EP2587132B1 - Reflektor für Halbleiterlichtquellen - Google Patents

Reflektor für Halbleiterlichtquellen Download PDF

Info

Publication number
EP2587132B1
EP2587132B1 EP12189928.0A EP12189928A EP2587132B1 EP 2587132 B1 EP2587132 B1 EP 2587132B1 EP 12189928 A EP12189928 A EP 12189928A EP 2587132 B1 EP2587132 B1 EP 2587132B1
Authority
EP
European Patent Office
Prior art keywords
reflector
curvature
light source
facets
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12189928.0A
Other languages
English (en)
French (fr)
Other versions
EP2587132A3 (de
EP2587132A2 (de
Inventor
Horst Rudolph
Heinrich Dudel
Uli Langen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trilux GmbH and Co KG
Original Assignee
Trilux GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trilux GmbH and Co KG filed Critical Trilux GmbH and Co KG
Publication of EP2587132A2 publication Critical patent/EP2587132A2/de
Publication of EP2587132A3 publication Critical patent/EP2587132A3/de
Application granted granted Critical
Publication of EP2587132B1 publication Critical patent/EP2587132B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • F21V7/048Optical design with facets structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a reflector for semiconductor light sources, in particular for a downlight, according to the preamble of claim 1.
  • Generic reflectors are conventionally used in modules for semiconductor light sources, in particular for illuminants such as downlight emitters, in order to increase the quality of the light emitted by corresponding light sources.
  • a light source for example, LED modules or high-pressure discharge lamps are used.
  • the light emitted by semiconductor light sources has to be processed so that illumination that is pleasant for the user can be generated by the light sources in which the semiconductor light sources are used.
  • both the light color and the luminance distribution in semiconductor light sources are usually inhomogeneous over the aperture angle of the light beam emitted by the light source.
  • a light mixing of the emitted light from the semiconductor light source must be done so that a homogeneous light beam is generated with which a pleasant lighting can be achieved. It is usually desirable that a bundled beam is emitted from the illuminant for illumination, with a beam depending on the field of application a certain width can be advantageous.
  • a conventional measure to achieve a light mixing of the light emitted by a semiconductor light source in a light source and thus to produce a homogeneous beam is that on the semiconductor light source, an optical medium, such as a light-diffusing or microfacetted hemisphere is placed. Also, scattering disks are partially arranged in the vicinity of the semiconductor light source in order to achieve such a light mixing in the lighting means.
  • all of these measures have the disadvantage that high efficiency losses occur through additional absorption in the corresponding optical media to ensure the light scattering or light mixing.
  • reflectors are used in conventional bulbs with semiconductor light sources, with which a light mixing is to be achieved.
  • Such reflectors conventionally have an inner space bounded by a reflector wall, within which a light source point is provided, on which a center of an emitting surface of one or more light sources can be arranged in the reflector.
  • the reflector has a longitudinal direction and a transverse direction, wherein the light source point is arranged in the inner space such that the reflector wall circumferentially surrounds the light source point in the transverse direction.
  • the reflector has a light exit side, on which the interior is open and thus no reflector wall is arranged.
  • the reflector wall has a recess through which a light source arranged in the reflector can be electrically contacted and fixed.
  • the light mixing takes place in conventional reflectors, characterized in that facets are arranged on the inside of the reflector wall facing the interior, which have a have reflective and curved in the longitudinal direction and / or in the transverse direction surface.
  • facets are arranged on the inside of the reflector wall facing the interior, which have a have reflective and curved in the longitudinal direction and / or in the transverse direction surface.
  • metal or metallized plastic is used in the production of the facets.
  • the facets are designed, for example, in the manner of spherical sections, so that they have a circular section as a cross section.
  • the cross-section of the facets may, for example, also have the shape of a polygon.
  • the essential characteristic of the facets used in conventional reflectors is that the facets have mutually inclined surface sections, so that a scattering of the incident light on the facet surface, in particular an expansion of the light beam, which occurs on the facet surface is ensured.
  • a radius of curvature can thus be assigned: the radius of curvature, for example, corresponds to the radius of the corresponding circle in the case of facets with a circular segment-shaped cross-section, and in the case of facets with a polygonal or polygon-segment-shaped cross-section to the radius of the circle enveloping the polygon.
  • the invention has the object to provide a reflector for semiconductor light sources, by which the problems described above in conventional reflectors are at least partially resolved.
  • the invention proposes a reflector for semiconductor light sources with the features of claim 1.
  • the radius of curvature of the facets associated with the curvature in the longitudinal direction of the reflector varies, averaged over all facets, whose Surface center point has the same distance from the light source point, depending on this facet spacing.
  • the curvature can also go to 0, whereby the radius of curvature can also strive towards infinity.
  • the light rays From the emitting surface of the light source, the light rays at least partially reach the surfaces of the facets of the reflector wall.
  • the angle ⁇ which a light beam, which comes from the emitting surface of the light source to a facet, forms with the longitudinal axis of the reflector, in each case depends on the facet spacing. Furthermore, this angle ⁇ , especially for reflectors with non-rotationally symmetrical cross-section, also of the longitudinal distance of the facet, d. H. depending on the distance in the longitudinal direction of the facet to the emitting surface of the light source.
  • the incident on the facet surface light beam is then reflected by the facet surface, wherein the angle ⁇ , the reflected light beam with the
  • the longitudinal axis of the reflector forms, depends on the angle ⁇ and the inclination of the facet surface to the longitudinal axis of the reflector at the point where the light beam on the facet surface and is reflected by it depends.
  • the angle ⁇ which the light beam reflected by the facet forms with the longitudinal axis of the reflector is highly dependent on the longitudinal position on the facet surface in which the light rays strike the facet surface.
  • Two light beams which strike the facet surface with a small radius of curvature at approximately the same angle ⁇ to the longitudinal axis of the reflector and impinge on the facet surface in the longitudinal direction are thus reflected at significantly different angles ⁇ from the facet surface.
  • the radius of curvature can be chosen to be positive or negative, the facet thus convex or concave, and the radius of curvature can be changed in its amount.
  • This also includes a completely flat facet surface as the limit of a surface with a radius of curvature going towards infinity.
  • an expansion of the light beam may just be desirable or not desirable.
  • An expansion is desired as long as a mixing of the light in the reflector is to be achieved, without thereby the opening angle of the emerging from the light exit side of the reflector beam is too large. Accordingly, a Widening of the light beam on the facet surface may then be undesirable if the widening causes an excessively large opening angle of the radiation beam.
  • a reflector according to the invention may be provided so that a light beam emitted from the emitting surface of the light source toward the facet is reflected at the facet surface and then emerges from the reflector at the light exit side.
  • the angle ⁇ which the beam reflected by the facet surface forms with the longitudinal axis of the reflector is also the angle to the longitudinal axis of the reflector with which the beam emerges from the reflector. Accordingly, the angle ⁇ for all light rays emerging from the reflector must be less than half of the desired opening angle of the illuminant comprising the reflector.
  • the angle ⁇ can be effectively predetermined.
  • a small radius of curvature of the facet can be selected in order to realize high light mixing in the reflector, this being limited by the fact that the radius of curvature in FIG Depending on the facet spacing is varied.
