EP2589264A1 - Led-lichtsignal - Google Patents

Led-lichtsignal

Info

Publication number
EP2589264A1
EP2589264A1 EP11725717.0A EP11725717A EP2589264A1 EP 2589264 A1 EP2589264 A1 EP 2589264A1 EP 11725717 A EP11725717 A EP 11725717A EP 2589264 A1 EP2589264 A1 EP 2589264A1
Authority
EP
European Patent Office
Prior art keywords
signal
sensor
leds
color
led light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11725717.0A
Other languages
English (en)
French (fr)
Other versions
EP2589264B1 (de
Inventor
Eike Berg
Rolf Eckl
Norbert PÖPPLOW
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2589264A1 publication Critical patent/EP2589264A1/de
Application granted granted Critical
Publication of EP2589264B1 publication Critical patent/EP2589264B1/de
Priority to HRP20180603TT priority Critical patent/HRP20180603T1/hr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • G08B5/36Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1827Daylight signals using light sources of different colours and a common optical system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L5/00Local operating mechanisms for points or track-mounted scotch-blocks; Visible or audible signals; Local operating mechanisms for visible or audible signals
    • B61L5/12Visible signals
    • B61L5/18Light signals; Mechanisms associated therewith, e.g. blinders
    • B61L5/1809Daylight signals
    • B61L5/1881Wiring diagrams for power supply, control or testing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/20Controlling the colour of the light
    • H05B45/22Controlling the colour of the light using optical feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits
    • H05B45/327Burst dimming
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • H05B45/58Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits involving end of life detection of LEDs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L2207/00Features of light signals
    • B61L2207/02Features of light signals using light-emitting diodes [LEDs]

