EP2576846B1 - Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung beim aufblasverfahren in einem stahlkonverter - Google Patents

Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung beim aufblasverfahren in einem stahlkonverter Download PDF

Info

Publication number
EP2576846B1
EP2576846B1 EP11723340.3A EP11723340A EP2576846B1 EP 2576846 B1 EP2576846 B1 EP 2576846B1 EP 11723340 A EP11723340 A EP 11723340A EP 2576846 B1 EP2576846 B1 EP 2576846B1
Authority
EP
European Patent Office
Prior art keywords
radiation intensity
ignition
images
exhaust hood
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11723340.3A
Other languages
English (en)
French (fr)
Other versions
EP2576846A2 (de
Inventor
Franz Hartl
Thomas Kurzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Austria GmbH
Original Assignee
Siemens VAI Metals Technologies GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VAI Metals Technologies GmbH Austria filed Critical Siemens VAI Metals Technologies GmbH Austria
Publication of EP2576846A2 publication Critical patent/EP2576846A2/de
Application granted granted Critical
Publication of EP2576846B1 publication Critical patent/EP2576846B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/02Observation or illuminating devices

Definitions

  • the invention relates to a method for determining the time of ignition in the inflation process, in particular in the LD method, in a steel converter, wherein the radiation generated during the ignition, which emerges between converter mouth and exhaust hood, is detected, and a corresponding device.
  • the aim of steelmaking is to produce steel, ie iron alloys with low carbon content and desired properties such as hardness, rust resistance or ductility.
  • the pig iron is refined with oxygen.
  • the oxidation process which lowers the carbon content (the refining), provides enough heat in these processes to keep the steel liquid, so external heat input is not necessary in the converters.
  • the blowing process can also be subdivided into inflation and bottom blowing processes. Bottom blowing techniques include the Bessemer process, the Thomas process, the racing fires and early blast furnaces. The best known inflation method is the LD method.
  • the combustion in the steel converter does not start immediately with the beginning of the injection of oxygen, but usually delays by a few seconds up to 90 seconds, and then spontaneously use at an unpredictable time. Knowing the exact timing of ignition is very important because only from this point on oxygen will react in reaction with the melt and the actual duration of this reaction will be critical to process control and steel quality, especially carbon content. Together with other parameters, the time of ignition allows the blowing process to be controlled from beginning to end. Knowing the timing of the ignition can improve the quality of the steel, and re-inject oxygen (re-blowing) or re-carburizing (associated with renewed sulfur use). The repeatability of the blowing process is improved, which also has a positive effect on the further steps of the process chain, such as secondary metallurgy.
  • the ignition is also detected automatically via the measurement of the temperature increase in the exhaust gas or the exhaust pipes of the steel converter.
  • this method is associated with a time delay between the actual time of ignition and the detection of the time of ignition of several seconds, often up to 30 seconds.
  • time-delayed determination of the timing of the ignition is for litigation disadvantageous.
  • the timing of the ignition in hindsight not exactly, but only approximately determined.
  • the thermal expansion in the head of the lance can be used to determine the timing of the ignition (by means of strain gauges).
  • strain gauges the thermal expansion in the head of the lance
  • the photocell will be according to AT 299 283 B with its optical axis arranged horizontally about 10 cm above the top edge of the converter mouth, so that it detects with open chimney hood the radiation that emerges between the upper edge of the converter mouth (converter mouth) and the lower edge of the chimney hood (exhaust hood).
  • the photocell is now adjusted so that its control current at a temperature of the targeted reaction gases of about 1100 ° C, preferably about 1200 ° C, occurs and thus represents the time of ignition.
  • the control current of the photocell triggers the measurement for the predetermined "metallurgical" amount of oxygen.
  • a disadvantage of the method of AT 299 283 B is that this provides only a single data value, which is often insufficient for the safe ignition detection of the inflation process.
  • the photocell could also be triggered by a single failure, such as a single spark close to the photocell, although the actual ignition of the oxygen has not yet taken place.
  • the object is achieved in that at the earliest (because otherwise possibly still other, not originating from the ignition flames brightly blaze) starting with the oxygen bubbles (for example, when reaching a certain oxygen flow) several temporally successive images of the same area between converter mouth and exhaust hood means a sensor which contains a plurality of photodiodes corresponding in each case to one pixel, preferably by means of a CCD image sensor, a course of the radiation intensity over time is determined on the basis of the radiation intensity measured by the photodiodes and that time at which a predetermined increase in the radiation intensity is reached, as the time of ignition is determined.
  • a certain radiation intensity is defined in advance as the limit value, the exceeding of which sets the time for the ignition.
  • photodiodes are semiconductor diodes, the visible light, but depending on the design and infrared (IR) -, ultraviolet (UV) - or X-rays through the internal photoelectric effect in a convert electricity.
  • IR infrared
  • UV ultraviolet
  • X-rays through the internal photoelectric effect in a convert electricity.
  • Each photodiode of the sensor corresponds to a pixel or pixel of the sensor and thus a pixel or pixel of the recorded image.
  • a CCD image sensor is a sensor which is made up of so-called CCD elements (charge-coupled devices).
  • CCD image sensors usually consist of a matrix (more rarely a line) with photosensitive photodiodes called pixels or pixels. These can be rectangular, square or polygonal, with edge lengths of less than 3 microns to over 20 microns. The larger the area of the pixels, the higher the photosensitivity and the dynamic range of the CCD sensor, the smaller, however, with the same sensor size, the image resolution.
  • CCD image sensors can be manufactured for both visible wavelengths as well as for near-infrared, UV and X-ray ranges. This extends the spectrum for special applications from 0.1 pm to about 1.1 ⁇ m. Further advantages are their broad spectral sensitivity, their high dynamic range (ie the ability to capture very faint and very bright areas of an image at the same time) and the fact that the image information is generated digitally, for example in photometry (brightness measurement) and in the application sophisticated image processing methods is an advantage.
  • CCD cameras, made up of CCD image sensors and optics can be remotely controlled for industrial applications and automatically store the images on disk media. The subsequent image analysis partially intervenes in the read-out algorithm of the CCD element in order to read interest regions of interest (ROI) faster.
  • CMOS complementary metal-oxide-semiconductor
  • CMOS complementary metal-oxide-semiconductor
  • the Digital Pixel Sensor is an image sensor based on the principles of CMOS sensors, but due to a special scanning methodology it has much greater dynamics and, in many cases, a significantly better signal-to-noise ratio than conventional sensors having. Furthermore, frame rates of up to 10,000 images per second can be achieved under suitable lighting conditions.
  • the senor is aligned with the area between the converter mouth and the discharge hood and, as soon as the oxygen blowing has started and therefore an ignition will occur as a result, images are continuously taken and stored. The same picture area is always recorded.
  • the radiation intensity of the area imaged therebetween between the converter mouth and the extraction hood is determined from each recorded image. If one plots the calculated intensity values over the time axis, one sees a temporal course of the radiation intensity. Once, so to speak for the initialization of the method, that radiation intensity was determined at which the ignition occurs, then in the calculated time course of the radiation intensity only this radiation intensity must be searched. The time associated with this radiation intensity is then the time of ignition. Since the radiation intensity increases relatively rapidly after ignition, that time will be defined as the time of ignition, from which the time course of the radiation intensity will experience a certain, predetermined increase (see above).
  • a sensor which predominantly detects visible light for example in the form of a CCD camera.
  • Such cameras are - in contrast to thermal imaging cameras - available on the market and also provide the desired information about the radiation intensity (maximum wavelength-specific radiation power moves with increasing temperature of the IR in the visible region ⁇ Wien'sches displacement law).
  • an IR cut filter can be connected upstream. If the sensor is working in the visible light range, it can be used as a surveillance camera outside of the firing times.
  • the images of the sensor should best include the entire gap between the edge of the converter mouth and the edge of the exhaust hood.
  • the opening angle of the lens is adjusted so that, if possible, the entire gap between the converter mouth and the discharge hood is visible, but at least 50% of this area, preferably from the middle of the gap.
  • the sensitivity of the sensor is adjusted in the method such that images taken before the oxygen blowing, that is, if no ignition has certainly taken place, have as little exposure as possible, ie are almost black.
  • the aperture of the lens must therefore be either manually adjustable or it must be provided with auto iris lenses a special circuit by which the automatic iris control is deactivated for the period of igniter detection.
  • the sensor should comprise at least a number of 10,000 pixels. For example, it could be 480 by 640 pixels or (in the case of analog cameras) by PAL standard 768x576 pixels, which is perfectly adequate.
  • the inventive method provides according to claim 1 that per image only a certain number of the brightest pixels between converter mouth and hood, corresponding to a proportion of 0.1% -1% of the area between converter mouth and hood (ROI), is selected and from these By averaging the radiation intensity between converter mouth and hood is determined.
  • the gap between the converter mouth and the extraction hood is relevant, because only the radiation that penetrates from this gap provides information about the ignition that has taken place. Accordingly, for the determination of the radiation intensity, only this gap, more specifically, that part of the gap which is depicted in the image, is used. The part of the gap depicted in the picture is thus essentially the so-called "region of interest” (ROI), which is used for the further evaluation of the image. It would therefore be necessary to read out the radiation intensities or gray levels of the pixels only for the pixels or pixels of the gap.
  • ROI region of interest
  • not all pixels are used for the determination of the radiation intensity, but only a certain number of the brightest pixels.
  • the sensor comprises 480 times 640 pixels or pixels and about one fifth of that corresponds to the ROI (when using wide-angle lenses - useful for monitoring outside the ignition phases - the image area includes much more than just the gap between the converter and the hood)
  • the 100 brightest pixels of the slit for determining the radiation intensity are selected, which is only to be understood as a guideline because the number of the brightest pixels can be set as a variable parameter.
  • the radiation intensities or gray values of the brightest pixels are averaged, and thus the average of the radiation intensity or of the gray value for this image is determined. This is repeated for each recorded image and the results of the radiation intensity or the gray value are plotted over the time axis, the time at which the image was recorded being used as the respective time.
