EP2573480B1 - Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen - Google Patents

Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen Download PDF

Info

Publication number
EP2573480B1
EP2573480B1 EP12006484.5A EP12006484A EP2573480B1 EP 2573480 B1 EP2573480 B1 EP 2573480B1 EP 12006484 A EP12006484 A EP 12006484A EP 2573480 B1 EP2573480 B1 EP 2573480B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
flow channel
heat
longitudinal
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12006484.5A
Other languages
English (en)
French (fr)
Other versions
EP2573480A2 (de
EP2573480A3 (de
Inventor
Wilhelm Bringewatt
Engelbert Heinz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herbert Kannegiesser GmbH and Co
Original Assignee
Herbert Kannegiesser GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herbert Kannegiesser GmbH and Co filed Critical Herbert Kannegiesser GmbH and Co
Publication of EP2573480A2 publication Critical patent/EP2573480A2/de
Publication of EP2573480A3 publication Critical patent/EP2573480A3/de
Application granted granted Critical
Publication of EP2573480B1 publication Critical patent/EP2573480B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/43Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes helically or spirally coiled
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/26Heating arrangements, e.g. gas heating equipment
    • D06F58/263Gas heating equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/125Radiant burners heating a wall surface to incandescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/22Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating
    • F24H1/40Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes
    • F24H1/406Water heaters other than continuous-flow or water-storage heaters, e.g. water heaters for central heating with water tube or tubes the tubes forming a membrane wall
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F39/00Details of washing machines not specific to a single type of machines covered by groups D06F9/00 - D06F27/00 
    • D06F39/04Heating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/005Radiant burner heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/101Flame diffusing means characterised by surface shape
    • F23D2203/1012Flame diffusing means characterised by surface shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/103Flame diffusing means using screens
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2203/00Gaseous fuel burners
    • F23D2203/10Flame diffusing means
    • F23D2203/106Assemblies of different layers

Definitions

  • the invention relates to a device for heating a heat carrier for laundry machines in particular according to the preamble of claim 1.
  • Heat carriers in particular heat transfer fluids, such as thermal oil, are used to supply the heat required to machines that work with heat.
  • laundry machines such as dryers, washing machines, ironers or the like are supplied with the required heating energy via heat transfer media.
  • heat transfer media are heated in devices that have at least one burner and at least one heat exchanger. The heat transfer medium is heated as it flows through the heat exchanger or a plurality of heat exchangers by the energy supplied to the respective heat exchanger by the flames of the burner.
  • a device for heating a heat carrier in which the flame of a burner is surrounded by a heating tube.
  • a heat exchanger is provided around the heating tube and has tubes.
  • the heating tube fired from the inside is designed to generate heat radiation acting on the heat exchanger.
  • the tubes of the heat exchanger are heated by the flue gas from the burner emerging from the heating tube.
  • a burner with a tubular burner element which has a gas-permeable outer surface. Fuel gas is blown into the interior of the burner element and exits radially outward through the gas-permeable wall of the burner element, where it is ignited by an ignition device provided next to the burner element.
  • the EP 2 149 636 A1 discloses a device for heating a heat transfer medium for laundry machines in particular with two double-walled, cylinder-like heat exchangers. An internal heat exchanger is fired directly by a flame from a burner.
  • the invention has for its object to provide a device for heating a heat carrier for laundry machines in particular, which has a good thermal efficiency with low emissions.
  • a device for solving this problem has the features of claim 1.
  • this device it is provided to arrange a heating tube fired from the inside by the burner in order to generate heat radiation in the interior enclosed by the tubular heat exchanger.
  • the heating tube is designed to emit radially outward radiation. This radiation is oriented radially in such a way that it is directed onto the inner heat exchanger surface of the heat exchanger surrounding the heating tube.
  • the heating tube is designed in such a way that the outer lateral surface emits radially outwardly directed infrared rays and these infrared rays transmit their energy to the heat exchanger surface of the heat exchanger surrounding the heating tube.
  • This type of energy transmission by infrared radiation leads to a particularly economical and environmentally friendly heating of a heat carrier with at least one heat exchanger and is characterized by good thermal efficiency. It also has low emissions.
  • the device according to the invention thus works economically and in an environmentally friendly manner.
  • the heating tube has a perforated or grid-like support tube for the at least one mantle.
  • the heating tube is essentially formed from the support tube and the mantle.
  • the mantle is pulled onto the support tube from the outside, so that the perforated or grid-like support tube supports the mantle, which is elastic or pliable as a result of its woven, braid or grid structure, and thereby gives it the preferably cylindrical shape of the support tube and ensures that the respective one Glow sock maintains this shape even when heated or glowing.
  • the heating tube has at least one mantle made of a heat-resistant fabric, braid and / or grid.
  • a mantle is heated from the inside by means of the flames of the burner, preferably made to glow, the fabric, braid and / or grid for the formation of the mantle preventing the passage of flames at least partially or for the most part, preferably entirely.
  • the glow sock is red-hot on the outside of at least one heat exchanger, whereby it generates infrared rays.