Definitions

  • the invention relates to an LED light signal, in particular LED railway light signal, with a signal generator for generating different colored points of light, wherein the LEDs as multi-color LEDs, in particular RGB LEDs - red / yellow / blue LEDs - thoroughlybil ⁇ det are.
  • LEDs Light signals or LEDs on the basis of LEDs - light emitting diodes - instead of incandescent lamps are increasingly used in many areas, especially in railway signaling. LEDs are comparatively inexpensive, durable and bright. The trend is towards HLED - high current LED - whose light intensity is so high that even a single HLED emits enough light per light point to achieve the required brightness.
  • an actual current monitoring for each light point can be additionally provided.
  • SIL3 or SIL4 In order to be able to operate the light signal in safety level SIL3 or SIL4, it must be ensured that only the light spot is supplied with the intended color and that the other light points are not current-carrying.
  • RGB LEDs are known - red / yellow / blue LEDs - in which three LEDs with the colors red, yellow and blue are integrated into one LED housing. Due to the nature of these RGB LEDs, it is difficult or impossible to determine, based on a current measurement, through which of the three LEDs the current flows. However, this is required to achieve SIL3 or SIL4.
  • RGB LEDs it is possible to realize several colors in one light point.
  • LEDs of the same color are always energized, so that the number of colors that can be displayed is also limited by the number of differently colored LEDs.
  • RGB LEDs can be used to achieve a large number of colors, ie color locations, by simultaneously varying denominated LEDs are energized or controlled by PWM pulse width modulation ⁇ tion, resulting in mixed colors.
  • This technology is already used for lighting and display purposes ⁇ .
  • An adaptation to signal generator is problematic, however, because of the safety-relevant significance of the light signals, especially in railway operation, a sig ⁇ naltechnisch secure monitoring of both the light intensity and the color location is required.
  • the invention is based on the object, a multicolored
  • Signal generator has at least one optical sensor for fail-safe monitoring of the color locus and the light intensity. It is only through the safe detection of the optical parameters that it is possible to use RGB LEDs for light signals with very high safety requirements, in particular SIL3 or SIL4. On color-specific current measurements, which are not possible with RGB LEDs at all or only with great difficulty, can be dispensed with. Due to the tendency to light ⁇ stronger LEDs and simultaneously decreasing production costs, it is possible to use a single RGB LED instead of at least three individual HLEDs of different colors. The colors can also be safely mixed by signal technology.
  • the safe monitoring is based on the separation of the control for generating the required color location and the reliable optical monitoring of the actually emitted light. There- This results in a two-channel safe system, the control usually can not follow safety-relevant ⁇ he follow, but the overall system can be classified as signal technically safe in the sense of SIL3 or SIL4 by the fail-safe monitoring of the expected function.
  • At least two independent optical Senso ⁇ ren are provided. This ensures that changes in a measurement channel can be revealed.
  • the error detection can be additionally supported by a method that he ⁇ increases and decreases the target brightness slightly in the tolerable range. If the actual brightness measured in the at least two channels follows the setpoint brightness as expected, a fault-free system can be assumed.
  • the same principle can also be applied alternatively or additionally by varying the color location, whereby even higher safety requirements can be realized.
  • the optical sensor has a plurality of color-specific individual sensors. The farbspe ⁇ zifische single sensor registered only a brightness of the signal or a light intensity when the light spot was driven with the associated color.
  • the color-specific individual sensor can be realized, for example, by means of upstream color filters. In this way, a brightness sensor can be used, which is designed for the entire color range, ie for the entire visible light ⁇ spectrum.
  • the upstream of the single sensor Color filter causes the single sensor to react only to a certain color.
  • the optical sensor can but according to claim 3 as
  • the output signal of the optical sensor must be evaluated taking into account the spectral sensitivity of the sensor with regard to the spectral composition.
  • the sensor is connected according to claim 4 via a sensor amplifier and an A / D converter with a digital evaluation device, in particular a controller, for determining the actual color location and the actual light intensity.
  • the optical sensor detects the emitted light.
  • the sensor amplifier serves to amplify and calibrate the output signal of the optical sensor. By calibrating, physical properties, such as the sensitive ⁇ ness of the sensor or the input area of evaluation, be compensated.
  • the output signals of the optical sensor may be normalized such that a conclusion on the color components is mög ⁇ Lich directly from the output signals.
  • the adjustment values follow from the properties of the sensor.
  • the environmental behavior, in particular ⁇ sondere the temperature behavior of the sensor during the generation ⁇ supply the tuning signal is taken into account.
  • the adjustment can also be shifted from the sensor amplifier to the evaluation device.
  • a sensitivity profile is stored in the controller.
  • the sensor amplifier can thereby be simplified.
  • the required hö ⁇ here dynamics of the input values the requirements to the A / D converter which is connected upstream of the controller increase.
  • the evaluation device a generated by ambient conditions, particularly the ambient temperature-dependent feedback signal and forwards it to a control ⁇ factory, said interlocking side, a drive signal is generated for acting on the signal transmitter and means for comparing the feedback signal are provided to the drive signal.
  • a suitable link with external influences such as temperature or ambient light
  • physical properties of components eg. B. their temperature behavior, or the site, z. B. with respect to the ambient light conditions, are compensated, so that a feedback signal is signaled to the interlocking, which is directly comparable to the drive signal for acting on the signal generator.
  • the interlocking thus always has reliable information about the proper functioning of the LED light signal.
  • the evaluation device additionally has means for comparison of the actual color location and / or the actual intensity with a desired color location and / or a target light intensity, wherein deviations that exceed a threshold over ⁇ trigger an intrinsically safe reaction.