  • the radiation intensity is averaged over several successive images, in particular over at least five images or over a maximum period of two seconds. It has been shown that especially at the beginning of oxygen blowing only single sparks occur, which soon go out again. Accordingly, particularly bright pixels can be recognized in an image, but only relatively darker pixels in the following images.
  • the radiation intensity for the ignition of the blass oxygen could already result from a single image with particularly bright pixels (eg a glowing spark or a short flame tongue reaching close to the lens) (or a particularly steep increase in the time curve of the radiation intensity), while the following darker images would result in a radiation intensity below that for the ignition of the pale oxygen (or a particularly steep drop in the time curve of the radiation intensity). Therefore, it makes sense to smooth the radiation intensity curve in order to obtain a continuously rising curve, with which then the time of ignition can be clearly determined.
  • the recording of images according to the invention ends at the latest when the extraction hood has been lowered onto the converter mouth. Because then closes the gap between exhaust hood and converter mouth and the pictures are no longer relevant for the ignition.
  • the recording of images can also be set earlier, for example, if, due to the radiation intensities determined by the method according to the invention, the time of ignition has already been determined and confirmed by reaching a certain exhaust gas temperature in the exhaust gas stack.
  • the time of ignition has already been determined and confirmed by reaching a certain exhaust gas temperature in the exhaust gas stack.
  • even after the ignition point has been reached or after the extraction hood has been lowered further images can be recorded in order to be able to recognize other process-relevant events or for monitoring purposes.
  • the computer is connected to the process control system of the steel converter and reports the time of ignition to the process control system or to the control (PLC).
  • the camera is surrounded by a cooled housing, wherein the cooling can be done by water, by air or by nitrogen.
  • the view opening for the lens is to be kept small (about 5mm diameter).
  • so-called pinhole lenses should be used.
  • the housing in front of the lens of the camera has a pneumatically or manually operable closure in the form of a flap or a slider. This allows the camera to be protected from radiation and dirt during breaks between two firings.
  • Fig. 1 the steel converter 1 is shown, in which there is the use to be refurbished, namely scrap and particulate pig iron 2 and liquid pig iron 3.
  • the exhaust gas stack 4 is arranged.
  • the raisable and lowerable lance 7 is inserted through the opening 8 of the exhaust passage 4 in the steel converter 1.
  • the lance 7 descends from the position H 2 , in which the lance 7 is drawn with continuous lines and where the oxygen supply is not yet open, to the operating position H 1 from. Already shortly before reaching the operating position H 1 , the oxygen supply is opened and the oxygen required for blowing 9 emerges. The lance 7 is further lowered while oxygen 9 exits the mouth until it reaches the operating position H 1 , which is shown in phantom. This can also be out Fig. 5 are read, where the position of the lance 7 through the curve 32 and the oxygen flow through the curve 34 is shown.
  • the ignition should be made if no ignition delay occurs. However, if the ignition is delayed by excess scrap or the like, so emits a lot of oxygen, which does not participate in the fresh reaction, and must be taken into account very well.
  • the reaction gases 10 rise from the steel converter 1, which consist mainly of carbon monoxide (CO).
  • the extraction hood 5 is then, as in Fig. 1 shown, open so that so-called false air 11 flows through the gap between the exhaust hood 5 and steel converter 1 and its converter mouth.
  • the carbon monoxide of the reaction gases 10 burns with air.
  • the incipient combustion of the blast oxygen with the carbon from the pig iron produces white glowing flames or gases.
  • the sensor / camera 14 is attached at a distance of 1 to 3 m by means of a surrounding housing 23 to the housing of the steel converter 1, in such a way that its optical axis 12 in the gap between the exhaust hood 5 and steel converter 1 and its Converter mouth is addressed.
  • the sensor 14 is designed as a CCD or CMOS image sensor that only provides gray values (black and white CCD image sensor). It is also possible to use color cameras whose images are then converted to grayscale images via software.
  • the sensor is preceded by an objective 13, which together with the sensor 14 forms a camera.
  • the aperture of the lens and the exposure time of the camera sensor can be adjusted. The best way is that before the oxygen bubbles taken pictures, so if certainly no ignition has taken place, have no exposure, so are black. This has the advantage that a pixel will go into saturation only if the radiation intensity actually comes from a hot flame, as it is found only after ignition. Flames are often there even before the ignition, but not with as much brightness as when lighting.
  • the image signals of the sensor 14 are forwarded via a line 19 to the computer 20, which processes and evaluates them.
  • This can be a computer that only performs the image processing and evaluation and the data obtained, in particular the time of ignition, to the Central computer of the control system forwards.
  • the computer 20 can also be the central computer, which performs the image processing and evaluation in addition to its other tasks and uses the data obtained for the process line, for example for controlling the oxygen supply to the steel converter 1 or for closing the exhaust hood 5.
  • the measured values of the temperature in the housing 23 can also be forwarded to the computer 20 because it also monitors the air or water cooling for the housing. In addition, it takes over the control for the opening and closing of the flap 26. Accordingly, the computer 20 via a line 18 control signals to the camera for adjusting the exposure time and the aperture are directed.
  • the housing 23 is cooled, wherein the regulation of the coolant inflow 24 and the coolant outflow 25 can be performed by the computer 20 by a dedicated controller or by temperature measurements in the housing 23. Furthermore, it can be provided that the objective 13 or the cover of the objective 13 with purging air (not shown) is kept free. The coolant flow and the air pressure of the air purge are constantly monitored to detect malfunctions immediately.
  • a mechanical flap 26 is additionally provided, which is mounted in front of the housing 23 and is operated pneumatically or manually.
  • the flap 26 can be closed outside of the operating times of the sensor 14 or the camera formed with this, in order to protect the camera from heat or slag splashes.
  • the operation of the flap can be triggered manually by the operator or automatically by the central computer of the control system.
  • the power supply 21, 22 for the sensor 14 of the camera is in Fig. 1 also marked.
  • Fig. 2 is a section of a plant Fig. 1 represented where the housing 23 is installed in the so-called Doghouse 29. There, the housing 23 and the camera via a stage 31 can be reached. 30 shows a page of the two-part so-called Doghouse doors, which are opened for the charging process. During the blowing process, the enclosure is completely closed, which is the installation of the camera according to Fig. 2 requires.
  • FIG. 3 an image recorded by the sensor 14 is shown, in which case the ignition has already taken place.
  • the upper dark image area represents the extraction hood 5 or the ceiling of the doghouse 29, the lower dark image area represents the steel converter 1 or its converter mouth.
  • the gap between exhaust hood and converter mouth is mostly brightly lit. It is also this picture detail which is decisive for the determination of the time of ignition. Therefore, only a rectangular image area, which represents the majority of the gap contained in the image, is used for further calculations. This image area is referred to as the "region of interest" (ROI) 15.
  • ROI region of interest
  • the flap 26 is opened, so that at the beginning of the blowing process, where oxygen is then blown through the lance into the steel converter 1, in any case already radiation / light can pass through the lens 13 to the sensor 14 ,
  • the first pictures of in Fig. 4 Accordingly, the sequence of pictures taken before the blowing process are almost entirely black.
  • the computer 20 selects from the region of interest 15, which is the same for all images from the same pixels, those hundred pixels or pixels which are the brightest. Their radiation intensities or gray values are averaged and the average value of their radiation intensities or gray values is determined as a preliminary radiation intensity or as a preliminary gray value of the gap at the time the image is recorded. This provisional radiation intensity or gray value is averaged with the preliminary radiation intensities or gray values of the four temporally preceding images. Thus, an averaging is carried out over five consecutive pictures, which corresponds to averaging over a period of half a second at 10 frames per second. The value calculated from the averaging over five images is determined and stored as the final radiation intensity or as the final gray value of the gap at the time the image was taken.
  • the images produced by the inventive method of the gap between converter mouth and exhaust hood and the time course of the gray scale curve can also be displayed continuously and in real time on a monitor in the control room.
  • the operator can also recognize the time of the ignition on the basis of the images or the clear increase in the gray values.
  • the result will be more accurate than direct viewing of the gap by the operator, because the sensor is closer to the steel converter than the operator could be, and in addition, the gray scale curve provides an overall view over the course of that crucial period of time.
  • the sensor or the camera formed therewith must be calibrated once: images of a blowing process are taken with the camera and determine the final radiation intensities as described above. It is ensured that the final radiation intensities are almost zero before the ignition (ie, the image is almost black) and after the ignition at least partially go into saturation. It is also possible to make the fine calibration continuously dynamic by the sensitivity (dimming) is adjusted depending on the exhaust gas temperature in the exhaust stack 4. Depending on the composition of the current batch of steel converter or scrap, some batches burn even after the pig iron has been charged. When using wet scrap, additional hydrogen is released, which burns easily or even causes explosions.
  • Fig. 5 the time profile of the radiation intensities measured by the sensor 14 and determined by the method according to the invention is shown, but with a charge different from that of FIG Fig. 4 and thus not directly comparable to this.
  • the underlying images were taken at equal intervals (10 frames per second).
  • the vertical axis [0 ... 1000] are assigned several more measured values, all of which come from already existing measuring devices of the system and must be provided by the plant operator (at least oxygen flow and exhaust gas temperature) to start the recordings automatically and the ignition confirm and stop recording.
  • the curve 16 represents the preliminary radiation intensity of the individual images determined as described above (intensities or gray values averaged over the 100 brightest pixels of the region of interest 15 of an image).
  • the images of images and thus also the calculation of the values of this curve starts in this case with an oxygen flow> 100 Nm 3 / min.
  • the exposure of the sensor is initially very high, which explains the curve peak at this time. During the first pictures, however, the exposure will be reduced. It can be clearly seen that the curve in the area of the rise has large peaks which run over half the gray scale range. Therefore, the preliminary radiation intensities or gray values of an image are averaged with temporally adjacent images as described above.
  • the resulting radiation intensities (referred to above as "final" radiation intensities) are shown in curve 17.
  • Fig. 6 is just the radiation intensity off Fig. 5 represented for that period, where the ignition takes place.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Studio Devices (AREA)

