EP2593803A1 - Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile - Google Patents

Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile

Info

Publication number
EP2593803A1
EP2593803A1 EP11721489.0A EP11721489A EP2593803A1 EP 2593803 A1 EP2593803 A1 EP 2593803A1 EP 11721489 A EP11721489 A EP 11721489A EP 2593803 A1 EP2593803 A1 EP 2593803A1
Authority
EP
European Patent Office
Prior art keywords
battery
battery cell
frequency
determining
physical quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11721489.0A
Other languages
German (de)
English (en)
Inventor
Andre Boehm
Ralf Piscol
Joachim Rischen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Samsung SDI Co Ltd
Original Assignee
Robert Bosch GmbH
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH, Samsung SDI Co Ltd filed Critical Robert Bosch GmbH
Publication of EP2593803A1 publication Critical patent/EP2593803A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/22Balancing the charge of battery modules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a method for determining the
  • expected lifetime of at least one battery cell in which a value of at least one physical quantity acting on the battery cell and / or a number of executions of at least one process taking place in the battery cell is determined and the value of the physical quantity and / or the number of executions of the processes Basis is used to determine the expected life.
  • the present invention relates to a battery, in particular a lithium-ion battery or a nickel-metal hydride battery, which has a plurality of battery cells and at least one battery management system, wherein the battery management system is designed such, the inventive method for determining the expected life of the battery cell perform.
  • the present invention relates to a motor vehicle with a battery according to the invention.
  • a battery comprising one or more galvanic battery cells serves as an electrochemical energy store and energy converter.
  • chemical energy is converted by intercalation into electrical energy. This electrical energy can thus be requested as needed by a user.
  • battery packs use lithium-ion batteries or nickel-metal hydride batteries, which consist of a large number of series-connected electrochemical cells.
  • a battery management system including a battery condition detection for security monitoring and to serve
  • From DE 103 28 721 A1 is a method for predicting a
  • a method for determining the anticipated service life of at least one battery cell, in which The value of at least one physical quantity acting on the battery cell and / or the number of executions of at least one process taking place in the battery cell is determined and the value of the physical quantity and / or the number of executions of processes is used as the basis for determining the anticipated service life, wherein the physical quantity and / or the number of times the process is carried out in the battery cell is determined for a plurality of operating cycles and the frequency of occurrence of specific values of the physical quantity and / or the frequency of the number of times at least one specific process is stored.
  • the battery cells subjected to the method according to the invention are preferably part of a multiplicity of battery cells, as for example arranged in a single battery.
  • the method can also be carried out in such a way that a value of at least one physical quantity acting on the entire battery and / or the number of feedthroughs of at least one process occurring in the entire battery is determined and the frequency of the
  • Battery cells draw conclusions about the life of the entire battery.
  • the method according to the invention can also be used to determine the state of aging.
  • the physical size is preferably measured and the determination of the number of executions of at least one occurring in the battery cell process is preferably carried out by counting.
  • the beginning of the operating cycle is by the beginning of the activation of the battery cell and the termination of the operating cycle is by the
  • the phase of activation may comprise only one drive cycle, or a drive cycle with subsequent charging.
  • the phase of activation may also include a charge independent of a drive cycle.
  • phase of activation may also include a controlled unloading of the cell subsequent to the drive cycle to realize the
  • the so-called cell balancing include in the after-running after the driving cycle or even during the driving cycle.
  • the beginning of the operating cycle can thus be, for example, starting a motor vehicle driven by the battery cells.
  • the termination of the operating cycle may correspond to the switching off of this motor vehicle.
  • the operating cycle also includes the time of the charge.
  • the method according to the invention determines values or states of the
  • the inventive method can be applied to lithium-ion batteries as well as to nickel-metal hydride batteries
  • Charge state the output of the battery cell power or existing in the battery cell voltage. Derived from the state of charge can also be the difference between a minimum and maximum
  • Operation may be a load pulse, a discharge pulse or a controlled discharge of the cell to realize the balance of the charge states of multiple cells.
  • Charge states of several cells which is also called cell balancing, is preferably to be realized for lithium-ion battery cells. This cell balancing is used to avoid serious differences in the charge states of individual cells. It turned out that it was for
  • the cells are discharged in a controlled manner to the state of charge which corresponds to the state of charge of the least charged cell.
  • the frequency of the controlled discharge of a cell is therefore a criterion for its state of aging.
  • Those cells, the rarest are subjected to the controlled discharge, are thus those who have the lowest charge states compared to other battery cells. To increase the performance and life of the entire battery thus such cells are the first to exchange.
  • the value of the physical quantity and / or the number of executions of the operations per operating cycle is stored in at least one nonvolatile memory and the frequency of occurrence of specific values of the physical quantity and / or the frequency of execution of a specific number of processes is read from the memory ,
  • a non-volatile memory is z.
  • EEPROM an electrically erasable programmable read only memory
  • Process design is based on the simple storage over several operating cycles and the possibility of evaluating the stored values in terms of their frequency.
  • the number of occurrences of at least one particular value of a physical quantity and / or the number of executions of operations is determined over several operating cycles.
  • the number of values or feedthroughs determined per operating cycle is added to the previously determined numbers and stored.
  • the frequency of occurrence of specific values of the physical quantity and / or the frequency of execution of a specific number of processes is visually perceptible in at least one diagram.
  • a diagram are on the abscissa to enter values of the physical quantity or the number of processes and on the ordinate the frequency of occurrence of the respective value of the physical quantity or the frequency of the execution of the number of operations.