  • the remindmel ⁇ -making to the interlocking can take place on the basis of monitoring or intrinsically safe reaction.
  • the evaluation device calculates an expected sensor signal from the drive signal for the signal transmitter and the spectral sensitivity of the optical sensor. This nominal sensor signal is compared with the detected actual sensor signal. chen. The deviation is evaluated, where appropriate, a eigensi ⁇ chere reaction, eg. B. a fail-safe shutdown occurs. In case of failure, the evaluation ensures that energization follows replaced according to the fail-safe principle, ie in case of a light signal for Signalbeg ⁇ riffs indication that the red stop signal lights.
  • FIG. 1 shows essential components of an LED light signal according to the invention
  • FIG. 2 shows a first embodiment of a monitoring device according to FIG. 1,
  • FIG. 3 shows a second embodiment of a monitoring device according to FIG. 1
  • FIG. 4 shows a third embodiment of a monitoring device according to FIG. 1
  • FIG. 5 shows a fourth embodiment of a monitoring device according to FIG. 1,
  • FIG. 6 shows a fifth embodiment of a monitoring device according to Figure 1 and
  • FIG. 7 shows a calculation scheme relating to the setpoint sensor signal for a monitoring device according to FIG. 6.
  • An LED railway light signal consists essentially of egg ⁇ nem signal generator 1, which is controlled by a signal box 2. 3 is and components for light emission and a monitoring device 4, which is connected via a feedback message 5 with the signal box 2.
  • the signal transmitted from the interlocking 2 to a control device 7 equipped with a temperature sensor 6 to the signal generator 1 includes information about the required signal image of the signal generator 1, in particular respects Lich color and light intensity.
  • the request message is associated with the output signal of the temperature ⁇ tursensors 6 for generating a target signal 8, which is converted by an LED driver 9 in three drive signals for at least one RGB-LED 10, the RGB-LED 10 Single LEDs 11, 12 and 13 in the colors red, yellow and blue.
  • the color of the emitted light through an optical system 14 is defined by the relative ratio of the three dently approximately ⁇ signals for the colors red, yellow and blue. This can be done for example via a pulse width modulation with corresponding pulse / pause ratios in conjunction with a variation of the respective LED current.
  • the light intensity results as the sum of the drive signals.
  • the monitoring device 4 consists essentially of an optical sensor 15, a sensor amplifier 16 and an evaluation device 17.
  • the optical sensor 15 detects the light of the RGB LED 10, while the sensor amplifier 16 is used to amplify and calibrate the sensor values. By means of calibration, physical properties of the sensor system, for example spectral sensitivity, are compensated.
  • the evaluation device 17 determines, from the signals of the sensor amplifier 16, the color and the intensity of the emitted light. of light. By linking or synchronizing with the desired signal 8 generated by the control device 7, the reliability or the availability of the moni ⁇ monitoring can be increased.
  • the evaluation device 17 is like the control device 7 is provided with a temperature sensor 18, so that taking into account the ambient temperature feedback 5 of the state of the signal generator 1 can be made to the Stell ⁇ technik 2. Also possible is an intrinsically safe reaction of the signal generator 1, z. B. a shutdown, which may be included in the feedback 5.
  • FIG. 2 shows an embodiment of the monitoring device 4 with an optical sensor 15.1, which contains color-specific, ie spectrally narrow-band, individual sensors 19 for red, 20 for yellow and 21 for blue.
  • the three output signals of this multi-color sensor 15.1 are adjusted in a three-channel sensor amplifier 16.1 such that a direct inference to the respective color components of the three channels is possible from the signals of the multicolor sensor 15.1.
  • the exhaust equal values follow from the properties of the multi-color sensor 15.1 and preferably in a controller of the evaluation device 17 ⁇ stored. If the evaluation device 17 is connected to environmental sensors 22, for example temperature sensors 18, the adjustment signal 23 can additionally take into account the behavior of the multicolor sensor 15.1 which is dependent on environmental conditions.
  • FIG. 3 shows a variant of the monitoring device 4 according to FIG. 2, in which the sensitivity adjustment does not take place in the sensor amplifier 16.1 but in the evaluation device 17.1.
  • the structure of the sensor amplifier 16 can thereby be simplified, while increasing the dynamics of the input values of the evaluation 17.1, however, the requirements of its upstream A / D converter.
  • Figure 4 illustrates a further variant of an over ⁇ monitoring device 4 according to Figure 1.
  • a link of the measurement signal with the branched-off from the driver 7 target signal 8 As a result, in the evaluation unit 17 is a calculation of the expected signal of the optical multi-color sensor 15.1 possible.
  • the factors for the calculation are derived from the spectral sensitivities of the multi-color sensor 15.1, that is, from sensor-specific properties and derived from the desired signal 8 switching state of the signal generator 1. In this way, the conversion of the Sen ⁇ sorsignals omitted in color information.
  • This monitoring variant with desired / actual comparison is ⁇ gur 4 Darge ⁇ represents in Fi for a sensor amplifier / evaluation module 16.1 / 17 of Figure 2 and in Figure 5 for a sensor amplifier / evaluation module 16 / 17.1 of FIG. 3
  • a wide-spectrum sensor 15.2 is provided instead of the multicolor sensor 15.1. This generates an output signal, which is fed to a single-channel sensor amplifier 16.2.
  • the evaluation unit 17 calculated from the target signal 8 and the spectral sensitivity of the Breitspekt ⁇ 15.2 rumsensors an expected sensor signal. This expected signal is compared with the detected signal of the wide-spectrum sensor 15.2. A deviation between the desired and actual signal is evaluated in a voter 24 and fed to the feedback 5 to the signal box 2.
  • FIG. 7 shows the principle for the calculation of the desired signal 8 for the wide-spectrum sensor 15.2.
  • the control device 7 generates for the colors red rt, yellow and blue blue PWM signals with different lengths of light and dark phases within a constant period t.
  • the period t is below the perception threshold.
  • time-Lich ⁇ resolution scan of the measured sensor signal in combination with synchronous detection of the desired signal 8 is a failed or weakened color LED or recognizable.
  • the mixed colors for red rt, yellow and blue must also result in the monitoring as the summation of the respective bright phases of the individual colors within the period t.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Optical Communication System (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

