EP2577992A1 - Akustischer lautsprecher - Google Patents

Akustischer lautsprecher

Info

Publication number
EP2577992A1
EP2577992A1 EP11726910.0A EP11726910A EP2577992A1 EP 2577992 A1 EP2577992 A1 EP 2577992A1 EP 11726910 A EP11726910 A EP 11726910A EP 2577992 A1 EP2577992 A1 EP 2577992A1
Authority
EP
European Patent Office
Prior art keywords
membrane
magnetic field
winding
periphery
loudspeaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11726910.0A
Other languages
English (en)
French (fr)
Other versions
EP2577992B1 (de
Inventor
Arnaud Cazes Bouchet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focal JMLab SAS
Original Assignee
Focal-Jmlab (Sa)
Focal JMLab SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focal-Jmlab (Sa), Focal JMLab SAS filed Critical Focal-Jmlab (Sa)
Publication of EP2577992A1 publication Critical patent/EP2577992A1/de
Application granted granted Critical
Publication of EP2577992B1 publication Critical patent/EP2577992B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/025Magnetic circuit
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/04Plane diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • H04R7/12Non-planar diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/16Mounting or tensioning of diaphragms or cones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2209/00Details of transducers of the moving-coil, moving-strip, or moving-wire type covered by H04R9/00 but not provided for in any of its subgroups
    • H04R2209/024Manufacturing aspects of the magnetic circuit of loudspeaker or microphone transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2231/00Details of apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor covered by H04R31/00, not provided for in its subgroups
    • H04R2231/003Manufacturing aspects of the outer suspension of loudspeaker or microphone diaphragms or of their connecting aspects to said diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/13Acoustic transducers and sound field adaptation in vehicles

