EP2588642A2 - Verfahren zur oberflächenbehandlung einer vorrichtung zur ausgabe eines flüssigprodukts - Google Patents

Verfahren zur oberflächenbehandlung einer vorrichtung zur ausgabe eines flüssigprodukts

Info

Publication number
EP2588642A2
EP2588642A2 EP11741631.3A EP11741631A EP2588642A2 EP 2588642 A2 EP2588642 A2 EP 2588642A2 EP 11741631 A EP11741631 A EP 11741631A EP 2588642 A2 EP2588642 A2 EP 2588642A2
Authority
EP
European Patent Office
Prior art keywords
ions
equal
ion
treated
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11741631.3A
Other languages
English (en)
French (fr)
Inventor
Pascal Bruna
Denis Busardo
Frédéric GUERNALEC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aptar France SAS
Original Assignee
Aptar France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1055364A external-priority patent/FR2962138B1/fr
Priority claimed from FR1002868A external-priority patent/FR2962448B1/fr
Application filed by Aptar France SAS filed Critical Aptar France SAS
Publication of EP2588642A2 publication Critical patent/EP2588642A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B15/00Details of spraying plant or spraying apparatus not otherwise provided for; Accessories
    • B05B15/14Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts
    • B05B15/18Arrangements for preventing or controlling structural damage to spraying apparatus or its outlets, e.g. for breaking at desired places; Arrangements for handling or replacing damaged parts for improving resistance to wear, e.g. inserts or coatings; for indicating wear; for handling or replacing worn parts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0005Other surface treatment of glass not in the form of fibres or filaments by irradiation
    • C03C23/0055Other surface treatment of glass not in the form of fibres or filaments by irradiation by ion implantation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/123Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B11/00Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use
    • B05B11/01Single-unit hand-held apparatus in which flow of contents is produced by the muscular force of the operator at the moment of use characterised by the means producing the flow
    • B05B11/10Pump arrangements for transferring the contents from the container to a pump chamber by a sucking effect and forcing the contents out through the dispensing nozzle
    • B05B11/1001Piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D83/00Containers or packages with special means for dispensing contents
    • B65D83/14Containers or packages with special means for dispensing contents for delivery of liquid or semi-liquid contents by internal gaseous pressure, i.e. aerosol containers comprising propellant for a product delivered by a propellant
    • B65D83/44Valves specially adapted therefor; Regulating devices
    • B65D83/48Lift valves, e.g. operated by push action