  • the aperture angle of the beam emerging from the reflector can thus be adjusted.
  • the radius of curvature of the facets associated with the curvature in the transverse direction, averaged over all the facets whose center of the surface has the same distance in the transverse direction from the axis extending through the light source point in the longitudinal direction varies as a function of this transverse spacing.
  • the corresponding variation of the curvature in the transverse direction of the facets can ensure that the best possible mixing of light in the reflector is realized with respect to a reflection in the transverse direction at the same time as possible adjustable opening angle of emerging from the reflector beam.
  • the transverse distance refers to the distance from the surface center of a facet to the longitudinal axis of the reflector, which passes through the center of the light-emitting surface of the light source in the reflector.
  • a stronger or weaker widening of a light beam incident on the facet in the transverse direction may be desired in order to realize the best possible light mixing in the reflector with simultaneously adjustable opening angle.
  • the variation of the radius of curvature in the transverse direction of the facets can be effected analogously to the above-described variation of the radius of curvature in the longitudinal direction of the facets.
  • the radius of curvature of the facets associated with the curvature in the longitudinal direction increases with increasing facet spacing.
  • an expansion of the opening angle can effectively be limited to a predetermined opening angle within a predetermined opening angle ⁇ of the beam emerging from the reflector.
  • the curvature radius of the facet associated with the curvature in the transverse direction decreases with increasing transverse spacing.
  • the reflector wall can be rotationally symmetrical about the longitudinal axis of the reflector.
  • a symmetrical illumination by the beam emerging from the reflector and a homogeneous mixing of the light in the beam may be favored.
  • the manufacture of the reflector and the facets contained therein can be carried out in a particularly simple and cost-effective manner.
  • the reflector wall can also have a polygonal cross-section. This can be advantageous, for example, for the mixing of light in the reflector, since in a longitudinal plane of the reflector facets each have a different facet distance to the light source point, so that, for example, the radius of curvature in the transverse direction and / or the longitudinal direction of the facets can be varied in a longitudinal plane, without thereby the opening angle is increased, what for Light mixing may be advantageous.
  • all facets having the same facet spacing may have substantially the same radius of curvature with respect to the longitudinal bulge. This can be particularly advantageous for uniform light mixing and light intensity distribution in the beam emerging from the reflector.
  • all facets having the same transverse distance may have the same radius of curvature with respect to the longitudinal curvature. This can be advantageous for a particularly homogeneous light mixing and light intensity distribution in the beam emerging from the reflector.
  • a light source may be arranged in the reflector so that the center of the emitting surface of a light source coincides with the light source point.
  • the coincidence of the center of the emitting surface of the light source with the light source point enables a particularly precise realization of the light mixing with a simultaneously predetermined opening angle of the emerging from the reflector beam.
  • the invention further relates to a radiator comprising a reflector according to the invention as described above.
  • the radiator further comprises an electronic ballast and a light source, which is arranged in the reflector by means of a provided on the recess in the Reflektorumwandung mounting device so that the Center of the emitting surface of the light source coincides with the light source point.
  • the light source is electrically coupled to the electronic ballast.
  • FIG. 1 is shown in a schematic diagram of the longitudinal section of a reflector 1 according to the invention.
  • the light source 6 is arranged in the recess 7 of the reflector 1 so that the center of the emitting surface 8 of the light source 6 coincides with the light source point 5 of the reflector 1.
  • the reflector wall 2 is rotationally symmetrical in the illustrated embodiment and has a circular cross section in each of its transverse planes as a cross section.
  • the light-emitting surface 8 of the light source 6 faces the interior 3 of the reflector 1.
  • no facets are shown on the inside of the reflector wall 2 facing the interior 3.
  • the light exit side 4 of the reflector 1 of the light emitting surface 8 of the light source 6 is opposite.
  • FIG. 2 is the opening angle ⁇ of the light distribution in a beam emerging from a reflector 1 according to the invention at the light exit side 4, shown. It is in FIG. 2 the light intensity is shown as a function of the opening angle.
  • FIG. 2 shows that from the reflector 1 according to the invention a beam emerges at the light exit side 4, which has a uniformly high light intensity over almost the entire opening angle ⁇ .
  • FIGS. 3 to 5 the principle of a reflector 1 according to the invention is explained in more detail.
  • a reflector 1 whose conversion 2 has a rotationally symmetrical cross section, and which is bell-shaped, wherein the reflector wall 2 is open at the light exit side 4 over the entire transverse extent.
  • facets 9 are arranged.
  • a facet 9 is shown on the inside of the reflector wall 2.
  • the radius of curvature of the illustrated facet 9 is approximately infinite, so that the facet 9 is formed as a flat facet 9.
  • the reflector 1 comprises FIG. 3 a light source 6, which has a diameter D and is also rotationally symmetrical.
  • the center of the emitting surface 8 of the light source 6 coincides with the light source point 5.
  • the angle ⁇ is illustrated, which forms a light beam, which extends from the light source point 5 to the surface center of the facet 9, with the longitudinal axis of the reflector 1.
  • the facet spacing corresponding to the distance between the surface center of the facet 9 and the light source point 5 is shown in FIG FIG. 3 marked with r.
  • the angle ⁇ is defined, which defines the acute angle, the two beams form each other, which extend from a respective opposite transverse end of the emitting surface 8 from the surface center of the facet 9.
  • the dependence of the radius of curvature r L in the longitudinal direction of the facet 9 is determined by the distance r as follows: It is assumed that a beam with the opening angle ⁇ should emerge from the reflector 1 according to the invention.
  • facets 9 with a curvature angle ⁇ which corresponds to a radius of curvature r L , are provided on the reflector wall 2.
  • the curvature of the facet 9 refers to FIG. 4 on the longitudinal direction. It can be assumed that the angle of curvature ⁇ should not be greater than ⁇ - ⁇ if the opening angle of the beam emerging from the reflector 1 should be limited to the angle ⁇ .
  • the angle of curvature ⁇ at a fixed ⁇ of ⁇ depends.
  • the angle ⁇ is as out FIG. 3 , depending on the facet spacing r.
  • the angle ⁇ over the equation ⁇ 2 ⁇ arctan D ⁇ cos ⁇ 2 ⁇ r be approximated.
  • the angle of curvature ⁇ in the longitudinal direction of the facet 9 can be disengaged via simple geometrical calculations as a function of the facet spacing r.
  • the radius of curvature r L of the facet 9 in the longitudinal direction can also be determined as a function of the facet spacing r. If ⁇ is greater than ⁇ , curvature of the facet 9 in the longitudinal direction is to be avoided, and thus a radius of curvature r L to be provided at infinity, so that the surface of the facet 9 is designed to be flat.
  • FIG. 5 It is shown how the radius of curvature r Q of the facet 9 in the transverse direction can be determined as an example depending on the transverse distance x between the surface center of the facet 9 and the light source point 5.
  • FIG. 5 the circular cross section of one of the described reflector 1 according to the invention is shown.
  • the opening angle ⁇ of the beam emerging from the reflector 1 according to the invention should not be increased by the curvature of the facet 9 in the transverse direction.
  • the curvature angle ⁇ in the transverse direction of the facet 9 should not be greater than ⁇ - ⁇ , where ⁇ is the angle which two beams form with each other, from respective opposite transverse ends of the emitting surface 8 of the light source 6 to the surface center of the facet 9 are lost.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

