EP2597313B1 - High speed rotor for a vacuum pump - Google Patents

High speed rotor for a vacuum pump Download PDF

Info

Publication number
EP2597313B1
EP2597313B1 EP12191948.4A EP12191948A EP2597313B1 EP 2597313 B1 EP2597313 B1 EP 2597313B1 EP 12191948 A EP12191948 A EP 12191948A EP 2597313 B1 EP2597313 B1 EP 2597313B1
Authority
EP
European Patent Office
Prior art keywords
sleeve
rotor
accordance
stator
vacuum pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12191948.4A
Other languages
German (de)
French (fr)
Other versions
EP2597313A3 (en
EP2597313A2 (en
Inventor
Matthias Mädler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to JP2012256006A priority Critical patent/JP6017278B2/en
Publication of EP2597313A2 publication Critical patent/EP2597313A2/en
Publication of EP2597313A3 publication Critical patent/EP2597313A3/en
Application granted granted Critical
Publication of EP2597313B1 publication Critical patent/EP2597313B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a fast-rotating rotor according to the preamble of claim 1.
  • Holweck molecular pumping stages have been successful for years in the field of vacuum technology. As a rule, they are used in turbomolecular pump stages as the fore-vacuum side pumping stage, so that the turbomolecular pump can eject against higher prevacuum pressures. After Holweck rotates a smooth sleeve in a provided with helical grooves stator. Several pods may be present, so the beats DE 196 32 375 A1 to allow cores of different axial length in the gas stream to act in parallel.
  • sleeves of carbon fiber reinforced material as this has a low expansion under the action of heat and centrifugal forces.
  • the disadvantage is that the sleeve must be carried on the rotor and in this case a material is used in a carrier component, which is subject to a greater extent and thus generates high voltages in the sleeve.
  • This disadvantage complicates the design of the rotor and limits the vacuum technical performance, for example by speed and temperature limits.
  • Vacuum performance includes, for example, the compression achieved and the pumping speed.
  • a fast rotating rotor having a first sleeve and a support structure in which a second sleeve is disposed within the first sleeve and the first and second sleeves form a composite.
  • the design with the features of claim 1 ensures that the voltage difference between the support structure and sleeve is reduced. Due to the lower voltage difference, the vacuum technical performance is improved because speed and working temperature can be selected higher.
  • the first sleeve can be supported directly by the support structure, while the second sleeve is supported by the first sleeve and thus only indirectly connected to the support structure via the first sleeve.
  • the second sleeve connected to the support structure and the first sleeve of the second sleeve be worn.
  • both sleeves are directly connected to the support structure.
  • the composite formed by the two sleeves is designed in such a way that the forces generated by the second sleeve under the action of centrifugal forces on the first sleeve approximate those forces which are due to the expansion of the support structure, in particular a hub of the support structure, to the first Interact with the sleeve.
  • the dependent claims 2 to 15 indicate advantageous developments of the invention, which additionally increase the aforementioned advantage.
  • the first sleeve and the second sleeve with respect to the material from which the sleeves are made differ from each other.
  • the materials differ in terms of expansion under the action of heat and / or centrifugal forces.
  • first sleeve and the second sleeve can be connected to one another over a wide area, in particular over the whole area.
  • the composite can be formed by forming the two sleeves an adhesive bond or a shrink joint.
  • the shrink-fit connection is in particular produced such that the first sleeve and the second sleeve are brought to different temperatures and then arranged one inside the other, in particular into one another pushed or inserted into each other. Following this, ie when returning to "normal temperature", the previously relatively “cooled” sleeve expands again, while the previously relatively “heated” sleeve contracts. This creates a firm connection between the two sleeves, for which in particular no additional fastening means are needed. It is provided in particular that it is the inner sleeve, in this case the second sleeve, which is "cooled” while the first sleeve, ie the outer sleeve, is brought to an elevated temperature.
  • the composite can also be formed by pressing or pressing the two sleeves together so that the two sleeves are welded together, or by screwing the two sleeves together, the latter being achieved in particular by the outer sleeve being on its inside and the inner sleeve is threaded on each of its outer sides and the two sleeves are screwed by screwing the inner sleeve into the outer sleeve.
  • a cohesive connection can exist between the two sleeves to form the composite.
  • a positive or non-positive connection is made between the two sleeves.
  • the one sleeve forms a reinforcement or coating of the other sleeve, wherein the reinforcement or coating can be formed either by the first sleeve or by the second sleeve.
  • FIG. 1 a vacuum pump 2, which is detachably connected by means of a flange 4 with a container, not shown, to be evacuated. Gas enters through the suction port 6, is compressed in the vacuum pump and discharged through the gas outlet 8. As a rule, a backing pump is connected to the gas outlet.
  • a rotor 10 which comprises a shaft 12. This is rotatably supported by a first bearing 34 and a second bearing 36.
  • a drive magnet 32 may be provided, which cooperates with a drive coil 30 to enable the rotor in rapid rotation.
  • the rotational speed is dimensioned such that a molecular pump effect is brought about by the interaction of the rotor and a stator 40.
  • the stator has a helical groove 42 on a radially inner surface.
  • a support structure On the shaft of the rotor, a support structure is attached, which may be designed as a disc-like hub 14 designed. With this hub a first sleeve 16 is connected rotatably. Within this first sleeve 16, a second sleeve 18 is arranged and both sleeves form a composite. This composite is preferably chemically stable, heat and speed resistant. In this way, the first and second sleeves remain connected under the operating conditions. As the rotor rotates, centrifugal forces begin to act on the rotating parts, but especially on the hub and sleeves.
  • the expansion of the second sleeve is impeded by the first sleeve, in particular if the first sleeve is formed from a fiber-reinforced material, for example a carbon-fiber-reinforced plastic.
  • the second sleeve is now designed according to material and geometry such that the forces generated by them under the action of centrifugal forces on the first sleeve those forces come close, which act on the first sleeve by the extension of the hub.
  • the goal is in particular, in design of hub and second sleeve, the voltages in the first To bring the sleeve to a level that is compatible with its material constants. As a result, an overload of the first sleeve is avoided. It is advantageous that can be achieved with a much larger amount of operating conditions by the additional design degrees of freedom using the second sleeve, the overload of the first sleeve, wherein an operating condition is determined by among other things temperature, speed and gas load.
  • a hub 14 to which the first sleeve 16 is attached.
  • a composite forming the second sleeve 18 is provided.
  • a stator 40 is provided which cooperates with the outer surface of the first sleeve, so that the first stator and the first sleeve form a first pumping stage.
  • a second stator 44 cooperating with an inner surface of the second sleeve so that the second sleeve and the second stator form a second pumping stage.
  • the pumping stages can be flowed through in series one behind the other, the gas then follows the arrow 100. It may be desirable to operate the pumping stages in parallel.
  • at least one passage 52 can be provided in the hub, through which gas can pass through the hub into the second pumping stage along the dashed arrow 102.
  • connection 50 are connected by the second sleeve and hub.
  • Hub and second sleeve can be made in one piece at this point.
  • a pump-active structure on the inner surface of the second sleeve. This may be, for example, at least one helical groove 20. This pump-active structure increases pumping speed and compression.
  • the training according Fig. 3 refers to the supporting structure. This is designed according to the development as a support plate 60.
  • the support disk has an inner ring 66 with a shaft receiver 68, with which the support disk can be mounted on the shaft.
  • a circumferential ring of blades 62 adjoins the inner ring, so that a disk of substantially turbomolecular design is formed.
  • a support ring 64 is connected or made in one piece, to which the first sleeve 16 is fixed, which forms a composite with the second sleeve 18.
  • a rotor disk 82 of turbomolecular design for forming a turbomolecular pump section can still be provided on the shaft 12.
  • a plurality of rotor disks may be disposed on the shaft and form a first disk portion 84 and a second disk portion 86.
  • Other disc sections may be present. This creates a powerful vacuum pump for differential evacuation of a multi-chamber system.
  • the rotor after Fig. 4 In addition to a first sleeve 16 connected to the sleeve 16 has a third sleeve 78, which may also be attached to the hub 14 or on its own support structure.
  • a first stator 40 cooperates with the outer surface of the first sleeve to form a pumping stage.
  • a second stator 44 creates a pumping action with the inner surface of the second sleeve and the outer surface of the third sleeve to create a second and a third pumping stage.
  • a gas inlet 88 may be provided to admit gas between the first and second stator in the second pumping stage.
  • the rotor after Fig. 4 can be rotatably mounted with a permanent magnet bearing 80 and a second bearing 36, which may be designed as a rolling bearing or active magnetic bearing.
  • FIG. 5 Rotor and stator of a vacuum pump are shown schematically and cut, the gas flow is illustrated by arrows.
  • the shaft 12 of the rotor is supported at its suction end by a permanent magnet bearing 80.
  • a roller bearing 92 serves to support the shaft.
  • a disc-shaped hub 14 is connected to the shaft.
  • a first sleeve 16 mitrotierbar, chemical and heat resistant attached.
  • the first sleeve extends from the hub toward the suction side 104.
  • a second sleeve 18 disposed radially within the first sleeve forms a bond with the first sleeve.
  • the second sleeve may have on its radially inner surface a pump structure, for example at least one helical groove.
  • the radially inner surface of the sleeve cooperates with a second stator 44 and forms with it a molecular pumping stage.
  • the radially outer surface of the first sleeve, however, together with the stator 40 forms a molecular pumping stage.
  • One or both of the stators may have a pumping structure. In this way, a compact molecular vacuum pump created. Due to the additional pumping structure on the inner surface of the second sleeve, a high pumping speed can be achieved in this pumping stage, whereby an advantageous Saugoutheasternsabstufung the pumping stages to each other is possible.
  • the second sleeve may be integral with the hub.
  • the pumping speed of the vacuum pump after Fig. 5 can be further increased by a rotor disk 82 is mounted on the rotor on the suction side.
  • a further increase results from a stator disk 90 following in the gas flow of the rotor disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung betrifft einen schnell drehenden Rotor nach dem Oberbegriff von Anspruch 1.The invention relates to a fast-rotating rotor according to the preamble of claim 1.

