EP2581339A2 - Structure d'encapsulation de dispositif électronique et procédé de réalisation d'une telle structure - Google Patents

Structure d'encapsulation de dispositif électronique et procédé de réalisation d'une telle structure Download PDF

Info

Publication number
EP2581339A2
EP2581339A2 EP12187748.4A EP12187748A EP2581339A2 EP 2581339 A2 EP2581339 A2 EP 2581339A2 EP 12187748 A EP12187748 A EP 12187748A EP 2581339 A2 EP2581339 A2 EP 2581339A2
Authority
EP
European Patent Office
Prior art keywords
cavity
cavities
getter material
support
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12187748.4A
Other languages
German (de)
English (en)
Other versions
EP2581339B1 (fr
EP2581339A3 (fr
Inventor
Jean-Louis Pronin
Geoffroy Dumont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP2581339A2 publication Critical patent/EP2581339A2/fr
Publication of EP2581339A3 publication Critical patent/EP2581339A3/fr
Application granted granted Critical
Publication of EP2581339B1 publication Critical patent/EP2581339B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00277Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS
    • B81C1/00285Processes for packaging MEMS devices for maintaining a controlled atmosphere inside of the cavity containing the MEMS using materials for controlling the level of pressure, contaminants or moisture inside of the package, e.g. getters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid

Definitions

  • the invention relates to a structure for encapsulating at least one electronic device, for example MEMS (electromechanical microsystem), NEMS (nanomechanical electromechanical system) or MOEMS (optoelectromechanical microsystem), encapsulated in a first cavity and which comprises a getter material disposed in a second adjacent cavity and communicating with the first cavity, and a method for producing such an encapsulation structure.
  • MEMS electronic microsystem
  • NEMS nanomechanical electromechanical system
  • MOEMS opticalelectromechanical microsystem
  • the invention is advantageously used to ensure the hermetic individual encapsulation, that is to say, sealed against fluids and / or gas, for example under vacuum, of several microelectronic devices assembled in a matrix on a support (for example a substrate) and for which it is sought to maximize the surfaces dedicated to the devices in order to optimize the performance of the devices.
  • the microelectronic devices are encapsulated individually in first cavities separated from each other by spaces serving as second cavities in which portions of getter material are arranged. The invention thus makes it possible to use these lost spaces between the first cavities in which the microelectronic devices are encapsulated.
  • a microelectronic device for example a sensor
  • PCM Thin Layer Packaging
  • This method uses a sacrificial layer, for example composed of resin, which is deposited on the device and then etched according to the shape of the desired cavity. The cover is then made by depositing a thin layer, for example composed of SiO 2 , on the sacrificial layer. Finally, the sacrificial layer is removed through one or more release holes formed through the hood. These holes are then plugged to ensure the hermeticity of the cavity thus produced.
  • the device is an optical device for transmitting and / or receiving light, for example a micro-bolometer type detector
  • a vacuum atmosphere for example under high vacuum or secondary vacuum, that is to say whose pressure is between about 10 -3 mbar and 10 -7 mbar.
  • a getter effect material that is to say a material capable of performing absorption and / or gas adsorption in the cavity.
  • the microelectronic device is intended to emit and / or receive light, to introduce nothing opaque vis-à-vis the wavelength or wavelengths intended to be transmitted and / or received by the device, on the light path of the device.
  • the document FR 2 826 725 proposes to dispose the getter material under the microelectronic device or on the internal walls of the cavity.
  • this solution has the disadvantage that the getter material is in contact with materials of the device during the technological steps of producing the device, which may have the effect of degrading or even eliminating the expected getter effect.
  • a second solution is to deposit the getter material in the cavity, on the substrate and next to the microelectronic device.
  • this second solution has the disadvantage of reducing the area of the substrate dedicated to the microelectronic device, which causes either a decrease in the performance of the device (with a constant substrate surface area), or an increase in the size of the device (and therefore an increase in the cost of the device because a smaller number of microelectronic devices are made on the semiconductor plate serving as a substrate).
  • An object of the present invention is to propose a new encapsulation structure of at least one electronic device for preserving the absorption and / or gas adsorption properties of the getter material, which makes it possible to make the getter material outside. of the field optical when the electronic device is intended to emit and / or receive light, while maximizing the area dedicated to the electronic device on the support.
  • the present invention proposes an encapsulation structure of at least one electronic device, comprising at least a first cavity defined by a support and at least one cover disposed on the support and in which is encapsulated the electronic device, the hood being traversed by at least one opening communicating the interior of the first cavity with at least one portion of getter material disposed in at least one second cavity adjacent to the first cavity, at least a portion of said portion of getter material being disposed on the support and / or against at least one outer side wall of the first cavity, the first cavity and the second cavity together forming a volume, or space, hermetically sealed.
  • the getter material is deposited in a second cavity, outside the interior volume of the first cavity corresponding to the space between the cover and the support in which the electronic device is disposed, the latter does not undergo any degradation. implementing the technological steps of producing the electronic device and the first cavity, since the getter material can be deposited after having realized the electronic device and the first cavity in which the electronic device is encapsulated.
  • the getter material is outside the first cavity, on a surface of the support, for example dedicated to the separation of the electronic devices, the surface of the support inside the first cavity is entirely dedicated to the electronic device. and is not reduced by the presence of the getter material.
  • the surface of the getter material used is also not limited by the volume of the first cavity, which makes it possible to significantly increase the area of getter material intended to achieve absorption and / or adsorption of the gases present in the first cavity, improving for example the level of vacuum that can reign in the first cavity, which can go from the closing pressure which can be of the order of a millibar, at a pressure of the order of about 10 -3 mbar generally corresponding to the operating point of the device, for example of the MEMS type, as well as the lifetime of the electronic device, after activation of the getter.
  • the getter material disposed in the second cavity serves to maintain the operating pressure of the electronic device which can be individually encapsulated in the first cavity. cavity.
  • Such an individual encapsulation makes it possible to prevent leakage of hermeticity at the level of the encapsulation of one of the devices from making other devices made on the same support unusable and which would be encapsulated collectively, as for example in the case of a matrix of sensors.
  • the encapsulation structure according to the invention it is for example possible to use free spaces present between different first cavities in which several electronic devices are individually encapsulated to deposit the getter material, without affecting the zones of the support dedicated to electronic devices and without having to put in communication the different cavities, these free spaces forming the second cavities which are adjacent to the first cavities.
  • the getter material When the getter material is formed at the time of closure of the second cavity, it is not degraded or contaminated, and the closing pressure may be lower due to the presence of the getter effect at the time of this closing.
  • the shape and dimensions of the cover can be adapted to the shape of the electronic device to optimize the area dedicated to the getter material.
  • the second cavity or cavities may be made on the support, in particular next to the first cavity or cavities. This optimizes the space available on the support to form the first and second cavities without increasing the overall thickness of the encapsulation structure.
  • the getter material may be deposited against one or more outer side walls of the first cavity, thereby increasing the area of deposited getter material.
  • the interior of the first cavity communicates with the interior of the second cavity, that is to say with the portion of getter material, via the opening.
  • the gases present in the first cavity can come into contact with the portion of getter material through the opening.
  • electronic device here designates any type of device, preferably of micrometric dimensions such as MEMS or MOEMS type devices, but also electronic devices of nanometric dimensions such as NEMS or electronic and / or electrical devices. larger dimensions.
  • the volume, or space, formed by the first cavity and the second cavity may be sealed by the portion of getter material.
  • a material other than the getter material it is possible for a material other than the getter material to serve as a plug for sealing this volume.
  • the opening may pass through a surface of the cover which is substantially perpendicular to a main plane of the support.
  • a main plane may correspond to the face of the support on which the electronic device is made.
  • the interior of the first cavity can communicate with the getter material portion via at least one space forming a channel between the first cavity and the second cavity, the opening being such that it opens into the channel.
  • the first cavity and the second cavity can communicate together at least via the opening and the channel.
  • Such a channel makes it possible, when closing the volume formed by the first cavity and the second cavity by the getter material or another plugging material, to prevent the plugging material (s) from penetrating inside the first cavity. and to be deposited on the electronic device.
  • At least a second portion of the getter material portion can plug at least a second opening forming an access to the channel or the first opening.
  • This second opening can be made through a portion of material delimiting, with the cover, the channel.
  • the second part of the portion of getter material may be covered by a layer of hermeticity.
  • the encapsulation structure may comprise a plurality of electronic devices encapsulated in first distinct cavities delimited by the support and covers placed on the support, the covers being traversed by openings communicating the interior of the first cavities with one or more portions.
  • of getter material disposed in one or more second cavities juxtaposed and / or formed between the first cavities, at least a portion of said portion or portions of getter material being disposed on the support and / or against one or more external side walls of the first cavities .
  • the interiors of a plurality of first cavities may communicate together via openings through the covers of said first cavities.
  • the encapsulation structure may further comprise a layer of getter material sealing the volume or volumes, or spaces, formed by the first cavities and the second cavity or cavities.
  • the portion of getter material may be deposited as it seals the volume, or space, formed by the first cavity and the second cavity.
  • the method may further comprise, between the embodiment of the opening through the cover and the deposition of the getter material portion, the production of at least one space forming a channel between the first cavity and the second cavity and intended to make communicating the interior of the first cavity with the portion of getter material, the opening being such that it opens into the channel.
  • the deposition of the portion of getter material can be achieved such that at least a second portion of the portion of getter material mouth at least a second opening forming an access to the channel or the first opening, and sealing the volume, or space, formed by the first cavity and the second cavity.
  • the method may further comprise, after the deposition of the getter material portion, a deposition step of a hermeticity layer covering the second portion of the getter material portion.
  • the method may comprise the production of a plurality of electronic devices and a plurality of covers on the support, encapsulating the electronic devices in first distinct cavities delimited by the support and the covers, the method further comprising the production of a plurality of openings through the covers and the deposition of one or more portions of getter material in one or more second cavities formed between the first cavities, the openings communicating the interior of the first cavities with the portion or portions of material getter, at least a portion of said portion or portions of getter material being disposed on the support and / or against one or more outer side walls of the first cavities.
  • the openings may be made such that the interior of several first cavities communicates via the openings through the covers of said first cavities.
  • the method may further comprise producing a layer of getter material hermetically sealing the volume or spaces, formed by the first cavities and the second cavity or cavities.
  • FIG. 1 represents an encapsulation structure 100 of an electronic device 102, here corresponding to a micro-bolometer, according to a first embodiment.
  • the device 102 is made on a support 104 corresponding here to a silicon substrate, and is encapsulated in a first cavity 106 formed between the support 104 and a cover 108, for example made in a thin layer by a PCM type process and composed of a material, such as amorphous silicon or SiO 2 .
  • the cover 108 may be based on any material, for example dielectric, semiconductor or electrically conductive.
  • the cover 108 has one or more openings 110 (only one opening 110 is shown on the figure 1 ) formed by the cover 108.
  • a portion of material 114 for example made of the same material as that forming the cover 108, and made on the cover 108 and next to it, forms a second cavity 115 adjacent to the first cavity 106 and communicating with it via a channel 117 and the opening 110.
  • the two cavities 106 and 115 are formed on the support 104 one next to the other.
  • at least one outer side wall of the first cavity 106 forms at least one of the inner side walls of the second cavity 115.
  • a portion of getter material 112 for example made of titanium or of any other material, such as a metal or a metal alloy, suitable for absorption and / or gas adsorption is deposited in the second cavity 115.
  • the portion of getter material 112 is deposited on the support 104, at the bottom of the second cavity 115 and against the side walls of the second cavity 115 ( and therefore against at least one outer side wall of the first cavity 106 because here, the same portion of material forms one of the outer side walls of the first cavity 106 and one of the inner side walls of the second cavity 115).