  • Die Erfindung betrifft einen Reflektor für Halbleiterlichtquellen, insbesondere für ein Downlight, nach dem Oberbegriff von Anspruch 1.
  • Gattungsgemäße Reflektoren werden herkömmlich in Modulen für Halbleiterlichtquellen, insbesondere für Leuchtmittel wie etwa Downlight-Strahler, eingesetzt, um die Qualität des von entsprechenden Lichtquellen emittierten Lichts zu erhöhen. Als Lichtquelle werden beispielsweise LED-Module oder Hochdruckentladungslampen verwendet. Es ist ein bekanntes Problem, dass das von Halbleiterlichtquellen emittierte Licht aufbereitet werden muss, damit durch die Leuchtmittel, in denen die Halbleiterlichtquellen eingesetzt werden, eine für den Benutzer angenehme Ausleuchtung erzeugt werden kann. Beispielsweise ist sowohl die Lichtfarbe als auch die Leuchtdichteverteilung bei Halbleiterlichtquellen über den Öffnungswinkel des von der Lichtquelle emittierten Lichtstrahls üblicherweise inhomogen. Deshalb muss in Leuchtmitteln, wie beispielweise einem Downlight-Strahler, eine Lichtdurchmischung des von der Halbleiterlichtquelle emittierten Lichts erfolgen, damit ein homogener Lichtstrahl erzeugt wird, mit dem eine angenehme Beleuchtung erreicht werden kann. Dabei ist es zumeist wünschenswert, dass von dem Leuchtmittel ein gebündelter Strahl zur Beleuchtung emittiert wird, wobei je nach Anwendungsgebiet ein Strahl einer bestimmten Breite vorteilhaft sein kann.
  • Eine herkömmliche Maßnahme, eine Lichtdurchmischung des von einer Halbleiterlichtquelle emittierten Lichts in einem Leuchtmittel zu erreichen und somit ein homogenes Strahlenbündel zu erzeugen, besteht darin, dass auf die Halbleiterlichtquelle ein optisches Medium, wie etwa eine lichtstreuende oder microfacettierte Halbkugel aufgesetzt wird. Auch werden teilweise in der Nähe der Halbleiterlichtquelle Streuscheiben angeordnet, um eine solche Lichtdurchmischung in dem Leuchtmittel zu erreichen. Sämtliche dieser Maßnahmen haben jedoch den Nachteil, dass hohe Wirkungsgradverluste durch zusätzliche Absorption in den entsprechenden optischen Medien zur Gewährleistung der Lichtstreuung bzw. Lichtdurchmischung auftreten.
  • Weiterhin kommen in herkömmlichen Leuchtmitteln mit Halbleiterlichtquellen Reflektoren zum Einsatz, mit denen eine Lichtdurchmischung erreicht werden soll. Solche Reflektoren weisen herkömmlicherweise einen durch eine Reflektorumwandung begrenzten Innenraum auf, innerhalb dessen ein Lichtquellenpunkt vorgesehen ist, an dem ein Mittelpunkt einer emittierenden Fläche einer oder mehrerer Lichtquellen in dem Reflektor anordenbar ist. Der Reflektor weist eine Längsrichtung und eine Querrichtung auf, wobei der Lichtquellenpunkt so in dem Innenraum angeordnet ist, dass die Reflektorumwandung den Lichtquellenpunkt in Querrichtung umfänglich umgibt. An einem Längsende weist der Reflektor eine Lichtaustrittsseite auf, an der der Innenraum offen ist und somit keine Reflektorumwandung angeordnet ist. Weiterhin weist die Reflektorumwandung eine Aussparung auf, durch die eine in dem Reflektor angeordnete Lichtquelle elektrisch kontaktierbar und fixierbar ist.
  • Die Lichtdurchmischung erfolgt in herkömmlichen Reflektoren dadurch, dass an der dem Innenraum zugewandten Innenseite der Reflektorumwandung Facetten angeordnet sind, die eine reflektierende und in Längsrichtung und/oder in Querrichtung gewölbte Oberfläche aufweisen. Üblicherweise wird bei der Herstellung der Facetten Metall oder metallisierter Kunststoff eingesetzt. In herkömmlichen Reflektoren sind die Facetten beispielweise nach Art von Kugelabschnitten gestaltet, so dass sie einen Kreisabschnitt als Querschnitt aufweisen. Der Querschnitt der Facetten kann jedoch beispielsweise auch die Form eines Polygons aufweisen. Dabei besteht die wesentliche Eigenschaft der in herkömmlichen Reflektoren eingesetzten Facetten darin, dass die Facetten zueinander geneigte Oberflächenabschnitte aufweisen, so dass eine Streuung des auf die Facettenoberfläche auftreffenden Lichts, insbesondere eine Aufweitung des Lichtstrahls, der auf die Facettenoberfläche auftritt, sichergestellt ist. Solchen Facetten ist somit ein Krümmungsradius zuordenbar: Der Krümmungsradius entspricht beispielsweise bei Facetten mit kreisabschnittförmigem Querschnitt dem Radius des entsprechenden Kreises, bei Facetten mit polygonförmigem bzw. polygonabschnittförmigem Querschnitt dem Radius des Kreises, der das Polygon umhüllt. Ferner ist aus dem nächstliegenden Stand der Technik EP 1 632 713 A1 bekannt, einen Reflektor so auszugestalten, dass er Facetten aufweist, deren gewölbte Oberfläche einen Krümmungsradius in Längsrichtung und einen Krümmungsradius in Querrichtung aufweist, wobei die Wölbung der Facetten, d. h. die Krümmungsradien, zum Erreichen einer bestimmten Abstrahlcharakteristik des Reflektors gezielt eingestellt werden können, wobei beispielsweise auch eine Variation der Krümmungsradien in Abhängigkeit von dem Abstand der Facette zum Scheitelpunkt des Reflektors vorgesehen sein kann. Um einen möglichst hohen Wirkungsgrad und damit eine möglichst hohe Lichtausbeute von der Lichtquelle für die Beleuchtung zu erlangen, werden in herkömmlichen Reflektoren üblicherweise Facetten mit hochreflektierender Oberfläche eingesetzt, so dass die Lichtabsorption an den Facetten vernachlässigbar ist. Es hat sich jedoch herausgestellt, dass die Lichtdurchmischung in herkömmlichen Reflektoren unzureichend ist. Entsprechend sind solche Reflektoren nur unzureichend dafür geeignet, einen sehr homogenen Lichtstrahl ohne farbige Artefakte oder störende Hell-Dunkel-Bereiche zur Beleuchtung bereitzustellen. Dem wird zwar teilweise in herkömmlichen Reflektoren dadurch Rechnung getragen, dass die Facetten Oberflächen aufweisen, an denen eine diffuse Reflektion von Licht erfolgt, so dass die Lichtdurchmischung verbessert ist. Allerdings wird durch die diffuse Reflektion ein beachtlicher Teil des Lichts in den Reflektor zurückgestreut, was eine geringere Systemeffizienz zur Folge hat.
  • Darüber hinaus hat sich in herkömmlichen Reflektoren als problematisch herausgestellt, dass die Lichtdurchmischung in dem Reflektor gerade durch die Aufweitung des von der Halbleiterlichtquelle emittierten Lichtstrahls über die Streuung an den Facettenoberflächen erreicht wird. Entsprechend wird an der Lichtaustrittsseite des Reflektors Licht in einem sehr großen Öffnungswinkel emittiert, so dass mit herkömmlichen Reflektoren nur unzureichend ein Strahlenbündel einer bestimmten Breite bzw. mit einem bestimmten Öffnungswinkel erzeugbar ist.
  • Ausgehend von dem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, einen Reflektor für Halbleiterlichtquellen bereitzustellen, durch den die oben beschriebenen Probleme bei herkömmlichen Reflektoren zumindest teilweise behoben werden.