Description

    GEBIET DER ERFINDUNG
  • Die Erfindung betrifft ein Verfahren zum Bestimmen des Zeitpunktes der Zündung beim Aufblasverfahren, insbesondere beim LD-Verfahren, in einem Stahlkonverter, wobei die bei der Zündung entstehende Strahlung, die zwischen Konvertermund und Abzughaube austritt, detektiert wird, sowie eine entsprechende Vorrichtung.
  • Ziel der Stahlerzeugung ist es, Stahl, also Eisenlegierungen mit geringem Kohlenstoffgehalt und gewünschten Eigenschaften wie Härte, Rostbeständigkeit oder Verformbarkeit, herzustellen.
  • Bei den Blasverfahren wird das Roheisen mit Sauerstoff gefrischt. Der Oxidationsprozess, der den Kohlenstoffanteil senkt (das Frischen), liefert in diesen Verfahren genug Wärme, um den Stahl flüssig zu halten, eine externe Wärmezufuhr ist in den Konvertern deshalb nicht notwendig. Die Blasverfahren kann man zusätzlich in Aufblasverfahren und Bodenblasverfahren unterteilen. Zu den Bodenblasverfahren gehören das Bessemerverfahren, das Thomasverfahren, die Rennfeuer und frühe Hochöfen. Das bekannteste Aufblasverfahren ist das LD-Verfahren.
  • Beim Linz-Donawitz-Verfahren (kurz LD-Verfahren) werden in den LD-Konverter metallischer Schrott und flüssiges Roheisen eingefüllt und Schlackenbildner hinzugegeben. Über eine Lanze wird Sauerstoff auf die Schmelze geblasen. Dabei verbrennen im Stahl unerwünschte Begleitelemente wie Schwefel, Phosphor, Kohlenstoff usw. und gehen in das Rauchgas oder die Schlacke über. Durch die mit der Verbrennung verbundene enorme Wärmeentwicklung wird der beigegebene Schrott aufgeschmolzen bzw. kann durch Zugabe von Schrott und Erz der Roheiseneinsatz verringert und die Schmelze gekühlt werden. Die Blasdauer beträgt zwischen 10 und 20 Minuten und wird so gewählt, dass die gewünschte Entkohlung und die Verbrennung der unerwünschten Beimengungen sowie die erwünschte Endtemperatur erreicht werden. Der fertige Stahl wird durch Kippen des Konvertergefäßes in Pfannen abgestochen. Erst wird das Stahlbad mit einer Temperatur von mehr als 1.600 °C durch das Abstichloch in eine Pfanne abgestochen, danach wird die Schlacke über den Konverterrand abgegossen.
  • Die Verbrennung im Stahlkonverter setzt aber nicht sofort mit dem Beginn des Einblasens des Sauerstoffs ein, sondern verzögert sich in der Regel um einige Sekunden bis zu 90 Sekunden, um dann spontan zu einem nicht vorbestimmbaren Zeitpunkt einzusetzen. Die Kenntnis des genauen Zeitpunkts der Zündung ist sehr wichtig, weil nur ab diesem Zeitpunkt der Sauerstoff in Reaktion mit der Schmelze tritt und die tatsächliche Dauer dieser Reaktion für die Prozessführung und die Stahlqualität, insbesondere dessen Kohlenstoffgehalt, ausschlaggebend ist. Zusammen mit anderen Parametern ermöglicht der Zeitpunkt der Zündung die Steuerung des Blasvorgangs vom Anfang bis zum Ende. Durch eine genaue Kenntnis des Zeitpunkts der Zündung kann die Qualität des Stahls verbessert werden, und ein erneutes Einblasen von Sauerstoff (Nachblasen) oder ein erneutes Aufkohlen (verbunden mit neuerlichem Schwefeleinsatz) fällt weg. Die Wiederholbarkeit des Blasvorgangs wird verbessert, was sich auch positiv auf die weiteren Schritte der Prozesskette, etwa die Sekundärmetallurgie, auswirkt.
  • STAND DER TECHNIK
  • Bisher wurde der Zeitpunkt der Zündung durch den Operator mittels Beobachtung des Konverters bestimmt und somit der Zeitpunkt der Zündung manuell in die Prozesssteuerung eingegeben. Starke Rauch- und Staubentwicklung beeinträchtigen die eindeutige Zünderkennung durch den Operator jedoch, ebenso wie Unerfahrenheit oder eventuelle Unaufmerksamkeit des Operators.
  • Die Zündung wird auch indirekt über die Messung des Temperaturanstieges im Abgas bzw. den Abgasleitungen des Stahlkonverters automatisch detektiert. Diese Methode ist aber mit einer Zeitverzögerung zwischen dem tatsächlichen Zeitpunkt der Zündung und der Erfassung des Zeitpunkts der Zündung von mehreren Sekunden, oft bis zu 30 Sekunden, verbunden. Eine derart zeitverzögerte Bestimmung des Zeitpunkts der Zündung ist jedoch für die Prozessführung nachteilig. Zudem kann der Zeitpunkt der Zündung im Nachhinein nicht exakt, sonder nur annähernd bestimmt werden.
  • Auch die Wärmedehnung im Kopf der Lanze kann zur Bestimmung des Zeitpunkts der Zündung herangezogen werden (mittels Dehnmessstreifen). Dies bedingt jedoch einen hohen technischen Aufwand und ermöglicht nur eine verzögerte Bestimmung des Zeitpunkts der Zündung.
  • Aus der Patentschrift AT 299 283 B ist bekannt, zur genauen Feststellung des Zündungszeitpunktes die Flammenhelligkeit durch eine Fotozelle, also einer Elektronenröhre im weiteren Sinn, zu messen.
  • Die Fotozelle wird gemäß AT 299 283 B mit ihrer optischen Achse horizontal etwa 10 cm über der Oberkante der Konvertermündung angeordnet, sodass sie bei offener Kaminhaube jene Strahlung detektiert, die zwischen Oberkante der Konvertermündung (Konvertermund) und Unterkante der Kaminhaube (Abzughaube) austritt. Die Fotozelle wird nun so eingestellt, dass ihr Steuerstrom bei einer Temperatur der anvisierten Reaktionsgase von über etwa 1100°C, vorzugsweise etwa 1200°C, auftritt und damit den Zeitpunkt der Zündung darstellt. Der Steuerstrom der Fotozelle löst die Messung für die vorausbestimmte "metallurgische" Sauerstoffmenge aus.
  • Nachteilig am Verfahren der AT 299 283 B ist, dass diese nur einen einzigen Datenwert liefert, der für die sichere Zünderkennung des Aufblasverfahrens oft nicht ausreichend ist. Die Fotozelle könnte auch durch eine einmalige Störung, etwa einem einzigen Funken nahe an der Fotozelle, ausgelöst werden, obwohl die eigentliche Zündung des Sauerstoffs noch nicht stattgefunden hat.
  • Aus der Publikation von HEI-ICHIRO ISO ET AL: "Prediction and suppression of slopping in the converter.", TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, Bd. 28, Nr. 5, 1. Januar 1988 (1988-01-01), Seiten 382-391, ISSN: 0021-1583, DOI: 1 0.2355/isijinternational1966.28.382, ist eine Bildanalyse für Konverterauswurf aufgrund von sehr starker Schlackenbildung zu entnehmen. Konkret wird ein Verfahren gezeigt, in dem die Bilder einer Kamera analysiert und mit einem Schwellwert verglichen werden. Dazu werden jene Bildteile identifiziert, welche die Schlacke darstellen und jene welche die Flamme darstellen. Weiters erfolgt ein Vergleich der Bildteile, die die Schlacke darstellen mit dem Gesamtbild.
  • Kattenbelt: "Modeling and optimisation of slopping prevention and batch time reduction", 7. November 2008 (2008-11-07), ISBN: 9789090231266 lehrt ein Verfahren zur Vermeidung von unkontrolliertem Auswurf aus einem Stahlkonverter, wobei der beginnende Auswurf unter der Verwendung von Kameras ermittelt wird. Die Bilder der Kameras werden mit einer Wissensdatenbank verglichen, wobei die Farbe der Bilder, das Vorhandensein von Funken als kleinere Objekte, und die Position der Farben Einflussfaktoren sind. Für jedes einzelne Bild wird festgestellt, ob das Bild einen Auswurf zeigt oder nicht. Dazu können auch mehrere aufeinanderfolgende Bilder verwendet werden, wobei für einzelne Bilder oder Bilderfolgen festgestellt wird, ob darin ein Auswurf stattgefunden hat oder nicht. Gemäß Kaltenbett kommt es darauf an, wo die hellen Stellen auftreten und welche Form sie haben.
  • DARSTELLUNG DER ERFINDUNG
  • Es ist daher eine Aufgabe der Erfindung, ein Verfahren anzugeben, das eine verlässliche Bestimmung des Zeitpunkts der Zündung erlaubt, bei welchem nicht nur ein Messwert der Strahlung, die zwischen Konvertermund und Abzughaube austritt, herangezogen wird.
  • Die Aufgabe wird dadurch gelöst, dass frühestens (weil sonst gegebenenfalls andere, nicht von der Zündung stammende Flammen noch hell lodern) beginnend mit dem Sauerstoffblasen (etwa beim Erreichen eines gewissen Sauerstoff-Durchflusses) mehrere zeitlich aufeinander folgende Bilder desselben Bereichs zwischen Konvertermund und Abzughaube mittels eines Sensors, der mehrere, jeweils einem Bildpunkt entsprechende Fotodioden enthält, vorzugsweise mittels eines CCD-Bildsensors, aufgenommen werden, aufgrund der von den Fotodioden gemessenen Strahlungsintensität ein Verlauf der Strahlungsintensität über die Zeit bestimmt wird und jener Zeitpunkt, bei dem ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt wird.
  • Es wird bei den meisten Anwendungen vorab eine bestimmte Strahlungsintensität als Grenzwert definiert, dessen Überschreiten den Zeitpunkt für die Zündung festlegt. Es ist aber vorgesehen, nicht nur einen bestimmten Wert der Strahlungsintensität zum Festlegen des Zeitpunkts der Zündung zu verwenden. So wird etwa für mehrere aufeinander folgende Werte (bzw. Mittelwerte, siehe unten) der Strahlungsintensität die Steigung der Kurve der Strahlungsintensität berechnet und eine bestimmte Steigung als Grenzwert festgelegt, welcher der Zündung entspricht. Es kann hierzu der Unterschied in der gemittelten Strahlungsintensität zwischen zwei nicht aufeinander folgenden, sondern um z.B. 1 Sekunde auseinander liegenden Werten berechnet werden. Wenn dieser Differenzwert (Delta) einen vorher festgelegten Grenzwert überschreitet, der für die Zündung typisch ist, wird unmittelbar zu diesem Zeitpunkt das Zündsignal gegeben. Bei der Bestimmung des Zeitpunkts der Zündung mittels Steigung bzw. Differenzmessung kommt es so zu einer kleinen Verzögerung, da ja zumindest ein bis hin zu n Messwerten der Strahlungsintensität nach dem Zeitpunkt der Zündung abgewartet werden müssen, wobei n die Anzahl an Werten ist, die gemittelt werden ("endgültige Strahlungsintensität bzw. Grauwert"). Diese Verzögerung ist aber immer noch um einiges kleiner als jene, die bei herkömmlichen Verfahren auftritt.