Molekularpumpstufen nach dem Bauprinzip von Holweck sind seit Jahren auf dem Gebiet der Vakuumtechnik erfolgreich. In der Regel werden sie in Turbomolekularpumpstufen als vorvakuumseitige Pumpstufe eingesetzt, damit die Turbomolekularpumpe gegen höhere Vorvakuumdrücke ausstoßen kann. Nach Holweck rotiert eine glatte Hülse in einem mit schraubenlinienförmigen Nuten versehenen Stator. Mehrere Hülsen können vorhanden sein, so schlägt die DE 196 32 375 A1 vor, Hülsen unterschiedlicher axialer Länge im Gasstrom parallel wirken zu lassen.Holweck molecular pumping stages have been successful for years in the field of vacuum technology. As a rule, they are used in turbomolecular pump stages as the fore-vacuum side pumping stage, so that the turbomolecular pump can eject against higher prevacuum pressures. After Holweck rotates a smooth sleeve in a provided with helical grooves stator. Several pods may be present, so the beats DE 196 32 375 A1 to allow cores of different axial length in the gas stream to act in parallel.

Besonders erfolgreich sind Hülsen aus kohlenstofffaserverstärktem Material, da dieses eine geringe Ausdehnung unter Einwirkung von Wärme und Fliehkräften besitzt.Particularly successful are sleeves of carbon fiber reinforced material, as this has a low expansion under the action of heat and centrifugal forces.

Der Nachteil liegt jedoch darin, dass die Hülse am Rotor getragen werden muss und hierbei in einem Trägerbauteil ein Material zum Einsatz kommt, das einer größeren Ausdehung unterliegt und so hohe Spannungen in der Hülse erzeugt. Dieser Nachteil erschwert die Gestaltung des Rotors und begrenzt die vakuumtechnische Leistungsfähigkeit, beispielsweise durch Drehzahl- und Temperaturgrenzen. Zur vakuumtechnischen Leistungsfähigkeit gehören beispielsweise die erreichte Kompression und das Saugvermögen.The disadvantage, however, is that the sleeve must be carried on the rotor and in this case a material is used in a carrier component, which is subject to a greater extent and thus generates high voltages in the sleeve. This disadvantage complicates the design of the rotor and limits the vacuum technical performance, for example by speed and temperature limits. Vacuum performance includes, for example, the compression achieved and the pumping speed.