  • the method is configured such that the value of a first physical quantity or the number of executions of a first process taking place in the battery cell is stored as a function of the value of a second physical variable or a number of executions of a second process occurring in the battery cell , Again, it is provided that the physical size and / or the number of
  • Operations per cycle of operation are stored in dependence on each other in at least one non-volatile memory and the frequency of occurrence of certain values of the physical size and / or the frequency of performing a certain number of operations, which was determined by means of addition over several operating cycles, from the Memory is read out.
  • the advantage of this embodiment of the method lies in the detection of the variables as a function of one another, so that a smaller memory requirement is required and consequently the use of the non-volatile memory is easier to realize.
  • the frequency of occurrence of specific values of the physical quantities as a function of one another and / or the frequency of carrying out a specific number of processes in dependence on one another is visually perceptible in at least one three-dimensional histogram.
  • the values of the first physical quantity or the number of first operations may be plotted on the first abscissa and the values of the second physical quantity or the number of second operations may be plotted on the second abscissa.
  • the frequency of occurrence of the respective value of the physical quantity or the number of times the operations are carried out in Be dependent on each other.
  • the invention is not limited to the detection of two physical quantities in
  • Such histograms are stored and read again after a reset of the battery management system and used for further calculation, also for further addition of further frequencies of occurrence of specific values of the physical quantity and / or frequencies of execution of a certain number of operations. From the histogram, the aging state and the lifetime can be calculated by means of suitable algorithms. A significant value for the calculation may be the frequency of occurrence of a particular physical quantity or a number of operations.
  • the battery management system must be readjusted to z. For example, to vary the temperature of some cells.
  • the values derivable from the histogram can also be used immediately in the battery management system as control and / or regulation signals for the operation of the battery cell or an entire battery in order to prevent premature aging or aging
  • the values of the physical variable determined over several operating cycles and / or the number of processes taking place in the battery cell are found in a certain range of values in which experience shows that
  • the interpolation points are preferably parameterizable, that is to say that they are defined in such a way that suitable intervals are formed with regard to the statement of specific physical variables or specific numbers of processes become. It can z. For example, in areas where there is a greater frequency in general, the intervals are made shorter, thus more differentiated statements regarding the lifetime during operation of the battery cell with the values of the physical quantity in this interval or the values of the number of processes in this interval. This means that the distances between adjacent support points to each other can be different.
  • the interpolation points may also be defined at regular intervals, such as at intervals of 20 ° C.
  • interval there is a specific physical quantity or the number of processes.
  • the frequency is determined over several operating cycles.
  • Suitable time intervals are z. B. between 0.5 and 2 seconds.
  • every second is determined in which interval the value of a specific physical quantity or the number of determined ones
  • z. B the frequency of currents in a given current intensity interval as a function of temperatures in a given temperature interval of the battery cell are determined. So z. B. be determined with what frequency a current of z. B. 75 to 85% of the maximum current generated when the battery cell was operated in a temperature interval of 40 to 50 ° C.
  • a battery in particular a
  • Lithium-ion battery or a nickel-metal hydride battery provided with multiple battery cells and at least one
  • Battery management system comprises and is connectable to a drive system of a motor vehicle, wherein the battery management system is designed such that the inventive method to realize.
  • Battery cells are preferably spatially combined and interconnected circuitry.
  • the invention is supplemented by a motor vehicle, in particular an electric motor driven motor vehicle, which comprises at least one battery according to the invention, wherein the battery with a
  • the determination of the probable lifetime of at least one battery cell can be computer-aided, with the aid of a
  • a computer-readable storage medium is provided for this, on which a program is stored, which it is one
  • Data processing device allows, after it in the storage means of the
  • Data processing device has been loaded to perform the inventive method.
  • a further supplement is a method in which the computer program for carrying out the method according to the invention from an electronic data network, such as, for example, the Internet, to a data processing device connected to the data network
  • Figure 2 is a created by the inventive method three-dimensional histogram.
  • Method illustrated a diagram which exemplifies the frequency f of the occurrence of a current charging power P.
  • the actual charging power P is plotted on the abscissa and the frequency f on the ordinate. It can be seen that the value range of the current charging power P has been divided into intervals numbered 1 to 12. Each of these intervals 1 to 12 is assigned a value range of the current charging power P. The size of the value ranges can vary. From Figure 1 it can be seen that z. B. the current charging power P of the interval 5 occurred most often. It is thus visually communicable to a person that the battery cell concerned most frequently had a charging power P defined by the interval 5 over several operating cycles. That is, it occurred much more often
  • Charging power P according to the interval 5 as a maximum charging power P according to the interval 12.
  • a conclusion from this finding could be that the charging power P is often below the maximum possible charging power, so that maintenance or, where appropriate, an exchange of
  • the three-dimensional histogram shown in FIG. 2 which according to a further method alternative can be generated according to the invention, shows the frequency f of the occurrence of currents I in a specific interval as a function of temperatures T in a specific temperature interval of the relevant battery cell.
  • the current I is plotted at intervals 1 to 12.
  • the temperature T is plotted at intervals 1 to 8.
  • the frequency f is plotted. It can be seen from the three-dimensional histogram that currents I were generated by the greatest possible frequency according to the current intensity interval 3 at temperatures which correspond to the temperature interval 6. With the second largest frequency currents were generated, which are in the
  • the invention is not limited to the fact that in the three-dimensional histogram only physical quantities such. B. the current intensity I and the temperature T are displayed in dependence on each other, but it may deviate from the method of the invention are carried out such that in the histogram, the number of times of