  • Die für das erfindungsgemäße Verfahren notwendigen Fotodioden sind Halbleiter-Dioden, die sichtbares Licht, aber je nach Ausführung auch Infrarot(IR)-, Ultraviolett(UV)- oder Röntgenstrahlen durch den inneren Fotoeffekt in einen elektrischen Strom umwandeln. Jede Fotodiode des Sensors entspricht einem Bildpunkt oder Pixel des Sensors und damit einem Bildpunkt oder Pixel des aufgenommenen Bildes.
  • Ein CCD-Bildsensor ist ein Sensor, der aus sogenannten CCD Elementen (Charge-coupled devices) aufgebaut ist. CCD-Bildsensoren bestehen meistens aus einer Matrix (seltener einer Zeile) mit lichtempfindlichen Fotodioden, die Pixel oder Bildpunkte genannt werden. Diese können rechteckig, quadratisch oder polygonal sein, mit Kantenlängen von weniger als 3 µm bis über 20 µm. Je größer die Fläche der Pixel, desto höher sind die Lichtempfindlichkeit und der Dynamikumfang des CCD-Sensors, desto kleiner ist aber, bei gleicher Sensorgröße, die Bildauflösung.
  • CCD-Bildsensoren können sowohl für sichtbare Wellenlängen als auch für Nah-Infrarot-, UV- und Röntgen-Bereiche hergestellt werden. Dadurch erweitert sich das Spektrum für Sonderanwendungen von 0,1 pm bis auf etwa 1,1 µm. Weitere Vorteile sind ihre breite spektrale Empfindlichkeit, ihr hoher Dynamikumfang (also die Fähigkeit, gleichzeitig sehr lichtschwache und sehr helle Bereiche eines Bildes zu erfassen) und die Tatsache, dass die Bildinformationen digital anfallen, was zum Beispiel bei der Fotometrie (Helligkeitsmessung) und der Anwendung ausgefeilter Bildbearbeitungsmethoden von Vorteil ist. CCD-Kameras, die aus CCD-Bildsensoren und einer Optik gebildet werden, können für Anwendungen in der Industrie ferngesteuert werden und speichern die Bilder automatisch auf Datenträgern. Die anschließende Bildauswertung greift teilweise schon in den Auslesealgorithmus des CCD Elements ein, um interessierende Bildbereiche (englisch: Region of Interest, ROI) schneller auszulesen.
  • Neben CCD-Bildsensoren können aber auch andere Sensoren, die auf Basis von Fotodioden arbeiten, zum Einsatz kommen. Es gibt beispielsweise einen sogenannten Active Pixel Sensor (APS, aktiver Pixelsensor), das ist ein Halbleiterdetektor zur Lichtmessung, der in CMOS-Technik gefertigt ist und deshalb oft als CMOS-Sensor bezeichnet wird. Durch die Verwendung der CMOS-Technik wird es möglich, weitere Funktionen in den Sensorchip zu integrieren, wie beispielsweise die Belichtungskontrolle, die Kontrastkorrektur oder die Analog-Digital-Wandlung.
  • Der Digital Pixel Sensor (DPS) ist ein Bild-Sensor, der auf den Grundlagen der CMOS-Sensoren basiert, jedoch auf Grund einer speziellen Abtastmethodik eine erheblich größere Dynamik und in vielen Fällen ein deutlich besseres Signal-zu-Rausch-Verhältnis als herkömmliche Sensoren aufweist. Weiterhin sind bei geeigneten Lichtverhältnissen Bildraten bis hin zu 10.000 Bildern je Sekunde erzielbar.
  • Der Sensor wird erfindungsgemäß auf den Bereich zwischen Konvertermund und Abzughaube ausgerichtet und - sobald das Sauerstoffblasen begonnen hat und es daher in der Folge zu einer Zündung kommen wird - werden laufend Bilder aufgenommen und abgespeichert. Es wird immer der gleiche Bildbereich aufgenommen. Mit Hilfe eines Bildverarbeitungsprogrammes wird aus jedem aufgenommen Bild die Strahlungsintensität des darauf abgebildeten Bereichs zwischen Konvertermund und Abzughaube bestimmt. Trägt man die errechneten Intensitätswerte über die Zeitachse auf, so sieht man einen zeitlichen Verlauf der Strahlungsintensität. Wurde einmal, sozusagen zur Initialisierung des Verfahrens, jene Strahlungsintensität bestimmt, bei der die Zündung auftritt, dann muss im errechneten zeitlichen Verlauf der Strahlungsintensität nur mehr diese Strahlungsintensität gesucht werden. Der dieser Strahlungsintensität zugeordnete Zeitpunkt ist dann der Zeitpunkt der Zündung. Da sich nach der Zündung die Strahlungsintensität relativ rasch erhöht, wird jener Zeitpunkt als Zeitpunkt der Zündung festgelegt werden, ab welchem der zeitliche Verlauf der Strahlungsintensität einen bestimmten, vorher festgelegten Anstieg erfährt (siehe oben).
  • Es hat sich als vorteilhaft erwiesen, einen Sensor auszuwählen, der vorwiegend sichtbares Licht detektiert, etwa in Form einer CCD-Kamera. Solche Kameras sind - im Gegensatz zu Wärmebildkameras - günstig am Markt erhältlich und liefern ebenfalls die gewünschte Information über die Strahlungsintensität (maximale wellenlängenspezifische Strahlungsleistung wandert mit steigender Temperatur vom IR in Richtung sichtbaren Bereich → Wien'sches Verschiebungsgesetz). Um sicherzustellen, dass keine Infrarot-Strahlung in die CCD-Kamera gelangt und so der Sensor vor Einwirkung der Hitzestrahlung geschützt wird, kann ein IR-Sperrfilter vorgeschaltet werden. Wenn der Sensor im Bereich des sichtbaren Lichts arbeitet, kann dieser auch außerhalb der Zündzeiten als Überwachungskamera genutzt werden.
  • Die Bilder des Sensors sollten am besten den gesamten Spalt zwischen Rand des Konvertermunds und Rand der Abzughaube umfassen. Zum Beispiel kann vorgesehen werden, dass der Öffnungswinkel des Objektivs so eingestellt wird, dass nach Möglichkeit der gesamte Spalt zwischen Konvertermund und Abzughaube sichtbar ist, jedoch zumindest 50% dieses Bereichs, vorzugsweise aus der Mitte des Spalts.
  • Erfindungsgemäß wird in dem Verfahren die Empfindlichkeit des Sensors so eingestellt, dass vor dem Sauerstoffblasen aufgenommene Bilder, also wenn sicher noch keine Zündung stattgefunden hat, möglichst keine Belichtung aufweisen, also nahezu schwarz sind. Dies kann etwa durch eine fixe Einstellung der Blende im Objektiv auf eine hohe Blendenzahl (= Blende annähernd geschlossen) und/oder kurzer Belichtungszeit der Kamera (elektronischer Shutter) realisiert werden. Die Blende des Objektivs muss aus diesem Grund entweder manuell einstellbar sein oder es muss bei Auto-Iris Objektiven eine spezielle Schaltung vorgesehen werden, durch welche die automatische Blendenregelung für den Zeitabschnitt der Zünderkennung desaktiviert wird.
  • Der Sensor sollte zumindest eine Anzahl von 10.000 Bildpunkten umfassen. Beispielsweise könnte er 480 mal 640 Bildpunkte oder (im Fall analoger Kameras) gemäß PAL-Norm 768x576 Pixel umfassen, was vollkommen ausreichend ist.
  • Das erfindungsgemäße Verfahren sieht gemäß Anspruch 1 vor, dass pro Bild nur eine bestimmte Anzahl der hellsten Bildpunkte zwischen Konvertermund und Abzughaube, entsprechend einem Anteil von 0,1%-1% des Bereichs zwischen Konvertermund und Abzughaube (ROI), ausgewählt wird und aus diesen durch Mittelung die Strahlungsintensität zwischen Konvertermund und Abzughaube bestimmt wird.
  • Für die Berechnung der Strahlungsintensität ist ja nur der Spalt zwischen Konvertermund und Abzughaube relevant, weil ja nur die Strahlung, die aus diesem Spalt dringt, Aufschluss über die erfolgte Zündung gibt. Dementsprechend wird für die Bestimmung der Strahlungsintensität nur dieser Spalt, genauer gesagt, jener Teil des Spalts, der auf dem Bild abgebildet ist, herangezogen. Der Teil des Spalts, der auf dem Bild abgebildet ist, ist also im Wesentlichen die sogenannte "Region of Interest" (ROI), welche für die weitere Auswertung des Bildes herangezogen wird. Es bräuchten daher grundsätzlich nur für die Bildpunkte bzw. Pixel des Spalts die Strahlungsintensitäten bzw. Graustufen der Pixel ausgelesen werden.
  • Bei der genannten Ausführungsform werden aber nicht alle Pixel für die Bestimmung der Strahlungsintensität verwendet, sondern nur eine bestimmte Anzahl der hellsten Pixel. Man wählt in der Regel nur so viele hellste Pixel aus, die einem Anteil von 0,1%-1% des Bereichs zwischen Konvertermund und Abzughaube, also des Spalts, darstellen. Wenn beispielsweise der Sensor 480 mal 640 Bildpunkte bzw. Pixel umfasst und davon etwa ein Fünftel dem ROI entspricht (bei Einsatz von Weitwinkelobjektiven - sinnvoll für Überwachung außerhalb der Zündphasen - umfasst der Bildbereich weit mehr als nur den Spalt zwischen Konverter und Haube), dann können etwa nur die 100 hellsten Pixel des Spalts zur Bestimmung der Strahlungsintensität ausgewählt werden, wobei dies nur als Richtwert zu verstehen ist, weil die Anzahl der hellsten Pixel als variabler Parameter einstellbar ist. Die Strahlungsintensitäten bzw. Grauwerte der hellsten Pixel werden gemittelt und somit der Durchschnitt der Strahlungsintensität bzw. des Grauwerts für dieses Bild ermittelt. Dies wird bei jedem aufgenommenen Bild wiederholt und die Ergebnisse der Strahlungsintensität bzw. des Grauwerts über der Zeitachse aufgetragen, wobei als jeweiliger Zeitpunkt der Zeitpunkt der Aufnahme des Bildes verwendet wird.
  • Um einen möglichst glatten Verlauf der Kurve die Strahlungsintensität über die Zeit zu erhalten, kann vorgesehen werden, dass die Strahlungsintensität über mehrere aufeinander folgende Bilder gemittelt wird, insbesondere über mindestens fünf Bilder oder über einen maximalen Zeitraum von zwei Sekunden. Es hat sich gezeigt, dass besonders am Beginn des Sauerstoffblasens nur einzelne Funken auftreten, die bald wieder erlöschen. Entsprechend sind in einem Bild besonders helle Bildpunkte zu erkennen, in den folgenden Bildern aber nur relativ dazu dunklere Bildpunkte. Würde man die Bilder daher ohne Mittelung der errechneten Grauwerte nacheinander weiterverarbeiten, könnte sich aus einem einzelnen Bild mit besonders hellen Bildpunkten (z.B. ein glühender Funke oder eine kurzzeitige Flammenzunge gelangt bis nahe vor das Objektiv) bereits das Überschreiten der Strahlungsintensität für die Zündung des Blassauerstoffes ergeben (bzw. ein besonders steiler Anstieg der zeitlichen Kurve der Strahlungsintensität), während die folgenden dunkleren Bilder eine Strahlungsintensität unterhalb jener für die Zündung des Blassauerstoffes ergeben würden (bzw. einen besonders steilen Abfall der zeitlichen Kurve der Strahlungsintensität). Deshalb ist es sinnvoll, die Kurve der Strahlungsintensität zu glätten, um eine kontinuierlich ansteigende Kurve zu erhalten, mit welcher dann eindeutig der Zeitpunkt der Zündung festgestellt werden kann.