  • the energy of the infrared rays is emitted to the heat exchanger surrounding the mantle at a distance, namely at least one inner heat exchanger surface thereof, this energy heating the heat transfer medium, in particular heat transfer fluid, flowing through the heat exchanger.
  • a high-temperature-resistant metal and / or high-temperature-resistant ceramics are preferably considered as the material for forming the mantle. It is then a matter of metal or ceramic fibers and / or strands or threads.
  • the materials mentioned are characterized by a long service life in the glowing or very hot state.
  • the materials are suitable for forming a stable and durable braid, fabric, net or even a nonwoven that, when exposed to flames on one side, emits heat radiation, in particular infrared rays, on the other side, without the flames of the burner step through the mantle.
  • the at least one cylinder-like heat exchanger is double-walled, the longitudinal edges of both walls of the cylindrical heat exchanger being connected by a longitudinal weld seam and the longitudinal weld seam partially delimiting at least part of at least one flow channel in the double-walled, cylinder-like heat exchanger.
  • Such a heat exchanger is particularly advantageously suitable for forming the device described in the introduction, in which the flames of the burner heat up at least one heating tube arranged in the interior enclosed by the tubular heat exchanger and on the outside of the heating tube the energy generated by the flames is generated by radiation, in particular infrared radiation the at least one heat exchanger is transferred.
  • the heat exchanger is preferably designed as a double-walled heat exchanger with at least one flow channel created by hydraulic expansion.
  • such a heating tube is assigned to only one, preferably internal, heat exchanger.
  • the heating tube is heated directly from the inside by the flames of the burner. However, the flames are retained by the heating pipe, so that the outside of the heating pipe heated by the flames emits radiation energy to the heat exchanger surrounding the heating pipe.
  • a preferred embodiment of the device provides for the heating tube to be provided with an inner diameter which allows the flames of the burner to extend through the heating tube with the at least one glow sock supported by it.
  • the flames can heat the heating tube, in particular the at least one glow sock arranged thereon, directly from the inside and thereby bring the at least one glow sock to glow if necessary.
  • the heating tube with the mantle is thus used as a means for converting the flames into radiation to be emitted by the mantle, in particular infrared radiation, for heating the heat carrier in at least one heat exchanger.
  • the at least one tubular heat exchanger concentrically surrounds the heating tube with the mantle, the inner diameter of the at least one heat exchanger being larger than the outside diameter of the heating tube or mantle, so that the at least one heat exchanger surrounds the mantle at a distance .
  • each flow channel in the interior of the double-walled, tubular heat exchanger in particular a single, continuous flow channel, is formed from a plurality of parallel flow channel sections which run in the circumferential direction of the cylindrical heat exchanger and through overflow sections at their end regions lying on both sides of the longitudinal seam are connected.
  • the heating of the heat transfer medium is particularly uniform when the heat exchanger is heated by radiation emitted by the heating tube, in particular infrared radiation.
  • the at least one flow channel preferably a single continuous flow channel
  • the heat transfer medium flows in a laminar, namely longitudinally, through the cylindrical heat exchanger, and also in a zigzag from one flow channel section to the other.
  • the longitudinal weld seam practically has no influence on the design and the course of the flow channel, but the longitudinal weld seam forms a boundary between adjacent longitudinal flow channel sections running between two parallel longitudinal flow channel sections.
  • the devices shown in the figures are used to heat or heat a heat transfer medium.
  • the heat transfer medium is preferably a heat transfer fluid with a high boiling point.
  • the heat transfer medium is used to supply thermally working machines, in particular laundry machines, with thermal energy.
  • the devices shown in the figures are particularly suitable for supplying dryers, washing machines, in particular continuous washing machines, and ironers for commercial laundries.
  • the 1 to 12 each show devices with a two-pass, cylindrical heat exchanger 20.
  • the cylindrical inner wall and the cylindrical outer wall of the heat exchanger 20 each form a heat exchanger surface, so that energy can be supplied to the heat exchanger 20 from both sides.
  • the heat exchanger 20 is supplied with energy which is generated by a gas or oil-heated burner 21. If necessary, the device can also have a plurality of burners 21.
  • the only cylindrical heat exchanger 20 in the embodiment shown is double-walled.
  • the device has a preferably cylindrical housing 22 which surrounds the heat exchanger 20.
  • the diameter of the housing 22 is so much larger than the outer diameter of the heat exchanger 20 that an outer annular space 23 is formed between the heat exchanger 20 and the housing 22.
  • Outer end walls 24, 25 of the housing 22 are spaced from the ends of the cylindrical heat exchanger 20 which are open at the end faces, as a result of which the outer annular space 23 around the heat exchanger 20 is connected to an inner cylinder space 26 surrounded by the heat exchanger 20.
  • the burner 21 is assigned to the end wall 25 in that the burner 21 is connected to the end wall 25 with a releasable flange connection.
  • a heating tube 27 is provided concentrically in the cylinder space 26 enclosed by the heat exchanger 20.
  • the heating tube 27 is connected to the burner 21 at one end. Another, preferably closed, free end 29 of the heating tube terminates approximately flush with the open end face of the heat exchanger 20. As a result, the free end 29 of the heating tube 27, like the open end of the heat exchanger 20, is spaced apart from the end wall 24 of the housing 22 of the device.