  • Part of the portion of getter material 112 also rests on a portion of the material portion 114, thereby closing an opening 116 formed through the material portion 114.
  • This portion of the getter material portion 112 is covered by a layer of material.
  • hermeticity 120 preventing the contact of external gases with the portion of getter material 112.
  • the hermeticity layer 120 hermetically closes the volume, or the space, formed by the second cavity 115 and the first cavity 106. After the activation thermal getter material 112, the latter absorbs and / or adsorbs only the gases in this volume, or this space, closed.
  • opening 110 Although only one opening 110 is shown on the figure 1 , it is possible that several openings, for example similar to the opening 110 shown on the figure 1 , are carried out through the cover 108 and make the internal volume of the first cavity 106 communicate with getter material deposited outside the first cavity 106, in one or more second cavities, for example similar to the second cavity 115, through these openings 110.
  • FIG. 2A to 2G representing the steps of producing an encapsulation structure 200 according to a second embodiment.
  • the structure 200 performs an individual encapsulation of several electronic devices 202 made on the support 104 and distributed on the support 104 in the form of a matrix.
  • the electronic devices 202 are optical sensors such as micro-bolometers
  • each electronic device 202 may correspond to a pixel of the micro-bolometer matrix obtained.
  • the support 104 and the electronic devices 202 are first covered by a sacrificial layer, for example composed of resin and shaped by photolithography and etching so that each device 202 is covered by a portion 204 of sacrificial material defining the future volume of a first cavity 206 in which the device 202 is intended to be encapsulated.
  • a sacrificial layer for example composed of resin and shaped by photolithography and etching so that each device 202 is covered by a portion 204 of sacrificial material defining the future volume of a first cavity 206 in which the device 202 is intended to be encapsulated.
  • This deposit is described as conformal because it covers with a substantially constant thickness set of exposed surfaces of the portions 204 of sacrificial material, that is to say the upper faces and the side walls of these portions 204, thus forming the covers 208 which are intended to delimit, with the support 104, the first cavities 206 in which the devices 202 will be encapsulated.
  • This material is also deposited between the portions 204, on the support 104.
  • the deposited layer forming the covers 208 preferably has a thickness between about 1 micron and a few micrometers, for example 10 microns.
  • Each cover 208 is spaced from neighboring covers by free spaces 209, for example with a width of between approximately 1 and 2 ⁇ m, intended to form the second cavities into which getter material will be deposited.
  • Apertures 210 are then made through covers 208, forming accesses to portions 204 of sacrificial material, i.e., release holes ( Figure 2A ). As can be seen from the example of the figure 2E each hood 208 is traversed by four openings 210 formed at two upper edges of the hood 208.
  • a second layer of sacrificial material for example of a nature similar to that used to make the portions 204, is deposited on all the elements previously made, thus covering the covers 208.
  • the sacrificial material of this second layer is notably deposited in the openings 210 as well as in the free spaces 209 between the covers 208.
  • the second layer of sacrificial material is then subjected to photolithography and etching steps, forming second portions of sacrificial material 212. Each of these second portions of sacrificial material 212 fills one of the free spaces 209 intended to form the second cavities in which getter material is intended to be deposited.
  • each of the second portions of sacrificial material 212 also occupies a volume (above the hoods 208 on the example of the Figure 2C ) for forming a channel, or "baffle", which will communicate the interior of one of the first cavities with the portion of getter material that will be deposited in the portion of the free space 209 occupied by the second portion sacrificial material 212, that is to say to communicate one of the first cavities 206 with one of the second cavities.
  • One or more openings 210 are also filled by the sacrificial material of the second portion 212.
  • a layer of material for example similar to that used to make the covers 208, is deposited covering in particular the second portions of sacrificial material 212. This layer may optionally be etched so as to retain only portions 214 covering the second portions of material sacrificial 212.
  • Second openings 216 are made through these portions 214, facing the portions of the second portions of sacrificial material 212 filling the portions of the free spaces 209 between the covers 208 ( Figure 2C ).
  • the second openings 216 will serve as release holes to eliminate the second portions of sacrificial material 212 as well as the sacrificial portions 204 through the channels. 217 obtained by etching the second portions of sacrificial material 212 and through the openings 210.
  • the getter material will then be deposited through these second openings 216, in the second cavities 215 delimited by the material 214.
  • each cover 208 is partially covered by two portions of material 214, and each of these two portions of material 214 covers two openings 210 formed through the cover 208, six second openings 216 being made through each of these portions of material 214 .
  • the second portions of sacrificial material 212 are removed, for example, by plasma etching through the second openings 216, thus freeing the portions of the spaces 209 between the covers 208 (or between the first cavities 206) intended to receive getter material. that is to say forming the second cavities 215.
  • the spaces released between the portions 214 and the covers 208 also form channels 217 which will be used to communicate the getter material disposed in the second cavities 215 with the interior of the first cavities 206.
  • This plasma etching also removes the portions of sacrificial material 204, thus freeing the devices 202 and forming the first cavities 206, between the covers 208 and the support 104, in which the devices 202 are encapsulated ( 2D figure ).
  • the second openings 216 are opposite parts of the second cavities 215 between the various covers 208 intended to receive getter material.
  • the channels 217 communicate, at the level of each cover 208, the openings 210 and 216 although these are not aligned one above the other in the plane of the support 104 (plane parallel to the plane (X, Y) shown in FIG. 2D figure ).
  • the first cavities 206 and the second cavities 215 are arranged on the support 104 next to each other.
  • the figure 2E represents a top view of the assembly made.
  • each cover 208 is traversed by four openings 210 formed at two upper edges of the cover 208 and coupled to twelve second openings 216 through the channels 217.
  • two walls lateral sides of each of the second cavities 215 correspond to external lateral walls of two first cavities 206 adjacent to the second cavity 215.
  • a deposit of getter material 218 is made in the second cavities 215 delimited by the portions 214, through the openings 216. Because the openings 210 passing through the covers 208 are offset with respect to the second openings 216, the getter material 218 is not deposited in the first cavities 206.
  • the getter material can be deposited either at the bottom of the second cavities 215, on the portions of material forming the covers 208 and deposited on the support 104, between the covers 208 (as it is the case for the portion 218a), or against the lateral flanks of the hoods 208 (cases portions 218b), or both (case of the portion 218c).
  • getter material fills all of the second cavities 215 delimited by the portions of material 214.
  • the configuration in which the getter material will be deposited will be a function of the dimensions of the second openings 216 in the plane of the support 104 (parallel to the plane (X, Y)) with respect to those of the second cavities 215 in this same plane delimited by the covers 208 and the portions of material 214, as well as the position of these second openings 216 with respect to the second cavities 215.
  • the getter material can be deposited against the lateral sides of the covers 208 and possibly at the bottom of the second cavities 215. If the openings 216 have smaller dimensions, the getter material can be deposited only at the bottom of the second cavities 215, on the substrate 104. under deposit the getter material, the getter material portions 218d are also formed over portions 214 and clog the second openings 216.
  • a hermeticity layer 220 can be covered by a hermeticity layer 220.
  • the devices 202 are optical devices intended to emit and / or receive light
  • the previously deposited getter material and the hermeticity layer 220 can be photolithographed and etched so that the optical field of the devices 202 is not obstructed by the getter material or the hermetic layer 220.
  • an antireflection layer 222 for example composed of a multilayer comprising layers of germanium and zinc sulphide ( figure 2G ).
  • the encapsulation structure 200 thus formed forms a matrix structure of microelectronic devices 202 encapsulated in first hermetic cavities 206 whose interior spaces communicate with lateral spaces between the cavities forming second cavities 215 in which portions of getter material 218 are arranged. , performing absorption and / or gas adsorption in the first cavities 206.
  • each cover 208 may be traversed by one or more openings 210 communicating the interior of the first cavity 206 with a second adjacent cavity in which a getter material is disposed.
  • the openings 216 and 210 may be sections, in a plane parallel to that of the support 104, of circular shape, oblong, or made in the form of slits or any other shape.
  • a plurality of openings 210 or 216 may be made next to each other thereby forming an alignment of openings surrounding at least part of the first cavity 206.
  • the number and dimensions of the openings 210 and 216 associated with each first cavity 206 will be adapted depending on the available space, the desired absorption capacity and / or adsorption of the getter material, etc.
  • the Figures 3A and 3B represent an encapsulation structure 300 according to a third embodiment.
  • the encapsulation structure 300 comprises several electronic devices 302 (devices 302a, 302b, 302c shown in FIG. figure 3A ), for example similar to the devices 102 and 202 previously described, each encapsulated in a first cavity 306 formed between the substrate 104 and a cover 308.
  • the covers 308 are traversed by openings 310 communicating with each other. interior of the first cavities 306 with a getter material 312 disposed in spaces formed between several cavities 306 and corresponding to second cavities 315.
  • the openings 310 are here made through the upper edges of the covers 308, that is to say for each opening 310, at a junction between an upper wall of the cover 308 and one of the side walls of the cover 308. such that, when the getter material 312 is deposited, no or very little getter material is found inside the first cavities 306. A small portion of the getter material 312 can be deposited against the side walls of the hood, inside first cavities 306.
  • a layer of getter material 312 also covers the covers 308, thus blocking second openings 316 communicating the interior of several adjacent first cavities 306 via openings 310.
  • the layer of getter material is covered by a hermeticity layer 314 for example of a similar nature to the hermeticity layer 220.
  • the openings 310 communicate the interior of several first cavities 306 therebetween.
  • the openings 310 formed through the side walls of the hoods 308 of the cavities 306b, 306c, 306d and 306e cause the interiors of these first four cavities to communicate with one another as well as with the second cavities 315 formed between the outer lateral walls.
  • first cavities in which getter material 312 is disposed (not shown in FIG. figure 3B ).
  • the encapsulation structure 300 thus forms a set of sub-matrices (in the example of Figures 3A and 3B each submatrix is formed by a square of 2 x 2 devices 302 encapsulated in first cavities 306 all four communicating with each other).
  • the openings 310 are made at the upper edges of the hoods 308 such that, when the getter material 312 is deposited, no or very little getter material is found inside the first cavities 306.
  • the deposition of getter material 312 is avoided. in the first cavities 306 thanks to the fact that, at the level of the openings 310, the upper walls of the hoods 308 are not recessed, in the plane (X, Y), with respect to the inside of the side walls of these hoods 308
  • the openings 310 are formed through surfaces of the hoods 308 which are perpendicular to the main plane of the support 104 (plane parallel to the plane (X, Y)), this main plane corresponding to the face of the support 104 on which the microelectronic devices 302 are made.
  • openings 310 communicates first adjacent cavities and deposition of getter material 312 between the first cavities 306, in the second cavities 315, avoiding depositing getter material in the first cavities 306 without using openings having baffles (or channels) as previously described for encapsulation structures 100 and 200.
  • the first cavities 306 and the second cavities 315 are arranged on the support 104 next to each other.
  • inner sidewalls of each of the second cavities 315 correspond to outer side walls of the first cavities 306 adjacent to the second cavity 315.
  • the encapsulation structure 300 comprises cavities 306 traversed by openings similar to the openings 210 previously described, that is to say having channels.
  • openings and channels are made opposite each other, it is possible to also have communication between adjacent first cavities via these openings and channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