  • Die erfindungsgemäße Aufnahme von Bildern endet spätestens dann, wenn die Abzughaube auf den Konvertermund abgesenkt wurde. Denn dann schließt sich der Spalt zwischen Abzughaube und Konvertermund und die Bilder sind für die Zündung nicht mehr relevant. Selbstverständlich kann die Aufnahme von Bildern auch schon früher eingestellt werden, etwa, wenn aufgrund der durch das erfindungsgemäße Verfahren ermittelten Strahlungsintensitäten der Zeitpunkt der Zündung bereits festgelegt und durch Erreichen einer gewisser Abgastemperatur im Abgaskamin bestätigt worden ist. Natürlich können auch noch nach Erreichen des Zündpunkts oder nach dem Absenken der Abzughaube weiter Bilder aufgezeichnet werden, um andere prozessrelevante Ereignisse erkennen zu können bzw. zur Überwachung.
  • Die erfindungsgemäße Vorrichtung zur Durchführung des Verfahrens umfasst eine Kamera mit einem Sensor, der mehrere Fotodioden enthält, vorzugsweise mit einem CCD-Bildsensor, wobei die Kamera mit ihrer optischen Achse auf den Spalt zwischen Konvertermund und Abzughaube ausgerichtet ist, sowie einen Rechner zur Auswertung der Bilder der Kamera, wobei der Rechner so programmiert ist, dass er aufgrund der von den Sensoren aufgenommenen Strahlungsintensität einen Verlauf der Strahlungsintensität über die Zeit bestimmt und jenen Zeitpunkt, bei dem ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt wird, wobei pro Bild nur eine bestimmte Anzahl der hellsten Bildpunkte zwischen Konvertermund und Abzughaube, entsprechend einem Anteil von 0,1 %-1 % des Bereichs zwischen Konvertermund und Abzughaube, ausgewählt wird und aus diesen durch Mittelung die Strahlungsintensität zwischen Konvertermund und Abzughaube bestimmt wird, und wobei die Strahlungsintensität über mehrere aufeinander folgende Bilder gemittelt wird, insbesondere über mindestens fünf Bilder oder über einen maximalen Zeitraum von zwei Sekunden.
  • Der Rechner ist mit dem Prozessleitsystem des Stahlkonverters verbunden und meldet den Zeitpunkt der Zündung an das Prozessleitsystem bzw. an die Steuerung (PLC).
  • Die Kamera kann am einfachsten an der Umhausung des Stahlkonverters angebracht werden. Um sie vor der starken Strahlungswärme des Stahlkonverters und der Leitwärme der Umhausung zu schützen, kann vorgesehen sein, dass die Kamera von einem gekühlten Gehäuse umgeben ist, wobei die Kühlung durch Wasser, durch Luft oder durch Stickstoff erfolgen kann. Weiters ist zu beachten, dass die Ausblicksöffnung für das Objektiv klein zu halten ist (ca. 5mm Durchmesser). Weiters sollten sogenannte Nadelöhr (Pinhole) Objektive zum Einsatz kommen. Damit nicht Staub, Rauch, Funken oder Feuer durch die Ausblicksöffnung in das Gehäuse zum Objektiv und zur Kamera gelangt, wird dieser Bereich vor der Kamera durch Spülung mittels Stickstoff oder Luft freigehalten. Zusätzlich kann vorgesehen sein, dass das Gehäuse vor dem Objektiv der Kamera einen pneumatisch oder manuell betätigbaren Verschluss in Form einer Klappe oder eines Schiebers aufweist. Dadurch kann in den Pausen zwischen zwei Zündvorgängen die Kamera vor der Strahlung und Verschmutzung geschützt werden.
  • KURZE BESCHREIBUNG DER FIGUREN
  • Die Erfindung wird anhand einer schematischen Figur sowie anhand von Bildern und eines Diagramms beispielhaft erläutert.
    • Fig. 1 zeigt eine seitliche Schnittansicht eines Stahlkonverters mit Sensor,
    • Fig. 2 zeigt eine seitliche Schnittansicht eines Stahlkonverters mit dem in der Umhausung (sogenanntes Doghouse) eingebauten Sensor,
    • Fig. 3 zeigt ein vom Sensor aufgenommenes Bild,
    • Fig. 4 zeigt eine Bilderfolge vom Spalt zwischen Abzughaube und Konvertermund,
    • Fig. 5 zeigt ein Diagramm mit dem zeitlichen Verlauf der Strahlungsintensität und anderen Prozessparametern,
    • Fig. 6 zeigt einen Ausschnitt aus Fig. 5
    WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • In Fig. 1 ist der Stahlkonverter 1 dargestellt, in welchem sich der zu frischende Einsatz befindet, nämlich Schrott und stückiges Roheisen 2 sowie flüssiges Roheisen 3. Über dem Konvertermund, zu dem sich der Stahlkonverter 1 nach oben hin verjüngt, ist der Abgaskamin 4 angeordnet. Eine Abzughaube 5, welche entlang des Doppelpfeils 6 abgesenkt bzw. angehoben werden kann, umgibt den Abgaskamin 4. Sie dient zum Abdichten des Konvertermunds und zum Auffangen der Frischgase während des Frischens. Die heb- und senkbare Lanze 7 wird durch die Öffnung 8 des Abgaskanals 4 in den Stahlkonverter 1 eingeführt.
  • Die Lanze 7 senkt sich von der Position H2, in welcher die Lanze 7 mit durchgehenden Strichen gezeichnet ist und wo die Sauerstoffzufuhr noch nicht geöffnet ist, bis zur Betriebsposition H1 ab. Bereits kurz vor Erreichen der Betriebsposition H1 wird die Sauerstoffzufuhr geöffnet und der zum Blasen benötigte Sauerstoff 9 tritt aus. Die Lanze 7 wird weiter abgesenkt, während Sauerstoff 9 aus der Mündung austritt, bis sie die Betriebsposition H1 erreicht, welche strichpunktiert dargestellt ist. Dies kann auch aus Fig. 5 abgelesen werden, wo die Position der Lanze 7 durch die Kurve 32 und der Sauerstoff-Durchfluss durch die Kurve 34 dargestellt ist. Bei Erreichen der Betriebsposition H1 sollte die Zündung erfolgen, wenn keine Zündverzögerung auftritt. Wenn jedoch die Zündung durch überstehenden Schrott oder dergleichen verzögert wird, so strömt eine Menge Sauerstoff aus, die an der Frischreaktion nicht teilnimmt, und sehr wohl berücksichtigt werden muss.
  • Erfolgt die Zündung, so steigen die Reaktionsgase 10 aus dem Stahlkonverter 1 auf, die vorwiegend aus Kohlenmonoxid (CO) bestehen. Die Abzughaube 5 ist dann, wie in Fig. 1 dargestellt, offen, sodass sogenannte Falschluft 11 durch den Spalt zwischen Abzughaube 5 und Stahlkonverter 1 bzw. dessen Konvertermund einströmt. Das Kohlenmonoxid der Reaktionsgase 10 verbrennt mit Luft. Die mit der Zündung beginnende Verbrennung des Blasesauerstoffs mit dem Kohlenstoff aus dem Roheisen erzeugt weiß leuchtende Flammen bzw. Gase.
  • Der Sensor / die Kamera 14 ist in einer Entfernung von 1 bis 3 m mittels eines ihn umgebenden Gehäuses 23 an der Einhausung des Stahlkonverters 1 befestigt, und zwar so, dass seine optische Achse 12 in den Spalt zwischen Abzughaube 5 und Stahlkonverter 1 bzw. dessen Konvertermund gerichtet ist.
  • Der Sensor 14 ist als CCD- oder CMOS-Bildsensor ausgebildet, der nur Grauwerte liefert (Schwarz/Weiß CCD-Bildsensor). Es können auch Farbkameras eingesetzt werden, deren Bilder dann über Software in Graustufenbilder konvertiert werden. Dem Sensor ist ein Objektiv 13 vorgeschaltet, das mit dem Sensor 14 gemeinsam eine Kamera bildet. Die Blendenöffnung des Objektivs sowie die Belichtungszeit des Kamerasensors können eingestellt werden. Und zwar am besten so, dass vor dem Sauerstoffblasen aufgenommene Bilder, also wenn sicher noch keine Zündung stattgefunden hat, keine Belichtung aufweisen, also schwarz sind. Dies hat den Vorteil, dass ein Pixel nur dann in die Sättigung gehen wird, wenn die Strahlungsintensität tatsächlich von einer heißen Flamme stammt, wie sie erst nach der Zündung anzutreffen ist. Flammen sind des öfteren auch schon vor dem Zünden da, nur längst nicht mit so großer Helligkeit wie beim Zünden.
  • Die Bildsignale des Sensors 14 werden über eine Leitung 19 an den Rechner 20 weitergeleitet, der diese verarbeitet und auswertet. Dies kann ein Rechner sein, der eigens nur die Bildverarbeitung und Auswertung vornimmt und die dabei gewonnenen Daten, insbesondere den Zeitpunkt der Zündung, an den Zentralrechner des Leitsystems weiterleitet. Der Rechner 20 kann aber auch der Zentralrechner sein, der zusätzlich zu seinen anderen Aufgaben die Bildverarbeitung und Auswertung vornimmt und die gewonnenen Daten für die Prozessleitung verwendet, etwa zur Regelung der Sauerstoffzufuhr in den Stahlkonverter 1 oder zum Zufahren der Abzughaube 5.
  • An den Rechner 20 können auch die Messwerte der Temperatur im Gehäuse 23 weitergeleitet werden, weil dieser auch die Luft- bzw. Wasserkühlung für das Gehäuse überwacht. Zusätzlich übernimmt er die Steuerung für das Öffnen und Schließen der Klappe 26. Entsprechend werden vom Rechner 20 über eine Leitung 18 Steuersignale an die Kamera zum Einstellen der Belichtungszeit und der Blendenöffnung geleitet.
  • Das Gehäuse 23 wird gekühlt, wobei die Regelung des Kühlmittelzuflusses 24 und des Kühlmittelabflusses 25 von einem eigenen Regler oder aufgrund von Temperaturmessungen im Gehäuse 23 vom Rechner 20 durchgeführt werden kann. Weiters kann vorgesehen sein, dass das Objektiv 13 bzw. die Abdeckung des Objektivs 13 mit Spülluft (nicht dargestellt) freigehalten wird. Der Kühlmitteldurchfluss und der Luftdruck der Luftspülung werden laufend überwacht, um Fehlfunktionen sofort erkennen zu können.
  • Zum Schutz der Kamera ist zusätzlich eine mechanische Klappe 26 vorgesehen, die vor dem Gehäuse 23 angebracht ist und pneumatisch oder manuell betrieben wird. Die Klappe 26 kann außerhalb der Betriebszeiten des Sensors 14 bzw. der mit diesem gebildeten Kamera geschlossen werden, um die Kamera vor Hitzeeinwirkung oder Schlackenspritzern zu schützen. Die Betätigung der Klappe kann händisch durch den Operator oder automatisch durch den Zentralrechner des Leitsystems ausgelöst werden. Die Stromversorgung 21, 22 für den Sensor 14 der Kamera ist in Fig. 1 ebenfalls eingezeichnet.
  • In Fig. 2 ist ein Ausschnitt einer Anlage aus Fig. 1 dargestellt, wo das Gehäuse 23 im sogenannten Doghouse 29 eingebaut ist. Dort ist das Gehäuse 23 bzw. die Kamera über eine Bühne 31 erreichbar. Mit 30 wird eine Seite der zweiteiligen sog. Doghousetüren gezeigt, welche für den Chargiervorgang geöffnet werden. Während dem Blasevorgang ist die Umhausung komplett geschlossen, was den Einbau der Kamera gemäß Fig. 2 erfordert.