Definitions

  • the present invention relates to a surface treatment method for fluid dispensing devices.
  • Dispensing devices for fluid products are well known. They generally comprise one or more reservoir (s), a dispensing member, such as a pump, a valve or a piston moving in the reservoir, and a dispensing head provided with a dispensing orifice. In some cases, lateral actuation systems are provided for actuating the dispensing member.
  • the fluid dispensing devices may also be inhalers comprising a plurality of reservoirs each containing an individual dose of powder or liquid, and means for opening and expelling said doses during successive actuations. These different devices may further comprise a counter or dose indicator for counting or indicating the number of doses dispensed or remaining to be dispensed from the dispensing device.
  • Friction control which can cause annoying noises and / or malfunctions, is a major issue.
  • the risks of dysfunction of the dispensing device can be critical, for example for crisis treatments, such as asthma.
  • These problems of friction can arise in particular at the pump piston or the valve valve, which must not especially lock. It is the same in inhalers, where the means of displacement or tank opening, as well as the dose distribution means are sensitive to friction, or in the dose counters, which must give an accurate indication to the patient. user not to deceive him about the number of doses remaining at his disposal. Any blockage due to friction is therefore potentially detrimental.
  • Existing surface treatment methods all have disadvantages.
  • the present invention aims to provide a surface treatment method that does not reproduce the aforementioned drawbacks.
  • the present invention aims to provide a surface treatment method that is effective, durable, non-polluting and simple to achieve.
  • the subject of the invention is in particular a method for treating a polymer part with multicharged and multi-energy ions belonging to the list consisting of helium (He), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), this polymer part forming part of a fluid dispensing device, in particular pharmaceutical.
  • multicharged and multi-energy ions belonging to the list consisting of helium (He), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), this polymer part forming part of a fluid dispensing device, in particular pharmaceutical.
  • the antistatic effect a lowering of the surface resistivity for a few weeks or a few months may be sufficient.
  • the dissipation of electrostatic charges it is obtained with dissipative materials and conductors which prevent discharges and dissipate the loads resulting from high speed movements.
  • the conductivity can be obtained by different ways:
  • non-permanent additives such as fatty amine esters or quaternary amines. These substances, incorporated into a polymer matrix, migrate to the surface and react with the humidity of the air. By forming a wet film on the surface, they decrease the surface resistivity to about 10 14 ⁇ / ⁇ .
  • Adhesion is an important phenomenon in the case of polymers which results for example in the bonding of active product on a surface.
  • polymer parts In addition to bonding problems, polymer parts often have to operate in more or less aggressive chemical environments, with ambient humidity, ambient oxygen, etc., which can lead to an increase in their electrical insulating properties by oxidation.
  • Some polymers are loaded with chemical agents that protect against UV rays and oxidation.
  • the release of these chemical agents to the outside has the effect of accelerating the surface oxidation which in turn reinforces the insulating nature of the polymer.
  • the aim of the invention is to reduce the aforementioned drawbacks and in particular to allow a sharp reduction in the surface resistivity of a solid polymer part while retaining in the mass its elastic properties and avoiding the use of chemical agents which are detrimental to health.
  • the subject of the invention is therefore a method for treating at least one surface of a massive piece of polymer with helium ions, characterized in that X + and X 2+ multi-energy ions are simultaneously implanted.
  • the inventors have for example found that the simultaneous presence of He + and He 2+ ions makes it possible to very significantly improve the surface antistatic properties of the polymers compared with known treatments where only He + or He 2 ions are used. + are implanted. They were able to show that a significant improvement was obtained for RHe less than or equal to 100, for example less than or equal to 20.
  • the invention makes it possible to reduce the surface resistivity of a piece of solid polymer, and / or to eliminate the bonding of the dust or even to reduce the polarization of the surface by eliminating strongly polarized chemical groups such as OH, COOH. These functional groups can induce Van der Walls forces which have the effect of sticking ambient chemical molecules to the surface of the polymer.
  • the invention also makes it possible to increase the chemical stability of the polymer by creating, for example, a permeation barrier.
  • the latter can slow the propagation of ambient oxygen in the polymer, and / or delay the diffusion of chemical protective agents contained in the polymer to the outside, and / or inhibit the release of toxic agents contained in the polymer. outwards.
  • it makes it possible to eliminate the addition of chemical agents or fillers and to replace them with a physical process applicable to any type of polymer that is inexpensive in terms of material and energy consumption.
  • solid means a polymer part produced by mechanical or physical transformation of a block of material, for example by extrusion, molding or any other technique adapted to transform a polymer block.
  • PET Polyethylene terephthalate