  • Als eine Lösung der genannten technischen Aufgabe schlägt die Erfindung einen Reflektor für Halbleiterlichtquellen mit den Merkmalen von Anspruch 1 vor.
  • Erfindungsgemäß variiert der der Wölbung in Längsrichtung des Reflektors zugeordnete Krümmungsradius der Facetten, gemittelt über sämtliche Facetten, deren Oberflächenmittelpunkt denselben Abstand von dem Lichtquellenpunkt hat, in Abhängigkeit von diesem Facettenabstand. Die Krümmung kann auch gegen 0 gehen, womit der Krümmungsradius auch gegen Unendlich streben kann.
  • Die erfindungsgemäße Ausgestaltung des Reflektors ermöglicht es, eine möglichst gute Lichtdurchmischung in dem Reflektor und gleichzeitig einen möglichst kleinen Öffnungswinkel des von dem Reflektor an der Lichtaustrittsseite emittierten Lichts zu realisieren. Aus den erfindungsgemäßen Merkmalen des Reflektors ergibt sich dies wie folgt:
    • Die Lichtquelle ist an dem Lichtquellenpunkt in dem Reflektor angeordnet und weist eine emittierende Fläche auf, von der aus Licht in den Innenraum des Reflektors emittiert wird. Die Fläche der Lichtquelle kann beispielsweise rechteckig, polygonförmig oder kreisförmig sein. Die Reflektorumwandung mit den Facetten umgibt die Lichtquelle in Querrichtung umfänglich und weist darüber hinaus eine Längserstreckung auf. Die Reflektorumwandung kann dabei beispielsweise einen rotationssymmetrischen Querschnitt aufweisen, es ist jedoch auch ein Querschnitt in anderer Form, wie beispielsweise quadratisch oder polygonförmig, möglich. Insbesondere kann der Querschnitt des Reflektors auch entlang der Längsrichtung des Reflektors variieren. Auch die Öffnung an der Lichtaustrittsseite des Reflektors kann beispielsweise rotationssymmetrisch, quadratisch oder polygonförmig sein.
  • Von der emittierenden Fläche der Lichtquelle gelangen die Lichtstrahlen zumindest teilweise an die Oberflächen der Facetten der Reflektorumwandung. Der Winkel τ, den ein Lichtstrahl, der von der emittierenden Fläche der Lichtquelle zu einer Facette gelangt, mit der Längsachse des Reflektors bildet, hängt in jedem Fall von dem Facettenabstand ab. Weiterhin kann dieser Winkel τ, insbesondere bei Reflektoren mit nichtrotationssymmetrischem Querschnitt, auch von dem Längsabstand der Facette, d. h. dem Abstand in Längsrichtung von der Facette zu der emittierenden Fläche der Lichtquelle, abhängen.
  • Der auf die Facettenoberfläche auftreffende Lichtstrahl wird dann von der Facettenoberfläche reflektiert, wobei der Winkel ψ, den der reflektierte Lichtstrahl mit der Längsachse des Reflektors bildet, von dem Winkel τ und der Neigung der Facettenoberfläche zur Längsachse des Reflektors an dem Punkt, an dem Lichtstrahl auf die Facettenoberfläche trifft und von ihr reflektiert wird, abhängt.
  • Bei Facetten mit einem kleinen Krümmungsradius in Längsrichtung, d. h. mit einer starken Oberflächenkrümmung in Längsrichtung, ist der Winkel ψ, den der von der Facette reflektierte Lichtstrahl mit der Längsachse des Reflektors bildet, stark von der Position in Längsrichtung auf der Facettenoberfläche abhängig, in der die Lichtstrahlen auf die Facettenoberfläche treffen. Zwei Lichtstrahlen, die mit annährend demselben Winkel τ zur Längsachse des Reflektors auf eine solche Facette mit kleinem Krümmungsradius treffen und hierbei in Längsrichtung voneinander beabstandet auf die Facettenoberfläche treffen, werden somit mit deutlich unterschiedlichen Winkeln ψ von der Facettenoberfläche reflektiert.
  • Daraus ergibt sich, dass über den Krümmungsradius der Facette die Aufweitung des Lichtstrahls, der auf die Facette auftrifft, beeinflusst werden kann. Der Krümmungsradius kann dabei positiv oder negativ gewählt werden, die Facette somit konvex oder konkav gewölbt sein, und der Krümmungsradius kann in seinem Betrag verändert werden. Davon umfasst ist auch eine vollkommen ebene Facettenoberfläche als Grenzwert einer Fläche mit gegen unendlich gehendem Krümmungsradius darstellt.
  • In Abhängigkeit von dem Winkel τ den ein Lichtstrahl zur Längsachse des Reflektors bildet, kann eine Aufweitung des Lichtstrahls jedoch gerade erwünscht oder nicht erwünscht sein. Eine Aufweitung ist solange erwünscht, wie eine Lichtdurchmischung in dem Reflektor erreicht werden soll, ohne dass dadurch der Öffnungswinkel des aus der Lichtaustrittsseite des Reflektors austretenden Strahlenbündels zu groß wird. Entsprechend kann eine Aufweitung des Lichtstrahls an der Facettenoberfläche dann unerwünscht sein, wenn durch die Aufweitung ein zu großer Öffnungswinkel des Strahlenbündels verursacht wird.
  • Beispielsweise kann eine erfindungsgemäßer Reflektor so vorgesehen sein, dass ein Lichtstrahl, der von der emittierenden Fläche der Lichtquelle in Richtung zur Facette emittiert wird, an der Facettenoberfläche reflektiert wird und dann an der Lichtaustrittsseite aus dem Reflektor auftritt. In diesem einfachen Beispiel ist der Winkel ψ, den der von der Facettenoberfläche reflektierte Strahl mit der Längsachse des Reflektors bildet, auch der Winkel zur Längsachse des Reflektors, mit dem der Strahl aus dem Reflektor austritt. Entsprechend muss der Winkel ψ für sämtliche Lichtstrahlen, die aus dem Reflektor austreten, kleiner als die Hälfte des gewünschten Öffnungswinkels des den Reflektor umfassenden Leuchtmittels sein. Durch die erfindungsgemäße Ausgestaltung des Reflektors kann der Winkel ψ effektiv vorbestimmt werden. Entsprechend kann in dem erfindungsgemäßen Reflektor in Abhängigkeit von dem Facettenabstand ein kleiner Krümmungsradius der Facette gewählt werden, um eine hohe Lichtdurchmischung in dem Reflektor zu realisieren, wobei dies dadurch beschränkt ist, dass zur Einhaltung eines bestimmten Öffnungswinkels des aus dem Reflektor austretenden Strahlenbündels der Krümmungsradius in Abhängigkeit von dem Facettenabstand variiert wird. Für die Einstellung des Krümmungsradius der Facetten in Abhängigkeit von dem Facettenabstand lässt sich somit der Öffnungswinkel des aus dem Reflektor austretenden Strahlenbündels einstellen.
  • Es kann sinnvoll sein, insbesondere bei Reflektoren mit rotationssymmetrischem Querschnitt, dass sämtliche Facetten mit demselben Facettenabstand einen identischen Krümmungsradius aufweisen. Es kann jedoch auch sinnvoll sein, insbesondere bei Reflektoren mit nichtrotationssymmetrischem Querschnitt, dass der Krümmungsradius von Facetten, die jeweils denselben Facettenabstand aufweisen, untereinander variiert. Je nach Geometrie des Reflektors, wie etwa Reflektorquerschnitt, Reflektorlängsschnitt und Facettengröße, kann durch eine Variation des Krümmungsradius bei Facetten mit demselben Facettenabstand jeweils eine möglichst gute Lichtdurchmischung bei einer möglichst präzisen Einstellung eines Öffnungswinkels möglich sein. Der Mittelwert des Krümmungsradius in Längsrichtung der Facetten mit demselben Facettenabstand variiert dabei in dem erfindungsgemäßen Reflektor in Abhängigkeit von dem Facettenabstand.