  • In Fig. 3 ist ein vom Sensor 14 aufgenommenes Bild dargestellt, wobei hier die Zündung schon statt gefunden hat. Der obere dunkle Bildbereich stellt die Abzughaube 5 bzw. die Decke des Doghouses 29 dar, der untere dunkle Bildbereich den Stahlkonverter 1 bzw. dessen Konvertermund. Der Spalt zwischen Abzughaube und Konvertermund ist großteils hell erleuchtet. Es ist auch dieser Bildausschnitt, der für die Bestimmung des Zeitpunkts der Zündung ausschlaggebend ist. Deshalb wird auch nur ein rechteckiger Bildbereich, der den Großteil des im Bild enthaltenen Spalts abbildet, für die weiteren Berechnungen herangezogen. Dieser Bildbereich wird als "Region of Interest" (ROI) 15 bezeichnet.
  • Bevor noch Sauerstoff durch die Lanze 7 fließt, wird gegebenenfalls die Klappe 26 geöffnet, sodass bei Beginn des Blasvorgangs, wo dann Sauerstoff durch die Lanze in den Stahlkonverter 1 geblasen wird, jedenfalls schon Strahlung / Licht durch das Objektiv 13 auf den Sensor 14 gelangen kann. Die ersten Bilder der in Fig. 4 gezeigten Bildfolge, die vor dem Blasvorgang aufgenommen wurden, sind dementsprechend fast zur Gänze schwarz.
  • Spätestens beginnend mit dem Sauerstoffblasen (z.B. bei einem Sauerstoffdurchfluss > 100 Nm3/min) werden dann laufend Bilder aufgenommen, beispielsweise hier pro Sekunde 10 Bilder (Aufnahmen im 100 ms Takt). Gleichzeitig werden ggf. die Belichtungszeit der Kamera und die Blendenöffnung in eine passende, feste Einstellung gebracht (verdunkeltes Bild). Der Beginn der Aufnahme kann auch durch den Zentralrechner vorgegeben werden, der den Beginn der Aufnahmen mit dem Einschalten der Sauerstoffzufuhr zur Lanze 7 oder mit dem Erreichen einer bestimmten Sauerstoff-Durchflussmenge startet. Die Belichtungszeit liegt je nach Blendenöffnung meist im Bereich zwischen 1/1.000 Sekunde und 1/50.000 Sekunde. Als weitere Bedingung für die tatsächliche Zündung gilt, dass ein erforderlicher Mindestsauerstoffdurchfluss gegeben ist.
  • In Fig. 4 sind ab dem 8. Bild (zweite Reihe von oben, rechtes Bild) bereits gesättigte Pixel erkennbar. Ab diesem Zeitpunkt, spätestens jedoch ab dem 11. Bild dürfte die Zündung tatsächlich erfolgt sein.
  • Von jedem aufgenommenen Bild werden durch den Rechner 20 aus der - für alle Bilder aus den gleichen Bildpunkten bestehenden - Region of Interest 15 jene hundert Bildpunkte bzw. Pixel ausgewählt, die am hellsten sind. Ihre Strahlungsintensitäten bzw. Grauwerte werden gemittelt und der Durchschnittswert ihrer Strahlungsintensitäten bzw. Grauwerte wird als vorläufige Strahlungsintensität bzw. als vorläufiger Grauwert des Spalts zum Zeitpunkt der Aufnahme des Bildes festgelegt. Diese vorläufige Strahlungsintensität bzw. dieser vorläufige Grauwert wird mit den vorläufigen Strahlungsintensitäten bzw. Grauwerten der vier zeitlich vorhergehenden Bilder gemittelt. Es wird also eine Mittelung über fünf aufeinander folgende Bilder durchgeführt, was bei 10 Bildern pro Sekunde einer Mittelung über einem Zeitraum von einer halben Sekunde entspricht. Der aus der Mittelung über fünf Bilder errechnete Wert wird als endgültige Strahlungsintensität oder als endgültiger Grauwert des Spalts zum Zeitpunkt der Aufnahme des Bildes festgelegt und abgespeichert.
  • Diese Berechnungen finden online während des aktuellen Blasvorgangs statt.
  • Die durch das erfindungsgemäße Verfahren erzeugten Bilder des Spalts zwischen Konvertermund und Abzughaube sowie der zeitliche Verlauf der Grauwertkurve können auch laufend und in Echtzeit auf einem Monitor im Leitstand dargestellt werden. Dadurch kann der Operator auch anhand der Bilder bzw. den eindeutigen Anstieg der Grauwerte den Zeitpunkt der Zündung erkennen. Das Ergebnis wird genauer sein als bei direkter Betrachtung des Spalts durch den Operator, weil der Sensor näher am Stahlkonverter ist als der Operator es sein könnte, und zudem die Grauwertkurve einen Gesamtüberblick ermöglicht über den Verlauf dieses entscheidenden Zeitabschnitts.
  • Um den Zeitpunkt der Zündung mit dem erfindungsgemäßen Verfahren ermitteln zu können, muss der Sensor bzw. die damit gebildete Kamera einmal kalibriert werden: dabei werden mit der Kamera Bilder eines Blasvorgangs aufgenommen und wie oben beschrieben die endgültigen Strahlungsintensitäten bestimmt. Dabei wird darauf geachtet, dass die endgültigen Strahlungsintensitäten vor der Zündung nahezu Null sind (sprich das Bild fast schwarz ist) und nach der Zündung zumindest teilweise in die Sättigung gehen. Es ist auch möglich, die Feinkalibrierung laufend dynamisch vorzunehmen, indem die Sensibilität (Verdunkelung) je nach Abgastemperatur im Abgaskamin 4 justiert wird. Je nach Zusammensetzung der aktuellen Charge des Stahlkonverters bzw. des Schrotts brennen manche Chargen nämlich schon, nachdem das Roheisen chargiert wurde. Bei Einsatz von nassem Schrott wird zusätzlich Wasserstoff frei, der leicht brennt oder sogar Explosionen verursacht.
  • Ist jene Strahlungsintensität bzw. Steigung der Intensitätskurve bekannt, die in etwa dem Zeitpunkt der Zündung entspricht, müssen beim laufenden erfindungsgemäßen Verfahren zumindest so lange Bilder gemacht werden, bis sich ein Bild ergibt, dessen endgültige Strahlungsintensität der Strahlungsintensität der Zündung entspricht oder darüber liegt bzw. dessen endgültige Strahlungsintensität zu jener des vorhergehenden Bildes in einem bestimmten Verhältnis steht (gemäß der ermittelten Steigung der Kurve bei erfolgter Zündung) oder dieses Verhältnis überschreitet. Besser ist es, auch darüber hinaus noch weitere Bilder zu machen, um sicher zu gehen, dass die Strahlungsintensitäten nicht wieder abnehmen oder die Steigung nicht wieder abnimmt. Dabei können kürzere, vorübergehende Intensitätseinbrüche, bedingt durch starke Rauchentwicklung, außer Acht gelassen werden.
  • In Fig. 5 ist - unter anderem - der zeitliche Verlauf der durch den Sensor 14 gemessenen und mit dem erfindungsgemäßen Verfahren bestimmten Strahlungsintensitäten dargestellt, allerdings bei einer anderen Charge als jener von Fig. 4 und damit nicht direkt mit dieser vergleichbar. Die zugrunde liegenden Bilder wurden in gleichen Zeitabständen aufgenommen (10 Bilder pro Sekunde). Der senkrechten Achse [0...1000] sind mehrere weitere Messwerte zugeordnet, welche alle von bereits bestehenden Messvorrichtungen der Anlage stammen und vom Anlagenbetreiber zur Verfügung gestellt werden müssen (zumindest Sauerstoff-Durchfluss und Abgastemperatur), um die Aufnahmen automatisch starten sowie die Zündung bestätigen und die Aufnahmen stoppen zu können.
  • Die Kurve 16 stellt die - wie oben beschrieben - ermittelte vorläufige Strahlungsintensität der einzelnen Bilder dar (Intensitäten bzw. Grauwerte gemittelt über die 100 hellsten Pixel der Region of Interest 15 eines Bildes). Die Aufnahmen von Bildern und somit auch die Berechnung der Werte dieser Kurve beginnt in diesem Fall bei einem Sauerstoff-Durchfluss > 100 Nm3/min. Nach dem Start der Aufnahme ist die Belichtung des Sensors zunächst noch sehr hoch, wodurch sich der Kurvenpeak zu diesem Zeitpunkt erklärt. Während der ersten Bilder wird dann jedoch die Belichtung reduziert. Es ist gut erkennbar, dass die Kurve im Bereich des Anstiegs große Zacken aufweist, die über die Hälfte des Grauwertebereichs gehen. Deshalb werden die vorläufigen Strahlungsintensitäten bzw. Grauwerte eines Bildes mit zeitlich benachbarten Bildern, wie oben beschrieben, gemittelt. Die dabei entstehenden (oben als "endgültige" Strahlungsintensitäten bezeichneten) Strahlungsintensitäten sind in Kurve 17 dargestellt. Diese weist einen glatteren Verlauf auf und löst bei Überschreiten eines Schwellwertes (z.B. 70%) bei gegebenen Zusatzbedingungen (u.a. Mindestsauerstoffdurchfluss) das Zündsignal aus. Die Position der Abzugshaube 5 ist durch Kurve 35 dargestellt, die Abzugshaube beginnt gemäß Fig. 5 in diesem Fall ca. 18 Sekunden später, etwa zum Zeitpunkt 8:48:16, sich abzusenken. Mit Erkennung der Zündung laut erfindungsgemäßem Verfahren könnte diese also schon 18 Sekunden früher abgesenkt werden, was wiederum den Vorteil bringt, dass bereits ab diesem Zeitpunkt das CO-Gas, das sonst durch zum Spalt eindringende Falschluft verbrannt wird, zurück gewonnen werden kann als Brenngas für andere Prozesse (maximale CO-Gas Rückgewinnung).
  • In Fig. 6 ist nur die Strahlungsintensität aus Fig. 5 für jenen Zeitraum dargestellt, wo die Zündung stattfindet.
  • BEZUGSZEICHENLISTE
  • 1
    Stahlkonverter
    2
    Schrott und stückiges Roheisen
    3
    Flüssiges Roheisen
    4
    Abgaskamin
    5
    Abzughaube
    6
    Richtung der Absenkung bzw. Anhebung der Abzughaube 5
    7
    Lanze
    8
    Öffnung für die Lanze 7
    9
    Sauerstoff
    10
    Reaktionsgase
    11
    Falschluft
    12
    Optische Achse
    13
    Objektiv
    14
    Sensor
    15
    Region of Interest
    16
    Kurve der Strahlungsintensität
    17
    Kurve der gemittelten Strahlungsintensität
    18
    Leitung für Steuersignale von Rechner 20
    19
    Leitung für Bildsignale an den Rechner 20
    20
    Rechner
    21
    Stromversorgung
    22
    Stromversorgung
    23
    Gehäuse
    24
    Kühlmittelzufluss
    25
    Kühlmittelabfluss
    26
    Klappe
    27
    28
    Abstand der optischen Achse 12 vom Konvertermund
    29
    Umhausung (Doghouse)
    30
    Tür zu Doghouse 29
    31
    Bühne
    32
    Position der Lanze 7
    33
    Abgastemperatur [°C]
    34
    Sauerstoff-Durchfluss [Nm3/min]
    35
    Position der Abzughaube 5
    H1
    Betriebsposition der Lanze 7
    H2
    Position der Lanze 7, bevor die Sauerstoffzufuhr geöffnet wird