  • the heating tube 27 serves to be heated by the flames of the burner 21.
  • the flames of the burner 21 are passed through the interior of the heating tube 27.
  • the flames in the interior of the heating tube 27 heat the outside, in particular the outer lateral surface thereof.
  • the energy is emitted from the hot outer lateral surface of the heating tube 27 by heat radiation, in particular infrared radiation.
  • the heating tube 27 has an inner support tube 30 and at least one glow sock 32 drawn onto the support tube 30.
  • the glow sock 32 thus surrounds the entire support tube 30.
  • the support tube 30 is provided with openings 31 in its outer surface ( Fig. 3 ).
  • the distribution of the openings 31 over the lateral surfaces of the support tube 30 is selected such that a uniform heat distribution over the circumference and the length of the support tube 30 is achieved.
  • the total area of the openings 31 corresponds to a part of the total area of the support tube 30.
  • the glow sock 32 is formed from a fabric, braid, fleece or a grid.
  • the fabric, braid, fleece or the like consist of highly heat-resistant fibers, strands or threads made of a corresponding metal or ceramic. It is also conceivable to form the mantle 32 from a steel / ceramic mixture, in that the fabric or braid is produced both from ceramic fibers or strands and from metal fibers or strands.
  • the glow sock 32 can be formed from a single or multi-layer fabric made of metallic and / or ceramic fibers or strands. It is crucial that the flames of the burner 21 flowing through the interior of the heating tube 27 do not or only to a small extent escape through the mantle 32. The flames of the burner 21 are thus retained by the mantle 32.
  • the flames of the burner 21 thus only heat the mantle 32 by at least causing the metallic fibers and strands to form the mantle 32 to glow.
  • the heat energy is emitted by radiation from the warmed or glowing cylindrical outer surface of the mantle 32.
  • the mantle 32 preferably emits infrared rays on its outer circumference.
  • the rays, in particular infrared rays are essentially radial directed outside, namely against the inside of the heat exchanger 20.
  • the radiant heat generated by the heating tube 27, in particular infrared radiation is thus transmitted to the inner heat exchanger surface of the heat exchanger 20.
  • the flue gases of the burner 21 emerge from the entire outer surface of the heating tube 27.
  • the flue gases can flow along the outside of the heat exchanger 20.
  • the flue gases leave the housing 22 through a flue gas outlet 33.
  • air circulation is created by a chimney effect along the inner heat exchanger surface of the heat exchanger 20 opposite the mantle 32 and along the outer heat exchanger surface.
  • the hot air on the inner heat exchanger surface flows in the longitudinal direction of the heat exchanger 20 towards the end wall 24 of the housing 22 and from there along the outside of the heat exchanger 20 towards the end wall 25, from where the air leaves the housing 22 through the flue gas outlet 33 .
  • the heat exchanger 20 is double-walled.
  • the two walls formed from flat sheets 35 or plates are connected to one another in regions, namely welded.
  • the regions of the walls of the heat exchanger 20 which are not connected to one another are then hydraulically expanded by introducing a liquid under high pressure, as a result of which the flow channel 34 is formed in the interior of the double-walled heat exchanger 20.
  • the Fig. 5 shows a top view of the still flat, rectangular cut of two sheets 35 lying one above the other to form the heat exchanger 20 .
  • the sheets 35 are liquid-tight all around.
  • a large number of parallel connecting seams 38 is provided in the area of the surface of the metal sheets 35.
  • the connecting seams 38 run parallel to the transverse edges 37 and thus radially in the circumferential direction of the cylindrical heat exchanger 20 formed from the sheets 35.
  • the sheets 35 are connected to one another continuously as a longitudinal seam or partially by interrupted longitudinal seams.
  • the connecting seams 38 are alternately connected to one or the other longitudinal edge 36 ( Fig. 5 ). Adjacent connecting seams 38 thus end at a distance in front of one longitudinal edge 36 or the other longitudinal edge 36.
  • a single continuous flow channel 34 is thus created with a zigzag shape or serpentine course.
  • the connecting seams 38 or the transverse edges 37 delimit flow channel sections running transversely to the longitudinal direction of the heat exchanger 20, an overflow section being located where the respective connecting seam 38 ends at a distance from the respective longitudinal edge 36, whereby the heat carrier flowing through the flow channel 34, in particular the heat transfer fluid is deflected from a radial flow channel section to the adjacent radial flow channel section.
  • the two plates or sheets 35 of the same thickness with a thickness between 0.5 mm and 3 mm, preferably 1 mm to 2 mm, of steel, in particular stainless steel, are welded together to form the flow channel 34, the two plates which are connected to one another in regions or sheets 35 rounded so that a cylindrical tube is formed.
  • the two longitudinal edges 36 of the connected sheets 35 which form a longitudinal seam of the tube, are connected to one another by a longitudinal weld seam 39, so that a closed tube is formed to form the tubular heat exchanger 20 ( Fig. 4 ).
