EP2588914A1 - Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions - Google Patents

Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions

Info

Publication number
EP2588914A1
EP2588914A1 EP11782536.4A EP11782536A EP2588914A1 EP 2588914 A1 EP2588914 A1 EP 2588914A1 EP 11782536 A EP11782536 A EP 11782536A EP 2588914 A1 EP2588914 A1 EP 2588914A1
Authority
EP
European Patent Office
Prior art keywords
glass plates
light integrator
adhesive
cavity
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11782536.4A
Other languages
German (de)
English (en)
Inventor
Torsten Goletz
Joerg-Peter Schmidt
Jan Werschnik
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik Optical Systems GmbH
Original Assignee
Jenoptik Optical Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Optical Systems GmbH filed Critical Jenoptik Optical Systems GmbH
Publication of EP2588914A1 publication Critical patent/EP2588914A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0994Fibers, light pipes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0096Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the lights guides being of the hollow type
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/702Reflective illumination, i.e. reflective optical elements other than folding mirrors, e.g. extreme ultraviolet [EUV] illumination systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the invention relates to a light integrator, which is designed as a hollow integrator and has a rectangular light exit surface.
  • a hollow integrator is generically known from the description of the state of the art of US 2005/02] 3333 AI.
  • Light integrators find everywhere where a particularly uniform lighting is desired. This can z. In lithography, wafer inspection or laser material processing.
  • An example of devices in which light integrators are used are projectors, in particular beamer.
  • Rod or fiber integrators are used primarily for circular beam cross sections and have in comparison to the hollow integrators the disadvantage of higher light losses due to a not completely avoidable absorption by the radiation transmitting material.
  • Hollow integrators are mainly for square beam cross sections, z. B.
  • hollow integrators are basically composed of at least two components.
  • Light entry surface of the light integrator introduced light beam with an arbitrary energy distribution over the beam cross section, z. B. a Gaussian energy distribution, homogenized by multiple reflections within the light integrator.
  • the light beam leaves the light integrator via a light exit surface with a specific cross-sectional geometry, such as circular or rectangular, with an at least approximately homogeneous energy distribution over the radiation cross section, a so-called top-head distribution.
  • the aperture of the introduced light beam is equal to the aperture of the exiting light beam.
  • AI is based on a prior art, which is formed by a light integrator, which consists of four flat
  • Glass plates which together enclose a cuboid cavity.
  • the glass plates each have a mirrored inside, an outside, two long sides and two end faces.
  • the glass plates are arranged to each other so that the opposite glass plates form an inner or an outer pair of glass plates.
  • the longitudinal sides of the inner pair of glass plates lie against the inner sides of the outer pair of glass plates so that the longitudinal sides of the inner pair of glass plates protrude beyond the longitudinal sides of the outer pair of glass plates.
  • the glass plates In order to form a hollow body having a rectangular cross section deviating from a square cross section, the glass plates have a different width in pairs.
  • connection of the glass plates with each other is made via adhesive strips, which are introduced into the notches formed by the successive longitudinal sides.
  • US 2005/0213333 AI formed the glass plates as mutually paired components, by forming in the longitudinal sides of the glass plates mutually corresponding recesses and projections over which the glass plates in addition to
  • Such a hollow integrator certainly has a higher stability, however, its production is already more complicated because only instead of only the same glass plates geometrically different glass plates are required.
  • Cross section are, for the production disadvantageous, composed of different glass plates. They are also designed with the dimensioning of the glass plates for only a specific cross-sectional size of the light exit surface.
  • the invention is based on the object, a stable, easy to produce
  • Hollow integrator to create a rectangular beam cross-section which can be designed for different cross-sectional sizes.
  • Fig. Lb a light integrator in a first assembly stage
  • Fig. Lc a fully assembled light integrator
  • Fig. 2a - 2c a light integrator with different cavity widths y
  • An inventive light integrator shown in Figs. La to lc consists of four equal, cuboid glass plates 1. They each have an inner side 2 and an outer side 3, with a length 1 and a width b, and a first and a second longitudinal side 4.1, 4.2 and two end faces 5 with a height h.
  • the inner sides 2 are subdivided into a respective mirrored, optically effective surface 2.1, and an adhesive surface 2.2, which encloses a longitudinally extending groove 7, which adjoins the optically effective surface 2.1.
  • the glass plates 1 must be tested after production in a 100-control
  • Glass plates 1 that do not meet the quality criteria can be sorted out at a reasonable cost. By the glass plates 1 are executed as equal parts, a maximum number of pieces can be produced in the same manufacturing process and with the same tools.
  • the glass plates 1 are arranged to each other so that they enclose an extending over the length 1, cuboid open cavity 6, which is bounded by the optically effective surfaces 2.1 of the insides 2.
  • the inside 2 with its adhesive surface 2.2 is in each case a glass plate 1 indirectly via adhesive 9 on the first longitudinal side 4.1 of another glass plate 1 at.
  • the cavity 6 has a predetermined by the dimensioning of the glass plates 1 cavity height x and a determinable during assembly cavity width y.
  • two glass plates 1, forming an assembly are positioned and glued to one another in a first assembly step and, in a second assembly step, the two identical assemblies are positioned relative to one another. tioned and glued together.
  • two glass plates 1, forming an assembly are glued together so that the outside 3 of a glass plate 1 lies with the second longitudinal side 4.2 of another glass plate 1 in a plane.
  • the cavity width y is dependent on the direction and how far the two modules are mutually offset from each other, see, for. B. Fig. Lc.
  • the cavity width y is equal to the cavity height x, as shown in Fig. 2a.
  • the cavity width y can be reduced, see Fig. 2b, or increased, see Fig. 2c.
  • a maximum cavity width y is due to the position of the grooves 7, which to the
  • optically effective surfaces 2.1 adjoin, depending.
  • different cross-sectional sizes can be realized with the same glass plates 1 via the variation of the cavity width y.
  • the grooves 7 serve as an adhesive trap for adhesive 9, which is applied to the adhesive surfaces 2.2.
  • Glass plates 1 is pressed into the grooves 7, it is reliably prevented that the adhesive 9 reaches the optically active surfaces 2.1.
  • the coated adhesive 9 adhesive surfaces 2.2 a glass plate 1 each rest on the first longitudinal side 4.1 of another glass plate 1, the glass plates 1 are interconnected with each other via four forming adhesive strips cohesively.
  • the adhesive strips are not exposed on the outer surfaces, but encapsulated between the glass plates 1.
  • This has the advantage that the adhesive 9 is completely enclosed by a same medium, here glass, and is hardly exposed to temperature influences.
  • this has the advantage that the adhesive 9 is not exposed to direct irradiation, which can lead to embrittlement of the adhesive 9.
  • An inventive light integrator is therefore particularly advantageous for applications in the UV range.
  • the height h of the glass plates 1 are advantageously greater than half the width b and smaller than the width b.
  • the glass plates 1 each have one
  • Phase 8 which extends over the entire length 1 of the glass plates 1, in each case over the edges formed by the outer side 3 and the second longitudinal side 4.2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

