condition indicating method and apparatus for forklift truck
DE3607135A1 (de) * 1986-03-05 1987-09-10 Feldmuehle Ag Verfahren zum signalisieren der be- und ueberlastung
DE4030748A1 (de) * 1990-09-28 1992-04-02 Linde Ag Flurfoerderzeug mit einer ueberwachungseinrichtung fuer den belastungszustand
JP3159147B2 (ja) 1997-11-13 2001-04-23 株式会社豊田自動織機製作所 産業車両の車体揺動制御装置及び産業車両
JP2001261297A (ja) * 2000-03-22 2001-09-26 Toyota Autom Loom Works Ltd 産業車両の前後方向の荷重モーメント測定装置
DE10304658A1 (de) 2003-02-05 2004-08-19 Bosch Rexroth Ag Flurförderfahrzeug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220267131A1 (en) * 2021-02-23 2022-08-25 Phantom Auto Inc. Smart warehouse safety mechanisms

Also Published As

Publication number Publication date
EP2607295A1 (de) 2013-06-26
DE102011056752A1 (de) 2013-06-27

Similar Documents

Publication Publication Date Title
DE102005012004B4 (de) Flurförderzeug mit erhöhter statischer/quasistatischer und dynamischer Kippstabilität
DE19919655B4 (de) Flurförderzeug mit Kippsicherung
EP2477930B1 (de) Lastenfahrzeug mit höhenverstellbarer hubeinrichtung
EP2364877B1 (de) Kippzustandsüberwachung
WO2004069568A1 (de) System zur sicherung der fahrstabilität eines flürförderfahrzeuges
EP3750763B1 (de) Einrichtung und verfahren zur abbremsung eines fahrzeugs mit einer frontlastaufnahmevorrichtung
EP2607295B1 (de) Verfahren zur Bestimmung des Kippmoments in Längsrichtung für Flurförderzeuge
EP0483493A2 (de) Flurförderzeug mit einer Überwachungseinrichtung für den Belastungszustand
DE10010011A1 (de) Flurförderzeug mit einer Stabilisierungseinrichtung zur Erhöhung der Standsicherheit
EP2070864B1 (de) Verfahren zum Betrieb eines Flurförderzeugs
DE102005011998A1 (de) Flurförderzeug mit erhöhter statischer bzw. quasistatischer Kippstabilität
DE102012015217A1 (de) Lastumschlag-Fahrzeug und Verfahren zu seiner Steuerung
DE102004028053A1 (de) Verfahren und Vorrichtung zur Kippvermeidung eines Flurförderzeugs
EP2450305B1 (de) Flurförderzeug mit Verformungssensor im Neigezylinder
EP2733036B1 (de) Fahrbare Maschine mit Ladeanlage
EP3176042B1 (de) Stabilisierungstechnik für fahrzeuganhänger
EP3760574B1 (de) Flurförderzeug
EP4079572A1 (de) Dumper
DE102017127258A1 (de) Verfahren zur Ermittlung des Lastschwerpunkts bei einem Flurförderzeug und Flurförderzeug zur Durchführung des Verfahrens
EP2431324B1 (de) Flurförderzeug, insbesondere Gegengewichtsstapler
EP3070046A1 (de) Verfahren zur bestimmung der kippstabilität eines flurförderzeugs
EP2774889B1 (de) Fahrbare Maschine mit Ladeanlage
EP3670428A1 (de) Verfahren zur lastbestimmung bei einem flurförderzeug und flurförderzeug
DE102007060433A1 (de) Verfahren zum Betrieb eines Flurförderzeugs
DE102010031531A1 (de) Verfahren und System zur Regelung eines Fahrverhaltens eines Flurförderzeugs

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131223

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B66F 9/08 20060101AFI20150311BHEP

Ipc: B66F 17/00 20060101ALI20150311BHEP

INTG Intention to grant announced

Effective date: 20150408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 739111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012003915

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151030

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151130

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012003915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151108

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20160502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151108

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003915

Country of ref document: DE

Representative=s name: PATENTSHIP PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502012003915

Country of ref document: DE

Representative=s name: PATENTSHIP PATENTANWALTSGESELLSCHAFT MBH, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121108

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 739111

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171108

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231130

Year of fee payment: 12

Ref country code: FR

Payment date: 20231124

Year of fee payment: 12

Ref country code: DE

Payment date: 20231120

Year of fee payment: 12