  • the process is low energy, inexpensive and allows its use in an industrial setting without any environmental impact.
  • the treatment of a polymer part is performed by simultaneous implantation of multicharged multi-energy ions.
  • the latter are obtained in particular by extracting with single and single extraction voltage mono- and multi-charged ions created in the plasma chamber of an electron cyclotron resonance ion source (source RCE).
  • source RCE electron cyclotron resonance ion source
  • Each ion produced by said source has an energy that is proportional to its state of charge. It follows that ions with the highest charge state, therefore of highest energy, are implanted in the polymer room at greater depths.
  • An implementation with an ECR source is fast and inexpensive since it does not require a high extraction voltage of the ion source. Indeed, to increase the implantation energy of an ion, it is economically preferable to increase its state of charge rather than increase its extraction voltage.
  • the source is an electron cyclotron resonance source producing multi-energy ions which are implanted in the room at a temperature below 50 ° C and the implantation of ions of the implantation beam. is performed simultaneously at a depth controlled by the extraction voltage of the source.
  • the ions excite during their passage the electrons of the polymer causing splits of covalent bonds which recombine immediately to generate, by a mechanism said crosslinking, a high density of covalent chemical bonds mainly consisting of carbons.
  • Lighter elements such as hydrogen and oxygen are removed from the polymer during degassing. This densification in carbon-rich covalent bonds has the effect of superficially increasing conductivity and reducing or even eliminating the superficial polar groupings at the origin of the Van der Walls forces. at the origin of the collage.
  • the crosslinking process is all the more effective as the ion is light.
  • N nitrogen
  • O oxygen
  • Ne neon
  • Ne argon
  • Kr krypton
  • Xe xenon
  • a preferred mode consists, for example, in combining:
  • the extraction voltage of the source enabling implantation of the multi-energy ions He + and He 2+ is between 10 and 400 kV, for example greater than or equal to 20 kV and / or less than or equal to 100 kV;
  • the dose of multi-energy ion He + and He 2+ is between 5.10 14 and 10 18 ions / cm 2 , for example greater than or equal to 10 15 ions / cm 2 and / or less than or equal to 5.10 17 ions / cm 2 , or even greater than or equal to 5.10 15 ions / cm 2 and / or less than or equal to 10 17 ions / cm 2 ;
  • the variation of a characteristic property of the evolution of the surface of a solid piece of polymer is determined, for example the surface resistivity of the polymer of a polymeric material representative of that of the piece to be treated; based on doses of multi-energy ions He + and He 2+ so as to determine a range of ion doses where the variation of the characteristic property chosen is advantageous and evolves differentially in three consecutive zones of doses of ions forming said ion dose domain, with an evolution in the first substantially linear zone and reversible over a period of less than one month, a change in the second zone substantially linear and stable over a period greater than one month finally an evolution in the third zone constant and stable over a period greater than one month and where we choose the dose of ions muiti energy He + and He 2+ in the third zone ion doses to treat the massive piece of polymer; reversible evolution (first zone) means that the resistivity decreases and then rises to recover its original value. This phenomenon is due to the persistence of free radicals
  • Parameters of the source and displacement of the surface of the polymer part to be treated are adjusted so that the surface speed of treatment of the surface of the polymer part to be treated is between 0.5 cm 2 / s and 1000 cm 2 / s, for example greater than or equal to 1 cm 2 / s and / or less than or equal to 100 cm 2 / s;
  • parameters of the source and displacement of the surface of the polymer part to be treated are adjusted so that the dose of implanted helium is between 5.10 14 and 10 18 ions / cm 2 , for example greater than or equal to at 5.10 15 ions / cm 2 and / or less than or equal to 10 17 ions / cm 2 ;
  • parameters of the source and displacement of the surface of the polymer part to be treated are adjusted so that the depth of penetration of the helium on the surface of the treated polymer part is between 0.05 and 3 ⁇ , for example greater than or equal to 0.1 ⁇ and / or less than or equal to 2 ⁇ ;
  • the parameters of the source and the displacement of the surface of the polymer part to be treated are adjusted so that the temperature of the surface of the polymer part being treated is less than or equal to 100.degree. example less than or equal to 50 ° C;
  • the polymer part is for example a profiled strip, and said piece scrolls in a processing device, for example at a speed between 5 m / min and 100 m / min; for example, the polymer part is a profiled strip which scrolls longitudinally;
  • the helium implantation of the surface of the workpiece is carried out by means of a plurality of He + and He 2+ multi-energy ion beams produced by a plurality of ion sources; for example, the ion sources are arranged along a direction of movement of the workpiece; preferably the sources are spaced so that the distance between two ion beams is sufficient to allow the part to cool between successive ion implantation; said sources produce ion beams whose diameter is adapted to the width of the tracks to be treated.
  • the polymer of the part is chosen from polycarbonates, polyethylenes, polyethylene terephthalates, polyamides, polymethylacrylates and polypropylenes.
  • the list is not exhaustive. Other types of polymer are conceivable given the generic nature of the crosslinking process.