  • Erfindungsgemäß variiert der der Wölbung in Querrichtung zugeordnete Krümmungsradius der Facetten, gemittelt über sämtliche Facetten, deren Oberflächenmittelpunkt denselben Abstand in Querrichtung von der durch den Lichtquellenpunkt in Längsrichtung verlaufenden Achse hat, in Abhängigkeit von diesem Querabstand. Durch die entsprechende Variation der Wölbung in Querrichtung der Facetten kann sichergestellt sein, dass auch in Bezug auf eine Reflektion in Querrichtung an den Facetten eine möglichst gute Lichtdurchmischung in dem Reflektor bei gleichzeitig möglichst gut einstellbarem Öffnungswinkel des aus dem Reflektor austretenden Strahlenbündels realisiert ist. Der Querabstand bezieht sich dabei auf den Abstand von dem Oberflächenmittelpunkt einer Facette zu der Längsachse des Reflektors, die durch den Mittelpunkt der lichtemittierenden Fläche der Lichtquelle in dem Reflektor verläuft. In Abhängigkeit von dem Querabstand der Facette kann eine stärkere oder schwächere Aufweitung eines auf die Facette auftreffenden Lichtstrahls in Querrichtung erwünscht sein, um eine möglichst gute Lichtdurchmischung im Reflektor bei gleichzeitig einstellbarem Öffnungswinkel zu realisieren. Die Variation des Krümmungsradius in Querrichtung der Facetten kann dabei analog zu der oben beschriebenen Variation des Krümmungsradius in Längsrichtung der Facetten erfolgen.
  • Erfindungsgemäß nimmt der der Wölbung in Längsrichtung zugeordnete Krümmungsradius der Facetten mit zunehmendem Facettenabstand zu. Dadurch kann bei bestimmten Geometrien des Reflektors eine Aufweitung des Öffnungswinkels effektiv innerhalb eines vorgegebenen Öffnungswinkels δ des aus dem Reflektor austretenden Strahlenbündels effektiv auf einen vorgegebenen Öffnungswinkel beschränkt sein.
  • Erfindungsgemäß nimmt der der Wölbung in Querrichtung zugeordnete Krümmungsradius der Facette mit zunehmendem Querabstand ab. Dadurch kann bei bestimmten Reflektorgeometrien eine Lichtdurchmischung durch entsprechende Wölbungen der Facetten in Querrichtung gewährleistet sein, während gleichzeitig der Öffnungswinkel des aus dem Reflektor austretenden Strahls effektiv begrenzt sein kann.
  • Außerdem kann die Reflektorumwandung rotationssymmetrisch um die Längsachse des Reflektors sein. Dadurch kann eine symmetrische Beleuchtung durch das aus dem Reflektor austretende Strahlenbündel sowie eine homogene Lichtdurchmischung in dem Strahlenbündel begünstigt sein. Zudem kann wegen der Rotationssymmetrie die Herstellung des Reflektors und der darin enthaltenen Facetten besonders einfach und kostengünstig erfolgen.
  • Die Reflektorumwandung kann auch einen polygonförmigen Querschnitt aufweisen. Dies kann beispielsweise für die Lichtdurchmischung in dem Reflektor vorteilhaft sein, da dabei in einer Längsebene des Reflektors Facetten jeweils einen unterschiedlichen Facettenabstand zum Lichtquellenpunkt aufweisen, so dass beispielsweise der Krümmungsradius in Querrichtung und/oder Längsrichtung der Facetten in einer Längsebene variiert werden kann, ohne dass dadurch der Öffnungswinkel vergrößert wird, was für Lichtdurchmischung vorteilhaft sein kann.
  • Darüber hinaus können sämtliche Facetten mit demselben Facettenabstand im Wesentlichen denselben Krümmungsradius in Bezug auf die Wölbung in Längsrichtung aufweisen. Dies kann für eine gleichmäßige Lichtdurchmischung und Lichtstärkeverteilung in dem aus dem Reflektor austretenden Strahlenbündel besonders vorteilhaft sein.
  • Auch können sämtliche Facetten mit demselben Querabstand denselben Krümmungsradius in Bezug auf die Wölbung in Längsrichtung aufweisen. Dies kann für eine besonders homogene Lichtdurchmischung und Lichtstärkeverteilung in dem aus dem Reflektor austretenden Strahl vorteilhaft sein.
  • Weiterhin kann in dem Reflektor eine Lichtquelle so angeordnet sein, dass der Mittelpunkt der emittierenden Fläche einer Lichtquelle mit dem Lichtquellenpunkt zusammenfällt. Das Zusammenfallen des Mittelpunkts der emittierenden Fläche der Lichtquelle mit dem Lichtquellenpunkt ermöglicht eine besonders präzise Realisierung der Lichtdurchmischung bei gleichzeitig vorbestimmtem Öffnungswinkel des aus dem Reflektor austretenden Strahlenbündels. Denn sowohl Facettenabstand als auch Querabstand sind in Bezug auf den Lichtquellenpunkt in dem erfindungsgemäßen Reflektor berechnet, so dass die Vorteile des erfindungsgemäßen Reflektors, die sich daraus ergeben, dass der Krümmungsradius der Facetten in Abhängigkeit von dem Facettenabstand und möglicherweise auch von dem Querabstand eingestellt wird, besonders gut zur Geltung kommen.
  • Die Erfindung betrifft weiterhin einen Strahler, der einen wie oben beschriebenen erfindungsgemäßen Reflektor umfasst. Der Strahler umfasst weiterhin ein elektronisches Vorschaltgerät sowie eine Lichtquelle, die in dem Reflektor mittels einer an der Aussparung in der Reflektorumwandung vorgesehene Montagevorrichtung so angeordnet ist, dass der Mittelpunkt der emittierenden Fläche der Lichtquelle mit dem Lichtquellenpunkt zusammenfällt. Die Lichtquelle ist dabei mit dem elektronischen Vorschaltgerät elektrisch gekoppelt. Durch den erfindungsgemäßen Strahler ist ein Leuchtmittel bereitgestellt, das besonders gut zur Beleuchtung geeignet ist, da wegen der erfolgten Lichtdurchmischung in dem Reflektor in dem Strahler durch den Strahler ein angenehmes Licht erzeugt wird und weiterhin durch den Strahler ein Strahlenbündel mit einem gewünschten Öffnungswinkel bereitgestellt wird.
  • Die Erfindung wird im folgenden durch die Beschreibung von Ausführungsformen unter Bezugnahme auf die beiliegenden Figuren näher erläutert.
  • Es zeigt:
  • Figur 1:
    eine Prinzipdarstellung eines erfindungsgemäßen Reflektors, in dem eine Lichtquelle angeordnet ist;
    Figur 2:
    eine schematische Darstellung des Öffnungswinkels δ der Lichtverteilung eines aus einem erfindungsgemäßen Reflektor ausgetretenen Strahlenbündels;
    Figur 3:
    eine Prinzipdarstellung eines Ausschnitts eines erfindungsgemäßen Reflektors;
    Figur 4:
    eine Prinzipdarstellung eines Ausschnitts eines erfindungsgemäßen Reflektors mit gewölbter Facette;
    Figur 5:
    eine Prinzipdarstellung eines Querschnitts eines erfindungsgemäßen Reflektors mit Lichtquelle.