L'invention concerne un intégrateur de lumière composé de quatre panneaux de verre identiques (1), parallélépipédiques, collés les uns aux autres, renfermant ensemble un espace creux ouvert parallélépipédique (6), les côtés intérieurs (2) délimitant l'espace creux étant respectivement divisés en une face miroir (2.1) optiquement active, et une face de collage (2.2) qui présente une rainure (7) s'étendant longitudinalement, agissant comme piège à colle, se joignant à la surface optiquement active (2.1). La surface de collage (2.2) d'un panneau de verre respectif (1) s'appuie indirectement, au moyen d'agent adhésif (9), contre le premier côté longitudinal (4.1) d'un autre panneau de verre (1).
EP11782536.4A 2010-07-01 2011-05-24 Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions Withdrawn EP2588914A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010026252A DE102010026252B4 (de) 2010-07-01 2010-07-01 Lichtintegrator für rechteckige Strahlquerschnitte unterschiedlicher Abmessungen
PCT/DE2011/050014 WO2012019598A1 (fr) 2010-07-01 2011-05-24 Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions

Publications (1)

Publication Number Publication Date
EP2588914A1 true EP2588914A1 (fr) 2013-05-08

Family

ID=44983396

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11782536.4A Withdrawn EP2588914A1 (fr) 2010-07-01 2011-05-24 Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions

Country Status (7)

Country Link
US (1) US20130094221A1 (fr)
EP (1) EP2588914A1 (fr)
JP (1) JP2013539056A (fr)
KR (1) KR20130138654A (fr)
CN (1) CN103026285A (fr)
DE (1) DE102010026252B4 (fr)
WO (1) WO2012019598A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013222726A (ja) * 2012-04-12 2013-10-28 Sharp Corp 発光素子モジュールおよびその製造方法、ならびに発光装置
JP6178588B2 (ja) * 2013-02-28 2017-08-09 キヤノン株式会社 照明光学系、露光装置、デバイスの製造方法及び光学素子
DE102014219112A1 (de) 2014-09-23 2016-03-24 Carl Zeiss Smt Gmbh Beleuchtungsoptik für die Projektionslithographie sowie Hohlwellenleiter-Komponente hierfür
DE102017121210A1 (de) 2017-09-13 2019-03-14 Gom Gmbh Vorrichtung für die flächenhafte optische 3D-Messtechnik
DE102020133528B3 (de) 2020-07-14 2022-01-13 Jenoptik Optical Systems Gmbh Verfahren zur Herstellung einer optischen Komponente mit innerer, beschichteter Struktur und danach hergestellte optische Komponente