  • the invention also relates to a part where the thickness where the helium is implanted is greater than or equal to 50 nm, for example greater than or equal to 200 nm and whose surface resistivity p, is less than or equal to 10 14 ⁇ / ⁇ , for example less than or equal to 10 9 ⁇ / ⁇ , or even less than or equal to 10 5 ⁇ / ⁇ .
  • surface resistivity refer to the IEC 60093 standard.
  • the subject of the present invention is therefore a method for surface treatment of a fluid product dispensing device, said method comprising the step of modifying by ion implantation, by means of multicharged and multi-energy ion beams, at least a surface to be treated of at least a part of said device, said modified surface to be treated having anti-friction properties, said multicharged ions being selected from helium (He), nitrogen (N), oxygen (O), neon (Ne), argon (Ar), krypton ( Kr), xenon (Xe), the ion implantation being carried out at a depth of 0 to 3 ⁇ .
  • FIG. 1 represents an example of helium implantation distribution according to the invention in a polycarbonate
  • FIG. 2 shows the scales according to different standards describing the electrostatic properties of a material
  • FIG. 3 represents the variation of the surface resistivity of the surface of a polycarbonate sample treated according to the invention, as a function of time, for a plurality of doses of helium; the surface resistivity was measured according to the IEC 60093 standard, by implementing an electrode consisting of a disc of diameter d, surrounded by a ring of internal diameter D where D is greater than d;
  • FIG. 4 represents the variation of the surface resistivity of the surface of a polycarbonate sample treated according to the invention, as a function of time, for three types of He, N, Ar ions in a plurality of doses; surface resistivity was measured according to IEC 60093; and
  • FIG. 5 represents the variation of the surface resistivity of the surface of a polycarbonate sample treated according to the invention, as a function of time, for a plurality of nitrogen doses but according to two beam displacement speeds; the surface resistivity was measured according to the IEC 60093 standard.
  • the present invention provides for the use of a method similar to that described in document WO 2005/085491, which concerns an ion implantation process, and more particularly the use of a multicharged multi-energy ion beam in order to to structurally modify the surface of metallic materials at depths around the ⁇ to give them particular physical properties.
  • This implantation method has in particular been used to treat parts made of aluminum alloy which are used as molds for series production of plastic parts.
  • the surfaces to be treated may comprise a synthetic material, such as polyethylene (PE) and / or polypropylene (PP) and / or polyvinyl chloride (PVC) and / or polytetrafluoroethylene (PTFE). They can also be metal, glass, or elastomer.
  • PE polyethylene
  • PP polypropylene
  • PVC polyvinyl chloride
  • PTFE polytetrafluoroethylene
  • the method consists in using one or more ion sources, such as an electron cyclotron resonance source, referred to as ECR source.
  • ECR source can deliver an initial beam of multi-energy ions, for example having a total current of about 10 mA (all loads combined) at an extraction voltage that may vary from 20 kV to 200 kV.
  • the RCE source emits the ion beam towards adjustment means which focus and adjust the initial beam emitted by the ECR source into an ion implantation beam that strikes a workpiece.
  • the ions can be selected from helium, boron, carbon, nitrogen, oxygen, neon, argon, krypton and xenon.
  • the maximum temperature of the workpiece varies depending on its nature.
  • the typical implantation depth is between 0 and 3 ⁇ , and depends not only on the surface to be treated, but also on the properties that one wishes to improve.
  • RCE ions The specificity of a source of RCE ions lies notably in the fact that it delivers mono- and multicharged ions, which makes it possible to simultaneously implant multi-energy ions with the same extraction voltage. It is thus possible to obtain simultaneously, over the entire thickness treated, a better distributed implantation profile. This improves the quality of the surface treatment.
  • the process is carried out in a vacuum chamber using a vacuum pump.
  • This vacuum is intended in particular to prevent the beam from being intercepted by residual gases and to prevent contamination of the surface of the part by these same gases during implantation.
  • the adjustment means mentioned above can comprise, from the ECR source to the part to be treated, the following elements:
  • a mass spectrometer able to filter the ions according to their charge and their mass.
  • a spectrometer is however optional if a pure gas is injected, for example a pure nitrogen gas (N2). It is then possible to recover all the mono- and multicharged ions produced by the source to obtain a multi-energy ion beam.
  • N2 pure nitrogen gas
  • one or more lenses to give the ion beam a predetermined shape, for example cylindrical, with a predetermined radius.
  • an intensity transformer for continuously measuring the intensity of the ion beam without intercepting it.
  • One of the functions of this instrument is to detect any interruption of the ion beam and to allow the recording of beam intensity variations during the treatment.
  • a shutter which may for example be a Faraday cage, for interrupting the trajectory of the ions at certain times, for example during a displacement without treatment of the part.
  • the workpiece is movable relative to the ECR source.
  • the piece can for example be mounted on a movable support whose movement can be controlled by a numerically controlled machine.