Definitions

  • the invention relates to the field of acoustic loudspeakers, and more particularly of small speakers. It relates more particularly to a new architecture of loudspeakers that allows to very strongly reduce their thickness, that is to say, their dimension measured perpendicularly to the direction of emission of sound.
  • a loudspeaker comprises a mobile membrane mechanically associated with a winding traversed by a current representative of the acoustic signal to be generated.
  • the loudspeaker also comprises a magnetic field source, generally constant, which interacts with the current flowing through the winding to allow movement of the winding and therefore of the membrane.
  • the winding is disposed in a central zone of the membrane which is itself of generally conical shape, between polar parts that can channel the magnetic field generated by the magnetic field source, which is itself below of the membrane. It is understood that the stacking of these different elements is at the expense of the overall thickness of the speaker. In other words, when it is desired to make a conventional speaker of reduced thickness, it is necessary to reduce the angle of the cone of the membrane, or the dimensions of the magnetic field source, with inevitably a degradation. acoustic performance.
  • the acoustic sources are the least thick possible.
  • the integration of loudspeakers in vehicle doors or in various furniture elements can be mentioned.
  • Such a loudspeaker comprises an annular magnetic assembly disposed at the periphery of the membrane. This set comprises several superimposed magnets, whose magnetizations are radial for the central layer, and axial for the peripheral layers. Such an arrangement makes it possible to concentrate the field lines towards the inside of the ring formed by the magnetic assembly, but has the major disadvantage of limiting the height over which the magnetic field is useful. In other words, the excursion of the membrane is limited, which prevents the speaker from being effective at low frequencies.
  • the invention therefore relates to an acoustic loudspeaker which conventionally comprises:
  • a source of constant magnetic field oriented in a plane substantially parallel to the membrane
  • this loudspeaker is characterized in that the magnetic field source is formed of a set of magnetized elements disposed at the periphery of this membrane, around the winding. Each magnetized element has a cylindrical face facing the winding. The magnetic field generated by these magnetized elements has field lines that emerge from the full height of this inner face of the magnetic field source.
  • the invention consists in producing a loudspeaker by arranging the winding around the periphery of the membrane, and positioning the magnetic field source around the membrane, facing the winding.
  • the magnetic field generated by the magnetic elements arranged in a ring is therefore radial, and acts directly on the winding without the need for a pole piece.
  • the field lines generated by the magnets produce a homogeneous force (in direction and amplitude), on the winding, over the potential excursion of the membrane.
  • the outer contour of the membrane, the coil and the magnetic field source are in the same plane, which provides a particularly compact and thin.
  • the speaker according to the invention sees the magnetic field close naturally in the surrounding environment.
  • This apparent disadvantage is offset by the fact that the mass of magnetic material required is globally important, since it occupies the entire periphery of the membrane.
  • the gains in compactness form a largely preponderant advantage.
  • the shape of the membrane may be substantially flat, for example for applications in the low frequencies, or of more complex shape, for use at higher frequencies, where it is necessary to benefit from greater rigidity .
  • This shape can for example be convex, concave, conical.
  • the various magnetized elements are arranged in a ring on the periphery of the membrane in a regular angular distribution, to balance the forces exerted on the coil.
  • Different geometries are possible for these magnetic elements. It is thus possible to have substantially rectilinear elements to form a polygonal global geometry. In this case, it is also possible for the winding to be wound into a polygonal shape corresponding to the shape of the magnetic field source, so as to maintain a substantially constant air gap. It is also possible to use magnetized elements having a curvature complementary to that of the winding, so as to provide a source which has a circular overall shape, and which is therefore at a quasi-constant distance from the winding.
  • the magnetized elements may have a face oriented on the side of the coil which is cylindrical, so as to maintain a constant air gap regardless of the relative position of the coil.
  • the magnetized elements can be mounted inside successive housings made in a frame, itself secured to a fixed point of the installation of the speaker.
  • the loudspeaker comprises a suspension member connected on the one hand to the frame of the magnetic field source, and on the other hand to the periphery of the membrane.
  • This suspension element allows the displacement of the membrane relative to a fixed point.
  • the loudspeaker also comprises a second suspension member, also connected to the frame and the periphery of the membrane, but on the opposite side of the winding with respect to the first suspension member, so as to form a closed volume around the winding .
  • the membrane is connected to the chassis of the loudspeaker by a set of two sheets defining an overall volume of substantially toroidal shape, inside which are enclosed the winding and the magnetic field source. Moisture tightness is thus ensured in particular vis-à-vis the winding.
  • the presence of the second suspension member also makes it possible to improve the power handling by increasing the return force applied to the moving element. This second suspension member improves the guidance of the coil by creating a deformable parallelogram structure.
  • this double suspension makes it possible to balance the mechanical forces with respect to the two directions of movement of the moving equipment, as opposed to single suspension systems.