  • Areas of the sheets 35 between the weld seams which are not hydraulically connected to one another are then widened to form the flow channel 34 running in a zigzag or serpentine fashion in the tubular heat exchanger 20.
  • the 6 and 7 show a device that differs from that of 1 to 5 only differs in that the likewise tubular heat exchanger 40 for forming the flow channel 41 between the plates or sheets 35 instead of with continuous connecting seams 38 according to the embodiment of FIG 1 to 5 is formed by several rows of weld spots 42.
  • Several parallel rows of welding points 42 run parallel to the transverse edge 37, in exactly the same way as the connecting seams 38.
  • the approximately equal distances between the welding points 43 of each row of welding points 42 are smaller than the distance between two adjacent rows of welding points 42 or the respective transverse edge 37 and the adjacent one Welding spot row 42.
  • the flow channel 41 is formed in the double-walled heat exchanger 40, which, as in the embodiment of FIG 1 to 5 has a zigzag-shaped or serpentine course, which in turn creates adjacent radially circumferential flow channel sections. Because each row of welding points 42 alternately ends at a greater distance from a longitudinal edge 36, overflow channels between adjacent flow channel sections are in turn formed. In a departure from the exemplary embodiment described, other distributions of the welding points 43 are conceivable - even without rows of welding points 42. Also with the heat exchanger 40 Fig. 6 and 7th are the longitudinal edges 36 of the sheets 35 after rounding to a tube with a longitudinal weld. The device with the heat exchanger 40 is designed in exactly the same way as the device in FIG 1 to 5 . The device works the same way.
  • the 8 and 9 show a device which differs from those of the previously described exemplary embodiments only by a differently designed heat exchanger 44.
  • the heat exchanger 44 is also cylindrical and double-walled.
  • In the heat exchanger 44 there is a single flow channel 45 which runs continuously in the double-walled heat exchanger 44 in the manner of a spiral or helix.
  • the flow channel 45 is delimited on both sides by an uninterrupted helical circumferential connecting seam 46, which is formed either as an uninterrupted longitudinal seam or as a row of welding points from a multiplicity of individual, spaced-apart welding points.
  • the cylindrical heat exchanger 44 of this exemplary embodiment does not have a longitudinal weld seam 39. Instead, the heat exchanger 44 is formed from helically wound double-layer strips which are connected at their edges that run helically around the longitudinal central axis 28 of the cylindrical heat exchanger 44 by a circumferential helical or helical passage weld seam 47 which can also form the connecting seam 46 at the same time.
  • the heat exchanger 44 also serves to form a device according to FIGS 1 to 5 . He works the same way.
  • the 10 to 12 show a further embodiment of the device, which in turn differs from the previously described devices only by a differently designed heat exchanger 48.
  • the heat exchanger 48 is also designed as a cylindrical, double-walled heat exchanger 48.
  • Several parallel, identical flow channels 49 are arranged in the heat exchanger 48.
  • the flow channels 49 run in the longitudinal direction of the heat exchanger 48, that is to say parallel to its longitudinal central axis 28.
  • the double-walled heat exchanger 48 is also made of two parallel, equally large flat plates or sheets 35 made of steel or stainless steel with the same thickness between 0.5 mm to 3 mm, in particular 1 mm to 2 mm, formed.
  • the parallel longitudinal edges 50 and the parallel transverse edges 51 of the two sheets 35 of the same thickness are connected to one another in a liquid-tight manner by means of continuous weld seams.
  • rectilinear connecting seams 52 are provided between the longitudinal edges 50 and run parallel to them.
  • the connecting seams 52 are spaced from one another or from the respective longitudinal edge 50 in such a way that a flow channel 49 of the desired size is formed between them.
  • the connection seams 52 can be formed by continuous longitudinal weld seams or rows of weld spots.
  • the connecting seams 52 each end at a distance in front of both transverse edges 51 of the two sheets 35 to form the heat exchanger 48 ( Fig. 12 ).
  • all flow channels 49 are open at opposite ends for the entry and exit of the heat carrier flowing through the flow channels 49 in the longitudinal direction.
  • the heat transfer medium is fed to the heat exchanger 48 on one end face and discharged on the other end face of the cylindrical heat exchanger 48.
  • two feed lines 53 on one end face and two discharge lines 54 for heated or heated heat transfer media on the other end face of the heat exchanger 48 serve this purpose, in the exemplary embodiment shown on the end face to which the burner 21 is assigned.
  • the heat exchanger 48 is manufactured in a similar way to the heat exchanger 20. After the sheets 35 or plates have been welded in the flat state, the sheets 35 which are welded together and connected in this way at certain points are rounded to form the cylindrical heat exchanger 48. The longitudinal edges 50 are then, as in the case of the heat exchanger 20 a longitudinal weld 39 running parallel to the longitudinal central axis 28 of the cylindrical heat exchanger 48 is welded. After the longitudinal weld seam 39 has been produced, the flow channels 49 of the heat exchanger 48 are formed by hydraulic widening of the plates 35 in the regions of the superimposed plates 35 which are not connected to one another. This is preferably done in turn by introducing a liquid under high pressure.