  • the displacement of the workpiece is calculated according to the radius of the beam, the external and internal contours of the zones to be treated, the constant or variable speed of movement as a function of the angle of the beam relative to the surface and the number previously completed.
  • One possible implementation of the treatment method is as follows.
  • the workpiece is fixed on a suitable support in an enclosure, then the enclosure is closed and a high vacuum is introduced by means of a vacuum pump.
  • a vacuum pump As soon as the vacuum conditions are reached, the production and adjustment of the ion beam is carried out.
  • the shutter When said beam is adjusted, the shutter is raised and the numerically controlled machine is actuated, which then performs the displacement in position and speed of the workpiece in front of the beam in one or more passes.
  • the shutter is lowered to cut the beam, the production of the beam is stopped, the vacuum is broken by opening the chamber to the ambient air, the cooling circuit is eventually stopped and take the treated part out of the enclosure.
  • the ratio RHe is less than or equal to 100, for example less than 20, and preferably greater than 1.
  • the He + and He2 + ions are advantageously produced simultaneously by an ECR source.
  • the extraction voltage of the source allowing implantation of the multi-energy ions He + and He + 2 can be between 10 and 400 kV, for example greater than or equal to 20 kV and / or less than or equal to 100 kV.
  • the multi-energy ion He + and He2 + dose is between 1014 and 1018 ions / cm 2 , for example greater than or equal to 1015 ions / cm 2 and / or less than or equal to 1017 ions / cm 2 , or even greater or equal to 1015 ions / cm 2 and / or less than or equal to 1016 ions / cm 2 .
  • the implantation depth is advantageously between 0.05 and 3 ⁇ , for example between 0.1 and 2 ⁇ .
  • the temperature of the elastomeric surface being treated is advantageously less than 100 ° C., preferably less than 50 ° C.
  • different ion implantations are performed on the same surface to be treated, to give several properties to this surface to be treated.
  • the fluid product may be likely to stick to a surface with which it is in contact, which may in particular have a detrimental effect on the reproducibility of the dispensed dose.
  • the invention advantageously provides for modifying the surface to prevent sticking of the fluid product on the support surface.
  • certain materials are likely to interact with the fluid product in the event of contact, which can to be harmful for the fluid product.
  • the invention advantageously provides for modifying the surface to be treated in order to prevent or limit the interactions between the fluid product and the surface to be treated.
  • These additional surface treatments can be applied during successive ion implantation steps. It should be noted that the order of these successive steps of ion implantation may be arbitrary. Alternatively, the different properties could also be granted to the same surface to be treated in a single ion implantation step.
  • the method of the invention is non-polluting, especially since it does not require chemicals. It is carried out dry, which avoids the relatively long drying periods of the liquid treatment processes. It does not require a sterile atmosphere outside the vacuum chamber, and so it can be done at any desired location.
  • a particular advantage of this method is that it can be integrated into the assembly line of the fluid dispenser device, and operate continuously in this chain. This integration of the treatment process with the production tool simplifies and accelerates the manufacturing and assembly process as a whole, and therefore positively impacts its cost.
  • the present invention is applicable to multidose devices, such as pump or valve devices mounted on a reservoir and operated for the successive delivery of doses. It also applies to multi-dose devices comprising a plurality of individual reservoirs each containing a dose of fluid, such as pre-dosed powder inhalers. It also applies to single-dose or bidose devices, in which a piston moves directly into a reservoir each time it is actuated.
  • the invention is particularly applicable to nasal or oral spray devices, ophthalmic dispensing devices and syringe-type needle devices.
  • FIGS 1 to 5 illustrate advantageous embodiments of the invention.
  • FIG. 1 represents a schematic example of helium implantation distribution as a function of the depth according to the invention, in a polycarbonate.
  • Curve 101 corresponds to the distribution of He + and curve 102 corresponds to that of He 2+ . It can be estimated that for energies of 100 keV, He 2+ travels an average distance of about 800 nm for an average ionization energy of 10 eV / Angstrom. For energies of 50 keV, He + travels an average distance of about 500 nm for an average ionization energy of 4 eV / Angstrom. The ionization energy of an ion is related to its crosslinking power.
  • FIG. 2 represents, according to the DOD HDBK 263 standard, the resistivity values qualifying the electrostatic properties of a material.
  • a polymer has insulating properties for surface resistivity values greater than 10 14 ⁇ / ⁇ (ZONE I), antistatic properties for surface resistivity values of between 10 14 ⁇ / ⁇ and 10 9 ⁇ / ⁇ (zone A) .
  • the electrostatic dissipative properties appear for surface resistivity values between 10 5 ⁇ / ⁇ and 10 9 ⁇ / ⁇ (zone D) and conductive properties for values below 10 5 ⁇ / ⁇ (zone C)
  • the resistivity measurement was carried out according to IEC 60093.
  • the resistivity measurement technique used does not make it possible to measure resistivities greater than 10 15 ⁇ / ⁇ corresponding to the zone N, it saturates at 10 15 ⁇ / ⁇ .
  • the abscissa axis corresponds to the time separating the treatment of the sample to the measurement of its surface resistivity.