  • this second suspension member is not mandatory because it adds weight to the moving equipment. This second suspension may therefore be omitted for loudspeakers in the ranges where the displaced mass considerations are preponderant.
  • Figure 1 is a top view of a speaker according to the invention, wherein a portion of one of the suspension members has been masked to reveal the magnetic field source and the winding;
  • Figure 2 is a detail view of a portion of the frame accommodating the magnetized elements.
  • Figure 3 is a cross-sectional view, in slight perspective, of the loudspeaker of Figure 1.
  • Figure 4 is a cross-sectional detail view of a magnet and facing winding, on which the field lines have been shown.
  • the invention therefore relates to a loudspeaker which, as illustrated in FIG. 1, consists essentially of a membrane 2 of circular shape and of substantially flat geometry.
  • This membrane also comprises a winding 3 of circular shape which is mechanically secured to the membrane.
  • the magnetic field source 4 which comprises a frame 5 supporting different magnetized elements 6.
  • the membrane 2 is made in a traditional manner with materials such as, among which may be mentioned, at examples: composite materials (combining glass, aramid or similar fibers, or carbon fibers), metals (especially aluminum, titanium and beryllium), cellulose pulp, polymers such as polypropylene, polyethylene terephthalate (Mylar ® ), or acrylonitrile butadiene styrene (ABS), or even synthetic textiles.
  • the shape of the membrane may be flat for use in the low frequencies, or even more complex (concave, convex, conical) to have a superior rigidity appreciable for operations at higher frequency.
  • the membrane 2 is peripherally extended by a zone 8 accommodating the coil 3 which is wound circularly around the periphery of the membrane 2.
  • the wire used for the winding is of conventional characteristics, and for example based on various electrically conductive materials, and in particular copper, aluminum, and other alloys.
  • the wire section can be optimized to minimize the overall resistance of the coil.
  • the magnetic source 4 consists essentially of magnetized elements 6 in the form of segments angularly distributed on the periphery of the coil 3.
  • these elements 6 may be based on very strong magnetization materials, to compensate the absence of pole piece, and the fact that it is the creepage of these magnetized elements 6 which pass through the coil 3.
  • the magnetization of these elements 6 is therefore chosen so that it is oriented radially, and passes through the winding 3 perpendicularly substantially along the plane of the membrane 2. Materials such as neodymium or the like have a magnetization compatible with these applications.
  • each of the segments may have a face 10 which is curved, more precisely cylindrical, to be at a constant distance from the winding.
  • This face is cylindrical, that is to say that the distance to the coil 3 remains the same regardless of the position of the latter when moving with the membrane.
  • the field lines 20 emerge from the plane face 10 of the magnetized element. These field lines are oriented towards the inside of the loudspeaker, towards the winding 3. In this way, during its movements, the winding 3 positively undergoes the influence of the magnetic field, including in its extreme positions. one of which is illustrated by the dotted winding. Over the entire height of the face 10, the field lines 20 have an overall orientation in the direction of the winding, with a sufficiently homogeneous distribution, which helps to limit the phenomena of distortions.
  • these curved magnetized elements 6 are disposed inside a chassis 4, which has appropriate housings 12. These housings 12 are formed between radial partitions 15 extending between two adjacent magnet elements 6. Means for holding the magnetized elements may be arranged, for example in the form of a bulge 16 located at the end of the partition 15, and of complementary shape to a recess 17 formed on the short sides of the magnetized elements 6. In this way, a quasi-continuity of the magnetic field generated by the magnetized elements 6 is maintained at the boundary between two successive elements.
  • the rear face 19 of the magnetized elements may be flat or curved depending on the type of material used. A wall 18 facing the rear face 19 of the magnetized elements, can advantageously improve the maintenance of these elements 6 on the frame 4.
  • the frame 4 has a peripheral portion 20 for fixing the loudspeaker on its support.
  • the loudspeaker also comprises suspension members 30, 31 illustrated in FIG. 3.
  • Each suspension member 30, 31 has an inner portion 32, 33 which is substantially circular in shape, and secured to one of the faces 34,35 of the membrane 2.
  • the opposite end 36,37 forming the outer periphery of the suspension member 30,31 is itself secured to the frame 4 by various appropriate means as a commitment in a throat made for this purpose or a collage, or any other suitable mechanical device.
  • the portion 38,39 of the suspension member 30,31 located between its two ends 32,33; 36,37 adopts a curved shape, to generate a space 40 encompassing the magnetic field source and the winding.
  • the shape of this central portion 38,39 is chosen to allow the maximum deflection of the membrane 2 without generating mechanical stress.
  • Other forms, for example rectangular, can also give satisfaction.
  • Materials conventionally used to make the suspensions may be employed, such as coated textiles or the like.
  • the loudspeaker according to the invention has multiple advantages, and in particular that of having a particularly reduced thickness with respect to its diameter. It can therefore be advantageously used for applications where congestion constraints are important, and while maintaining good acoustic performance, especially in low frequencies, thanks to the ability to move a relatively large volume of air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Audible-Bandwidth Dynamoelectric Transducers Other Than Pickups (AREA)
EP11726910.0A 2010-05-28 2011-05-27 Akustischer lautsprecher Active EP2577992B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1054130A FR2960738B1 (fr) 2010-05-28 2010-05-28 Haut-parleur acoustique
PCT/FR2011/051207 WO2011148109A1 (fr) 2010-05-28 2011-05-27 Haut-parleur acoustique