Die Erfindung betrifft ein LED-Lichtsignal, insbesondere LED-Eisenbahnlichtsignal, mit einem Signalgeber (1) zur Erzeugung verschiedenfarbiger Lichtpunkte, wobei die LEDs als Mehrfarb-LEDs, insbesondere RGB-LEDs (10) - Rot (11) /Gelb (12) /Blau (13)-LEDs -, ausgebildet sind. Um die Möglichkeiten zur Farbmischung und damit zur Realisierung einer großen Anzahl von Farbvarianten für sicherheitsrelevante Signaltechnik nutzen zu können, ist erfindungsgemäß vorgesehen, dass der Signalgeber (1) mindestens einen optischen Sensor (15, 15.1, 15.2) zur signaltechnisch sicheren Überwachung des Farbortes und der Lichtstärke aufweist.

Description

Beschreibung LED-Lichtsignal Die Erfindung betrifft ein LED-Lichtsignal, insbesondere LED- Eisenbahnlichtsignal, mit einem Signalgeber zur Erzeugung verschiedenfarbiger Lichtpunkte, wobei die LEDs als Mehrfarb- LEDs, insbesondere RGB-LEDs - Rot/Gelb/Blau-LEDs -, ausgebil¬ det sind.
Die nachstehenden Erläuterungen beziehen sich im Wesentlichen auf Leuchtzeichen oder Lichtsignale zur Darstellung von Signalbegriffen bei schienengebundenen Verkehrswegen, ohne dass der beanspruchte erfinderische Gegenstand auf diese Anwendung beschränkt sein soll.
Lichtsignale oder Leuchtzeichen auf der Basis von LEDs - lichtemittierende Dioden - anstelle von Glühlampen werden in vielen Bereichen, insbesondere in der Eisenbahnsignaltechnik, zunehmend angewendet. LEDs sind vergleichsweise preiswert, langlebig und lichtstark. Dabei geht der Trend in Richtung HLED - Hochstrom-LED -, deren Lichtstärke derart hoch ist, dass bereits eine einzige HLED pro Lichtpunkt genügend Licht emittiert, um die geforderte Helligkeit zu erreichen.
Bei den bisher üblichen LED-Matrizen mit einer Vielzahl von LEDs wird deren Funktionsfähigkeit durch eine Strommessung überwacht. Dabei ist gewährleistet, dass auch bei einigen de¬ fekten oder ausgefallenen LEDs über einen bestimmten Zeitraum eine Mindesthelligkeit erhalten bleibt. Bei HLEDs führt deren Ausfall dagegen schlagartig zu einem extremen Helligkeitsverlust, so dass das übliche Überwachungskonzept mittels Strom¬ messung den sicherheitstechnischen Anforderungen, insbesondere bei den Sicherheitsstufen SIL3 und SIL4 nicht mehr genügt. Die Sicherheitsstufen sind in der Cenelec-Norm EN50129 von SILO - signaltechnisch nicht sicher - bis SIL4 - signaltechnisch hochgradig sicher - definiert. Um die Funktionsfähigkeit der LEDs, insbesondere der HLEDs, zu überprüfen, wird deshalb zunehmend anstelle der Bestromung oder zusätzlich die Lichtstärke des Signals gemessen. Die gemessene Ist- Lichtstärke kann auch als Führungsgröße für einen Regelung der Lichtstärke auf einen vorgegebenen Sollwert verwendet werden .
Bei Lichtsignalen mit verschiedenfarbigen Lichtpunkten kann zusätzlich eine Ist-Stromüberwachung für jeden Lichtpunkt vorgesehen werden. Um das Lichtsignal in Sicherheitsstufe SIL3 oder SIL4 betreiben zu können, muss sichergestellt sein, dass nur der Lichtpunkt mit der vorgesehenen Farbe bestromt isst und dass die weiteren Lichtpunkte nicht stromdurchflos- sen sind.
Ein weiterer Trend in der LED-Technologie besteht darin, LEDs unterschiedlicher Farben in einer kompakten Baueinheit zusammenzufassen. Bekannt sind beispielsweise RGB-LEDs - Rot/Gelb/Blau-LEDs -, bei denen in einen LED-Gehäuse drei LEDs mit den Farben rot, gelb und blau integriert sind. Bei diesen RGB-LEDs ist es bauartbedingt nicht oder nur schwer möglich, aufgrund einer Strommessung zu ermitteln, durch welche der drei LEDs der Strom fließt. Dies ist jedoch erforderlich, um SIL3 oder SIL4 zu erreichen.
Mit RGB-LEDs ist es möglich, mehrere Farben in einem Licht- punkt zu realisieren. Dabei werden jedoch immer LEDs gleicher Farbe bestromt, so dass die Anzahl der darstellbaren Farben auch die Anzahl verschiedenfarbiger LEDs begrenzt ist. Prinzipiell kann mit RGB-LEDs jedoch eine Vielzahl von Farben, d. h. Farborten, erreicht werden, indem gleichzeitig verschie- denfarbige LEDs bestromt oder mittels PWM - Pulsweitenmodula¬ tion - angesteuert werden, wodurch sich Mischfarben ergeben. Diese Technologie wird bereits für Beleuchtungs- und Anzeige¬ zwecke verwendet. Eine Adaption auf Signalgeber ist jedoch problematisch, da wegen der sicherheitsrelevanten Bedeutung der Lichtsignale, insbesondere im Eisenbahnbetrieb, eine sig¬ naltechnisch sichere Überwachung sowohl der Lichtstärke als auch des Farbortes erforderlich ist. Der Erfindung liegt die Aufgabe zugrunde, ein mehrfarbiges
LED-Lichtsignal anzugeben, das hohen Sicherheitsanforderungen genügt, wobei auch Mischfarben signaltechnisch sicher realisierbar sein sollen. Erfindungsgemäß wird die Aufgabe dadurch gelöst, dass der
Signalgeber mindestens einen optischen Sensor zur signaltechnisch sicheren Überwachung des Farbortes und der Lichtstärke aufweist . Erst durch die sichere Erfassung der optischen Parameter ist es möglich, RGB-LEDs für Lichtsignale mit sehr hohen Sicherheitsanforderungen, insbesondere SIL3 oder SIL4, verwenden zu können. Auf farbspezifische Strommessungen, die bei RGB-LEDs überhaupt nicht oder nur mit größten Schwierigkeiten möglich sind, kann verzichtet werden. Aufgrund der Tendenz zu licht¬ stärkeren LEDs und gleichzeitig sinkender Herstellungskosten ist es möglich, anstelle mindestens dreier einzelner HLEDs unterschiedlicher Farben eine einzige RGB-LED einzusetzen. Die Farben können außerdem signaltechnisch sicher gemischt werden.
Die sichere Überwachung basiert auf der Trennung der Ansteue- rung zur Erzeugung des geforderten Farbortes und der sicheren optischen Überwachung des tatsächlich emittierten Lichts. Da- durch ergibt sich ein zweikanaliges sicheres System, wobei die Ansteuerung üblicherweise nicht sicherheitsrelevant er¬ folgen kann, das Gesamtsystem aber durch die signaltechnisch sichere Überwachung der erwarteten Funktion als signaltech- nisch sicher im Sinne von SIL3 oder SIL4 eingestuft werden kann .