  • the y-axis corresponds to the measurement of the surface resistivity expressed in ⁇ / ⁇ .
  • a first zone is distinguished for doses less than or equal to 10 15 ions / cm 2 , the surface resistivity decreases for less than a month by about 3 orders of magnitude (passing 1, 5.10 16 ⁇ / ⁇ to 5.10 12 ⁇ / ⁇ ) before returning to its original value around 1, 5.10 16 ⁇ / ⁇ (curve 1).
  • the antistatic properties are ephemeral, the free radicals still present recombine with the oxygen and the ambient air.
  • the antistatic properties (curve 2 and 3) strengthen to become dissipative of electrostatic charges (curve 4). For these doses, the resistivities remain constant over more than 140 days.
  • the beam has a diameter of 15 mm and an intensity of 0.225 mA, the extraction voltage is about 35 kV.
  • the abscissa represents dose in ions per unit area expressed in October 15 ions / cm 2.
  • the ordinate axis represents the surface resistivity expressed in ⁇ / ⁇ .
  • the resistivity measurement was carried out according to the standard IEC 60093.
  • the heavier ions are the most effective for reducing the surface resistivity, the PC treated with nitrogen at a surface resistivity at least 10 times lower than that of the PC treated with helium, the PC treated with argon at a surface resistivity at least 10 times lower than that of the PC treated with nitrogen and 100 times lower than that of the PC treated with 'helium.
  • the inventors advocate the use of even more ions heavy like xenon to further reduce the resistivity of polycarbonate.
  • the beam has a diameter of 15 mm and an intensity of 0.150 mA, the extraction voltage is about 35 kV.
  • the x-axis represents the ion dose per unit area expressed
  • the inventors have deduced from this experiment that for any polymer treated with a beam of known diameter and power, there is a minimum speed of displacement of the beam causing a maximum reduction of the surface resistivity of the polymer without risk of degradation of the polymer under the effect of heat produced.
  • the thermal degradation of the polymer has for signature a significant degassing followed by a rise in pressure at the extraction system of the source RCE. This rise in pressure results in electrical breakdowns.
  • the extraction system is used to extract ions from the plasma from the ECR source to form the beam.
  • the inventors recommend a test step which consists in progressively reducing the speed of the beam while retaining the other characteristics:
  • the polymer thermally degrades under the effect of heat, when the rise in pressure measured by a gauge located both in the extraction system and in the treatment chamber, makes a jump of 10 "5 mbar in a few seconds The tests must be stopped immediately in order to keep only the beam displacement speed of the previous test.This jump of 10 -5 mbar in a few seconds or even less is the sign of a thermal degradation of the polymer.
  • the treatment of at least one surface of a solid polymer part by implantation of helium ions He + and He 2+ has been carried out with He + and He 2+ multi-energy ions. , produced simultaneously by an ECR source.
  • the treated polymers include the following: polypropylene (PP), polymethylacrilate (PMMA).
  • the surface antistatic properties of a polymer are significantly improved from a dose greater than 5 ⁇ 10 15 ions / cm 2 , which represents a treatment speed of about 15 cm 2 / s for a Helium beam consisting of 9 mA of He + ion and 1 mA of He 2+ ions.
  • the simultaneous implantation of helium ions can be done at varying depths, depending on the needs and the shape of the piece to be treated. These depths depend in particular on the implantation energies of the ions of the implantation beam; they may for example vary from 0.1 to about 3 ⁇ for a polymer. For applications where one looks for properties such as anti-gluing, for example, one could be content with a thickness less than one micron, reducing the processing times accordingly.
  • the implantation conditions of the He + and He 2+ ions are chosen so that the polymer part retains its elastic mass properties by maintaining the workpiece at treatment temperatures of less than 50 ° C.
  • This result can be achieved in particular for a beam with a diameter of 4 mm delivering a total intensity of 60 microamperes with an extraction voltage of 40 kV, moving at 40 mm / s on displacement amplitudes of 100 mm.
  • This beam has a power per unit area of 20 W / cm 2 .
  • the beam can have a diameter of 40 mm to maintain a pfd of 20 W / cm 2 .
  • the invention is not limited to these embodiments and should be interpreted in a nonlimiting manner, and encompassing the treatment of any type of polymer.
  • the method according to the invention is not limited to the use of an ECR source, and even if it may be thought that other sources would be less advantageous, it is possible to implement the method according to the invention with mono-ion sources or other multi-ion sources, as long as these sources are configured so as to allow simultaneous implantation of multi-energy ions belonging to the list consisting of helium (He), nitrogen, (N) oxygen (O), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Physical Vapour Deposition (AREA)
  • Materials For Medical Uses (AREA)
EP11741631.3A 2010-07-02 2011-07-01 Verfahren zur oberflächenbehandlung einer vorrichtung zur ausgabe eines flüssigprodukts Withdrawn EP2588642A2 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1055364A FR2962138B1 (fr) 2010-07-02 2010-07-02 Procede de traitement de surface d'un dispositif de distribution de produit fluide.
FR1002868A FR2962448B1 (fr) 2010-07-08 2010-07-08 Procede de traitement d'une surface d'une piece en polymere par des ions multicharges et multi-energies
PCT/FR2011/051552 WO2012001330A2 (fr) 2010-07-02 2011-07-01 Procede de traitement de surface d'un dispositif de distribution de produit fluide.