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3536558A (en) * 1966-12-27 1970-10-27 Morton S Lipkins Fabrication of optical tunnels
US5072532A (en) * 1988-11-03 1991-12-17 Kelly Julia F Decorative picture frame
US5224200A (en) * 1991-11-27 1993-06-29 The United States Of America As Represented By The Department Of Energy Coherence delay augmented laser beam homogenizer
DE10103100B4 (de) * 2001-01-24 2005-10-27 Carl Zeiss Jena Gmbh Lichtmischstab mit einer Eintrittsfläche und einer Austrittsfläche und Verwendung eines solchen Lichtmischstabes bei einer Optikvorrichtung mit einer zu beleuchtenden Fläche
CN1806472A (zh) * 2003-06-16 2006-07-19 皇家飞利浦电子股份有限公司 投影系统
DE10336694A1 (de) * 2003-08-09 2005-03-03 Carl Zeiss Jena Gmbh Lichtmischstab
TW200532351A (en) 2004-03-29 2005-10-01 Coretronic Corp Mounting structure for hollow integration rod
US7164140B2 (en) * 2004-03-31 2007-01-16 Fuji Photo Film Co., Ltd. Stimulable phosphor panel and method of producing stimulable phosphor panel
US7433568B2 (en) * 2005-03-31 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Optical element and light irradiation apparatus
TW200823504A (en) * 2006-11-17 2008-06-01 Delta Electronics Inc Light tunnel structure and manufacturing method thereof
TW200827916A (en) * 2006-12-28 2008-07-01 Prodisc Technology Inc Projection system and light tunnel thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012019598A1 *

Also Published As

Publication number Publication date
US20130094221A1 (en) 2013-04-18
DE102010026252A1 (de) 2012-01-05
CN103026285A (zh) 2013-04-03
WO2012019598A4 (fr) 2012-05-18
JP2013539056A (ja) 2013-10-17
KR20130138654A (ko) 2013-12-19
DE102010026252B4 (de) 2012-08-02
WO2012019598A1 (fr) 2012-02-16

Similar Documents

Publication Publication Date Title
DE69305127T2 (de) Vorrichtung zur Synchrotronstrahlungserzeugung und deren Herstellungsverfahren
EP0923747B1 (fr) Systeme de formation de faisceau optique
EP2588914A1 (fr) Intégrateur de lumière pour des sections transversales rectangulaires de faisceaux de différentes dimensions
EP1145390B1 (fr) Systeme d'amplification laser
DE3920416A1 (de) Optisches bauteil, und verfahren zu seiner herstellung
DE19603111A1 (de) Lasersystem
EP0863588A2 (fr) Optique pour laser et laser à diode
WO2007038954A1 (fr) Dispositif d'homogeneisation de la lumiere
DE2011491C3 (de) Magnetischer Spektrograph für geladene Teilchen
DE2933570A1 (de) Verfahren zum herstellen von trennduesenelementen zur trennung gas- oder dampffoermiger gemische, insbesondere isotopengemische
EP0922981A2 (fr) Corps joints
EP0012901A1 (fr) Procédé de fabrication de coupleurs de guides d'ondes optiques
WO2009003618A1 (fr) Dispositif de formation d'un rayonnement laser
DE102020133528B3 (de) Verfahren zur Herstellung einer optischen Komponente mit innerer, beschichteter Struktur und danach hergestellte optische Komponente
EP3577514A1 (fr) Dispositif de collimation d'un faisceau lumineux, laser haute puissance et optique de focalisation ainsi que procédé de collimation d'un faisceau lumineux
DE102012018483B4 (de) Nichtpolarisierender Strahlteiler
DE68915134T2 (de) Mikrowellen-Bandpassfilter in Kammleitungsform.
EP1654568A1 (fr) Dispositif de mise en forme de faisceau
EP0556937B1 (fr) Interrupteur optique
EP1344098A1 (fr) Optique de reproduction
DE19925015C2 (de) Zweidimensionales Faserarray und Verfahren zu seiner Herstellung
EP3580492B1 (fr) Luminaire équipé de plaque de guidage de lumière
WO2006074684A1 (fr) Dispositif de refraction, procede pour la production et utilisation d'un tel dispositif de refraction, ainsi qu'ensemble laser semi-conducteur muni d'un tel dispositif de refraction
DE2511046C2 (de) Abbildungssystem für einen Wellenleiter
WO2006000195A1 (fr) Composant radio-optique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130122

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151201