  • In Figur 1 ist in einer Prinzipdarstellung der Längsschnitt eines erfindungsgemäßen Reflektors 1 dargestellt. In dem dargestellten Ausführungsbeispiel ist die Lichtquelle 6 in der Aussparung 7 des Reflektors 1 so angeordnet, dass der Mittelpunkt der emittierenden Fläche 8 der Lichtquelle 6 mit dem Lichtquellenpunkt 5 des Reflektors 1 zusammenfällt. Die Reflektorumwandung 2 ist in dem dargestellten Ausführungsbeispiel rotationssymmetrisch ausgebildet und weist als Querschnitt in jeder ihrer Querebenen einen kreisförmigen Querschnitt auf. Die lichtemittierende Fläche 8 der Lichtquelle 6 weist zum Innenraum 3 des Reflektors 1. In Figur 1 sind der Übersichtlichkeit halber keine Facetten an der dem Innenraum 3 zugewandten Innenseite der Reflektorumwandung 2 dargestellt. In dem dargestellten Ausführungsbeispiel liegt die Lichtaustrittsseite 4 des Reflektors 1 der lichtemittierenden Fläche 8 der Lichtquelle 6 gegenüber.
  • In Figur 2 ist der Öffnungswinkel δ der Lichtverteilung in einem Strahlenbündel, das von einem erfindungsgemäßen Reflektor 1 an der Lichtaustrittsseite 4 austritt, dargestellt. Dabei ist in Figur 2 die Lichtintensität in Abhängigkeit von dem Öffnungswinkel dargestellt. Aus Figur 2 geht hervor, dass aus dem erfindungsgemäßen Reflektor 1 ein Strahlenbündel an der Lichtaustrittsseite 4 austritt, das fast über den gesamten Öffnungswinkel δ eine gleichmäßig hohe Lichtintensität aufweist. Durch die Lichtdurchmischung in einem erfindungsgemäßen Reflektor 1 ist weiterhin sichergestellt, dass das aus dem Reflektor 1 austretende Strahlenbündel über den gesamten Öffnungswinkel δ eine homogene, für den Betrachter angenehme Farbe aufweist.
  • In den Figuren 3 bis 5 ist das Prinzip eines erfindungsgemäßen Reflektors 1 näher erläutert. Der Einfachheit halber wird dabei von einem Reflektor 1 ausgegangen, dessen Umwandung 2 einen rotationssymmetrischen Querschnitt aufweist, und die glockenförmig ausgebildet ist, wobei die Reflektorumwandung 2 an der Lichtaustrittsseite 4 über die gesamte Quererstreckung offen ist. An der im Innenraum 3 zugewandten Innenseite der Reflektorumwandung 2 sind Facetten 9 angeordnet.
  • In Figur 3 ist beispielhaft eine Facette 9 an der Innenseite der Reflektorumwandung 2 dargestellt. In dem in Figur 3 dargestellten Ausführungsbeispiel ist der Krümmungsradius der dargestellten Facette 9 annähernd unendlich, so dass die Facette 9 als ebene Facette 9 ausgebildet ist. Weiterhin umfasst der Reflektor 1 nach Figur 3 eine Lichtquelle 6, die einen Durchmesser D aufweist und ebenfalls rotationssymmetrisch ist. Der Mittelpunkt der emittierenden Fläche 8 der Lichtquelle 6 fällt mit dem Lichtquellenpunkt 5 zusammen. In Figur 3 ist der Winkel γ dargestellt, den ein Lichtstrahl, der von dem Lichtquellenpunkt 5 aus zum Oberflächenmittelpunkt der Facette 9 verläuft, mit der Längsachse des Reflektors 1 bildet. Der Facettenabstand, der dem Abstand zwischen dem Oberflächenmittelpunkt der Facette 9 und dem Lichtquellenpunkt 5 entspricht, ist in Figur 3 mit r eingezeichnet. Weiterhin ist in Figur 3 der Winkel α eingezeichnet, der den spitzen Winkel definiert, den zwei Strahlen miteinander bilden, die von einem jeweils entgegengesetzten Querende der emittierenden Fläche 8 aus zum Oberflächenmittelpunkt der Facette 9 verlaufen.
  • In dem in Figur 4 beschriebenen Ausführungsbeispiel wird die Abhängigkeit des Krümmungsradius rL in Längsrichtung der Facette 9 von dem Abstand r wie folgt bestimmt: Es wird angenommen, dass aus dem erfindungsgemäßen Reflektor 1 ein Strahlenbündel mit dem Öffnungswinkel δ austreten soll. Zur Erreichung einer Lichtdurchmischung sind dabei Facetten 9 mit einem Krümmungswinkel β, der zu einem Krümmungsradius rL korrespondiert, an der Reflektorumwandung 2 vorgesehen. Die Krümmung der Facette 9 bezieht sich in Figur 4 auf die Längsrichtung. Es kann angenommen werden, dass der Krümmungswinkel β nicht größer sein soll als δ - α, wenn der Öffnungswinkel des aus dem Reflektor 1 austretenden Strahlenbündels auf den Winkel δ beschränkt sein soll. Entsprechend ist der Krümmungswinkel β bei festgelegtem δ von α abhängig. Der Winkel α ist hingegen, wie aus Figur 3 zu entnehmen, von dem Facettenabstand r abhängig. Beispielsweise kann der Winkel α über die Gleichung α = 2 arctan D cosγ 2 r
    Figure imgb0001
    angenähert werden. Entsprechend kann der Krümmungswinkel β in Längsrichtung der Facette 9 über einfache geometrische Berechnungen in Abhängigkeit von dem Facettenabstand r ausgerückt werden. Somit kann auch der Krümmungsradius rL der Facette 9 in Längsrichtung in Abhängigkeit von dem Facettenabstand r bestimmt werden. Falls α größer als δ ist, ist eine Wölbung der Facette 9 in Längsrichtung zu vermeiden und somit ein Krümmungsradius rL gegen unendlich vorzusehen, so dass die Oberfläche der Facette 9 eben ausgestaltet ist.
  • In Figur 5 ist dargestellt, wie sich der Krümmungsradius rQ der Facette 9 in Querrichtung in Abhängigkeit von dem Querabstand x zwischen dem Oberflächenmittelpunkt der Facette 9 und dem Lichtquellenpunkt 5 beispielhaft bestimmen lässt. In Figur 5 ist der kreisförmige Querschnitt eines des beschriebenen erfindungsgemäßen Reflektors 1 dargestellt.
  • Es wird vorausgesetzt, dass der Öffnungswinkel δ des aus dem erfindungsgemäßen Reflektor 1 austretenden Strahlenbündels nicht durch die Wölbung der Facette 9 in Querrichtung vergrößert werden soll. Hierzu wird angenommen, dass der Krümmungswinkel ε in Querrichtung der Facette 9 nicht größer sein soll als δ - ϕ, wobei ϕ der Winkel ist, den zwei Strahlen miteinander bilden, die von jeweils gegenüberliegenden Querenden der emittierenden Fläche 8 der Lichtquelle 6 zum Oberflächenmittelpunkt der Facette 9 verlaufen. Aus Figur 5 ist ersichtlich, dass der Winkel ϕ von dem Querabstand x abhängt. Beispielsweise kann der Winkel ϕ über die Gleichung ϕ = 2 arctan D 2 x
    Figure imgb0002
    bestimmt werden. Entsprechend lässt sich durch einfache geometrische Berechnung eine Abhängigkeit des Krümmungswinkels ε und damit des Krümmungsradius rQ in Querrichtung der Facette 9 von Querabstand x ermitteln. In dem angegebenen Ausführungsbeispiel ist eine Krümmung in Querrichtung der Facette 9 immer dann zu vermeiden, wenn der Winkel ϕ größer als der einzuhaltende Öffnungswinkel δ ist.
  • Durch entsprechende Berechnung der Krümmungsradien in Längsrichtung rL und der Krümmungsradien in Querrichtung rQ der Facetten 9 in einem erfindungsgemäßen Reflektor 1 kann sichergestellte sein, dass an der Innenseite der Reflektorumwandung 2 Facetten 9 mit gewölbten Oberflächen angeordnet sind, so dass eine Lichtdurchmischung in dem Reflektor 1 stattfinden kann. Dabei ist über die Berechnung der jeweiligen Krümmungsradien in Abhängigkeit von dem Facettenabstand bzw. dem Querabstand sichergestellt, dass die Facetten 9 nur in einem solchen Maße gewölbt sind, dass keine Aufweitung des Öffnungswinkels des aus dem Reflektor 1 austretenden Strahlenbündels über einen vorbestimmbaren Öffnungswinkel δ hinaus erfolgt.
  • Bezugszeichenliste
  • 1
    Reflektor
    2
    Reflektorumwandung
    3
    Innenraum
    4
    Lichtaustrittsseite
    5
    Lichtquellenpunkt
    6
    Lichtquelle
    7
    Aussparung
    8
    emittierende Fläche
    9
    Facette