Es wurde in der EP-A 1 408 237 vorgeschlagen, die faserverstärkte Holweckhülse in das Trägerbauteil übergehen zu lassen und dabei eine spezielle Gestaltung der Fasern auszunutzen. Dieser Vorschlag hat es jedoch bisher nicht zum Markterfolg gebracht, was an der Komplexität der Fasergestaltung und Rotorgeometrie liegen könnte.It was in the EP-A 1 408 237 proposed to let pass the fiber-reinforced Holweckhülse in the support member and thereby exploit a special design of the fibers. However, this proposal has not yet led to market success, which could be due to the complexity of the fiber design and rotor geometry.

Ferner ist in der nachveröffentlichten Druckschrift EP 2 722 528 A1 ein schnell drehender Rotor mit einer ersten Hülse und einer Tragstruktur beschrieben, bei welchem innerhalb der ersten Hülse eine zweite Hülse angeordnet ist und die erste sowie zweite Hülse einen Verbund bilden.Furthermore, in the post-published document EP 2 722 528 A1 a fast rotating rotor is described having a first sleeve and a support structure in which a second sleeve is disposed within the first sleeve and the first and second sleeves form a composite.

Es ist daher Aufgabe der Erfindung, einen schnell drehenden Rotor für eine Vakuumpumpe zu schaffen, der eine verbesserte vakuumtechnische Leistungsfähigkeit besitzt.It is therefore an object of the invention to provide a high-speed rotor for a vacuum pump having improved vacuum performance.

Diese Aufgabe wird gelöst durch einen Rotor mit den Merkmalen des Anspruch 1.This object is achieved by a rotor having the features of claim 1.

Durch die Gestaltung mit den Merkmalen des Anspruchs 1 wird erreicht, dass die Spannungsdifferenz zwischen Tragstruktur und Hülse verringert wird. Aufgrund der geringeren Spannungsdifferenz wird die vakuumtechnische Leistungsfähigkeit verbessert, denn Drehzahl und Arbeitstemperatur können höher gewählt werden.The design with the features of claim 1 ensures that the voltage difference between the support structure and sleeve is reduced. Due to the lower voltage difference, the vacuum technical performance is improved because speed and working temperature can be selected higher.

Dabei kann die erste Hülse unmittelbar von der Tragstruktur getragen werden, während die zweite Hülse von der ersten Hülse getragen und somit nur mittelbar über die erste Hülse mit der Tragstruktur verbunden ist. Alternativ kann die zweite Hülse mit der Tragstruktur verbunden und die erste Hülse von der zweiten Hülse getragen sein. Des Weiteren ist es auch möglich, dass beide Hülsen unmittelbar mit der Tragstruktur verbunden sind. Erfindungsgemäß ist der Verbund, den die beiden Hülsen bilden, derart ausgelegt, dass die durch die zweite Hülse unter Einwirkung von Fliehkräften erzeugten Kräfte auf die erste Hülse jenen Kräften nahekommen, die durch die Ausdehnung der Tragstruktur, insbesondere einer Nabe der Tragstruktur, auf die erste Hülse einwirken.In this case, the first sleeve can be supported directly by the support structure, while the second sleeve is supported by the first sleeve and thus only indirectly connected to the support structure via the first sleeve. Alternatively, the second sleeve connected to the support structure and the first sleeve of the second sleeve be worn. Furthermore, it is also possible that both sleeves are directly connected to the support structure. According to the invention, the composite formed by the two sleeves is designed in such a way that the forces generated by the second sleeve under the action of centrifugal forces on the first sleeve approximate those forces which are due to the expansion of the support structure, in particular a hub of the support structure, to the first Interact with the sleeve.

Die abhängigen Ansprüche 2 bis 15 geben vorteilhafte Weiterbildungen der Erfindung an, die den vorgenannten Vorteil zusätzlich steigern.
Insbesondere kann vorgesehen sein, dass sich die erste Hülse und die zweite Hülse hinsichtlich des Materials, aus dem die Hülsen hergestellt sind, voneinander unterscheiden. Insbesondere unterscheiden sich die Materialien hinsichtlich der Ausdehnung unter Einwirkung von Wärme und/oder von Fliehkräften.
The dependent claims 2 to 15 indicate advantageous developments of the invention, which additionally increase the aforementioned advantage.
In particular, it may be provided that the first sleeve and the second sleeve with respect to the material from which the sleeves are made, differ from each other. In particular, the materials differ in terms of expansion under the action of heat and / or centrifugal forces.

In einem weiteren Ausführungsbeispiel können die erste Hülse und die zweite Hülse flächig, insbesondere vollflächig, miteinander verbunden sein.In a further embodiment, the first sleeve and the second sleeve can be connected to one another over a wide area, in particular over the whole area.

Insbesondere führt die Materialwahl nach den Ansprüchen 4 und 5 insbesondere in Kombination der Merkmale miteinander, zu besonders geringen Spannungsdifferenzen. Die vakuumtechnische Leistungsfähigkeit wird zusätzlich verbessert, wenn gemäß Anspruch 6 rotorseitig eine pumpaktive Struktur in Form einer schraubenlinienartigen Nut vorgesehen wird, beispielsweise wird auf diese Weise das Saugvermögen verbessert.In particular, the choice of material according to claims 4 and 5, in particular in combination of the features together, leads to particularly low voltage differences. The vacuum technical performance is further improved if, according to claim 6, a pump-active structure in the form of a helical groove is provided on the rotor side, for example in this way the pumping speed is improved.