Vorzugsweise sind mindestens zwei unabhängige optische Senso¬ ren vorgesehen. Dadurch ist gewährleistet, dass Änderungen in einem Messkanal offenbart werden können. Die Fehlererkennung kann zusätzlich durch ein Verfahren unterstützt werden, das die Soll-Helligkeit geringfügig im tolerierbaren Bereich er¬ höht und erniedrigt. Wenn die in den mindestens zwei Kanälen gemessene Ist-Helligkeit der Soll-Helligkeit erwartungsgemäß folgt, kann von einem fehlerfreien System ausgegangen werden. Das gleiche Prinzip kann auch durch Variation des Farbortes alternativ oder zusätzlich angewendet werden, wodurch noch höhere Anforderungen an die Sicherheit realisierbar sind. Gemäß Anspruch 2 ist vorgesehen, dass der optische Sensor mehrere farbspezifische Einzelsensoren aufweist. Der farbspe¬ zifische Einzelsensor registriert nur dann eine Helligkeit des Signals bzw. eine Lichtstärke, wenn der Lichtpunkt mit der zugeordneten Farbe angesteuert wurde. Fehler jeglicher Art werden leicht erkannt, da dann entweder keiner der farbspezifischen Einzelsensoren oder ein Einzelsensor, der nicht der gewünschten Farbe zugeordnet ist, ein Ausgangssignal er¬ zeugt . Der farbspezifische Einzelsensor kann beispielsweise mittels vorgeschalteter Farbfilter realisiert werden. Auf diese Weise kann ein Helligkeitssensor verwendet werden, der für den gesamten Farbbereich, d. h. für das gesamte sichtbare Licht¬ spektrum, ausgelegt ist. Der dem Einzelsensor vorgeschaltete Farbfilter bewirkt, dass der Einzelsensor nur auf eine bestimmte Farbe reagiert.
Der optische Sensor kann aber gemäß Anspruch 3 auch als
Breitspektrumsensor ausgebildet sein. In dem Fall muss das Ausgangssignal des optischen Sensors unter Berücksichtigung der spektralen Empfindlichkeit des Sensors hinsichtlich der spektralen Zusammensetzung ausgewertet werden. Vorzugsweise ist der Sensor gemäß Anspruch 4 über einen Sensorverstärker und einen A/D-Wandler mit einer digitalen Auswerteeinrichtung, insbesondere einem Controller, zur Ermittlung des Ist-Farbortes und der Ist-Lichtstärke verbunden. Der optische Sensor erfasst das emittierte Licht. Der Sensorver- stärker dient der Verstärkung und Kalibrierung des Ausgangssignals des optischen Sensors. Durch die Kalibrierung können physikalische Eigenschaften, beispielsweise die Empfindlich¬ keit des Sensors oder der Eingangsbereich der Auswerteeinrichtung, ausgeglichen werden.
Durch den Empfindlichkeitsabgleich können die Ausgangssignale des optischen Sensors derart normiert werden, dass direkt aus den Ausgangssignalen ein Rückschluss auf die Farbanteile mög¬ lich ist. Die Abgleichwerte folgen aus den Eigenschaften des Sensors. Vorzugsweise wird auch das Umweltverhalten, insbe¬ sondere das Temperaturverhalten, des Sensors bei der Erzeu¬ gung des Abgleichsignals berücksichtigt.
Der Abgleich kann aber auch von dem Sensorverstärker auf die Auswerteeinrichtung verlagert werden. Dabei wird ein Empfindlichkeitsprofil im Controller abgelegt. Der Sensorverstärker kann dadurch vereinfacht werden. Durch die erforderliche hö¬ here Dynamik der Eingangswerte steigen jedoch die Anforderungen an den A/D-Wandler, der dem Controller vorgeschaltet ist. Durch geeignete Wahl des Auswerteverfahrens lassen sich so¬ wohl schmalbandige Sensoren gemäß Anspruch 2 als auch breit- bandige Sensoren gemäß Anspruch 3 vorteilhaft verwenden.
Gemäß Anspruch 5 ist vorgesehen, dass die Auswerteeinrichtung ein von Umgebungsbedingungen, insbesondere der Umgebungstemperatur, abhängiges Rückmeldesignal erzeugt und an ein Stell¬ werk weiterleitet, wobei stellwerkseitig ein Ansteuersignal zur Beaufschlagung des Signalgebers erzeugt wird und Mittel zum Vergleich des Rückmeldesignals mit dem Ansteuersignal vorgesehen sind. Durch eine geeignete Verknüpfung mit Außeneinflüssen, beispielsweise Temperatur oder Umgebungslicht, können physikalische Eigenschaften von Bauelementen, z. B. deren Temperaturverhalten, oder des Einsatzortes, z. B. hinsichtlich der Umgebungslichtverhältnisse, kompensiert werden, so dass ein Rückmeldesignal an das Stellwerk gemeldet wird, welches direkt mit dem Ansteuersignal zur Beaufschlagung des Signalgebers vergleichbar ist. Im Stellwerk ist somit jeder- zeit eine zuverlässige Information über die ordnungsgemäße Funktion des LED-Lichtsignals vorhanden.
Gemäß Anspruch 6 besitzt die Auswerteeinrichtung zusätzlich Mittel zum Vergleich des Ist-Farbortes und/oder der Ist- Lichtstärke mit einem Soll-Farbort und/oder einer Soll- Lichtstärke, wobei Abweichungen, die einen Schwellwert über¬ schreiten, eine eigensichere Reaktion auslösen. Die Rückmel¬ dung an das Stellwerk kann dabei auf Basis der Überwachung oder der eigensicheren Reaktion erfolgen.
Die Auswerteeinrichtung berechnet aus dem Ansteuersignal für den Signalgeber und der spektralen Empfindlichkeit des optischen Sensors ein erwartetes Sensorsignal. Dieses Soll- Sensorsignal wird mit dem erfassten Ist-Sensorsignal vergli- chen. Die Abweichung wird bewertet, wobei ggf. eine eigensi¬ chere Reaktion, z. B. eine signaltechnisch sichere Abschaltung, erfolgt. Im Fehlerfall sorgt die Auswerteeinrichtung dafür, dass eine Bestromung nach dem Fail-Safe-Prinzip er- folgt, d. h. im Falle eines Lichtsignals für die Signalbeg¬ riffsanzeige, dass das rote Haltsignal leuchtet.
Die Erfindung wird nachfolgend anhand figürlicher Darstellungen näher erläutert. Es zeigen:
Figur 1 wesentliche Baugruppen eines erfindungsgemäßen LED- Lichtsignals,
Figur 2 eine erste Ausführungsform einer Überwachungsein- richtung gemäß Figur 1,
Figur 3 eine zweite Ausführungsform einer Überwachungseinrichtung gemäß Figur 1, Figur 4 eine dritte Ausführungsform einer Überwachungseinrichtung gemäß Figur 1,
Figur 5 eine vierte Ausführungsform einer Überwachungseinrichtung gemäß Figur 1,
Figur 6 eine fünfte Ausführungsform einer Überwachungseinrichtung gemäß Figur 1 und
Figur 7 ein Berechnungsschema bezüglich des Soll- Sensorsignals für eine Überwachungseinrichtung gemäß Figur 6.