Claims (7)

  1. Reflektor (1) für Halbleiterlichtquellen, insbesondere für ein Downlight, der einen durch eine Reflektorumwandung (2) begrenzten Innenraum (3) sowie eine Lichtaustrittsseite (4) umfasst, die an einem Längsende des Reflektors (1) angeordnet ist und an der der Innenraum (3) offen ist, wobei in dem Innenraum (3) und in Querrichtung des Reflektors umfänglich von der Reflektorumwandung (2) umgeben ein Lichtquellenpunkt (5) vorgesehen ist, an dem ein Mittelpunkt einer emittierenden Fläche einer Lichtquelle (6) in dem Reflektor anordenbar ist, wobei die Reflektorumwandung (2) eine Aussparung (7) aufweist, durch die eine in dem Reflektor (1) angeordnete Lichtquelle (6) elektrisch kontaktierbar und fixierbar ist, wobei an der dem Innenraum (3) zugewandten Innenseite der Reflektorumwandung (2) Facetten (9) angeordnet sind, die eine reflektierende und in Längsrichtung und/oder Querrichtung gewölbte Oberfläche aufweisen, wobei der der Wölbung in Längsrichtung zugeordnete Krümmungsradius der Facetten (9), gemittelt über sämtliche Facetten (9), deren Oberflächenmittelpunkt denselben Abstand von dem Lichtquellenpunkt (5) hat, in Abhängigkeit von diesem Facettenabstand variiert, wobei der der Wölbung in Querrichtung zugeordnete Krümmungsradius der Facetten (9), gemittelt über sämtliche Facetten (9), deren Oberflächenmittelpunkt denselben Abstand in Querrichtung von der durch den Lichtquellenpunkt (5) in Längsrichtung verlaufenden Achse hat, in Abhängigkeit von diesem Querabstand variiert, wobei der der Wölbung in Längsrichtung zugeordnete Krümmungsradius der Facetten (9) mit zunehmendem Facettenabstand zunimmt, dadurch gekennzeichnet, dass der der Wölbung in Querrichtung zugeordnete Krümmungsradius der Facetten (9) mit zunehmendem Querabstand abnimmt.
  2. Reflektor nach Anspruch 1, dadurch gekennzeichnet, dass die Reflektorumwandung (2) rotationssymmetrisch um die Längsachse des Reflektors (1) ist.
  3. Reflektor nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Reflektorumwandung (2) einen polygonförmigen Querschnitt aufweist.
  4. Reflektor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sämtliche Facetten (9) mit demselben Facettenabstand im Wesentlichen denselben Krümmungsradius im Bezug auf die Wölbung in Längsrichtung aufweisen.
  5. Reflektor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sämtliche Facetten (9) mit demselben Querabstand denselben Krümmungsradius im Bezug auf die Wölbung in Längsrichtung aufweisen.
  6. Reflektor nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in dem Reflektor (1) eine Lichtquelle (6) so angeordnet ist, dass der Mittelpunkt der emittierenden Fläche einer Lichtquelle (6) mit dem Lichtquellenpunkt (5) zusammenfällt.
  7. Strahler umfassend einen Reflektor (1) nach einem der Ansprüche 1 bis 5, ein elektronisches Vorschaltgerät sowie eine Lichtquelle (6) die in dem Reflektor (1) mittels einer an der Aussparung (7) in der Reflektorumwandung (7) vorgesehenen Montagevorrichtung so angeordnet ist, der Mittelpunkt der emittierenden Fläche der Lichtquelle (6) mit dem Lichtquellenpunkt (5) zusammenfällt, wobei die Lichtquelle (6) mit dem elektronischen Vorschaltgerät elektrisch gekoppelt ist.
EP12189928.0A 2011-10-28 2012-10-25 Reflektor für Halbleiterlichtquellen Active EP2587132B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011085418A DE102011085418A1 (de) 2011-10-28 2011-10-28 Reflektor für Halbleiterlichtquellen