Claims (14)

  1. Verfahren zum Bestimmen des Zeitpunktes der Zündung beim Aufblasverfahren, insbesondere beim LD-Verfahren, in einem Stahlkonverter (1), wobei die bei der Zündung entstehende Strahlung, die zwischen Konvertermund und Abzughaube (5) austritt, detektiert wird, dadurch gekennzeichnet, dass frühestens beginnend mit dem Sauerstoffblasen mehrere zeitlich aufeinander folgende Bilder desselben Bereichs zwischen Konvertermund und Abzughaube (5) mittels eines Sensors (14), der mehrere, jeweils einem Bildpunkt entsprechende Fotodioden enthält, vorzugsweise mittels eines CCD-Bildsensors, aufgenommen werden, aufgrund der von den Fotodioden gemessenen Strahlungsintensität ein Verlauf der Strahlungsintensität über die Zeit bestimmt wird und jener Zeitpunkt, bei dem ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt wird, wobei pro Bild nur eine bestimmte Anzahl der hellsten Bildpunkte zwischen Konvertermund und Abzughaube (5), entsprechend einem Anteil von 0,1%-1% des Bereichs zwischen Konvertermund und Abzughaube (5), ausgewählt wird und aus diesen durch Mittelung die Strahlungsintensität zwischen Konvertermund und Abzughaube (5) bestimmt wird, und wobei die Strahlungsintensität über mehrere aufeinander folgende Bilder gemittelt wird, insbesondere über mindestens fünf Bilder oder über einen maximalen Zeitraum von zwei Sekunden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Sensor (14) vorwiegend sichtbares Licht detektiert.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bilder den gesamten Spalt zwischen Rand des Konvertermunds und Rand der Abzughaube (5) umfassen.
  4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Bilder zumindest 50% der Fläche, vorzugsweise aus der Mitte, des Spalts zwischen Konvertermund und Rand der Abzughaube (5) umfassen.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Empfindlichkeit des Sensors (14) so eingestellt wird, dass vor dem Sauerstoffblasen aufgenommene Bilder möglichst keine Belichtung aufweisen.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor (14) zumindest eine Anzahl von 10.000 Bildpunkten umfasst.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Aufnahme von Bildern endet, wenn die Abzughaube (5) auf den Konvertermund abgesenkt wurde.
  8. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7, umfassend eine Kamera (13, 14) mit einem Sensor (14), der mehrere . Fotodioden enthält, vorzugsweise mit einem CCD-Bildsensor, wobei die Kamera (13, 14) mit ihrer optischen Achse auf den Spalt zwischen Konvertermund und Abzughaube (5) ausgerichtet ist, sowie einen Rechner zur Auswertung der Bilder der Kamera, wobei der Rechner so programmiert ist, dass er aufgrund der von den Sensoren aufgenommenen Strahlungsintensität einen Verlauf der Strahlungsintensität über die Zeit bestimmt und jenen Zeitpunkt, bei dem ein vorbestimmter Anstieg der Strahlungsintensität erreicht wird, als Zeitpunkt der Zündung festlegt wird, wobei pro Bild nur eine bestimmte Anzahl der hellsten Bildpunkte zwischen Konvertermund und Abzughaube (5), entsprechend einem Anteil von 0,1%-1% des Bereichs zwischen Konvertermund und Abzughaube (5), ausgewählt wird und aus diesen durch Mittelung die Strahlungsintensität zwischen Konvertermund und Abzughaube (5) bestimmt wird, und wobei die Strahlungsintensität über mehrere aufeinander folgende Bilder gemittelt wird, insbesondere über mindestens fünf Bilder oder über einen maximalen Zeitraum von zwei Sekunden.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Kamera (13,14) an der Umhausung des Stahlkonverters (1) angebracht ist.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Kamera (13, 14) von einem gekühlten Gehäuse (23) umgeben ist.
  11. Vorrichtung nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass die Ausblicksöffnung für das Objektiv der Kamera (13, 14) einen Durchmesser von weniger als 6 mm aufweist.
  12. Vorrichtung nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, dass Nadelöhr-Objektive zum Einsatz kommen.
  13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, dass eine Einrichtung vorgesehen ist, mit welcher die Ausblicksöffnung des Gehäuses (23) durch Spülung mittels Stickstoff oder Luft freigehalten werden kann.
  14. Vorrichtung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, dass das Gehäuse (23) vor dem Objektiv (13) der Kamera einen pneumatisch oder manuell betätigbaren Verschluss in Form einer Klappe (26) oder eines Schiebers aufweist.
EP11723340.3A 2010-06-02 2011-05-12 Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung beim aufblasverfahren in einem stahlkonverter Not-in-force EP2576846B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT9112010A AT509866B1 (de) 2010-06-02 2010-06-02 Verfahren zum bestimmen des zeitpunktes der zündung beim aufblasverfahren
PCT/EP2011/057672 WO2011151143A2 (de) 2010-06-02 2011-05-12 Verfahren zum bestimmen des zeitpunktes der zündung beim aufblasverfahren