  • the heat exchanger 48 serves to form a device that corresponds to that used in connection with the first exemplary embodiment of FIG 1 to 5 has been described. The way it works is the same.
  • the 13 to 15 show a further embodiment of the invention with two cylindrical, double-walled heat exchangers 55, 56.
  • the heat exchangers 55, 56 are of different sizes.
  • the heating tube 27 is surrounded by the smaller diameter heat exchanger 56.
  • This heat exchanger 56 is surrounded by the larger diameter heat exchanger 55.
  • Both heat exchangers 55 and 56 are arranged coaxially to one another so that their longitudinal axes, like the longitudinal axis of the heating tube 27, lie on a common axis, namely the longitudinal central axis 28 of the housing 22 of the device.
  • the diameters of the heat exchangers 55 and 56 differ so much from one another that a central annular space 57 is formed between the cylindrical heat exchangers.
  • An outer annulus 58 is located between the outer, larger heat exchanger 55 and the housing 22.
  • An inner annulus 59 is formed between the cylindrical outer surface of the mantle 32 of the heating tube 27 and the inner heat exchanger surface of the smaller (inner) heat exchanger 56.
  • the housing 22 has a central flue gas outlet 60 in the end wall 24 opposite the burner 21.
  • the inner, smaller heat exchanger 56 is shorter than the outer, larger heat exchanger 55.
  • the open end face of the cylindrical smaller heat exchanger 56 is set back from the open end face of the larger heat exchanger 55.
  • the open end faces of both heat exchangers 55, 56 lie in a common plane which is spaced apart from the end wall 25.
  • the open end of the larger diameter heat exchanger 55 is also from the opposite end wall 24 with the flue gas outlet 60 spaced.
  • the heat exchangers 55 and 56 are designed in the same way, and indeed their flow channels.
  • the tubular heat exchangers 55, 56 is also provided with a longitudinal weld 61, 62 ( Fig. 14 ). This connects the two plates or sheets 35 to form the double-walled heat exchangers 55, 56 and the longitudinal edges of the plates or sheets 35.
  • the Fig. 15 shows an alternative embodiment of the device of FIG 13 and 14 with a three-way heat exchange. Only here there is a single heat exchanger 63 which, by means of a two-circuit spiral rounding, the inner annular space 59, the central annular space 57 and the outer annular space 58 between the heat exchanger 63 and that in FIG Fig. 15 Housing 22 not shown receives.
  • the longitudinal edges 64, 65 in the heat exchanger 63 are not connected to one another. Both longitudinal edges 64, 65 lie on a central longitudinal plane of the heat exchanger 63, but at different distances from the central longitudinal axis 28 ( Fig. 15 ).
  • heat exchanger 63 there can also be only a single flow channel, which is formed in exactly the same way as in the heat exchangers 55 and 56 or in the heat exchanger 20.
  • the three-pass heat exchangers 55, 56 and 63 can also be designed like the heat exchangers 20, 40, 44 or 48.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Textile Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen gemäß dem Oberbegriff des Anspruchs 1.
  • Wärmeträger, und zwar insbesondere Wärmeträgerfluide, wie beispielsweise Thermalöl, dienen dazu, mit Wärme arbeitende Maschinen die benötigte Wärme zuzuführen. Insbesondere Wäschereimaschinen wie Trockner, Waschmaschinen, Mangeln oder dergleichen, werden über Wärmeträger mit der benötigten Heizenergie versorgt. Solche Wärmeträger werden in Vorrichtungen aufgeheizt, die über mindestens einen Brenner und wenigstens einen Wärmetauscher verfügen. Der Wärmeträger wird beim Hindurchströmen durch den Wärmetauscher oder auch mehrere Wärmetauscher aufgeheizt durch die von den Flammen des Brenners dem jeweiligen Wärmetauscher zugeführte Energie.
  • Aus der FR 1 375 306 A ist eine Vorrichtung zum Aufheizen eines Wärmeträgers bekannt, bei dem die Flamme eines Brenners von einem Heizrohr umgeben ist. Um das Heizrohr herum ist ein Wärmetauscher vorgesehen, der Rohre aufweist. Das von innen befeuerte Heizrohr ist zur Erzeugung einer auf den Wärmetauscher einwirkenden Wärmestrahlung ausgebildet. Außerdem werden die Rohre des Wärmetauschers vom aus dem Heizrohr austretenden Rauchgas des Brenners aufgeheizt.
  • Aus der GB 2 154 312 A ist ein Brenner mit einem rohrartigen Brennerelement bekannt, das über eine gasdurchlässige Mantelfläche verfügt. Brenngas wird in das Innere des Brennerelements eingeblasen und tritt durch die gasdurchlässige Wandung des Brennerelements radial nach außen aus, wo es von einer neben dem Brennerelement vorgesehenen Zündeinrichtung gezündet wird.
  • Aus der US 6,140,658 A ist die Bildung eines Heizrohrs aus einem honigwabenartigen Mantel bekannt.
  • Die EP 2 149 636 A1 offenbart eine Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen mit zwei doppelwandigen, zylinderartigen Wärmetauschern. Ein innerer Wärmetauscher wird direkt von einer Flamme eines Brenners befeuert.