Structure d'encapsulation (100) d'au moins un dispositif électronique (102), comportant au moins une première cavité (106) délimitée par un support (104) et au moins un capot (108) disposé sur le support et dans laquelle est encapsulé le dispositif électronique, le capot étant traversé par au moins une ouverture (110) faisant communiquer l'intérieur de la première cavité avec au moins une portion de matériau getter (112) disposée dans au moins une deuxième cavité (115), la deuxième cavité étant disposée sur le support et adjacente à la première cavité, au moins une partie de ladite portion de matériau getter étant disposée sur le support et/ou contre au moins une paroi latérale extérieure de la première cavité, la première cavité et la deuxième cavité formant ensemble un volume fermé hermétiquement.

Description

    DOMAINE TECHNIQUE
  • L'invention concerne une structure d'encapsulation d'au moins un dispositif électronique, par exemple de type MEMS (microsystème électromécanique), NEMS (système électromécanique nanométrique) ou encore MOEMS (microsystème opto-électromécanique), encapsulé dans une première cavité et qui comporte un matériau getter disposé dans une deuxième cavité adjacente et communiquant avec la première cavité, ainsi qu'un procédé de réalisation d'une telle structure d'encapsulation.
  • L'invention est avantageusement mise en oeuvre pour assurer l'encapsulation individuelle hermétique, c'est-à-dire étanche vis-à-vis de fluides et/ou de gaz, par exemple sous vide, de plusieurs dispositifs microélectroniques assemblés en matrice sur un support (par exemple un substrat) et pour lesquels on cherche à maximiser les surfaces dédiées aux dispositifs afin d'optimiser les performances des dispositifs. Dans ce type de packaging, les dispositifs microélectroniques sont encapsulés individuellement dans des premières cavités séparées les unes des autres par des espaces servant de deuxièmes cavités dans lesquelles des portions de matériau getter sont disposées. L'invention permet donc d'utiliser ces espaces perdus entre les premières cavités dans lesquelles les dispositifs microélectroniques sont encapsulés.
  • ÉTAT DE LA TECHNIQUE ANTÉRIEURE
  • Il est connu d'encapsuler un dispositif microélectronique, par exemple un capteur, en mettant en oeuvre un procédé de type PCM (Packaging Couche Mince), assurant au dispositif de bonnes conditions de pression pour fonctionner. Ce procédé fait appel à une couche sacrificielle, par exemple composée de résine, qui est déposée sur le dispositif puis gravée selon la forme de la cavité souhaitée. Le capot est ensuite réalisé en déposant une couche mince, par exemple composée de SiO2, sur la couche sacrificielle. Enfin, la couche sacrificielle est éliminée au travers d'un ou plusieurs trous de libération formés à travers le capot. Ces trous sont ensuite bouchés pour assurer l'herméticité de la cavité ainsi réalisée.
  • Lorsque le dispositif est un dispositif optique destiné à émettre et/ou recevoir de la lumière, par exemple un détecteur de type micro-bolomètre, il est parfois nécessaire que celui-ci soit disposé dans une atmosphère sous vide (par exemple sous vide poussé ou vide secondaire, c'est-à-dire dont la pression est comprise entre environ 10-3 mbar et 10-7 mbar). Un tel vide est obtenu généralement en introduisant dans la cavité un matériau à effet getter, c'est-à-dire un matériau apte à réaliser une absorption et/ou une adsorption gazeuse dans la cavité. Parallèlement à cela, il est également nécessaire, lorsque le dispositif microélectronique est destiné à émettre et/ou recevoir de la lumière, de ne rien introduire d'opaque vis-à-vis de la ou des longueurs d'ondes destinées à être émises et/ou reçues par le dispositif, sur la trajectoire lumineuse du dispositif.
  • Pour cela, le document FR 2 826 725 propose de disposer le matériau à effet getter sous le dispositif microélectronique ou sur les parois internes de la cavité. Cette solution présente toutefois l'inconvénient que le matériau getter est en contact avec des matériaux du dispositif lors des étapes technologiques de réalisation du dispositif, ce qui peut avoir pour effet de dégrader ou même supprimer l'effet getter attendu.
  • Une deuxième solution consiste à déposer le matériau getter dans la cavité, sur le substrat et à coté du dispositif microélectronique. Cette deuxième solution a toutefois pour inconvénient de réduire la surface du substrat dédiée au dispositif microélectronique, ce qui entraine soit une baisse des performances du dispositif (à surface d'occupation du substrat constante), soit une hausse de la taille du dispositif (et donc une hausse du coût du dispositif car un nombre moins important de dispositifs microélectroniques sont réalisés sur la plaque de semi-conducteur servant de substrat).
  • EXPOSÉ DE L'INVENTION
  • Un but de la présente invention est de proposer une nouvelle structure d'encapsulation d'au moins un dispositif électronique permettant de préserver les propriétés d'absorption et/ou d'adsorption gazeuse du matériau getter, qui permette de réaliser le matériau getter en dehors du champ optique lorsque le dispositif électronique est destiné à émettre et/ou recevoir de la lumière, tout en maximisant la surface dédiée au dispositif électronique sur le support.
  • Pour cela, la présente invention propose une structure d'encapsulation d'au moins un dispositif électronique, comportant au moins une première cavité délimitée par un support et au moins un capot disposé sur le support et dans laquelle est encapsulé le dispositif électronique, le capot étant traversé par au moins une ouverture faisant communiquer l'intérieur de la première cavité avec au moins une portion de matériau getter disposée dans au moins une deuxième cavité adjacente à la première cavité, au moins une partie de ladite portion de matériau getter étant disposée sur le support et/ou contre au moins une paroi latérale extérieure de la première cavité, la première cavité et la deuxième cavité formant ensemble un volume, ou espace, fermé hermétiquement.
  • Du fait que le matériau getter est déposé dans une deuxième cavité, en dehors du volume intérieur de la première cavité correspondant à l'espace entre le capot et le support dans lequel est disposé le dispositif électronique, celui-ci ne subit pas de dégradation liée à la mise en oeuvre des étapes technologiques de réalisation du dispositif électronique et de la première cavité, du fait que le matériau getter peut être déposé après avoir réalisé le dispositif électronique et la première cavité dans laquelle le dispositif électronique est encapsulé.
  • De plus, étant donné que le matériau getter se trouve hors de la première cavité, sur une surface du support par exemple dédiée à la séparation des dispositifs électroniques, la surface du support à l'intérieur de la première cavité est entièrement dédiée au dispositif électronique et n'est pas réduite par la présence du matériau getter.
  • La surface de matériau getter utilisée n'est pas non plus limitée par le volume de la première cavité, ce qui permet d'augmenter de manière importante la surface de matériau getter destinée à réaliser une absorption et/ou une adsorption des gaz présents dans la première cavité, améliorant par exemple le niveau de vide pouvant régner dans la première cavité, qui pourra passer de la pression de fermeture qui peut être de l'ordre d'un millibar, à une pression de l'ordre d'environ 10-3 mbar correspondant généralement au point de fonctionnement du dispositif par exemple de type MEMS, ainsi que la durée de vie du dispositif électronique, après activation du getter.
  • Du fait que la première cavité et la deuxième cavité forment un volume, ou espace, fermé hermétiquement, le matériau getter disposé dans la deuxième cavité permet d'assurer le maintien de la pression de fonctionnement du dispositif électronique qui peut être encapsulé individuellement dans la première cavité. Une telle encapsulation individuelle permet d'éviter qu'une fuite d'herméticité au niveau de l'encapsulation d'un des dispositifs ne rende inutilisable d'autres dispositifs réalisés sur le même support et qui seraient encapsulés collectivement, comme par exemple dans le cas d'une matrice de capteurs.
  • Grâce à la structure d'encapsulation selon l'invention, il est par exemple possible d'utiliser des espaces libres présents entre différentes premières cavités dans lesquelles plusieurs dispositifs électroniques sont encapsulés individuellement pour y déposer le matériau getter, et cela sans affecter les zones du support dédiées aux dispositifs électroniques et sans avoir à mettre en communication les différentes cavités, ces espaces libres formant les deuxièmes cavités qui sont adjacentes aux premières cavités.
  • Lorsque le matériau getter est formé au moment de la fermeture de la deuxième cavité, celui-ci n'est pas dégradé ni contaminé, et la pression de fermeture peut être plus basse du fait de la présence de l'effet getter au moment de cette fermeture.
  • Enfin, la forme et les dimensions du capot peuvent être adaptées à la forme du dispositif électronique pour optimiser la surface dédiée au matériau getter.
  • La ou les deuxièmes cavités peuvent être réalisées sur le support, notamment à côté de la ou des premières cavités. On optimise ainsi l'espace disponible sur le support pour former les première et deuxième cavités sans augmenter l'épaisseur globale de la structure d'encapsulation.
  • Le matériau getter peut être déposé contre une ou plusieurs parois latérales extérieures de la première cavité, augmentant ainsi la surface de matériau getter déposé.
  • L'intérieur de la première cavité communique avec l'intérieur de la deuxième cavité, c'est-à-dire avec la portion de matériau getter, via l'ouverture. Les gaz présents dans la première cavité peuvent entrer en contact avec la portion de matériau getter en traversant l'ouverture.
  • Le terme « dispositif électronique » désigne ici tout type de dispositif, préférentiellement de dimensions micrométriques comme par exemple des dispositifs de type MEMS ou MOEMS, mais également des dispositifs électroniques de dimensions nanométriques tels que des NEMS ou encore des dispositifs électroniques et/ou électriques de dimensions plus importantes.
  • Le volume, ou l'espace, formé par la première cavité et la deuxième cavité peut être fermé hermétiquement par la portion de matériau getter. Dans une variante, il est possible qu'un matériau autre que le matériau getter serve de bouchon pour fermer hermétiquement ce volume.
  • L'ouverture peut traverser une surface du capot qui est sensiblement perpendiculaire par rapport à un plan principal du support. Un tel plan principal peut correspondre à la face du support sur laquelle est réalisé le dispositif électronique.
  • L'intérieur de la première cavité peut communiquer avec la portion de matériau getter via au moins un espace formant un canal entre la première cavité et la deuxième cavité, l'ouverture pouvant être telle qu'elle débouche dans le canal. Dans ce cas, la première cavité et la deuxième cavité peuvent communiquer ensemble au moins via l'ouverture et le canal. Un tel canal permet, lors de la fermeture du volume formé par la première cavité et la deuxième cavité par le matériau getter ou un autre matériau de bouchage, d'empêcher le ou les matériaux de bouchage de pénétrer à l'intérieur de la première cavité et de se déposer sur le dispositif électronique.
  • Au moins une deuxième partie de la portion de matériau getter peut boucher au moins une deuxième ouverture formant un accès au canal ou à la première ouverture. Cette deuxième ouverture peut être réalisée à travers une portion de matériau délimitant, avec le capot, le canal.
  • La deuxième partie de la portion de matériau getter peut être recouverte par une couche d'herméticité.