Der Verbund kann dadurch gebildet werden, dass die beiden Hülsen eine Klebeverbindung oder eine Schrumpfverbindung bilden. Die Schrumpfverbindung wird insbesondere derart hergestellt, dass die erste Hülse und die zweite Hülse auf unterschiedliche Temperaturen gebracht und dann ineinander angeordnet, insbesondere ineinander geschoben bzw. ineinander gesteckt, werden. Im Anschluss daran, also bei Rückkehr auf "Normaltemperatur", dehnt sich die zuvor relativ "gekühlte" Hülse wieder aus, während die zuvor relativ "erwärmte" Hülse sich zusammenzieht. Hierdurch entsteht eine feste Verbindung zwischen den beiden Hülsen, für die insbesondere keine Zusatz-Befestigungsmittel benötigt werden. Dabei ist insbesondere vorgesehen, dass es die innere Hülse, hier also die zweite Hülse, ist, welche "gekühlt" wird, während die erste Hülse, also die äußere Hülse, auf eine erhöhte Temperatur gebracht wird.The composite can be formed by forming the two sleeves an adhesive bond or a shrink joint. The shrink-fit connection is in particular produced such that the first sleeve and the second sleeve are brought to different temperatures and then arranged one inside the other, in particular into one another pushed or inserted into each other. Following this, ie when returning to "normal temperature", the previously relatively "cooled" sleeve expands again, while the previously relatively "heated" sleeve contracts. This creates a firm connection between the two sleeves, for which in particular no additional fastening means are needed. It is provided in particular that it is the inner sleeve, in this case the second sleeve, which is "cooled" while the first sleeve, ie the outer sleeve, is brought to an elevated temperature.

Alternativ kann der Verbund auch dadurch gebildet werden, dass die beiden Hülsen miteinander verpresst bzw. zusammengepresst werden, dass die beiden Hülsen miteinander verschweißt werden, oder dass die beiden Hülsen miteinander verschraubt werden, wobei letzteres insbesondere dadurch erfolgt, dass die äußere Hülse auf ihrer Innenseite und die innere Hülse auf ihre Außenseite jeweils mit einem Gewinde versehen ist und die beiden Hülsen dadurch verschraubt werden, dass die innere Hülse in die äußere Hülse hinein geschraubt wird.Alternatively, the composite can also be formed by pressing or pressing the two sleeves together so that the two sleeves are welded together, or by screwing the two sleeves together, the latter being achieved in particular by the outer sleeve being on its inside and the inner sleeve is threaded on each of its outer sides and the two sleeves are screwed by screwing the inner sleeve into the outer sleeve.

Allgemein kann zwischen den beiden Hülsen zur Bildung des Verbundes eine stoffschlüssige Verbindung bestehen. Alternativ ist es möglich, dass zwischen den beiden Hülsen eine formschlüssige oder kraftschlüssige Verbindung hergestellt wird.Generally, a cohesive connection can exist between the two sleeves to form the composite. Alternatively, it is possible that a positive or non-positive connection is made between the two sleeves.

Des Weiteren kann vorgesehen sein, dass die eine Hülse eine Armierung oder Beschichtung der anderen Hülse bildet, wobei die Armierung bzw. Beschichtung entweder von der ersten Hülse oder von der zweiten Hülse gebildet sein kann.Furthermore, it can be provided that the one sleeve forms a reinforcement or coating of the other sleeve, wherein the reinforcement or coating can be formed either by the first sleeve or by the second sleeve.

Die gesteigerte vakuumtechnische Leistungsfähigkeit führt bei Kombination mit einem turbomolekularen Pumpabschnitt nach Anspruch 9 und ggf. den darauf bezogenen Ansprüchen zu einer Verbesserung der Pumpwirkung der Gesamtpumpe. Für Vakuumpumpen mit zumindest einem zusätzlichen Einlass nach Anspruch 14 werden aufgrund der verbesserten Leistungsfähigkeit neue Anwendungsfelder erschlossen, beispielsweise wenn bisher unerreichbare Druckverhältnisse zwischen den Kammern eines Mehrkammersystems oder bisher unerreichbare Saugvermögen gefordert sind.
An Hand eines Ausführungsbeispiels und seiner Weiterbildungen soll die Erfindung näher erläutert und die Darstellung ihrer Vorteile vertieft werden.
The increased vacuum performance results in combination with a turbomolecular pumping section according to claim 9 and optionally the claims related thereto to an improvement in the pumping action of the overall pump. For vacuum pumps with at least one additional inlet according to claim 14 due to the improved performance new applications are developed, for example, if previously unattainable pressure conditions between the chambers of a multi-chamber system or previously unattainable pumping speeds are required.
With reference to an embodiment and its developments, the invention will be explained in more detail and the representation of its benefits to be deepened.

Es zeigen:

Fig. 1:
Teilschnitt einer Vakuumpumpe mit schnell drehendem Rotor;
Fig. 2:
Teilschnitt von Rotor und Stator gemäß einer Weiterbildung;
Fig. 3:
Tragstruktur und Hülse eines Rotors im Schnitt;
Fig. 4:
Schematische Darstellung eines Rotors mit wenigstens einem turbomolekularen Pumpabschnitt;
Fig. 5:
Teilgeschnittene Ansicht einer Vakuumpumpe, in der die Hülse auf der Ansaugseite der Nabe gelegen ist.
Show it:
Fig. 1:
Partial section of a vacuum pump with fast rotating rotor;
Fig. 2:
Partial section of rotor and stator according to a development;
3:
Support structure and sleeve of a rotor in section;
4:
Schematic representation of a rotor with at least one turbomolecular pump section;
Fig. 5:
Partial sectional view of a vacuum pump in which the sleeve is located on the suction side of the hub.

Es zeigt Fig. 1 eine Vakuumpumpe 2, welche mittels eines Flansches 4 lösbar mit einem nicht gezeigten zu evakuierenden Behälter verbindbar ist. Gas tritt durch die Ansaugöffnung 6 ein, wird in der Vakuumpumpe verdichtet und durch den Gasauslass 8 ausgestoßen. In der Regel ist eine Vorvakuumpumpe mit dem Gasauslass verbunden.It shows Fig. 1 a vacuum pump 2, which is detachably connected by means of a flange 4 with a container, not shown, to be evacuated. Gas enters through the suction port 6, is compressed in the vacuum pump and discharged through the gas outlet 8. As a rule, a backing pump is connected to the gas outlet.