Publications (2)

Publication Number Publication Date
EP2577992A1 true EP2577992A1 (de) 2013-04-10
EP2577992B1 EP2577992B1 (de) 2018-12-05

Family

ID=43302105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11726910.0A Active EP2577992B1 (de) 2010-05-28 2011-05-27 Akustischer lautsprecher

Country Status (4)

Country Link
US (1) US9071898B2 (de)
EP (1) EP2577992B1 (de)
FR (1) FR2960738B1 (de)
WO (1) WO2011148109A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080912A2 (en) * 2010-12-15 2012-06-21 Koninklijke Philips Electronics N.V. An audio driver
CN103329573B (zh) 2010-12-23 2018-05-08 普莱赛恩特音响制造有限公司 低型面扬声器
EP2624595A4 (de) * 2011-05-19 2015-07-01 Tang Band Ind Co Ltd Vibrationsplattenvorrichtung für einen elektromagnetischen vibrator und herstellungsverfahren dafür
CN202949560U (zh) * 2012-11-16 2013-05-22 瑞声声学科技(常州)有限公司 发声器
US9788122B2 (en) * 2012-12-26 2017-10-10 Xin Min HUANG Vibrating panel device for electromagnetic vibrator and manufacture method thereof
JP6589140B2 (ja) * 2014-07-04 2019-10-16 パナソニックIpマネジメント株式会社 ラウドスピーカと、これを搭載した移動体装置
CA2970740C (en) * 2015-02-05 2023-09-05 Eagle Acoustics Manufacturing, Llc Integrated voice coil and cone assembly and method of making same
ITUB20161213A1 (it) * 2016-03-01 2017-09-01 Faital S P A Altoparlante
US10681467B2 (en) 2016-05-11 2020-06-09 Samsung Electronics Co., Ltd. Slim acoustic transducer and image display apparatus having the same
USD875084S1 (en) * 2017-11-13 2020-02-11 Tymphany Hong Kong Limited Surround for loudspeaker
CN208369831U (zh) * 2018-05-04 2019-01-11 惠州超声音响有限公司 一种对称双折环的扬声器
USD966235S1 (en) 2019-08-23 2022-10-11 Tymphany Acoustic Technology Limited Waveguide
CN113873407A (zh) * 2021-10-26 2021-12-31 维沃移动通信有限公司 扬声器控制方法、扬声器模组和电子设备
FR3138258A1 (fr) 2022-07-19 2024-01-26 Cédric Carlavan Haut-parleur et meuble equipe d’un tel haut-parleur