  • La structure d'encapsulation peut comporter une pluralité de dispositifs électroniques encapsulés dans des premières cavités distinctes délimitées par le support et des capots disposés sur le support, les capots étant traversés par des ouvertures faisant communiquer l'intérieur des premières cavités avec une ou plusieurs portions de matériau getter disposées dans une ou plusieurs deuxièmes cavités juxtaposées et/ou formées entre les premières cavités, au moins une partie de ladite ou desdites portions de matériau getter étant disposée sur le support et/ou contre une ou plusieurs parois latérales extérieures des premières cavités.
  • Ainsi, la structure d'encapsulation peut former une structure matricielle de dispositifs électroniques à cavités hermétiques comportant sur un support :
    • un ensemble de dispositifs électroniques à cavités hermétiques comportant respectivement au moins une ouverture libre,
    • au moins un matériau getter disposé dans les espaces latéraux entre les premières cavités, ces espaces latéraux formant les deuxièmes cavités,
    • une couche de fermeture disposée sur les cavités de façon à ce que chaque première cavité soit étanche indépendamment des autres premières cavités tout en restant en communication avec le getter disposé dans les espaces entre les premières cavités.
  • Les intérieurs de plusieurs premières cavités peuvent communiquer ensemble via les ouvertures traversant les capots desdites premières cavités.
  • La structure d'encapsulation peut comporter en outre une couche de matériau getter fermant hermétiquement le ou les volumes, ou espaces, formés par les premières cavités et la ou les deuxièmes cavités.
  • La présente invention concerne également un procédé de réalisation d'une structure d'encapsulation d'au moins un dispositif électronique, comportant au moins les étapes de :
    • réalisation du dispositif électronique sur un support,
    • réalisation d'au moins un capot sur le support, formant une première cavité délimitée par le support et le capot et dans laquelle est encapsulé le dispositif électronique,
    • réalisation d'au moins une ouverture à travers le capot,
    • dépôt d'au moins une portion de matériau getter dans au moins une deuxième cavité adjacente à la première cavité, l'ouverture faisant communiquer l'intérieur de la première cavité avec la portion de matériau getter, au moins une partie de ladite portion de matériau getter étant disposée sur le support et/ou contre au moins une paroi latérale extérieure de la première cavité, la première cavité et la deuxième cavité formant ensemble un volume, ou espace, fermé hermétiquement.
  • La portion de matériau getter peut être déposée telle qu'elle ferme hermétiquement le volume, ou l'espace, formé par la première cavité et la deuxième cavité.
  • Le procédé peut comporter en outre, entre la réalisation de l'ouverture à travers le capot et le dépôt de la portion de matériau getter, la réalisation d'au moins un espace formant un canal entre la première cavité et la deuxième cavité et destiné faire communiquer l'intérieur de la première cavité avec la portion de matériau getter, l'ouverture étant telle qu'elle débouche dans le canal.
  • Le dépôt de la portion de matériau getter peut être réalisé tel qu'au moins une deuxième partie de la portion de matériau getter bouche au moins une deuxième ouverture formant un accès au canal ou à la première ouverture, et fermant hermétiquement le volume, ou l'espace, formé par la première cavité et la deuxième cavité.
  • Le procédé peut comporter en outre, après le dépôt de la portion de matériau getter, une étape de dépôt d'une couche d'herméticité recouvrant la deuxième partie de la portion de matériau getter.
  • Le procédé peut comporter la réalisation d'une pluralité de dispositifs électroniques et d'une pluralité de capots sur le support, encapsulant les dispositifs électroniques dans des premières cavités distinctes délimitées par le support et les capots, le procédé comportant en outre la réalisation d'une pluralité d'ouvertures à travers les capots et le dépôt d'une ou plusieurs portions de matériau getter dans une ou plusieurs deuxièmes cavités formées entre les premières cavités, les ouvertures faisant communiquer l'intérieur des premières cavités avec la ou les portions de matériau getter, au moins une partie de ladite ou desdites portions de matériau getter étant disposées sur le support et/ou contre une ou plusieurs parois latérales extérieures des premières cavités.
  • Les ouvertures peuvent être réalisées telles que l'intérieur de plusieurs premières cavités communique via les ouvertures traversant les capots desdites premières cavités.
  • Le procédé peut comporter en outre la réalisation d'une couche de matériau getter fermant hermétiquement le ou les volumes, ou espaces, formés par les premières cavités et la ou les deuxièmes cavités.
  • BRÈVE DESCRIPTION DES DESSINS
  • La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels :
    • la figure 1 représente une structure d'encapsulation d'un dispositif électronique, objet de la présente invention, selon un premier mode de réalisation,
    • les figures 2A à 2G représentent les étapes d'un procédé de réalisation d'une structure d'encapsulation de plusieurs dispositifs électroniques, objet de la présente invention, selon un deuxième mode de réalisation,
    • les figures 3A et 3B représentent une structure d'encapsulation de plusieurs dispositifs électroniques, objet de la présente invention, selon un troisième mode de réalisation.
  • Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.
  • Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.
  • Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles.
  • EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
  • On se réfère tout d'abord à la figure 1 qui représente une structure d'encapsulation 100 d'un dispositif électronique 102, correspondant ici à un micro-bolomètre, selon un premier mode de réalisation.
  • Le dispositif 102 est réalisé sur un support 104 correspondant ici à un substrat de silicium, et est encapsulé dans une première cavité 106 formée entre le support 104 et un capot 108, par exemple réalisé en couche mince par un procédé de type PCM et composé d'un matériau, tel que du silicium amorphe ou du SiO2. Le capot 108 peut être à base de n'importe quel matériau, par exemple diélectrique, semi-conducteur ou encore électriquement conducteur.
  • Le capot 108 comporte une ou plusieurs ouvertures 110 (une seule ouverture 110 est représentée sur la figure 1) formées à travers le capot 108. Une portion de matériau 114, par exemple composée du même matériau que celui formant le capot 108, et réalisée sur le capot 108 et à côté de celui-ci, forme une deuxième cavité 115 adjacente à la première cavité 106 et communiquant avec celle-ci via un canal 117 et l'ouverture 110. Les deux cavités 106 et 115 sont formées sur le support 104 l'une à côté de l'autre. On voit également sur la figure 1 qu'au moins une paroi latérale extérieure de la première cavité 106 forme au moins l'une des parois latérales intérieures de la deuxième cavité 115.
  • Une portion de matériau getter 112, par exemple composée de titane ou de tout autre matériau, tel qu'un métal ou un alliage métallique, apte à réaliser une absorption et/ou une adsorption gazeuse, est déposée dans la deuxième cavité 115. La portion de matériau getter 112 est déposée sur le support 104, au fond de la deuxième cavité 115 ainsi que contre les parois latérales de la deuxième cavité 115 (et donc contre au moins une paroi latérale extérieure de la première cavité 106 car ici, une même portion de matériau forme une des parois latérales extérieures de la première cavité 106 et une des parois latérales intérieures de la deuxième cavité 115). Une partie de la portion de matériau getter 112 repose également sur une partie de la portion de matériau 114, fermant ainsi une ouverture 116 réalisée à travers la portion de matériau 114. Cette partie de la portion de matériau getter 112 est recouverte par une couche d'herméticité 120 empêchant le contact des gaz extérieurs avec la portion de matériau getter 112. La couche d'herméticité 120 ferme ici hermétiquement le volume, ou l'espace, formé par la deuxième cavité 115 et la première cavité 106. Après l'activation thermique du matériau getter 112, ce dernier n'absorbe et/ou n'adsorbe donc que les gaz se trouvant dans ce volume, ou cet espace, clos.
  • Bien qu'une seule ouverture 110 soit représentée sur la figure 1, il est possible que plusieurs ouvertures, par exemple similaires à l'ouverture 110 représentée sur la figure 1, soient réalisées à travers le capot 108 et fassent communiquer le volume intérieur de la première cavité 106 avec du matériau getter déposé hors de la première cavité 106, dans une ou plusieurs deuxièmes cavités par exemple similaires à la deuxième cavité 115, par l'intermédiaire de ces ouvertures 110.
  • On se réfère maintenant aux figures 2A à 2G représentant les étapes de réalisation d'une structure d'encapsulation 200 selon un deuxième mode de réalisation.
  • Dans ce deuxième mode de réalisation, la structure 200 réalise une encapsulation individuelle de plusieurs dispositifs électroniques 202 réalisés sur le support 104 et répartis sur le support 104 sous la forme d'une matrice. Lorsque les dispositifs électroniques 202 sont des capteurs optiques tels que des micro-bolomètres, chaque dispositif électronique 202 peut correspondre à un pixel de la matrice de micro-bolomètres obtenue.
  • Le support 104 et les dispositifs électroniques 202 sont tout d'abord recouverts par une couche sacrificielle par exemple composée de résine et mise en forme par photolithographie et gravure afin que chaque dispositif 202 soit recouvert par une portion 204 de matériau sacrificiel définissant le futur volume d'une première cavité 206 dans laquelle le dispositif 202 est destiné à être encapsulé.
  • On réalise ensuite un dépôt conforme d'une couche composée par exemple d'un matériau diélectrique tel que du silicium amorphe, destinée à former des capots 208 encapsulant les dispositifs 202. Ce dépôt est qualifié de conforme car il recouvre avec une épaisseur sensiblement constante l'ensemble des surfaces exposées des portions 204 de matériau sacrificiel, c'est-à-dire les faces supérieures et les parois latérales de ces portions 204, formant ainsi les capots 208 qui sont destinés à délimiter, avec le support 104, les premières cavités 206 dans lesquelles les dispositifs 202 seront encapsulés. Ce matériau est également déposé entre les portions 204, sur le support 104. La couche déposée formant les capots 208 a de préférence une épaisseur comprise entre environ 1 µm et quelques micromètres, par exemple 10 µm. Chaque capot 208 est espacé des capots voisins par des espaces libres 209 par exemple de largeur comprise entre environ 1 et 2 µm, destinés à former les deuxièmes cavités dans lesquelles du matériau getter sera déposé.
  • Des ouvertures 210 sont ensuite réalisées à travers les capots 208, formant des accès aux portions 204 de matériau sacrificiel, c'est-à-dire des trous de libération (figure 2A). Comme cela est visible sur l'exemple de la figure 2E, chaque capot 208 est traversé par quatre ouvertures 210 formées au niveau de deux bords supérieurs du capot 208.
  • Comme représenté sur la figure 2B, une deuxième couche de matériau sacrificiel, par exemple de nature similaire à celui utilisé pour réaliser les portions 204, est déposée sur l'ensemble des éléments précédemment réalisés, recouvrant ainsi les capots 208. Le matériau sacrificiel de cette deuxième couche est notamment déposé dans les ouvertures 210 ainsi que dans les espaces libres 209 entre les capots 208. La deuxième couche de matériau sacrificiel est ensuite soumise à des étapes de photolithographie et de gravure, formant des secondes portions de matériau sacrificiel 212. Chacune de ces secondes portions de matériau sacrificiel 212 remplit un des espaces libres 209 destinés à former les deuxièmes cavités dans lesquelles du matériau getter est destiné à être déposé. De plus, chacune des secondes portions de matériau sacrificiel 212 occupe également un volume (au-dessus des capots 208 sur l'exemple de la figure 2C) destiné à former un canal, ou « chicane », qui permettra de faire communiquer l'intérieur de l'une des premières cavités avec la portion de matériau getter qui sera déposé dans la partie de l'espace libre 209 occupée par la seconde portion de matériau sacrificiel 212, c'est-à-dire à faire communiquer l'une des premières cavités 206 avec l'une des deuxièmes cavités.