Innerhalb der Vakuumpumpe ist ein Rotor 10 vorgesehen, welcher eine Welle 12 umfasst. Diese ist von einem ersten Lager 34 und einem zweiten Lager 36 drehbar unterstützt. Auf der Welle kann ein Antriebsmagnet 32 vorgesehen sein, der mit einer Antriebsspule 30 zusammenwirkt, um den Rotor in schnelle Drehung zu versetzen. Die Drehzahl ist so bemessen, dass durch Zusammenwirken von Rotor und einem Stator 40 ein molekularer Pumpeffekt bewirkt wird. Der Stator weist eine schraubenlinienartige Nut 42 an einer radial inneren Oberfläche auf.Within the vacuum pump, a rotor 10 is provided which comprises a shaft 12. This is rotatably supported by a first bearing 34 and a second bearing 36. On the shaft, a drive magnet 32 may be provided, which cooperates with a drive coil 30 to enable the rotor in rapid rotation. The rotational speed is dimensioned such that a molecular pump effect is brought about by the interaction of the rotor and a stator 40. The stator has a helical groove 42 on a radially inner surface.

An der Welle des Rotors ist eine Tragstruktur befestigt, welche als scheibenartig gestaltete Nabe 14 ausgeführt sein kann. Mit dieser Nabe ist eine erste Hülse 16 mitdrehend verbunden. Innerhalb dieser ersten Hülse 16 ist eine zweite Hülse 18 angeordnet und beide Hülsen bilden einen Verbund. Dieser Verbund ist vorzugsweise chemisch stabil, wärme- und drehzahlfest. Auf diese Weise bleiben erste und zweite Hülse unter den Betriebsbedingungen miteinander verbunden. Sobald sich der Rotor dreht, beginnen Fliehkräfte auf die sich drehenden Teile einzuwirken, insbesondere jedoch auf die Nabe und die Hülsen. Die Ausdehnung der zweiten Hülse wird durch die erste Hülse behindert, inbesondere, wenn die erste Hülse aus einem faserverstärkten Werkstoff, beispielsweise einem kohlenstofffaserverstärktem Kunststoff, gebildet ist. Die zweite Hülse ist nun nach Material und Geometrie derart gestaltet, dass die durch sie unter Einwirkung von Fliehkräften erzeugten Kräfte auf die erste Hülse jenen Kräften nahe kommen, die durch die Ausdehnung der Nabe auf die erste Hülse einwirken. Ziel ist es insbesondere, bei Gestaltung von Nabe und zweiter Hülse die Spannungen in der ersten Hülse auf ein Maß zu bringen, das mit dessen Materialkonstanten verträglich ist. Dadurch wird eine Überlastung der ersten Hülse vermieden. Vorteilhaft ist, dass durch die zusätzlichen Gestaltungsfreiheitsgrade mit Hilfe der zweiten Hülse die Überlastung der ersten Hülse bei einer wesentlich größeren Menge von Betriebszuständen erreicht werden kann, wobei ein Betriebszustand durch unter anderem Temperatur, Drehzahl und Gaslast bestimmt ist.On the shaft of the rotor, a support structure is attached, which may be designed as a disc-like hub 14 designed. With this hub a first sleeve 16 is connected rotatably. Within this first sleeve 16, a second sleeve 18 is arranged and both sleeves form a composite. This composite is preferably chemically stable, heat and speed resistant. In this way, the first and second sleeves remain connected under the operating conditions. As the rotor rotates, centrifugal forces begin to act on the rotating parts, but especially on the hub and sleeves. The expansion of the second sleeve is impeded by the first sleeve, in particular if the first sleeve is formed from a fiber-reinforced material, for example a carbon-fiber-reinforced plastic. The second sleeve is now designed according to material and geometry such that the forces generated by them under the action of centrifugal forces on the first sleeve those forces come close, which act on the first sleeve by the extension of the hub. The goal is in particular, in design of hub and second sleeve, the voltages in the first To bring the sleeve to a level that is compatible with its material constants. As a result, an overload of the first sleeve is avoided. It is advantageous that can be achieved with a much larger amount of operating conditions by the additional design degrees of freedom using the second sleeve, the overload of the first sleeve, wherein an operating condition is determined by among other things temperature, speed and gas load.

Weitere Gestaltungsmöglichkeiten werden in den Weiterbildungen an Hand der Fig. 2 bis 5 vorgestellt.Further design options are in the further developments on hand of Fig. 2 to 5 presented.

Nach Fig. 2 ist mit der Welle 12 eine Nabe 14 verbunden, an der die erste Hülse 16 befestigt ist. Innerhalb der ersten Hülse und mit dieser einen Verbund bildend ist die zweite Hülse 18 vorgesehen. Wie im Beispiel nach Fig. 1 ist ein Stator 40 vorgesehen, der mit der äußeren Oberfläche der ersten Hülse zusammenwirkt, so dass erster Stator und erste Hülse eine erste Pumpstufe bilden. Zusätzlich zu diesem Stator ist ein mit einer inneren Oberfläche der zweiten Hülse zusammenwirkender zweiter Stator 44 vorhanden, so dass zweite Hülse und zweiter Stator eine zweite Pumpstufe bilden.To Fig. 2 is connected to the shaft 12, a hub 14 to which the first sleeve 16 is attached. Within the first sleeve and with this a composite forming the second sleeve 18 is provided. As in the example below Fig. 1 a stator 40 is provided which cooperates with the outer surface of the first sleeve, so that the first stator and the first sleeve form a first pumping stage. In addition to this stator, there is provided a second stator 44 cooperating with an inner surface of the second sleeve so that the second sleeve and the second stator form a second pumping stage.