Publications (3)

Publication Number Publication Date
EP2587132A2 EP2587132A2 (de) 2013-05-01
EP2587132A3 EP2587132A3 (de) 2014-06-18
EP2587132B1 true EP2587132B1 (de) 2017-10-25

Family

ID=47080368

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12189928.0A Active EP2587132B1 (de) 2011-10-28 2012-10-25 Reflektor für Halbleiterlichtquellen

Country Status (2)

Country Link
EP (1) EP2587132B1 (de)
DE (1) DE102011085418A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004042915B4 (de) * 2004-09-02 2011-04-14 Erco Gmbh Leuchte zur Ausleuchtung von Gebäudeflächen oder Gebäudeteilflächen
DE102007016748A1 (de) * 2007-04-07 2008-10-09 Tetsuhiro Kano Reflektor für eine Leuchte
DE202007015488U1 (de) * 2007-07-26 2008-12-11 Erco Leuchten Gmbh Leuchte
JP4576490B2 (ja) * 2008-12-09 2010-11-10 フェニックス電機株式会社 発光装置用のリフレクタおよびそれを用いた発光装置
EP2428727B1 (de) * 2010-08-25 2013-11-13 Jordan Reflektoren GmbH & Co.KG Leuchten-Reflektor sowie Vorrichtung zu dessen Herstellung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2587132A3 (de) 2014-06-18
EP2587132A2 (de) 2013-05-01
DE102011085418A1 (de) 2013-05-02

Similar Documents

Publication Publication Date Title
EP2691691B1 (de) Optisches element und strahlungsemittierende vorrichtung mit einem derartigen optischen element
EP2729838B1 (de) Optisches element
EP1857735B1 (de) Lichtreflektor mit definierter Konturenschärfe der von diesem erzeugten Lichtverteilung
DE102011085314B3 (de) Lichtmodul einer Beleuchtungseinrichtung eines Kraftfahrzeugs
EP1978298A2 (de) Reflektor für eine Leuchte
EP1338845B1 (de) Leuchte
DE202013012202U1 (de) Optisches Element mit einem TIR-Flächenabschnitt für verbesserte räumliche Lichtverteilung
EP1132680B1 (de) Leuchte mit inhomogener Lichtabstrahlung
DE102011051541A1 (de) Beleuchtungsvorrichtung für Fahrzeuge
DE1925277A1 (de) Leuchte,insbesondere Rueck- oder Sicherungsleuchte
EP2989381B1 (de) Anordnung zur lichtabgabe mit einer led-lichtquelle und einem reflektor
EP2587132B1 (de) Reflektor für Halbleiterlichtquellen
EP3051204B1 (de) Leuchte mit polygonalem strahlungsabriss
EP2812629B1 (de) Reflektorstrahler
EP2295852B1 (de) Reflektoranordnung
DE102008063370B4 (de) Leuchte
DE102012211748A1 (de) Optisches kollimationssystem
DE102010049436B4 (de) Beleuchtungseinrichtung für ein Kraftfahrzeug
EP2880360B1 (de) Led-strahler
DE102017220375A1 (de) Tir-linse und beleuchtungsvorrichtung
EP1900998B1 (de) Reflektor mit einer lichtaufweitenden Struktur
DE10354462B4 (de) Leuchte mit asymmetrischer Lichtabstrahlung
DE102005005355A1 (de) Vorrichtung zur Formung eines Lichtstrahls
WO2015090867A1 (de) Lampe mit optoelektronischer lichtquelle und verbesserter isotropie der abstrahlung
DE102014220105A1 (de) Lichtleiter und Kfz-Beleuchtungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 7/04 20060101AFI20140515BHEP

Ipc: F21Y 101/02 20060101ALN20140515BHEP

Ipc: F21V 7/09 20060101ALI20140515BHEP

17P Request for examination filed

Effective date: 20141218

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 7/04 20060101AFI20170406BHEP

Ipc: F21V 7/09 20060101ALI20170406BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 940276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012011516

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012011516

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

26N No opposition filed

Effective date: 20180726

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 940276

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231222

Year of fee payment: 12