  • Une ou plusieurs ouvertures 210 (destinées à déboucher dans ce canal) sont également remplies par le matériau sacrificiel de la seconde portion 212.
  • Une couche de matériau, par exemple similaire à celui utilisé pour réaliser les capots 208, est déposée en recouvrant notamment les secondes portions de matériau sacrificiel 212. Cette couche peut éventuellement être gravée afin de ne conserver que des portions 214 recouvrant les secondes portions de matériau sacrificiel 212.
  • Des secondes ouvertures 216 sont réalisées à travers ces portions 214, en regard des parties des secondes portions de matériau sacrificiel 212 remplissant les parties des espaces libres 209 entre les capots 208 (figure 2C). Les secondes ouvertures 216 vont servir de trous de libération pour éliminer les secondes portions de matériau sacrificiel 212 ainsi que les portions sacrificielles 204 à travers les canaux 217 obtenus en gravant les secondes portions de matériau sacrificiel 212 et à travers les ouvertures 210. Le matériau getter sera ensuite déposé à travers ces secondes ouvertures 216, dans les deuxièmes cavités 215 délimitées par le matériau 214. Comme cela est visible sur l'exemple de la figure 2E, chaque capot 208 est en partie recouvert par deux portions de matériau 214, et chacune de ces deux portions de matériau 214 recouvre deux ouvertures 210 formées à travers le capot 208, six secondes ouvertures 216 étant réalisées à travers chacune de ces portions de matériau 214.
  • Les secondes portions de matériau sacrificiel 212 sont supprimées par exemple par une gravure plasma à travers les secondes ouvertures 216, libérant ainsi les parties des espaces 209 entre les capots 208 (ou entre les premières cavités 206) destinées à recevoir du matériau getter, c'est-à-dire formant les deuxièmes cavités 215. Les espaces libérés entre les portions 214 et les capots 208 forment également des canaux 217 qui serviront à faire communiquer le matériau getter disposé dans les deuxièmes cavités 215 avec l'intérieur des premières cavités 206. Cette gravure plasma supprime également les portions de matériau sacrificiel 204, libérant ainsi les dispositifs 202 et formant les premières cavités 206, entre les capots 208 et le support 104, dans lesquelles sont encapsulés les dispositifs 202 (figure 2D). Les secondes ouvertures 216 se trouvent en regard des parties des deuxièmes cavités 215 entre les différents capots 208 destinées à recevoir du matériau getter. Les canaux 217 font communiquer, au niveau de chaque capot 208, les ouvertures 210 et 216 bien que celles-ci ne soient pas alignées l'une au-dessus de l'autre dans le plan du support 104 (plan parallèle au plan (X,Y) représenté sur la figure 2D). Les premières cavités 206 et les deuxièmes cavités 215 sont disposées sur le support 104 les unes à côté des autres.
  • La figure 2E représente une vue de dessus de l'ensemble réalisé. Sur cette figure, on voit que chaque capot 208 est traversé par quatre ouvertures 210 formées au niveau de deux bords supérieurs du capot 208 et couplées à douze secondes ouvertures 216 par l'intermédiaire des canaux 217. On voit également sur cette figure que deux parois latérales intérieures de chacune des deuxièmes cavités 215 correspondent à des parois latérales extérieures de deux premières cavités 206 adjacentes à la deuxième cavité 215.
  • Comme représenté sur la figure 2F, on réalise ensuite un dépôt de matériau getter 218 dans les deuxièmes cavités 215 délimitées par les portions 214, à travers les ouvertures 216. Du fait que les ouvertures 210 traversant les capots 208 sont déportées par rapport aux secondes ouvertures 216, le matériau getter 218 ne se dépose pas dans les premières cavités 206. Le matériau getter peut être déposé soit au fond des deuxièmes cavités 215, sur les portions de matériau formant les capots 208 et déposées sur le support 104, entre les capots 208 (comme c'est le cas pour la portion 218a), ou contre les flancs latéraux des capots 208 (cas des portions 218b), ou encore les deux (cas de la portion 218c). Il est également possible que du matériau getter remplisse l'ensemble des deuxièmes cavités 215 délimitées par les portions de matériau 214. La configuration dans laquelle sera déposé le matériau getter sera fonction des dimensions des secondes ouvertures 216 dans le plan du support 104 (parallèle au plan (X,Y)) par rapport à celles des deuxièmes cavités 215 dans ce même plan délimitées par les capots 208 et les portions de matériau 214, ainsi que de la position de ces secondes ouvertures 216 par rapport aux deuxièmes cavités 215. Par exemple, si les dimensions des secondes ouvertures 216 sont sensiblement similaires à celles des deuxièmes cavités 215 (par exemple dans le cas de bords des ouvertures 216 tangents aux flancs latéraux des capots 208), le matériau getter peut se déposer contre les flancs latéraux des capots 208 et éventuellement au fond des deuxièmes cavités 215. Si les ouvertures 216 ont des dimensions inférieures, le matériau getter peut n'être déposé qu'au fond des deuxièmes cavités 215, sur le substrat 104. Lors du dépôt du matériau getter, des portions 218d de matériau getter se forment également au-dessus des portions 214 et bouchent les secondes ouvertures 216.
  • Ces portions 218d de matériau getter peuvent ensuite être recouvertes par une couche d'herméticité 220. Lorsque les dispositifs 202 sont des dispositifs optiques destinés à émettre et/ou recevoir de la lumière, le matériau getter précédemment déposé et la couche d'herméticité 220 peuvent être photolithographiés et gravés afin que le champ optique des dispositifs 202 ne soit pas obstrué par le matériau getter ou la couche d'herméticité 220. Enfin, l'ensemble est recouvert d'une couche antireflet 222, par exemple composée d'un multicouche comprenant des couches de germanium et de sulfure de zinc (figure 2G).
  • La structure d'encapsulation 200 réalisée forme donc une structure matricielle de dispositifs microélectroniques 202 encapsulés dans des premières cavités hermétiques 206 dont les espaces intérieurs communiquent avec des espaces latéraux entre les cavités formant des deuxièmes cavités 215 dans lesquelles des portions de matériau getter 218 sont disposées, réalisant une absorption et/ou une adsorption gazeuse dans les premières cavités 206.
  • La configuration des ouvertures 210 et 216 précédemment décrite est un exemple de réalisation. De manière générale, chaque capot 208 peut être traversé par une ou plusieurs ouvertures 210 faisant communiquer l'intérieur de la première cavité 206 avec une deuxième cavité adjacente dans laquelle est disposé un matériau getter. Les ouvertures 216 et 210 peuvent être de sections, dans un plan parallèle à celui du support 104, de forme circulaire, oblong, ou réalisées sous la forme de fentes ou de toute autre forme. De plus, pour chaque première cavité 206, plusieurs ouvertures 210 ou 216 peuvent être réalisées les unes à côté des autres formant ainsi un alignement d'ouvertures entourant au moins en partie la première cavité 206. Le nombre et les dimensions des ouvertures 210 et 216 associées à chaque première cavité 206 seront adaptées en fonction de l'espace disponible, à la capacité d'absorption et/ou d'adsorption souhaitée du matériau getter, etc.
  • Les figures 3A et 3B représentent une structure d'encapsulation 300 selon un troisième mode de réalisation.
  • Dans ce troisième mode de réalisation, la structure d'encapsulation 300 comporte plusieurs dispositifs électroniques 302 (dispositifs 302a, 302b, 302c représentés sur la figure 3A), par exemple similaires aux dispositifs 102 et 202 précédemment décrits, chacun encapsulé dans une première cavité 306 formée entre le substrat 104 et un capot 308. Comme dans les précédents modes de réalisation, les capots 308 sont traversés par des ouvertures 310 faisant communiquer l'intérieur des premières cavités 306 avec un matériau getter 312 disposé dans des espaces formés entre plusieurs cavités 306 et correspondant à des deuxièmes cavités 315.
  • Les ouvertures 310 sont ici réalisées à travers les bords supérieurs des capots 308, c'est-à-dire pour chaque ouverture 310, au niveau d'une jonction entre une paroi supérieure du capot 308 et l'une des parois latérales du capot 308 telle que, lorsque le matériau getter 312 est déposé, pas ou très peu de matériau getter se retrouve à l'intérieur des premières cavités 306. Une petite partie du matériau getter 312 peut être déposée contre les parois latérales du capot, à l'intérieur des premières cavités 306.
  • Une couche de matériau getter 312 recouvre également les capots 308, bouchant ainsi des secondes ouvertures 316 faisant communiquer l'intérieur de plusieurs premières cavités 306 adjacentes via les ouvertures 310. La couche de matériau getter est recouverte par une couche d'herméticité 314 par exemple de nature similaire à la couche d'herméticité 220.
  • Contrairement aux autres modes de réalisation, les ouvertures 310 font communiquer l'intérieur de plusieurs premières cavités 306 entre elles. Sur l'exemple des figures 3A et 3B, on voit que les ouvertures 310 formées à travers les parois latérales des capots 308 des cavités 306b, 306c, 306d et 306e font communiquer les intérieurs de ces quatre premières cavités entre elles ainsi qu'avec les deuxièmes cavités 315 formées entre les parois latérales extérieures des premières cavités dans lesquelles du matériau getter 312 est disposé (non représenté sur la figure 3B). La structure d'encapsulation 300 forme donc un ensemble de sous-matrices (dans l'exemple des figures 3A et 3B, chaque sous-matrice est formée par un carré de 2 x 2 dispositifs 302 encapsulés dans des premières cavités 306 communiquant toutes les quatre entre elles).
  • Les ouvertures 310 sont réalisées au niveau des bords supérieurs des capots 308 telles que, lorsque le matériau getter 312 est déposé, pas ou très peu de matériau getter se retrouve à l'intérieur des premières cavités 306. On évite le dépôt de matériau getter 312 dans les premières cavités 306 grâce au fait que, au niveau des ouvertures 310, les parois supérieures des capots 308 ne sont pas en retraits, dans le plan (X,Y), par rapport à l'intérieur des parois latérales de ces capots 308. Autrement dit, les ouvertures 310 sont formées à travers des surfaces des capots 308 qui sont perpendiculaire par rapport au plan principal du support 104 (plan parallèle au plan (X,Y)), ce plan principal correspondant à la face du support 104 sur laquelle sont réalisés les dispositifs microélectroniques 302. Ainsi, grâce à de telles ouvertures 310, on met en communication des premières cavités adjacentes et on réalise le dépôt de matériau getter 312 entre les premières cavités 306, dans les deuxièmes cavités 315 en évitant de déposer du matériau getter dans les premières cavités 306 sans faire appel à des ouvertures comportant des chicanes (ou canaux) comme précédemment décrit pour les structures d'encapsulation 100 et 200.
  • Les premières cavités 306 et les deuxièmes cavités 315 sont disposées sur le support 104 les unes à côté des autres. De plus, des parois latérales intérieures de chacune des deuxièmes cavités 315 correspondent à des parois latérales extérieures des premières cavités 306 adjacentes à la deuxième cavité 315.
  • En variante, il est possible que la structure d'encapsulation 300 comporte des cavités 306 traversées par des ouvertures similaires aux ouvertures 210 précédemment décrites, c'est-à-dire comportant des canaux. Lorsque de telles ouvertures et canaux sont réalisés les uns en face des autres, il est possible d'avoir également une communication entre des premières cavités adjacentes via ces ouvertures et ces canaux.