Publications (1)

Publication Number Publication Date
EP2588642A2 true EP2588642A2 (de) 2013-05-08

Family

ID=45402483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11741631.3A Withdrawn EP2588642A2 (de) 2010-07-02 2011-07-01 Verfahren zur oberflächenbehandlung einer vorrichtung zur ausgabe eines flüssigprodukts

Country Status (5)

Country Link
US (1) US20130171334A1 (de)
EP (1) EP2588642A2 (de)
JP (1) JP2013533035A (de)
CN (1) CN103108981B (de)
WO (1) WO2012001330A2 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2942801B1 (fr) * 2009-03-05 2012-03-23 Quertech Ingenierie Procede de traitement d'une piece en elastomere par des ions multi-energies he+ et he2+ pour diminuer le frottement
GB201202128D0 (en) 2012-02-08 2012-03-21 Univ Leeds Novel material
FR3002240B1 (fr) * 2013-02-15 2015-07-10 Quertech Ingenierie Procede de traitement par un faisceau d'ions pour produire des materiaux en verre antireflet durable
FR3003857B1 (fr) * 2013-03-28 2015-04-03 Quertech Procede de traitement par un faisceau d'ions pour produire des materiaux en verre superhydrophiles.
DE102017114959A1 (de) * 2017-07-05 2019-01-10 Schott Ag Glaszylinder für eine Kolben-Zylinder-Anordnung mit verminderter Reibung und Verfahren zur Behandlung eines Glaszylinders für eine Kolben-Zylinder-Anordnung
IT201800005958A1 (it) * 2018-06-01 2019-12-01 Dispositivo a lama d'aria
US11617716B2 (en) 2021-06-10 2023-04-04 Belhaven BioPharma Inc. Dry powder formulations of epinephrine and associated methods
US12005185B2 (en) 2021-12-17 2024-06-11 Belhaven BioPharma Inc. Medical counter measures including dry powder formulations and associated methods