Ein LED-Eisenbahnlichtsignal besteht im Wesentlichen aus ei¬ nem Signalgeber 1, der von einem Stellwerk 2 angesteuert 3 wird und Komponenten zur Lichtabstrahlung sowie eine Überwachungseinrichtung 4 aufweist, welche über eine Rückmeldung 5 mit dem Stellwerk 2 verbunden ist. Die von dem Stellwerk 2 an eine mit einem Temperatursensor 6 ausgestattete Ansteuereinrichtung 7 übermittelte Anforderung an den Signalgeber 1 beinhaltet Information über das geforderte Signalbild des Signalgebers 1, insbesondere hinsicht¬ lich Farbe und Lichtstärke. In der Ansteuereinrichtung 7 wird die Anforderungsmeldung mit dem Ausgangssignal des Tempera¬ tursensors 6 zur Erzeugung eines Soll-Signals 8 verknüpft, welches über einen LED-Treiber 9 in drei Ansteuerungssignale für mindestens eine RGB-LED 10 umgesetzt wird, wobei die RGB- LED 10 Einzel-LEDs 11, 12 und 13 in den Farben rot, gelb und blau aufweist.
Die Farbe des über ein optisches System 14 ausgesendeten Lichts wird durch das relative Verhältnis der drei Ansteue¬ rungssignale für die Farben rot, gelb und blau definiert. Das kann beispielsweise über eine Pulsweitenmodulation mit entsprechenden Puls/Pausen-Verhältnissen in Verbindung mit einer Variation des jeweiligen LED-Stromes erfolgen. Die Lichtstärke ergibt sich als Summe der Ansteuerungssignale. Die Überwachungseinrichtung 4 besteht im Wesentlichen aus einem optischen Sensor 15, einem Sensorverstärker 16 und einer Auswerteeinrichtung 17. Der optische Sensor 15 erfasst das Licht der RGB-LED 10, während der Sensorverstärker 16 der Verstärkung und Kalibrierung der Sensorwerte dient. Mittels Kalibrierung werden physikalische Eigenschaften der Sensorik, beispielsweise spektrale Empfindlichkeit, ausgeglichen.
Die Auswerteeinrichtung 17 bestimmt aus den Signalen des Sensorverstärkers 16 die Farbe und die Lichtstärke des ausgesen- deten Lichts. Durch eine Verknüpfung bzw. Synchronisierung mit dem von der Ansteuereinrichtung 7 erzeugten Soll-Signal 8 kann die Zuverlässigkeit bzw. die Verfügbarkeit der Überwa¬ chung erhöht werden. Die Auswerteeinrichtung 17 ist wie die Ansteuereinrichtung 7 mit einem Temperatursensor 18 versehen, so dass unter Berücksichtigung der Umgebungstemperatur die Rückmeldung 5 des Zustandes des Signalgebers 1 an das Stell¬ werk 2 erfolgen kann. Möglich ist auch eine eigensichere Reaktion des Signalgebers 1, z. B. eine Abschaltung, die in der Rückmeldung 5 enthalten sein kann.
Figur 2 zeigt eine Ausführungsform der Überwachungseinrichtung 4 mit einem optischen Sensor 15.1, der farbspezifische, d. h. spektral schmalbandige, Einzelsensoren 19 für rot, 20 für gelb und 21 für blau beinhaltet. Die drei Ausgangssignale dieses Mehrfarbsensors 15.1 werden in einem dreikanaligen Sensorverstärker 16.1 derart abgeglichen, dass aus den Signalen des Mehrfarbsensors 15.1 ein direkter Rückschluss auf die jeweiligen Farbanteile der drei Kanäle möglich ist. Die Ab- gleichwerte folgen aus den Eigenschaften des Mehrfarbsensors 15.1 und sind vorzugsweise in einem Controller der Auswerte¬ einrichtung 17 gespeichert. Wenn die Auswerteeinrichtung 17 mit Umgebungssensoren 22, beispielsweise Temperatursensoren 18, beschaltet ist, kann das Abgleichsignal 23 zusätzlich das von Umgebungsbedingungen abhängige Verhalten des Mehrfarbsensors 15.1 berücksichtigen.
Figur 3 zeigt eine Variante der Überwachungseinrichtung 4 gemäß Figur 2, bei der der Empfindlichkeitsabgleich nicht im Sensorverstärker 16.1, sondern in der Auswerteeinrichtung 17.1 stattfindet. Der Aufbau des Sensorverstärkers 16 kann dadurch vereinfacht werden, während durch höhere Dynamik der Eingangswerte der Auswerteeinrichtung 17.1 jedoch die Anforderungen an dessen vorgeschalteten A/D-Wandler steigen. Figur 4 veranschaulicht eine weitere Variante für eine Über¬ wachungseinrichtung 4 gemäß Figur 1. Zusätzlich zu der Ausführungsform gemäß Figur 2 erfolgt hier eine Verknüpfung des Messsignals mit dem von der Ansteuereinrichtung 7 abgezweigten Soll-Signal 8 Dadurch ist in der Auswerteeinrichtung 17 eine Berechnung des zu erwartenden Signals des optischen Mehrfarbsensors 15.1 möglich. Die Faktoren für die Berechnung ergeben sich aus den spektralen Empfindlichkeiten des Mehr- farbsensors 15.1, d. h. aus sensorspezifischen Eigenschaften und dem aus dem Soll-Signal 8 abgeleiteten Schaltzustand des Signalgebers 1. Auf diese Weise kann die Umrechnung des Sen¬ sorsignals in eine Farbinformation entfallen. Diese Überwachungsvariante mit Soll/Ist-Vergleich ist in Fi¬ gur 4 für eine Sensorverstärker/Auswerteeinrichtung-Baugruppe 16.1/17 nach Figur 2 und in Figur 5 für eine Sensorverstärker/Auswerteeinrichtung-Baugruppe 16/17.1 nach Figur 3 darge¬ stellt .
Bei der in Figur 6 dargestellten Ausführungsform der Überwachungseinrichtung 4 ist anstelle des Mehrfarbsensors 15.1 ein Breitspektrumsensor 15.2 vorgesehen. Dieser erzeugt ein Ausgangssignal, welches einem einkanaligen Sensorverstärker 16.2 zugeführt ist. Wie bei den Ausführungsformen der Figuren 4 und 5 berechnet die Auswerteeinrichtung 17 aus dem Soll- Signal 8 und der spektralen Empfindlichkeit des Breitspekt¬ rumsensors 15.2 ein erwartetes Sensorsignal. Dieses erwartete Signal wird mit dem erfassten Signal des Breitspektrumsensors 15.2 verglichen. Eine Abweichung zwischen Soll- und Ist- Signal wird in einem Voter 24 bewertet und der Rückmeldung 5 an das Stellwerk 2 zugeführt. Figur 7 zeigt das Prinzip für die Berechnung des Soll-Signals 8 für den Breitspektrumsensor 15.2. Die Ansteuereinrichtung 7 erzeugt für die Farben rot rt, gelb ge und blau bl PWM- Signale mit unterschiedlich langen Hell- und Dunkelphasen in- nerhalb einer konstanten Periodendauer t. Die Periodendauer t liegt dabei unterhalb der Wahrnehmungsschwelle. Durch zeit¬ lich hoch aufgelöste Abtastung des gemessenen Sensorsignals in Kombination mit synchroner Erfassung des Soll-Signals 8 ist eine ausgefallene oder geschwächte Farbe bzw. LED erkenn- bar. Bei dem Beispiel gemäß Figur 7 müssen sich bei der Überwachung ebenfalls die dargestellten Mischfarben für rot rt, gelb ge und blau bl als Summation der jeweiligen Hellphasen der einzelnen Farben innerhalb der Periodendauer t ergeben.