Publications (2)

Publication Number Publication Date
EP2576846A2 EP2576846A2 (de) 2013-04-10
EP2576846B1 true EP2576846B1 (de) 2014-12-17

Family

ID=44626745

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11723340.3A Not-in-force EP2576846B1 (de) 2010-06-02 2011-05-12 Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung beim aufblasverfahren in einem stahlkonverter

Country Status (5)

Country Link
EP (1) EP2576846B1 (de)
CN (1) CN102906281B (de)
AT (1) AT509866B1 (de)
RU (1) RU2564178C2 (de)
WO (1) WO2011151143A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004593A1 (de) 2021-09-10 2023-03-16 Promecon Process Measurement Control Gmbh Metallurgischer Schmelzofen sowie Verfahren zur Bestimmung der Menge an heteromolekularem Gas

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102692271B (zh) * 2012-06-14 2014-05-07 中国气象科学研究院 基于天空可见光图像的太阳直接辐射强度测量方法和装置
CN102721988B (zh) * 2012-06-14 2014-09-03 中国气象科学研究院 基于天空可见光图像的日照时数测量方法
UA113614C2 (xx) 2013-02-14 2017-02-27 Спосіб експлуатації кисневої продувальної фурми в металургійній ємності і вимірювальна система для визначення використовуваних при цьому сигналів вимірювань
EP3002341A1 (de) 2014-09-30 2016-04-06 Primetals Technologies Austria GmbH Verfahren und Vorrichtung zum Bestimmen des Zeitpunktes der Zündung bei einem Sauerstoffblasverfahren
EP3002342A1 (de) 2014-09-30 2016-04-06 Primetals Technologies Austria GmbH Verfahren und Vorrichtung zum Bestimmen des Zeitpunktes der Zündung bei einem Sauerstoffblasverfahren
DE102014222788A1 (de) * 2014-11-07 2016-05-12 Sms Group Gmbh Verfahren und Vorrichtung zum Regeln des Druckes im Abgaskanal eines Konverters
KR102288551B1 (ko) * 2017-06-30 2021-08-10 제이에프이 스틸 가부시키가이샤 전로의 조업 감시 방법 및 전로의 조업 방법
JP6954262B2 (ja) * 2018-12-28 2021-10-27 Jfeスチール株式会社 転炉の操業方法
CN109897929A (zh) * 2019-03-18 2019-06-18 共享智能铸造产业创新中心有限公司 铸铁三明治工艺球化时间自动采集系统及其工作方法
CN111753691B (zh) * 2020-06-15 2024-01-02 上海电气集团股份有限公司 一种检测及控制气化炉的方法、设备及系统
CN113106191A (zh) * 2021-05-21 2021-07-13 广西金智信息科技有限公司 一种基于图像识别的智能炼钢转炉看火装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3528800A (en) * 1966-02-14 1970-09-15 Leeds & Northrup Co Optimized blowing control for basic oxygen furnaces
JPS5027805B1 (de) * 1967-04-13 1975-09-10
AT299283B (de) * 1969-04-08 1972-06-12 Voest Ag Verfahren zur Betriebsregelung von Sauerstoffaufblaseverfahren
SU985056A1 (ru) * 1981-05-25 1982-12-30 Государственный Всесоюзный Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Комплексной Автоматизации Способ управлени кислородно-конвертерной плавкой
SU1016368A1 (ru) * 1981-12-17 1983-05-07 Государственный Всесоюзный Центральный Ордена Трудового Красного Знамени Научно-Исследовательский Институт Комплексной Автоматизации Система управлени кислородно-конвертерным процессом выплавки стали
FI79623C (fi) * 1986-10-16 1990-01-10 Imatran Voima Oy Bildbehandlingsfoerfarande vid dammbraenning.
JPH0598335A (ja) * 1991-10-09 1993-04-20 Nkk Corp 転炉スロツピング予知方法
US6175676B1 (en) * 1999-02-23 2001-01-16 Bethlehem Steel Corporation Fiber optic sensor and method of use thereof to determine carbon content of molten steel contained in a basic oxygen furnace
JP4439991B2 (ja) * 2004-04-30 2010-03-24 Jfeスチール株式会社 火点放射計測方法及びその装置
CN101698896B (zh) * 2009-09-28 2013-01-30 南京理工大学 炉口辐射信息融合用于炼钢在线终点控制的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021004593A1 (de) 2021-09-10 2023-03-16 Promecon Process Measurement Control Gmbh Metallurgischer Schmelzofen sowie Verfahren zur Bestimmung der Menge an heteromolekularem Gas

Also Published As

Publication number Publication date
CN102906281B (zh) 2014-06-04
WO2011151143A3 (de) 2012-04-19
RU2564178C2 (ru) 2015-09-27
AT509866A4 (de) 2011-12-15
WO2011151143A2 (de) 2011-12-08
RU2012157724A (ru) 2014-07-20
CN102906281A (zh) 2013-01-30
EP2576846A2 (de) 2013-04-10
AT509866B1 (de) 2011-12-15

Similar Documents

Publication Publication Date Title
EP2576846B1 (de) Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung beim aufblasverfahren in einem stahlkonverter
DE60007492T2 (de) Verfahren zur Minimierung des Schlackenüberlaufs während der Stahlproduktion
DE69801360T2 (de) Verfahren und Vorrichtung zur Minimierung des Schlackenuberlaufs beim Abstich eines Sauerstoffblaskonverters während der Stahlproduktion
EP2132543B1 (de) Verfahren zur kameragestützen erfassung der strahlungsintensität eines gasförmigen chemischen reaktionsproduktes sowie anwendungen des verfahrens und korrespondierende vorrichtung
DE102014208768A1 (de) Verfahren und Vorrichtung zur Qualitätssicherung
DE102013218421A1 (de) Vorrichtung und Verfahren zur Überwachung, insbesondere zur Regelung, eines Schneidprozesses
EP2620734B1 (de) Dentalofen
DE2751446B2 (de) Vorrichtung zum Steuern eines Absperrorgans für eine öffnung in einem Schmelzgefäß
CN106755683A (zh) 一种基于比色法的高炉燃烧带温度场检测装置
DE60131961T2 (de) Verfahren zur bildgebenden Messung, bildgebende Messeinrichtung und Verwendung gemessener Informationen bei der Verfahrenssteuerung
EP0802372B1 (de) Verfahren und Einrichtung zur Steuerung eines Verbrennungsprozesses in einem Kessel
DE4234516A1 (de) Verfahren und vorrichtung zur keramischen schweissung
EP3201367B1 (de) Verfahren und vorrichtung zum bestimmen des zeitpunktes der zündung bei einem sauerstoffblasverfahren
EP1048900A1 (de) Verfahren und Vorrichtung zum Steuern der Verbrennung von Brennstoff mit variablem Heizwert
EP3403027B1 (de) Auswerte- und regelungsverfahren für mehrstoffbrenner
EP3748267A1 (de) Verfahren zur steuerung oder regelung einer industrieanlage
EP3215642B1 (de) Verfahren und vorrichtung zum regeln des druckes im abgaskanal eines konverters
DE102008048262B4 (de) Verfahren und Vorrichtung zur Bestimmung des Einschmelzgrads einer thermisch gespritzten Oberfläche sowie Verfahren und Vorrichtung zum automatischen Einschmelzen einer thermisch gespritzten Oberfläche
EP3865771A2 (de) Verfahren zum betreiben einer feuerungsanlage
EP2784392B1 (de) Strahlungsdetektor
DE202006020272U1 (de) Vorrichtung zur Erkennung von Fremdstoffen in Flüssigmetallen
DE10007102C2 (de) Verfahren und Vorrichtung zur Untersuchung von Eigenschaften metallurgischer Abdeckmittel
EP4317466A1 (de) Verfahren zur herstellung von stahl in einem metallurgischen gefäss
EP3095537A1 (de) Prüfvorrichtung, prüfsystem und verfahren zum prüfen einer kokille
EP2410305A1 (de) Verfahren zur Ermittlung einer Temperatur von Flüssigmetall, Signalverarbeitungseinrichtung und metallurgische Vorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140714

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 701991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005318

Country of ref document: DE

Effective date: 20150129

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150317

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150318

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150417

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005318

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

26N No opposition filed

Effective date: 20150918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150512

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011005318

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011005318

Country of ref document: DE

Representative=s name: KINNSTAETTER, KLAUS, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011005318

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Free format text: FORMER OWNER: SIEMENS VAI METALS TECHNOLOGIES GMBH, LINZ, AT

REG Reference to a national code

Ref country code: NL

Ref legal event code: PD

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH; AT

Free format text: DETAILS ASSIGNMENT: VERANDERING VAN EIGENAAR(S), OVERDRACHT; FORMER OWNER NAME: SIEMENS VAI METALS TECHNOLOGIES GMBH

Effective date: 20160422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 701991

Country of ref document: AT

Kind code of ref document: T

Owner name: PRIMETALS TECHNOLOGIES AUSTRIA GMBH, AT

Effective date: 20170314

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141217

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20190521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20190121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20190521

Year of fee payment: 9

Ref country code: FR

Payment date: 20190523

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190521

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200511

Year of fee payment: 10

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200513

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200512

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210520

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20220523

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011005318

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 701991

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210512