  • Ausgehend vom Vorstehenden liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen zu schaffen, die über einen guten thermischen Wirkungsgrad bei geringen Emissionen verfügt.
  • Eine Vorrichtung zur Lösung dieser Aufgabe weist die Merkmale des Anspruchs 1 auf. Bei dieser Vorrichtung ist es vorgesehen, im vom rohrartigen Wärmetauscher eingeschlossenen Innenraum ein vom Brenner von innen befeuertes Heizrohr zur Erzeugung einer Wärmestrahlung anzuordnen. Das Heizrohr zur Abgabe einer radial nach außen gerichteten Strahlung ausgebildet. Diese Strahlung ist derart radial ausgerichtet, dass sie auf die innere Wärmetauscherfläche des das Heizrohr umgebenden Wärmetauschers gerichtet ist. Dabei ist das Heizrohr so ausgebildet, dass die äußere Mantelfläche radial nach außen gerichtete Infrarotstrahlen abgibt und diese Infrarotstrahlen ihre Energie an die das Heizrohr umgebende Wärmetauscherfläche des Wärmetauschers übertragen. Diese Art der Energieübertragung durch Infrarotstrahlung führt zu einem besonders wirtschaftlichen und umweltfreundlichen Aufheizen eines Wärmeträgers mit mindestens einem Wärmetauscher und zeichnet sich durch einen guten thermischen Wirkungsgrad aus. Sie verfügt darüber hinaus auch noch über geringe Emissionen. Die erfindungsgemäße Vorrichtung arbeitet dadurch wirtschaftlich und umweltschonend.
  • Das Heizrohr verfügt über ein perforiertes oder gitterartiges Stützrohr für den mindestens einen Glühstrumpf. Dadurch ist das Heizrohr im Wesentlichen aus dem Stützrohr und dem Glühstrumpf gebildet. Der Glühstrumpf ist von außen auf das Stützrohr aufgezogen, so dass das perforierte oder gitterartige Stützrohr den infolge seiner Gewebe-, Geflecht- oder Gitterstruktur elastischen bzw. biegeschlaffen Glühstrumpf stützt und ihm dadurch die vorzugsweise zylindrische Gestalt des Stützrohrs verleiht und dafür sorgt, dass der jeweilige Glühstrumpf diese Gestalt auch im aufgeheizten bzw. glühenden Zustand beibehält.
  • Das Heizrohr weist mindestens einen aus einem hitzebeständigen Gewebe, Geflecht und/oder Gitter gebildeten Glühstrumpf auf. Ein solcher Glühstrumpf wird vom Inneren her mittels der Flammen des Brenners aufgeheizt, vorzugsweise zum Glühen gebracht, wobei das Gewebe, Geflecht und/oder Gitter zur Bildung des Glühstrumpfs einen Hindurchtritt von Flammen mindestens teilweise oder größtenteils, vorzugsweise ganz, verhindert. Der Glühstrumpf ist an der mindestens einem Wärmetauscher zugerichteten Außenseite rot glühend, wodurch er Infrarotstrahlen erzeugt. Die Energie der Infrarotstrahlen wird an den den Glühstrumpf mit Abstand umgebenden Wärmetauscher, und zwar wenigstens eine innere Wärmetauscherfläche desselben, abgegeben, wobei diese Energie den den Wärmetauscher durchströmenden Wärmeträger, insbesondere Wärmeträgerfluid, aufheizt.
  • Als Material zur Bildung des Glühstrumpfs kommen bevorzugt ein hochtemperaturbeständiges Metall und/oder hochtemperaturbeständige Keramiken in Betracht. Es handelt sich dann um Metall- bzw. Keramikfasern und/oder Stränge bzw. Fäden. Die genannten Werkstoffe zeichnen sich durch eine hohe Lebensdauer im glühenden oder sehr heißen Zustand aus. Insbesondere eignen sich die Materialien zur Bildung eines stabilen und haltbaren Geflechts, Gewebes, Netzes oder auch eines Vlieses, dass, wenn es an der einen Seite Flammen ausgesetzt ist, an der anderen Seite Wärmestrahlung, insbesondere Infrarotstrahlen, abstrahlt, ohne dass die Flammen des Brenners durch den Glühstrumpf hindurchtreten.
  • Bei der Vorrichtung ist es vorgesehen, dass der mindestens eine zylinderartige Wärmetauscher doppelwandig ausgebildet ist, wobei durch eine Längsschweißnaht die Längsränder beider Wandungen des zylindrischen Wärmetauschers verbunden sind und die Längsschweißnaht mindestens einen Teil wenigstens eines Strömungskanals im doppelwandigen, zylinderartigen Wärmetauscher teilweise begrenzt. Hierdurch wird ein doppelwandiger zylindrischer Wärmetauscher geschaffen, bei dem die Längsschweißnaht in die Bildung der Strömungskanäle, insbesondere eines einzigen durchgehenden Strömungskanals im doppelwandigen zylindrischen Wärmetauscher, einbezogen ist. Ein solcher Wärmetauscher eignet sich besonders vorteilhaft zur Bildung der eingangs beschriebenen Vorrichtung, bei der die Flammen des Brenners mindestens ein im vom rohrartigen Wärmetauscher eingeschlossenen Innenraum angeordnetes Heizrohr aufheizen und an der Außenseite des Heizrohrs die von den Flammen erzeugte Energie durch Strahlung, insbesondere Infrarotstrahlung, an den mindestens einen Wärmetauscher übertragen wird.