Claims

Patentansprüche
1. LED-Lichtsignal, insbesondere LED-Eisenbahnlichtsignal, mit einem Signalgeber (1) zur Erzeugung verschiedenfarbiger Lichtpunkte, wobei die LEDs als Mehrfarb-LEDs , insbesondere RGB-LEDs (10) - Rot ( 11 ) /Gelb ( 12 ) /Blau ( 13 ) -LEDs -, ausgebildet sind,
d a d u r c h g e k e n n z e i c h n e t , dass
der Signalgeber (1) mindestens einen optischen Sensor (15, 15.1, 15.2) zur signaltechnisch sicheren Überwachung des Farbortes und der Lichtstärke aufweist.
2. LED-Lichtsignal nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
der Sensor (15.1) mehrere farbspezifische Einzelsensoren (19, 20, 21) aufweist.
3. LED-Lichtsignal nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
der Sensor als Breitspektrumsensor (15.2) ausgebildet ist.
4. LED-Lichtsignal nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass
der Sensor (15, 15.1, 15.2) über einen Sensorverstärker (16, 16.1, 16.2) und einen A/D-Wandler mit einer digitalen Auswerteeinrichtung (17, 17.1) zur Ermittlung des Ist-Farbortes und der Ist-Lichtstärke verbunden ist.
5. LED-Lichtsignal nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t , dass
die Auswerteeinrichtung (17, 17.1) ein von Umgebungsbedingungen, insbesondere der Umgebungstemperatur, abhängiges Rückmeldesignal (5) erzeugt und an ein Stellwerk (2) weiterlei¬ tet, wobei stellwerkseitig ein Ansteuersignal (3) zur Beauf- schlagung des Signalgebers (1) erzeugt wird und Mittel zum
Vergleich des Rückmeldesignals (5) mit dem Ansteuersignal (3) vorgesehen sind.
6. LED-Lichtsignal nach Anspruch 5,
d a d u r c h g e k e n n z e i c h n e t , dass
die Auswerteeinrichtung (17, 17.1) Mittel zum Vergleich des Ist-Farbortes und/oder der Ist-Lichtstärke mit einem Soll- Farbort und/oder einer Soll-Lichtstärke aufweist, wobei Ab- weichungen, die einen Schwellwert überschreiten, eine eigensichere Reaktion auslösen.
EP11725717.0A 2010-06-29 2011-06-09 Led-lichtsignal Not-in-force EP2589264B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
HRP20180603TT HRP20180603T1 (hr) 2010-06-29 2018-04-16 Led-svjetlosni signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010026012A DE102010026012A1 (de) 2010-06-29 2010-06-29 LED-Lichtsignal
PCT/EP2011/059585 WO2012000762A1 (de) 2010-06-29 2011-06-09 Led-lichtsignal

Publications (2)

Publication Number Publication Date
EP2589264A1 true EP2589264A1 (de) 2013-05-08
EP2589264B1 EP2589264B1 (de) 2018-01-17

Family

ID=44352205

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11725717.0A Not-in-force EP2589264B1 (de) 2010-06-29 2011-06-09 Led-lichtsignal

Country Status (7)

Country Link
US (1) US8933814B2 (de)
EP (1) EP2589264B1 (de)
CA (1) CA2803968A1 (de)
DE (1) DE102010026012A1 (de)
HR (1) HRP20180603T1 (de)
RU (1) RU2578199C2 (de)
WO (1) WO2012000762A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048897A1 (de) 2018-09-06 2020-03-12 Siemens Mobility GmbH Verfahren zum betreiben eines led-signalgebers, led-signalgeber und verkehrstechnische anlage

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201803A1 (de) * 2012-02-07 2013-08-08 Siemens Aktiengesellschaft Sicherheitsrelevantes System
DE102012221972A1 (de) * 2012-11-30 2014-06-18 Siemens Aktiengesellschaft Schaltungsanordnung zur Fehleroffenbarung bei einem Lichtsignal
US9978270B2 (en) 2014-07-28 2018-05-22 Econolite Group, Inc. Self-configuring traffic signal controller
US10006616B2 (en) 2014-09-29 2018-06-26 Siemens Aktiengesellschaft Device and method for monitoring a signal emitter comprising a light-emitting diode in a light-signal system
DE102014119623A1 (de) 2014-12-23 2016-06-23 Pintsch Bamag Antriebs- Und Verkehrstechnik Gmbh LED-Lichtmodul, Signalleuchte mit einem solchen Lichtmodul sowie Verfahren zum Betreiben eines solchen Lichtmoduls
GB2566485B (en) * 2017-09-14 2020-04-29 Unipart Rail Ltd Rail signal arrangement for a rail signalling system
DE102018129359A1 (de) * 2018-11-21 2020-05-28 Thales Management & Services Deutschland Gmbh Verfahren und Vorrichtung zum Steuern und Überwachen einer Funktionseinheit