Die Pumpstufen können seriell hintereinander durchströmt werden, das Gas folgt dann dem Pfeil 100. Es kann wünschenswert sein, die Pumpstufen parallel zu betreiben. Dazu kann in der Nabe wenigstens ein Durchlass 52 vorgesehen sein, durch den Gas durch die Nabe hindurch in die zweite Pumpstufe entlang dem gestrichelten Pfeil 102 treten kann.The pumping stages can be flowed through in series one behind the other, the gas then follows the arrow 100. It may be desirable to operate the pumping stages in parallel. For this purpose, at least one passage 52 can be provided in the hub, through which gas can pass through the hub into the second pumping stage along the dashed arrow 102.

Eine vorteilhafte Weiterbildung kann eine Verbindung 50 sein, durch die zweite Hülse und Nabe miteinander verbunden sind. Nabe und zweite Hülse können an dieser Stelle einstückig ausgeführt sein.An advantageous development may be a connection 50, are connected by the second sleeve and hub. Hub and second sleeve can be made in one piece at this point.

Gemäß einer anderen vorteilhaften Weiterbildung wird vorgeschlagen, auf der inneren Oberfläche der zweiten Hülse eine pumpaktive Struktur anzubringen. Dies kann beispielsweise wenigstens eine schraubenlinienartige Nut 20 sein. Durch diese pumpaktive Struktur können Saugvermögen und Kompression erhöht werden.According to another advantageous development, it is proposed to mount a pump-active structure on the inner surface of the second sleeve. This may be, for example, at least one helical groove 20. This pump-active structure increases pumping speed and compression.

Die Weiterbildung gemäß Fig. 3 bezieht sich auf die Tragstruktur. Diese ist gemäß der Weiterbildung als Tragscheibe 60 gestaltet. Die Tragscheibe besitzt einen Innenring 66 mit einer Wellenaufnahme 68, mit der die Tragscheibe auf der Welle befestigt werden kann. Radial außerhalb schließt sich an den Innenring ein umlaufender Kranz von Schaufeln 62 an, so dass eine Scheibe im Wesentlichen turbomolekularer Bauart entsteht. Mit wenigstens einem Teil der Schaufeln ist ein Tragring 64 verbunden oder einstückig ausgeführt, an welchem die erste Hülse 16 befestigt ist, welche mit der zweiten Hülse 18 einen Verbund bildet.The training according Fig. 3 refers to the supporting structure. This is designed according to the development as a support plate 60. The support disk has an inner ring 66 with a shaft receiver 68, with which the support disk can be mounted on the shaft. Radially outside, a circumferential ring of blades 62 adjoins the inner ring, so that a disk of substantially turbomolecular design is formed. With at least a portion of the blades, a support ring 64 is connected or made in one piece, to which the first sleeve 16 is fixed, which forms a composite with the second sleeve 18.

In Fig. 4 ist gezeigt, dass auf der Welle 12 noch eine Rotorscheibe 82 turbomolekularer Bauart zur Bildung eines turbomolekularen Pumpabschnittes vorgesehen sein kann. Mehrere Rotorscheiben können auf der Welle angeordnet sein und einen ersten Scheibenabschnitt 84 und einen zweiten Scheibenabschnitt 86 bilden. Weitere Scheibenabschnitte können vorhanden sein. Hierdurch wird eine leistungsfähige Vakuumpumpe zum differenziellen Evakuieren eines Mehrkammersystems geschaffen.In Fig. 4 It is shown that a rotor disk 82 of turbomolecular design for forming a turbomolecular pump section can still be provided on the shaft 12. A plurality of rotor disks may be disposed on the shaft and form a first disk portion 84 and a second disk portion 86. Other disc sections may be present. This creates a powerful vacuum pump for differential evacuation of a multi-chamber system.

Der Rotor nach Fig. 4 weist neben einer ersten mit der Nabe 14 verbundenen Hülse 16 eine dritte Hülse 78 auf, welche ebenfalls an der Nabe 14 oder an einer eigenen Tragstruktur befestigt sein kann.The rotor after Fig. 4 In addition to a first sleeve 16 connected to the sleeve 16 has a third sleeve 78, which may also be attached to the hub 14 or on its own support structure.

Ein erster Stator 40 wirkt mit der äußeren Oberfläche der ersten Hülse unter Bildung einer Pumpstufe zusammen. Ein zweiter Stator 44 erzeugt mit der inneren Oberfläche der zweiten Hülse und der äußeren Oberfläche der dritten Hülse eine Pumpwirkung, so dass eine zweite und eine dritte Pumpstufe erzeugt werden.A first stator 40 cooperates with the outer surface of the first sleeve to form a pumping stage. A second stator 44 creates a pumping action with the inner surface of the second sleeve and the outer surface of the third sleeve to create a second and a third pumping stage.

Ein Gaseinlass 88 kann vorgesehen sein, um Gas zwischen erstem und zweitem Stator in die zweite Pumpstufe einzulassen.A gas inlet 88 may be provided to admit gas between the first and second stator in the second pumping stage.

Der Rotor nach Fig. 4 kann mit einem Permanentmagnetlager 80 und einem zweiten Lager 36, das als Wälzlager oder aktives Magnetlager ausgeführt sein kann, drehbar gelagert sein.The rotor after Fig. 4 can be rotatably mounted with a permanent magnet bearing 80 and a second bearing 36, which may be designed as a rolling bearing or active magnetic bearing.