  • Bevorzugt ist der Wärmetauscher als doppelwandiger Wärmetauscher mit mindestens einem durch hydraulisches Aufweiten entstandenen Strömungskanal gebildet.
  • Bei einer Vorrichtung mit mehreren Wärmetauschern ist nur einem, vorzugsweise inneren, Wärmetauscher ein solches Heizrohr zugeordnet. Das Heizrohr wird von innen her durch die Flammen des Brenners direkt aufgeheizt. Die Flammen werden aber vom Heizrohr zurückgehalten, so dass die Außenseite des von den Flammen aufgewärmten Heizrohrs Strahlungsenergie an den das Heizrohr umgebenden Wärmetauscher abgibt..
  • Eine bevorzugte Ausgestaltung der Vorrichtung sieht es vor, das Heizrohr mit einem solchen Innendurchmesser zu versehen, der es zulässt, dass die Flammen des Brenners sich durch das Heizrohr mit dem mindestens einen davon abgestützten Glühstrumpf erstrecken. Dadurch können die Flammen das Heizrohr, insbesondere den mindestens einen darauf angeordneten Glühstrumpf, direkt von innen aufheizen und dabei den mindestens einen Glühstrumpf gegebenenfalls zum Glühen bringen. Das Heizrohr mit dem Glühstrumpf dient somit als Mittel zur Umwandlung der Flammen in vom Glühstrumpf abzugebende Strahlung, insbesondere Infrarotstrahlung, zum Aufheizen des Wärmeträgers im mindestens einen Wärmetauscher.
  • Weiterhin ist es bevorzugt vorgesehen, dass der mindestens eine rohrartige Wärmetauscher das Heizrohr mit dem Glühstrumpf konzentrisch umgibt, wobei der Inndurchmesser des mindestens einen Wärmetauschers größer ist als der Außendurchmesser des Heizrohrs bzw. des Glühstrumpfs, so dass der mindestens eine Wärmetauscher den Glühstrumpf mit Abstand umgibt. Es entsteht dadurch ein umlaufender Spaltraum zwischen dem mindestens einen Wärmetauscher und dem Glühstrumpf, in dem sich die vom Glühstrumpf erzeugten Wärmestrahlen, insbesondere Infrarotstrahlen, vorzugsweise radial ausbreiten können, um so in Kontakt mit insbesondere der inneren Wärmetauscherfläche des mindestens einen Wärmetauschers zu gelangen. Dadurch kommt es zu einer gleichmäßigen Aufheizung des Wärmeträgers im mindestens einen Wärmetauscher durch vom Heizrohr, insbesondere dem mindestens einen Glühstrumpf auf demselben, ausgehende Wärmestrahlen, vorzugsweise Infrarotstrahlen. Ein direkter Kontakt der Flammen des Brenners mit Wärmetauscherflächen des mindestens einen Wärmetauschers wird so vermieden.
  • Eine Weiterbildung der Vorrichtung sieht es vor, dass jeder Strömungskanal im Inneren des doppelwandigen, rohrartigen Wärmetauschers, insbesondere ein einziger, durchgehender Strömungskanal, aus mehreren parallelen Strömungskanalabschnitten gebildet ist, die in Umfangsrichtung des zylindrischen Wärmetauschers verlaufen und an ihren beiderseits der Längsnaht liegenden Endbereichen durch Überströmabschnitte verbunden sind. Hierdurch entsteht ein über die gesamte Fläche des Wärmetauschers durchgehender zick-zack-förmiger Strömungskanal, wobei der Wärmeträger überwiegend in radialer Richtung des Wärmetauschers den Strömungskanal durchströmt, und zwar ausgehend von einer Seite der Längsschweißnaht bis zur gegenüberliegenden Seite der Längsschweißnaht und wieder zurück. Auf diese Weise kommt es zu einer besonders wirkungsvollen, gleichmäßigen Erwärmung des Wärmeträgers im Wärmetauscher. Besonders gleichmäßig ist die Erwärmung des Wärmeträgers dann, wenn der Wärmetauscher durch vom Heizrohr abgegebene Strahlung, insbesondere Infrarotstrahlung, erwärmt wird.