Claims (17)

  1. Structure d'encapsulation (100, 200, 300) d'au moins un dispositif électronique (102, 202, 302a - 302c), comportant au moins une première cavité (106, 206, 306a - 306c) délimitée par un support (104) et au moins un capot (108, 208, 308a - 308c) disposé sur le support (104) et dans laquelle est encapsulé le dispositif électronique (102, 202, 302a - 302c), le capot (108, 208, 308a - 308c) étant traversé par au moins une ouverture (110, 210, 310) faisant communiquer l'intérieur de la première cavité (106, 206, 306a - 306c) avec au moins une portion de matériau getter (112, 218a - 218d, 312) disposée dans au moins une deuxième cavité (115, 215, 315), la deuxième cavité (115, 215, 315) étant disposée sur le support (104) et adjacente à la première cavité (106, 206, 306a - 306c), au moins une partie de ladite portion de matériau getter (112, 218a - 218c, 312) étant disposée sur le support (104) et/ou contre au moins une paroi latérale extérieure de la première cavité (106, 206, 306a - 306c), la première cavité (106, 206, 306a - 306c) et la deuxième cavité (115, 215, 315) formant ensemble un volume fermé hermétiquement.
  2. Structure d'encapsulation (100, 200, 300) selon la revendication 1, dans laquelle le volume formé par la première cavité (106, 206, 306a - 306c) et la deuxième cavité (115, 215, 315) est fermé hermétiquement par la portion de matériau getter (112, 218a - 218d, 312).
  3. Structure d'encapsulation (300) selon l'une des revendications précédentes, dans laquelle l'ouverture (310) traverse une surface du capot (308a - 308c) qui est sensiblement perpendiculaire par rapport à un plan principal du support (104).
  4. Structure d'encapsulation (100, 200) selon l'une des revendications précédentes, dans laquelle l'intérieur de la première cavité (106, 206) communique avec la portion de matériau getter (112, 218a - 218d) via au moins un espace formant un canal (117, 217) entre la première cavité (106, 206) et la deuxième cavité (115, 215), l'ouverture (110, 210) étant telle qu'elle débouche dans le canal (117, 217).
  5. Structure d'encapsulation (100, 200, 300) selon l'une des revendications précédentes, dans laquelle au moins une deuxième partie de la portion de matériau getter (112, 218d, 312) bouche au moins une deuxième ouverture (116, 216, 316) formant un accès au canal (117, 217) ou à la première ouverture (310).
  6. Structure d'encapsulation (100, 200, 300) selon la revendication 5, dans laquelle la deuxième partie de la portion de matériau getter (112, 218d, 312) est recouverte par une couche d'herméticité (120, 220, 314).
  7. Structure d'encapsulation (200, 300) selon l'une des revendications précédentes, comportant une pluralité de dispositifs électroniques (202, 302a - 302c) encapsulés dans des premières cavités distinctes (206, 306a - 306c) délimitées par le support (104) et des capots (208, 308a - 308c) disposés sur le support (104), les capots (208, 308a - 308c) étant traversés par des ouvertures (210, 310) faisant communiquer l'intérieur des premières cavités (206, 306a - 306c) avec une ou plusieurs portions de matériau getter (218a - 218d, 312) disposées dans une ou plusieurs deuxièmes cavités (215, 315) formées entre les premières cavités (206, 306a - 306c), au moins une partie de ladite ou desdites portions de matériau getter (218a - 218d, 312) étant disposée sur le support (104) et/ou contre une ou plusieurs parois latérales extérieures des premières cavités (206, 306a - 306c).
  8. Structure d'encapsulation (300) selon la revendication 7, dans laquelle les intérieurs de plusieurs premières cavités (306b, 306c) communiquent ensemble via les ouvertures (310) traversant les capots (308b, 308c) desdites premières cavités (306b, 306c).
  9. Structure d'encapsulation (300) selon l'une des revendications 7 ou 8, comportant en outre une couche de matériau getter (312) fermant hermétiquement le ou les volumes formés par les premières cavités (308a-308c) et la ou les deuxièmes cavités (315).
  10. Procédé de réalisation d'une structure d'encapsulation (100, 200, 300) d'au moins un dispositif électronique (102, 202, 302a - 302c), comportant au moins les étapes de :
    - réalisation du dispositif électronique (102, 202, 302a - 302c) sur un support (104),
    - réalisation d'au moins un capot (108, 208, 308a - 308c) sur le support (104), formant une première cavité (106, 206, 306a - 306c) délimitée par le support (104) et le capot (108, 208, 308a - 308c) et dans laquelle est encapsulé le dispositif électronique (102, 202, 302a - 302c) ;
    - réalisation d'au moins une ouverture (110, 210, 310) à travers le capot (108, 208, 308a - 308c),
    - dépôt d'au moins une portion de matériau getter (112, 218a - 218d, 312) dans au moins une deuxième cavité (115, 215, 315) disposée sur le support (104) et adjacente à la première cavité (106, 206, 306a - 306c), l'ouverture (110, 210, 310) faisant communiquer l'intérieur de la première cavité (106, 206, 306a - 306c) avec la portion de matériau getter (112, 218a - 218d, 312), au moins une partie de ladite portion de matériau getter (112, 218a - 218d, 312) étant disposée sur le support (104) et/ou contre au moins une paroi latérale extérieure de la première cavité (106, 206, 306a - 306c), la première cavité (106, 206, 306a - 306c) et la deuxième cavité (115, 215, 315) formant ensemble un volume fermé hermétiquement.
  11. Procédé selon la revendication 10, dans laquelle la portion de matériau getter (312) est déposée telle qu'elle ferme hermétiquement le volume formé par la première cavité (306) et la deuxième cavité (315).
  12. Procédé selon la revendication 10, comportant en outre, entre la réalisation de l'ouverture (110, 210) à travers le capot (108, 208) et le dépôt de la portion de matériau getter (112, 218a - 218d), la réalisation d'au moins un espace formant un canal (117, 217) entre la première cavité (106, 206) et la deuxième cavité (115, 215) et destiné faire communiquer l'intérieur de la première cavité (106, 206) avec la portion de matériau getter (112, 218a - 218d), l'ouverture (110, 210) étant telle qu'elle débouche dans le canal (117, 217).
  13. Procédé selon la revendication 12, dans lequel le dépôt de la portion de matériau getter (112, 218a - 218d, 312) est réalisé tel qu'au moins une deuxième partie de la portion de matériau getter (112, 218d, 312) bouche au moins une deuxième ouverture (116, 216, 316) formant un accès au canal (117, 217) ou à la première ouverture (310), et fermant hermétiquement le volume formé par la première cavité (106, 206, 306a - 306c) et la deuxième cavité (115, 215, 315).
  14. Procédé selon la revendication 13, comportant en outre, après le dépôt de la portion de matériau getter (112, 218a - 218d, 312), une étape de dépôt d'une couche d'herméticité (120, 220, 314) recouvrant la deuxième partie de la portion de matériau getter (112, 218d, 312).
  15. Procédé selon l'une des revendications 10 à 14, comportant la réalisation d'une pluralité de dispositifs électroniques (202, 302a - 302c) et d'une pluralité de capots (208, 308a - 308c) sur le support (104), encapsulant les dispositifs électroniques (202, 302a - 302c) dans des premières cavités (206, 306a - 306c) distinctes délimitées par le support (104) et les capots (208, 308a - 308c), le procédé comportant en outre la réalisation d'une pluralité d'ouvertures (210, 310) à travers les capots (208, 308a - 308c) et le dépôt d'une ou plusieurs portions de matériau getter (218a - 218d, 312) dans une ou plusieurs deuxièmes cavités (215, 315) formées entre les premières cavités (206, 306a - 306c), les ouvertures (210, 310) faisant communiquer l'intérieur des premières cavités (206, 306a - 306c) avec la ou les portions de matériau getter (218a - 218d, 312), au moins une partie de ladite ou desdites portions de matériau getter (218a - 218d, 312) étant disposées sur le support (104) et/ou contre une ou plusieurs parois latérales extérieures des premières cavités (206, 306a - 306c).
  16. Procédé selon la revendication 15, dans lequel les ouvertures (310) sont réalisées telles que l'intérieur de plusieurs premières cavités (306b, 306c) communique via les ouvertures (310) traversant les capots (308b, 308c) desdites premières cavités (306b, 306c).
  17. Procédé selon l'une des revendications 15 ou 16, comportant en outre la réalisation d'une couche de matériau getter (312) fermant hermétiquement le ou les volumes formés par les premières cavités (308a - 308c) et la ou les deuxièmes cavités (315).
EP12187748.4A 2011-10-11 2012-10-09 Structure d'encapsulation de dispositif électronique et procédé de réalisation d'une telle structure Not-in-force EP2581339B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1159168A FR2981198B1 (fr) 2011-10-11 2011-10-11 Structure d'encapsulation de dispositif electronique et procede de realisation d'une telle structure

Publications (3)

Publication Number Publication Date
EP2581339A2 true EP2581339A2 (fr) 2013-04-17
EP2581339A3 EP2581339A3 (fr) 2014-11-12
EP2581339B1 EP2581339B1 (fr) 2016-03-16

Family

ID=46963626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12187748.4A Not-in-force EP2581339B1 (fr) 2011-10-11 2012-10-09 Structure d'encapsulation de dispositif électronique et procédé de réalisation d'une telle structure

Country Status (4)

Country Link
US (1) US8680664B2 (fr)
EP (1) EP2581339B1 (fr)
JP (1) JP2013102144A (fr)
FR (1) FR2981198B1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033045A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement electromagnetique a structure d'encapsulation hermetique a event de liberation
FR3033042A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement electromagnetique comportant une structure d'encapsulation a event de liberation
FR3033044A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement comportant une structure d'encapsulation a tenue mecanique amelioree
FR3101414A1 (fr) 2019-09-30 2021-04-02 Commissariat à l'Energie Atomique et aux Energies Alternatives procede de fabrication d’un dispositif de detection de rayonnement electromagnétique comportant un materiau getter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9171964B2 (en) 2010-11-23 2015-10-27 Honeywell International Inc. Systems and methods for a three-layer chip-scale MEMS device
US8748206B2 (en) * 2010-11-23 2014-06-10 Honeywell International Inc. Systems and methods for a four-layer chip-scale MEMS device
FR3014241B1 (fr) * 2013-11-29 2017-05-05 Commissariat Energie Atomique Structure d'encapsulation comprenant des tranchees partiellement remplies de materiau getter
DE102017210459A1 (de) * 2017-06-22 2018-12-27 Robert Bosch Gmbh Mikromechanische Vorrichtung mit einer ersten Kaverne und einer zweiten Kaverne
CN108313973B (zh) * 2017-12-27 2020-05-26 武汉高德红外股份有限公司 一种非制冷红外探测器的像素级封装结构及加工方法
FR3103551B1 (fr) * 2019-11-27 2021-12-17 Commissariat Energie Atomique Procédé de fabrication d’un dispositif de détection comportant une etape de collage direct d’une couche mince de scellement munie d’un matériau getter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826725A1 (fr) 2001-06-28 2003-01-03 Commissariat Energie Atomique Microbolometres resistants aux temperatures de scenes elevees.