In Fig. 5 sind Rotor und Stator einer Vakuumpumpe schematisch und geschnitten dargestellt, der Gasfluss durch Pfeile veranschaulicht. Die Welle 12 des Rotors ist an ihrem ansaugseitigen Ende durch ein Permanentmagnetlager 80 unterstützt. Vorvakuumseitig dient ein Wälzlager 92 zur Lagerung der Welle. Zwischen den Lagern ist eine scheibenförmige Nabe 14 mit der Welle verbunden. An dieser Nabe ist eine erste Hülse 16 mitrotierbar, chemisch und wärmebeständig angebracht. Die erste Hülse erstreckt sich von der Nabe in Richtung Ansaugseite 104. Eine radial innerhalb der ersten Hülse angeordnete zweite Hülse 18 bildet einen Verbund mit der ersten Hülse. Sie kann auf ihrer radial inneren Oberfläche eine Pumpstruktur, beispielsweise wenigstens einen schraubenlinienartigen Nut aufweisen. Die radial innere Oberfläche der Hülse wirkt mit einem zweiten Stator 44 zusammen und bildet mit ihm eine molekulare Pumpstufe. Die radial äußere Oberfläche der ersten Hülse hingegen bildet zusammen mit dem Stator 40 eine molekulare Pumpstufe. Einer der Statoren oder beide können eine Pumpstruktur aufweisen. Auf diese Weise wird eine kompakte Molekularvakuumpumpe geschaffen. Durch die zusätzliche Pumpstruktur auf der inneren Oberfläche der zweiten Hülse kann in dieser Pumpstufe ein hohes Saugvermögen erreicht werden, wodurch eine vorteilhafte Saugvermögensabstufung der Pumpstufen zueinander möglich wird. Die zweite Hülse kann einteilig mit der Nabe ausgeführt sein.In Fig. 5 Rotor and stator of a vacuum pump are shown schematically and cut, the gas flow is illustrated by arrows. The shaft 12 of the rotor is supported at its suction end by a permanent magnet bearing 80. Forevacuum side, a roller bearing 92 serves to support the shaft. Between the bearings, a disc-shaped hub 14 is connected to the shaft. At this hub, a first sleeve 16 mitrotierbar, chemical and heat resistant attached. The first sleeve extends from the hub toward the suction side 104. A second sleeve 18 disposed radially within the first sleeve forms a bond with the first sleeve. It may have on its radially inner surface a pump structure, for example at least one helical groove. The radially inner surface of the sleeve cooperates with a second stator 44 and forms with it a molecular pumping stage. The radially outer surface of the first sleeve, however, together with the stator 40 forms a molecular pumping stage. One or both of the stators may have a pumping structure. In this way, a compact molecular vacuum pump created. Due to the additional pumping structure on the inner surface of the second sleeve, a high pumping speed can be achieved in this pumping stage, whereby an advantageous Saugvermögensabstufung the pumping stages to each other is possible. The second sleeve may be integral with the hub.

Das Saugvermögen der Vakuumpumpe nach Fig. 5 kann weiter gesteigert werden, indem auf der Ansaugseite eine Rotorscheibe 82 auf dem Rotor angebracht ist. Eine weitere Steigerung ergibt sich durch eine im Gasstrom der Rotorscheibe folgende Statorscheibe 90.The pumping speed of the vacuum pump after Fig. 5 can be further increased by a rotor disk 82 is mounted on the rotor on the suction side. A further increase results from a stator disk 90 following in the gas flow of the rotor disk.

Die an Hand der Weiterbildungen gemäß Fig. 2 bis 5 gezeigten Merkmale können kombiniert oder ausgestauscht werden, soweit sich dies nicht technisch widerspricht.The on hand of the developments according to Fig. 2 to 5 features shown can be combined or exchanged, as far as this does not technically contradict.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

22
Vakuumpumpevacuum pump
44
Flanschflange
66
Gasauslassgas outlet
1010
Rotorrotor
1212
Wellewave
1414
Nabehub
1616
erste Hülsefirst sleeve
1818
zweite Hülsesecond sleeve
2020
Nut in zweiter HülseGroove in second sleeve
3030
Antriebsspuledrive coil
3232
AntriebsmagnetImpeller
3434
erstes Lagerfirst camp
3636
zweites Lagersecond camp
4040
Statorstator
4242
Nutgroove
4444
zweiter Statorsecond stator
5050
Verbindungconnection
5252
Durchlasspassage
6060
Tragscheibecarrying disc
6262
Schaufelshovel
6464
Tragringsupport ring
6666
Innenringinner ring
6868
Wellenaufnahmeshaft mount
7878
dritte Hülsethird sleeve
8080
PM-LagerPM-camp
8282
Rotorscheiberotor disc
8484
erster Scheibenabschnittfirst disc section
8686
zweiter Scheibenabschnittsecond disc section
8888
Gaseinlassgas inlet
9090
Statorscheibestator
9292
Wälzlagerroller bearing
100100
Pfeil: serieller GasstromArrow: serial gas flow
102102
gestrichelter Pfeil: paralleler Gasstromdashed arrow: parallel gas flow
104104
Ansaugseitesuction

Claims (14)

  1. A fast-rotating rotor (10) for a vacuum pump (2) comprising a first sleeve (16) and a support structure (14; 60), wherein a second sleeve (18) is arranged within the first sleeve (16) and wherein the first sleeve (16) and the second sleeve (18) form a combination,
    characterized in that
    the combination is adapted with respect to the material and/or to the geometry at least of the second sleeve (18) such that the forces on the first sleeve (16) generated by the second sleeve (18) under the effect of centrifugal forces come close to those forces which act on the first sleeve (16) due to the expansion of the support structure (14; 60), in particular a hub (14).
  2. A rotor in accordance with claim 1,
    characterized in that
    the first sleeve (16) and the second sleeve (18) differ from one another with respect to the material from which they are manufactured, in particular with respect to the expansion under the effect of heat and/or centrifugal forces.
  3. A rotor in accordance with claim 1 or claim 2,
    characterized in that
    the first sleeve (16) and the second sleeve (18) are areally connected to one another, in particular over their full area.
  4. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the first sleeve (16) comprises a carbon fiber reinforced material.
  5. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the second sleeve (18) comprises a metal alloy.
  6. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the second sleeve (18) has a helical groove (20) at an inner surface.
  7. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the first sleeve (16) and the second sleeve (18) form an adhesive connection or a shrink connection.
  8. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the second sleeve (18) and at least some of the support structure (14; 60) are formed in one part; or
    in that the first sleeve (16) and at least some of the support structure (14; 60) are connected to one another by means of an adhesive join.
  9. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the rotor comprises a rotor disk (82) of a turbomolecular type of construction for forming at least one turbomolecular pump section.
  10. A rotor in accordance with any one of the preceding claims,
    characterized in that
    the support structure comprises a hub (14).
  11. A vacuum pump (2),
    characterized in that
    it comprises a fast-rotating rotor (10) in accordance with any one of the preceding claims.
  12. A vacuum pump (2) in accordance with claim 11,
    characterized in that
    it comprises a first stator (40) which has a helical passage which cooperates with an outer surface of the first sleeve (16) such that the first stator and the first sleeve form a pump stage, in particular a first pump stage.
  13. A vacuum pump (2) in accordance with claim 11 or claim 12,
    characterized in that
    it has a second stator (44) which cooperates with an inner surface of the second sleeve (18) such that the second sleeve (18) and the second stator (44) form a pump stage, in particular a second pump stage.
  14. A vacuum pump (2) in accordance with any one of the claims 11 to 13,
    characterized in that
    it has a gas inlet (88) through which gas moves between the first stator (40) and a second stator (44) into a second pump stage comprising the second stator (44).
EP12191948.4A 2011-11-26 2012-11-09 High speed rotor for a vacuum pump Active EP2597313B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012256006A JP6017278B2 (en) 2011-11-26 2012-11-22 High-speed rotor for vacuum pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011119506A DE102011119506A1 (en) 2011-11-26 2011-11-26 Fast rotating rotor for a vacuum pump