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Secondary Cells (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, selon lequel une valeur d'au moins une grandeur physique influant sur l'élément de batterie concerné et/ou un nombre d'exécutions d'au moins un processus intervenant dans l'élément de batterie sont déterminés et la valeur de la grandeur physique et/ou le nombre d'exécutions de processus sont utilisés comme bases pour déterminer la durée de vie probable. La grandeur physique et/ou le nombre d'exécutions de processus intervenant dans l'élément de batterie sont déterminés pour plusieurs cycles de fonctionnement et la fréquence (f) d'apparition de valeurs déterminées de la grandeur physique et/ou la fréquence (f) du nombre des exécutions d'au moins un processus déterminé sont mémorisées. L'invention concerne également une batterie, notamment une batterie lithium-ion ou une batterie nickel-hydrure métallique, ainsi qu'un véhicule automobile comprenant au moins une batterie selon l'invention.
EP11721489.0A 2010-07-14 2011-05-17 Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile Withdrawn EP2593803A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010031337A DE102010031337A1 (de) 2010-07-14 2010-07-14 Verfahren zur Ermittlung der voraussichtlichen Lebensdauer wenigstens einer Batteriezelle, Batterie mit einer Mehrzahl von Batteriezellen und Kraftfahrzeug
PCT/EP2011/057917 WO2012007206A1 (fr) 2010-07-14 2011-05-17 Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile

Publications (1)

Publication Number Publication Date
EP2593803A1 true EP2593803A1 (fr) 2013-05-22

Family

ID=44626599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11721489.0A Withdrawn EP2593803A1 (fr) 2010-07-14 2011-05-17 Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile

Country Status (7)