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5293511A (en) * 1993-03-16 1994-03-08 Texas Instruments Incorporated Package for a semiconductor device
US6499354B1 (en) * 1998-05-04 2002-12-31 Integrated Sensing Systems (Issys), Inc. Methods for prevention, reduction, and elimination of outgassing and trapped gases in micromachined devices
JP2000100984A (ja) * 1998-09-21 2000-04-07 Murata Mfg Co Ltd 減圧容器の製造方法
JP3853234B2 (ja) * 2002-03-05 2006-12-06 三菱電機株式会社 赤外線検出器
FR2842022B1 (fr) * 2002-07-03 2005-05-06 Commissariat Energie Atomique Dispositif de maintien d'un objet sous vide et procedes de fabrication de ce dispositif, application aux detecteurs intrarouges non refroidis
US20040189195A1 (en) 2003-03-24 2004-09-30 Osram Opto Semiconductors Gmbh Devices including, methods using, and compositions of reflowable getters
KR100647598B1 (ko) * 2004-04-06 2006-11-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그 제조방법
JP5062648B2 (ja) * 2004-04-08 2012-10-31 双葉電子工業株式会社 有機el素子用水分吸収剤
US7344907B2 (en) * 2004-11-19 2008-03-18 International Business Machines Corporation Apparatus and methods for encapsulating microelectromechanical (MEM) devices on a wafer scale
FR2883099B1 (fr) * 2005-03-14 2007-04-13 Commissariat Energie Atomique Protection d'un getter en couche mince
US7417307B2 (en) * 2005-07-29 2008-08-26 Hewlett-Packard Development Company, L.P. System and method for direct-bonding of substrates
DE102006016260B4 (de) 2006-04-06 2024-07-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vielfach-Bauelement mit mehreren aktive Strukturen enthaltenden Bauteilen (MEMS) zum späteren Vereinzeln, flächiges Substrat oder flächig ausgebildete Kappenstruktur, in der Mikrosystemtechnik einsetzbares Bauteil mit aktiven Strukturen, Einzelsubstrat oder Kappenstruktur mit aktiven Strukturen und Verfahren zum Herstellen eines Vielfach-Bauelements
FR2903678B1 (fr) * 2006-07-13 2008-10-24 Commissariat Energie Atomique Microcomposant encapsule equipe d'au moins un getter
US7932569B2 (en) * 2006-09-27 2011-04-26 Miradia, Inc. Micromechanical device with microfluidic lubricant channel
FR2922202B1 (fr) 2007-10-15 2009-11-20 Commissariat Energie Atomique Structure comportant une couche getter et une sous-couche d'ajustement et procede de fabrication.
FR2933390B1 (fr) * 2008-07-01 2010-09-03 Commissariat Energie Atomique Procede d'encapsulation d'un dispositif microelectronique par un materiau getter
US8120155B2 (en) * 2008-07-31 2012-02-21 Texas Instruments Incorporated Reduced stiction and mechanical memory in MEMS devices
FR2947812B1 (fr) 2009-07-07 2012-02-10 Commissariat Energie Atomique Cavite etanche et procede de realisation d'une telle cavite etanche
FR2950876B1 (fr) 2009-10-07 2012-02-10 Commissariat Energie Atomique Procede de traitement d'un materiau getter et procede d'encapsulation d'un tel materiau getter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2826725A1 (fr) 2001-06-28 2003-01-03 Commissariat Energie Atomique Microbolometres resistants aux temperatures de scenes elevees.

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3033045A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement electromagnetique a structure d'encapsulation hermetique a event de liberation
FR3033042A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement electromagnetique comportant une structure d'encapsulation a event de liberation
FR3033044A1 (fr) * 2015-02-20 2016-08-26 Commissariat Energie Atomique Dispositif de detection de rayonnement comportant une structure d'encapsulation a tenue mecanique amelioree
EP3067674A3 (fr) * 2015-02-20 2016-11-23 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Dispositif de detection de rayonnement comportant une structure d'encapsulation a tenue mecanique amelioree
EP3067675A3 (fr) * 2015-02-20 2016-11-23 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Dispositif de detection de rayonnement electromagnetique a structure d'encapsulation hermetique a event de liberation
US9851254B2 (en) 2015-02-20 2017-12-26 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for detecting electromagnetic radiation possessing a hermetic encapsulating structure comprising an exhaust vent
US9933309B2 (en) 2015-02-20 2018-04-03 Commissariat A L'energie Atomique Et Aux Energies Alternatives Device for detecting radiation including an encapsulating structure having an improved mechanical strength
FR3101414A1 (fr) 2019-09-30 2021-04-02 Commissariat à l'Energie Atomique et aux Energies Alternatives procede de fabrication d’un dispositif de detection de rayonnement electromagnétique comportant un materiau getter
WO2021063861A1 (fr) 2019-09-30 2021-04-08 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede de fabrication d'un dispositif de detection de rayonnement electromagnetique comportant un materiau getter

Also Published As

Publication number Publication date
EP2581339B1 (fr) 2016-03-16
FR2981198A1 (fr) 2013-04-12
US20130087933A1 (en) 2013-04-11
US8680664B2 (en) 2014-03-25
EP2581339A3 (fr) 2014-11-12
FR2981198B1 (fr) 2014-04-04
JP2013102144A (ja) 2013-05-23

Similar Documents

Publication Publication Date Title
EP2581339B1 (fr) Structure d'encapsulation de dispositif électronique et procédé de réalisation d'une telle structure
EP2141117B1 (fr) Procédé d'encapsulation d'un dispositif microélectronique par un materiau getter
EP1878693B1 (fr) Microcomposant encapsule equipe d'au moins un getter
EP3020684B1 (fr) Structure d'encapsulation comportant une cavite couplee a canal d'injection de gaz forme par un materiau permeable
FR3021645B1 (fr) Structure d'encapsulation a plusieurs cavites munies de canaux d'acces de hauteurs differentes
EP2897162B1 (fr) Structure d'encapsulation comprenant des tranchees partiellement remplies de materiau getter
EP2284121B1 (fr) Structure à microcavité et structure d'encapsulation d'un dispositif microélectronique
EP2628708B1 (fr) Substrat microélectronique comprenant une couche de matériau organique enterrée
FR2994332A1 (fr) Procede d'encapsulation d'un dispositif microelectronique
EP2586741B1 (fr) Structure d'encapsulation hermétique d'un dispositif et d'un composant électronique
EP2829511B1 (fr) Dispositif comportant un canal fluidique muni d'au moins un système micro ou nanoélectronique et procédé de réalisation d'un tel dispositif
EP2803634B1 (fr) Procédé d'encapsulation d'un dispositif microélectronique comprenant une injection de gaz noble à travers un matériau perméable à ce gaz noble
FR2981059A1 (fr) Procede d'encapsulation de micro-dispositif par report de capot et depot de getter a travers le capot
EP1518279B1 (fr) Dispositif de maintien d un objet sous vide et procedes de f abrication de ce dispositif, application aux detecteurs infrarouges non refroidis
EP3157050A1 (fr) Procédé de réalisation d'un dispositif microélectronique
EP4062451B1 (fr) Procede de fabrication d'un dispositif de detection presentant une protection amelioree du getter
EP3165502B1 (fr) Dispositif microélectronique
EP3034460B1 (fr) Structure getter multi-niveaux et structure d'encapsulation comportant une telle structure getter multi-niveaux
FR3014240A1 (fr) Procede de realisation d'un substrat comportant un materiau getter dispose sur des parois d'un ou plusieurs trous borgnes formes dans le substrat
EP2778121B1 (fr) Procédé d'encapsulation de micro-dispositif par scellement anodique
FR3074358A1 (fr) Procede de realisation d'une cavite etanche a couche mince
WO2023156717A1 (fr) Procede de realisation d'un detecteur elementaire pour un capteur infrarouge, detecteur elementaire et capteur infrarouge associes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: B81C 1/00 20060101AFI20141009BHEP

17P Request for examination filed

Effective date: 20150511

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150701

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150907

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 781039

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012015606

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160316

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 781039

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160716

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012015606

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

26N No opposition filed

Effective date: 20161219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160616

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161009

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161009

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121009

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160316

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201030

Year of fee payment: 9

Ref country code: GB

Payment date: 20201015

Year of fee payment: 9

Ref country code: DE

Payment date: 20201009

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012015606

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211009

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031