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567870A (en) * 1968-07-25 1971-03-02 Harold D Linden Wall surface transducer system
BE794025A (fr) * 1972-01-21 1973-05-02 Gen Electric Ensemble aimante
JPS53129023A (en) * 1977-04-15 1978-11-10 Matsushita Electric Ind Co Ltd Dynamic loudspeaker
JP2558387B2 (ja) * 1990-11-16 1996-11-27 株式会社日立製作所 ボイスコイルモータおよび磁気ディスク装置
JPH06233379A (ja) * 1993-02-02 1994-08-19 Kenwood Corp スピーカ
KR19980032013A (ko) * 1995-12-15 1998-07-25 모리시타요오이찌 진동 발생장치
DE19616794B4 (de) * 1996-04-26 2005-09-29 Harman Audio Electronic Systems Gmbh Lautsprecher
NO975614A (no) * 1997-12-04 1999-04-26 Seas Fabrikker As Permanentmagnetmontasje
US6611606B2 (en) * 2000-06-27 2003-08-26 Godehard A. Guenther Compact high performance speaker
US6774510B1 (en) * 2000-10-25 2004-08-10 Harman International Industries, Inc. Electromagnetic motor with flux stabilization ring, saturation tips, and radiator
US6862361B2 (en) * 2001-04-05 2005-03-01 Floyd John James Audio speaker
GB0223654D0 (en) * 2002-10-10 2002-11-20 New Transducers Ltd Electromagnetic actuator
US20040213431A1 (en) * 2003-04-25 2004-10-28 Mello William Bernard Electromagnetic audio transducer and or audio speaker
JP4219225B2 (ja) * 2003-05-30 2009-02-04 パイオニア株式会社 スピーカ装置
JP3963173B2 (ja) * 2004-01-06 2007-08-22 ソニー株式会社 スピーカ
KR20060046263A (ko) * 2004-08-04 2006-05-17 도쿄파츠고교 가부시키가이샤 편평형 진동모터를 내장시킨 전자음향변환기
US20060251286A1 (en) * 2005-04-13 2006-11-09 Stiles Enrique M Multi-gap air return motor for electromagnetic transducer
US7706563B2 (en) * 2005-12-19 2010-04-27 Harman International Industries, Incorporated Concentric radial ring motor
US7757376B2 (en) * 2006-09-12 2010-07-20 Tdk Corporation Method for manufacturing of a magnetic circuit
US20080166010A1 (en) * 2007-01-04 2008-07-10 Stiles Enrique M Overlapping surround roll for loudspeaker
FR2921224B1 (fr) * 2007-09-18 2009-12-04 Orkidia Audio Structure magnetique pour moteur sans fer de haut-parleur electrodynamique, moteurs et haut-parleurs
US8175319B2 (en) * 2008-06-11 2012-05-08 Sound Sources Technology, Inc. Interchangeable magnet loudspeaker
KR20100121299A (ko) * 2009-05-08 2010-11-17 주식회사 비에스이 다기능 마이크로 스피커
ITPD20110191A1 (it) * 2011-06-13 2012-12-14 Maurizio Servadio Trasduttore elettromeccanico/elettroacustico sottile
US8571252B2 (en) * 2011-12-23 2013-10-29 Ggec America, Inc. Driver assembly for loudspeakers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011148109A1 *

Also Published As

Publication number Publication date
US9071898B2 (en) 2015-06-30
EP2577992B1 (de) 2018-12-05
WO2011148109A1 (fr) 2011-12-01
FR2960738A1 (fr) 2011-12-02
US20130064413A1 (en) 2013-03-14
FR2960738B1 (fr) 2015-09-25

Similar Documents

Publication Publication Date Title
EP2577992B1 (de) Akustischer lautsprecher
EP2524519B1 (de) Koaxial-lautsprechersystem mit einer kompressionskammer mit einer hupe
EP0749265B1 (de) Hochfrequenzlautsprecher
EP3371984B1 (de) Mehrfachverglastes fenster mit einer geräuschreduzierungsvorrichtung
EP1515584B1 (de) Lautsprecher und entsprechende Lautsprechergehäuse
EP2524521B1 (de) Kuppelförmiger elektrodynamischer wandler mit einer schwimmenden aufhängung
EP1474952B1 (de) Elektrodynamischer schwingspulenantrieb, insbesondere für einen lautsprecher, lautsprecher und angepasstes polstück
EP3391664B1 (de) Akustische membran für einen lautsprecher und entsprechender lautsprecher
EP3469812B1 (de) Elektrodynamischer breitbandwandler für audiokopfhörer und entsprechender audiokopfhörer
FR3108010A1 (fr) Haut-parleur comprenant une membrane rigide reliée à au moins deux bobines
FR3104368A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
WO2018229242A1 (fr) Haut-parleur
EP2673961A1 (de) Magnetmotorvorrichtung eines elektrodynamischen wandlers
WO2021111010A1 (fr) Haut-parleur à grande excursion, faible distorsion et faible profondeur
FR3133719A1 (fr) Haut-parleur coaxial à membrane comprenant un matériau isolant, et deux lames conductrices fixées sur ou dans la membrane
FR3024630A1 (fr) Haut-parleur compact incluant une membrane comprenant des plis radiaux
WO2011098727A1 (fr) Moteur magnetique de transducteur electrodynamique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180425

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180730

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FOCAL JMLAB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1074598

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011054504

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181205

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1074598

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181205

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190305

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190306

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011054504

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

26N No opposition filed

Effective date: 20190906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011054504

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190527

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190527

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181205

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230527

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240509

Year of fee payment: 14

Ref country code: FR

Payment date: 20240528

Year of fee payment: 14