Country Link
US (1) US20130241567A1 (fr)
EP (1) EP2593803A1 (fr)
JP (1) JP2013537620A (fr)
KR (1) KR20130056284A (fr)
CN (1) CN103119456A (fr)
DE (1) DE102010031337A1 (fr)
WO (1) WO2012007206A1 (fr)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101172183B1 (ko) * 2010-09-27 2012-08-07 현대자동차주식회사 차량의 배터리 soh 추정 장치 및 방법
JP5875037B2 (ja) 2011-07-08 2016-03-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation バッテリの状態予測システム、方法及びプログラム
EP2631663A1 (fr) * 2012-02-22 2013-08-28 Siemens Aktiengesellschaft Procédé de surveillance continue du vieillissement d'une batterie
KR20140070447A (ko) 2012-11-30 2014-06-10 주식회사 엘지화학 배터리 사용 환경과 사용 이력을 관리하는 장치 및 방법
EP2972435B1 (fr) 2013-03-15 2017-05-03 Crown Equipment Corporation Estimation de perte fractionnelle pour mesures de condition de batterie
JP2014190763A (ja) * 2013-03-26 2014-10-06 Toshiba Corp 電池寿命推定方法及び電池寿命推定装置
DE102013209449A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterie
DE102013209427A1 (de) 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterieeinheit
DE102013209446A1 (de) 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterie
DE102013209426A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterieeinheit
DE102013209433A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterie
DE102013209453A1 (de) * 2013-05-22 2014-11-27 Robert Bosch Gmbh Verfahren und Vorrichtungen zum Bereitstellen von Informationen zu Wartungs- und Servicezwecken einer Batterieeinheit
FR3009389B1 (fr) * 2013-08-02 2017-02-10 Commissariat Energie Atomique Gestion d'energie dans une batterie
DE102014200684A1 (de) * 2014-01-16 2015-07-16 Robert Bosch Gmbh Verfahren zum Überwachen einer Batterie
US9056556B1 (en) 2014-02-25 2015-06-16 Elwha Llc System and method for configuration and management of an energy storage system for a vehicle
US9878631B2 (en) 2014-02-25 2018-01-30 Elwha Llc System and method for predictive control of an energy storage system for a vehicle
US9079505B1 (en) 2014-02-25 2015-07-14 Elwah LLC System and method for management of a fleet of vehicles having an energy storage system
DE102014205913A1 (de) * 2014-03-31 2015-10-01 Robert Bosch Gmbh Elektrochemischer Energiespeicher und Verfahren zum Schalten von Zellen eines elektrochemischen Energiespeichers
DE102014208316A1 (de) 2014-05-05 2015-11-05 Siemens Aktiengesellschaft Erfassen der Betriebsführung eines Batteriespeichers
KR102468895B1 (ko) * 2015-07-21 2022-11-21 삼성전자주식회사 배터리의 상태를 추정하는 방법 및 장치
DE102016202572A1 (de) * 2016-02-19 2017-08-24 Robert Bosch Gmbh Verfahren zum Betrieb eines Batteriesystems und Batteriemanagementsystem
US9869722B1 (en) * 2016-09-22 2018-01-16 Rockwell Automation Technologies, Inc. Method and apparatus for electrical component life estimation
WO2019172692A1 (fr) * 2018-03-07 2019-09-12 주식회사 엘지화학 Dispositif et procédé permettant de prédire l'état de santé d'une batterie
KR102291133B1 (ko) 2018-03-07 2021-08-20 주식회사 엘지화학 배터리 수명 예측 장치 및 방법
CN110750874B (zh) * 2019-09-26 2020-07-28 长沙理工大学 一种退役动力电池寿命预测方法
US11476792B2 (en) 2020-06-16 2022-10-18 Rockwell Automation Technologies, Inc. Method and apparatus for electrical component life estimation with corrosion compensation
US11366173B2 (en) 2020-11-06 2022-06-21 Robert Bosch Gmbh Method of determining lifetime of electrical and mechanical components
DE102021212689A1 (de) 2021-11-11 2023-05-11 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und Vorrichtung zum Bereitstellen eines prädizierten Alterungszustands einer Gerätebatterie basierend auf einem prädizierten Nutzungsmuster
KR20230072820A (ko) * 2021-11-18 2023-05-25 현대자동차주식회사 전기차 배터리용 퓨즈 수명 예측 장치 및 그 예측 방법
JP7437435B2 (ja) * 2022-03-10 2024-02-22 本田技研工業株式会社 パルス抽出装置、パルス抽出方法及びプログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027236A (ja) * 1998-07-07 2000-01-25 Komatsu Ltd 建設機械のデータ記憶装置およびデータ処理装置
EP1450173A3 (fr) * 2003-02-24 2009-07-22 Daimler AG Méthode pour l'évaluation d'une dégradation d'une batterie
DE10328721A1 (de) 2003-06-25 2005-01-13 Robert Bosch Gmbh Verfahren zur Vorhersage einer Restlebensdauer eines elektrischen Energiespeichers
JP4631761B2 (ja) * 2005-08-08 2011-02-16 トヨタ自動車株式会社 パワートレイン用の電池寿命予知装置及び電池寿命警告装置
CN100486033C (zh) * 2005-08-08 2009-05-06 丰田自动车株式会社 电动力车电池寿命预测和警告装置
KR101285896B1 (ko) * 2006-02-28 2013-07-15 파나소닉 주식회사 전지 수명 판정 장치 및 전지 수명 판정 방법
CN100495061C (zh) * 2007-06-05 2009-06-03 清华大学 一种快速评价车用燃料电池使用寿命的方法
DE102009006461A1 (de) * 2009-01-28 2009-09-24 Daimler Ag Verfahren zur Ermittlung von Beanspruchungsdaten einer Batterie, insbesondere einer Fahrzeugbatterie