Publications (3)

Publication Number Publication Date
EP2597313A2 EP2597313A2 (en) 2013-05-29
EP2597313A3 EP2597313A3 (en) 2014-11-12
EP2597313B1 true EP2597313B1 (en) 2018-07-25

Family

ID=47227516

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12191948.4A Active EP2597313B1 (en) 2011-11-26 2012-11-09 High speed rotor for a vacuum pump

Country Status (3)

Country Link
EP (1) EP2597313B1 (en)
JP (1) JP6017278B2 (en)
DE (1) DE102011119506A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013207269A1 (en) 2013-04-22 2014-10-23 Pfeiffer Vacuum Gmbh Stator element for a Holweckpumpstufe, vacuum pump with a Holweckpumpstufe and method for producing a stator element for a Holweckpumpstufe
DE202013006436U1 (en) * 2013-07-17 2014-10-22 Oerlikon Leybold Vacuum Gmbh Rotor element for a vacuum pump
DE202013009462U1 (en) * 2013-10-28 2015-01-29 Oerlikon Leybold Vacuum Gmbh Carrier element for tubular elements of a Holweck stage
DE102014100622A1 (en) * 2014-01-21 2015-07-23 Pfeiffer Vacuum Gmbh Method for producing a rotor assembly for a vacuum pump and rotor assembly for a vacuum pump
GB201715151D0 (en) * 2017-09-20 2017-11-01 Edwards Ltd A drag pump and a set of vacuum pumps including a drag pump
EP3611381B1 (en) * 2018-08-13 2023-10-04 Pfeiffer Vacuum Gmbh Method for producing a vacuum pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19632375A1 (en) 1996-08-10 1998-02-19 Pfeiffer Vacuum Gmbh Gas friction pump
FR2783883B1 (en) * 1998-09-10 2000-11-10 Cit Alcatel METHOD AND DEVICE FOR AVOIDING DEPOSITS IN A TURBOMOLECULAR PUMP WITH MAGNETIC OR GAS BEARING
FR2845737B1 (en) 2002-10-11 2005-01-14 Cit Alcatel TURBOMOLECULAR PUMP WITH COMPOSITE SKIRT
GB0424199D0 (en) * 2004-11-01 2004-12-01 Boc Group Plc Vacuum pump
GB2420379A (en) * 2004-11-18 2006-05-24 Boc Group Plc Vacuum pump having a motor combined with an impeller
JP2009108752A (en) * 2007-10-30 2009-05-21 Edwards Kk Vacuum pump
EP2623791B1 (en) * 2010-09-28 2019-12-04 Edwards Japan Limited Exhaust pump
WO2012172990A1 (en) * 2011-06-16 2012-12-20 エドワーズ株式会社 Rotor and vacuum pump

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2013113300A (en) 2013-06-10
DE102011119506A1 (en) 2013-05-29
EP2597313A3 (en) 2014-11-12
JP6017278B2 (en) 2016-10-26
EP2597313A2 (en) 2013-05-29

Similar Documents

Publication Publication Date Title
EP2597313B1 (en) High speed rotor for a vacuum pump
EP2209995B1 (en) Multi-stage pump rotor for turbo-molecular pump
EP1972794B1 (en) Vacuum pump
EP1767786B1 (en) Submersible pump assembly
EP1768233B1 (en) Airgap sleeve
DE112017004422B4 (en) Modular turbo compressor shaft
EP2771580A1 (en) Partial flow guide, in particular of a magnetic drive pump
DE102012003680A1 (en) vacuum pump
DE102009035332A1 (en) vacuum pump
EP1767787B2 (en) Submersible pump assembly
EP1851440B1 (en) Holweck vacuum pump
DE60313493T2 (en) VACUUM PUMP
EP2933497B1 (en) Vacuum pump
EP2896837B1 (en) Method for producing a rotor assembly for a vacuum pump and rotor assembly for a vacuum pump
WO2021069134A1 (en) Rotor for a turbo machine, turbo machine with rotor
EP3088745B1 (en) Rotor assembly for a vacuum pump and vacuum pump
EP3034880B1 (en) Rotor assembly for a vacuum pump and method for producing the same
EP3088746B1 (en) Vacuum pump
EP1319131B1 (en) Compound friction vacuum pump
EP0825346A1 (en) Inlet-stage for a double-flow gas friction pump
WO2002048551A1 (en) Feed pump
WO2003031823A1 (en) Axially discharging friction vacuum pump
DE102010021220A1 (en) Rotor for turbine engine, has rotor base body and blades arranged on periphery of rotor base body, where cable is provided for receiving centrifugal force
EP3032106B1 (en) Vacuum pump
EP2295813B1 (en) Turbomolecular pump rotor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101AFI20141003BHEP

Ipc: F04D 29/02 20060101ALI20141003BHEP

17P Request for examination filed

Effective date: 20150504

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20160627

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1022073

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012013098

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180725

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181025

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181125

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012013098

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20190426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181109

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1022073

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181109

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121109

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180725

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 12

Ref country code: CZ

Payment date: 20231030

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 12