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9708861D0 (en) * 1997-04-30 1997-06-25 Signal House Limited Traffic signals
EP0935145A1 (de) 1998-02-04 1999-08-11 IMS Industrial Micro System AG Optische Signal- und Anzeigevorrichtung
US20050099319A1 (en) 2000-08-29 2005-05-12 Hutchison Michael C. Traffic signal light with integral sensors
US8100552B2 (en) * 2002-07-12 2012-01-24 Yechezkal Evan Spero Multiple light-source illuminating system
DE20220900U1 (de) 2002-11-07 2004-05-27 Schmeling, Till, Dr.rer.nat. Vorrichtung zur Realisierung zuverlässiger und energiesparender Navigationsleuchten mit LEDs
WO2006121939A2 (en) * 2005-05-09 2006-11-16 Sean Xiaolu Wang Optical signaling apparatus with precise beam control
JP3872810B1 (ja) * 2005-08-12 2007-01-24 シャープ株式会社 光源制御装置、照明装置及び液晶表示装置
GB2446410B (en) 2007-02-07 2011-07-13 Signal House Ltd Traffic signal light
US7880637B2 (en) * 2007-06-11 2011-02-01 Seegrid Corporation Low-profile signal device and method for providing color-coded signals
DE102008027632A1 (de) 2008-06-05 2009-12-17 Siemens Aktiengesellschaft Signalgeber
KR101452356B1 (ko) * 2008-07-17 2014-10-21 삼성디스플레이 주식회사 광센서 및 이를 이용한 유기전계발광표시장치
DE102010012800A1 (de) 2010-03-19 2011-09-22 Siemens Aktiengesellschaft LED-Lichtsignal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012000762A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020048897A1 (de) 2018-09-06 2020-03-12 Siemens Mobility GmbH Verfahren zum betreiben eines led-signalgebers, led-signalgeber und verkehrstechnische anlage

Also Published As

Publication number Publication date
US20130099933A1 (en) 2013-04-25
DE102010026012A1 (de) 2011-12-29
HRP20180603T1 (hr) 2018-05-18
WO2012000762A1 (de) 2012-01-05
US8933814B2 (en) 2015-01-13
RU2578199C2 (ru) 2016-03-27
CN102960061A (zh) 2013-03-06
CA2803968A1 (en) 2012-01-05
EP2589264B1 (de) 2018-01-17
RU2013103704A (ru) 2014-08-10

Similar Documents

Publication Publication Date Title
EP2589264B1 (de) Led-lichtsignal
EP2567926B1 (de) Schaltungseinrichtung, Sicherungsvorrichtung sowie Aufzugvorrichtung
WO2011086027A1 (de) Lichtsignal
EP2177078B1 (de) Vorrichtung und verfahren zur steuerung der lichtabgabe
EP2131628B1 (de) Signalgeber
EP3190075A1 (de) Überwachungseinheit für die überwachung eines aufzugs
EP1000806A2 (de) Diagnosesystem für eine LED-Leuchte in einem Kraftfahrzeug
DE102005023295A1 (de) Schaltung zur Ansteuerung und Überwachung eines Lichtsignals
EP1999001B1 (de) Einrichtung zur anschaltung und überwachung einer lichtsignalanlage im eisenbahnverkehr
EP2146551B1 (de) Ansteuerung für LED-Lichtquelle, insbesondere in der Eisenbahnbeleuchtung
EP3165053B1 (de) Vorrichtung und verfahren zum überwachen eines eine lichtemittierende diode umfassenden signalgebers einer lichtsignalanlage
EP3038433B1 (de) Led-lichtmodul, signalleuchte mit einem solchen lichtmodul sowie verfahren zum betreiben eines solchen lichtmoduls
EP3599595A1 (de) Lichtsignalanlage mit schutz vor einem mastangriff
DE3716251C2 (de)
WO2011113794A1 (de) Led-lichtsignal
EP1134119A2 (de) Einrichtung zur Überprüfung der Auswerteschaltung einer automatischen Schaltung für Beleuchtungseinrichtungen bei Fahrzeugen
DE102010043828A1 (de) LED-Lichtsignal
EP2443836A1 (de) Bildanzeigegerät und entsprechendes betriebsverfahren
DE102007030590A1 (de) Verfahren zum Betreiben einer Lichtsignalanlage und Lichtsignalanlage
CN102960061B (zh) Led光信号
DE102012019861B4 (de) Verfahren zurn Betreiben eines Signalgebers und Signalgeber
EP4016495A1 (de) Verfahren zur ansteuerungsdiagnose
DE102011001549A1 (de) Anordnung und Verfahren zum Steuern und Überwachen der Außenbeleuchtung von Schienenfahrzeugen
DE102010020461A1 (de) Verfahren und Vorrichtung zur Übertragung von Daten von einem LED-Lichtsignal an eine Empfangseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 33/08 20060101AFI20170719BHEP

Ipc: B61L 5/18 20060101ALI20170719BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

INTG Intention to grant announced

Effective date: 20170817

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 965224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011013604

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: HR

Ref legal event code: TUEP

Ref document number: P20180603

Country of ref document: HR

REG Reference to a national code

Ref country code: HR

Ref legal event code: T1PR

Ref document number: P20180603

Country of ref document: HR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180417

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180418

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180517

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011013604

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: HR

Ref legal event code: PBON

Ref document number: P20180603

Country of ref document: HR

Effective date: 20180609

26N No opposition filed

Effective date: 20181018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011013604

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20180701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180701

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180609

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180609

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190101

Ref country code: HR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180609

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 965224

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180117

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180117