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5223309A (en) * 1991-07-10 1993-06-29 Spire Corporation Ion implantation of silicone rubber
GB9807558D0 (en) * 1998-04-09 1998-06-10 Bason Neil P An indicator device
FR2813593B1 (fr) * 2000-09-07 2002-12-06 Valois Sa Dispositif de distribution de produit fluide de type multidose
FR2876390A1 (fr) * 2004-02-04 2006-04-14 Frederic Guernalec Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede
FR2896515B1 (fr) * 2004-02-04 2008-06-13 Quertech Ingenierie Sarl Procede de nitruration par implantation ionique d'une piece metallique et dispositif de mise en oeuvre du procede
FR2879625B1 (fr) * 2004-02-04 2007-04-27 Guernalec Frederic Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif
WO2006117625A2 (en) * 2005-04-29 2006-11-09 Samkov Alexander V Equipment and method for ion implantation processing of medical devices
US20070235427A1 (en) * 2006-04-04 2007-10-11 Sakhrani Vinay G Apparatus and method for treating a workpiece with ionizing gas plasma
US7767726B2 (en) * 2007-05-11 2010-08-03 Boston Scientific Scimed, Inc. Medical devices having crosslinked polymeric surfaces
GB0710475D0 (en) * 2007-06-01 2007-07-11 Innovatek Medical Ltd Elastomeric sales
FR2917753B1 (fr) * 2007-06-20 2011-05-06 Quertech Ingenierie Dispositif multi-sources rce pour le traitement de pieces par implantation ionique et procede le mettant en oeuvre
FR2942801B1 (fr) * 2009-03-05 2012-03-23 Quertech Ingenierie Procede de traitement d'une piece en elastomere par des ions multi-energies he+ et he2+ pour diminuer le frottement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012001330A2 *

Also Published As

Publication number Publication date
JP2013533035A (ja) 2013-08-22
WO2012001330A2 (fr) 2012-01-05
CN103108981A (zh) 2013-05-15
CN103108981B (zh) 2015-11-25
US20130171334A1 (en) 2013-07-04
WO2012001330A3 (fr) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2012001330A2 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide.
EP2588640A2 (de) Verfahren zur behandlung der oberfläche einer vorrichtung zur ausgabe eines flüssigprodukts
WO2012001328A2 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide
EP2588639B1 (de) Verfahren zur oberflächenbearbeitung einer vorrichtung zur ausgabe eines fluidprodukts
Jang et al. Mechanical and electrical properties of micron-thick nitrogen-doped tetrahedral amorphous carbon coatings
CA2554921A1 (fr) Dispositif de nitruration par implantation ionique d'une piece en alliage d'aluminium et procede mettant en oeuvre un tel dispositif
Walton et al. Study of plasma‐polyethylene interactions using electron beam‐generated plasmas produced in Ar/SF6 mixtures
WO2008050071A2 (fr) Couche d ' alliage de nickel-titane comprenant des atomes d ' azote inseres, procede d ' implantation
FR2962736A1 (fr) Procede de greffage en couche profonde dans un materiau organique par un faisceau d'ions
EP2588638B1 (de) Verfahren zur behandlung einer elastomeroberfläche einer vorrichtung zur ausgabe eines flüssigprodukts
CA2364884C (fr) Procede de traitement de surface des polymeres
Ding et al. The effect of working pressure on the chemical bond structure and hydrophobic properties of PET surface treated by N ion beams bombardment
EP2591139A1 (de) Verfahren zur behandlung einer oberfläche eines polymerteils mit multienergetischen ionen
Hassan et al. Irradiation influence on Mylar and Makrofol induced by argon ions in a plasma immersion ion implantation system
Grigoriev et al. Effect of energy fluence and Ti/W co-deposition on the structural, mechanical and tribological characteristics of diamond-like carbon coatings obtained by pulsed Nd: YAG laser deposition on a steel substrate
Ra et al. Effect of chemically reactive species on properties of ZnO nanowires exposed to oxygen and hydrogen plasma
FR2962136A1 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide.
Leitel et al. Broadband antireflective structures on pmma by plasma treatment
EP2076617B1 (de) Schicht aus kupfer oder kupfer mit geringem legierungsanteil mit integrierten stickstoffatomen und entsprechendes bearbeitungsverfahren
FR2948127A1 (fr) Procede d'incrustation par un faisceau d'ions d'une couche metallique deposee sur un substrat
FR2962138A1 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide.
FR2962135A1 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide.
FR2962139A1 (fr) Procede de traitement de surface d'un dispositif de distribution de produit fluide.
WO2003046248A2 (fr) Procede perfectionne de revetement d'un support
Rangel et al. Effect of ion irradiation on the structural properties and hardness of aC: H: Si: O: F films

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130131

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160906