Also Published As

Publication number Publication date
US20130241567A1 (en) 2013-09-19
DE102010031337A1 (de) 2012-01-19
CN103119456A (zh) 2013-05-22
WO2012007206A1 (fr) 2012-01-19
JP2013537620A (ja) 2013-10-03
KR20130056284A (ko) 2013-05-29

Similar Documents

Publication Publication Date Title
WO2012007206A1 (fr) Procédé pour déterminer la durée de vie probable d'au moins un élément de batterie, batterie équipée d'une pluralité d'éléments de batterie et véhicule automobile
DE102009024422B4 (de) Verfahren zur Abschätzung der Lebensdauer eines Energiespeichers
EP3017496B1 (fr) Procédé de gestion de batterie et système de gestion de batterie
WO2015197483A1 (fr) Dispositif et procédé de régulation de l'état de charge d'un accumulateur d'énergie électrique
WO2012076220A1 (fr) Procédé permettant de déterminer des paramètres de fonctionnement d'une batterie, système de gestion de batterie et batterie
DE102011089962A1 (de) Verfahren zur Temperaturregelung von mindestens einem Batterieelement, Batterie sowie Kraftfahrzeug mit einer solchen Batterie
EP3095153B1 (fr) Procédé de compensation d'état de charge d'une batterie
WO2015172953A1 (fr) Procédé pour déterminer la température d'une batterie
DE102018104212A1 (de) Lithiumanreicherung zum eindämmen von kapazitätsverlust in li-ionen-batterien
EP3371847A1 (fr) Procédé pour faire fonctionner une batterie et batterie
DE102013214817A1 (de) Verfahren zur Diagnose eines Zustands einer Batterie
EP4123321A1 (fr) Procédé, dispositif et produit-programme informatique destinés à la détermination d'une valeur résiduelle des accumulateurs de batterie
WO2015106974A1 (fr) Procédé de surveillance d'une batterie
EP2977256B1 (fr) Procédé de commande d'une batterie lithium-ion d'un chariot de manutention
DE102013215316A1 (de) Verfahren zur Zustandserkennung eines Energiespeichers
DE102011087761A1 (de) Verfahren zur Bestimmung eines Alterungszustands einer Batterieanordnung
DE102014209703A1 (de) Verfahren zum Betreiben einer Antriebsvorrichtung
WO2016155962A1 (fr) Procédé pour faire fonctionner une unité de batterie
EP3866300A1 (fr) Procédé de détermination de l'état de vieillissement d'au moins une unité d'accumulation d'énergie électrique
DE102016011014A1 (de) Verfahren, Ladevorrichtung und Batteriemanagementsystem zum Laden eines elektrischen Energiespeichers
WO2014023544A1 (fr) Élément de rechange pour système de batterie
DE102019006573A1 (de) Verfahren zum Betreiben eines elektrischen Energiespeichers eines zumindest teilweise elektrisch betriebenen Kraftfahrzeugs auf Basis von Belastungsdaten des elektrischen Energiespeichers; sowie Batteriemanagementsystem
DE102017221251A1 (de) Verfahren zum Betrieb eines Energiespeichers und Batteriesystem sowie Kraftfahrzeug
DE102013201451A1 (de) Verfahren und System zur Batteriediagnose
DE102018218485A1 (de) Verfahren zum Betreiben eines Batteriesystems und Elektrofahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140709