  • Eine alternative Ausgestaltung der Vorrichtung sieht es vor, dass der mindestens eine Strömungskanal, vorzugsweise ein einziger durchgehender Strömungskanal, mehrere parallele Strömungskanalabschnitte aufweist, die parallel zur Längsschweißnaht und somit auch zur Längsrichtung des zylindrischen Wärmetauschers verlaufen und an Endbereichen nahe den kreisförmigen Stirnseiten des zylindrischen Wärmetauschers durch Überströmkanäle verbunden sind. Hierbei strömt der Wärmeträger laminar, nämlich längsgerichtet, durch den zylindrischen Wärmetauscher, und zwar auch im Zick-Zack von einem Strömungskanalabschnitt zum anderen. Bei dieser Ausgestaltung des Wärmetauschers hat praktisch die Längsschweißnaht keinen Einfluss auf die Gestaltung und den Verlauf des Strömungskanals, wobei aber die Längsschweißnaht eine jeweils zwischen zwei parallelen längsgerichteten Strömungskanalabschnitten verlaufende Begrenzung benachbarter längsgerichteter Strömungskanalabschnitte bildet.
  • Ein bevorzugtes Ausführungsbeispiel der Erfindung wird nachfolgend anhand der Zeichnung näher erläutert. In dieser zeigen:
  • Fig. 1
    eine schematische Seitenansicht eines ersten Ausführungsbeispiels der Vorrichtung,
    Fig. 2
    einen schematischen Längsschnitt durch die Vorrichtung der Fig. 1,
    Fig. 3
    einen im Vergleich zu den Fig. 1 und 2 stark vergrößerten Längsschnitt durch einen Teil eines Heizrohrs,
    Fig. 4
    einen schematischen Querschnitt durch einen Wärmetauscher der Vorrichtung der Fig. 1 und 2,
    Fig. 5
    einen flachen Zuschnitt des Wärmetauschers der Vorrichtung der Fig. 1 bis 4,
    Fig. 6
    ein zweites Ausführungsbeispiel einer Vorrichtung in einer schematischen Seitenansicht analog zur Fig. 1,
    Fig. 7
    eine Draufsicht auf einen flachen Zuschnitt zur Bildung eines Wärmetauschers für die Vorrichtung der Fig. 6,
    Fig. 8
    ein drittes Ausführungsbeispiel einer Vorrichtung in einer schematischen Seitenansicht analog zur Fig. 1,
    Fig. 9
    eine Draufsicht auf einen flachen Zuschnitt zur Bildung eines Wärmetauschers für die Vorrichtung der Fig. 8,
    Fig. 10
    ein viertes Ausführungsbeispiel einer Vorrichtung in einer schematischen Seitenansicht analog zur Fig. 1,
    Fig. 11
    einen vereinfachten Querschnitt durch einen Wärmetauscher der Fig. 10,
    Fig. 12
    eine Draufsicht auf einen flachen Zuschnitt zur Bildung des Wärmetauschers der Vorrichtung der Fig. 10,
    Fig. 13
    ein fünftes Ausführungsbeispiel einer Vorrichtung in einem schematischen Längsschnitt analog zur Fig. 2,
    Fig. 14
    einen Querschnitt durch die Wärmetauscher der Vorrichtung der Fig. 13, und
    Fig. 15
    einen Querschnitt analog zur Fig. 14 durch einen einteiligen Wärmetauscher zur Bildung der Vorrichtung der Fig. 13.
  • Die in den Figuren gezeigten Vorrichtungen dienen zum Aufheizen bzw. Erwärmen eines Wärmeträgers. Beim Wärmeträger handelt es sich bevorzugt um ein Wärmeträgerfluid mit einem hohen Siedepunkt. Beispielsweise kann es sich hierbei um Thermalöl handeln. Der Wärmeträger dient zur Versorgung von thermisch arbeitenden Maschinen, insbesondere Wäschereimaschinen, mit Wärmeenergie. Die in den Figuren gezeigten Vorrichtungen eignen sich besonders zur Versorgung von Trocknern, Waschmaschinen, insbesondere Durchlaufwaschmaschinen, und Mangeln für gewerbliche Wäschereien.
  • Die Fig. 1 bis 12 zeigen jeweils Vorrichtungen mit einem zweizügigen, zylindrischen Wärmetauscher 20. Die zylindrische Innenwandung und die zylindrische Außenwandung des Wärmetauschers 20 bilden jeweils eine Wärmetauscherfläche, so dass dem Wärmetauscher 20 von beiden Seiten Energie zuführbar ist. Dem Wärmetauscher 20 wird Energie zugeführt, die von einem gas- oder ölbeheizten Brenner 21 erzeugt wird. Gegebenenfalls kann die Vorrichtung auch über mehrere Brenner 21 verfügen. Der im gezeigten Ausführungsbeispiel einzige zylindrische Wärmetauscher 20 ist doppelwandig ausgebildet.
  • Die Vorrichtung verfügt über ein vorzugsweise zylindrisches Gehäuse 22, das den Wärmetauscher 20 umgibt. Der Durchmesser des Gehäuses 22 ist um so viel größer als der äußere Durchmesser des Wärmetauschers 20, dass zwischen dem Wärmetauscher 20 und dem Gehäuse 22 ein äußerer Kreisringraum 23 entsteht. Äußere Stirnwandungen 24, 25 des Gehäuses 22 sind von den an den Stirnseiten offenen Enden des zylindrischen Wärmetauschers 20 beabstandet, wodurch der äußere Kreisringraum 23 um den Wärmetauscher 20 mit einem vom Wärmetauscher 20 umgebenen inneren Zylinderraum 26 in Verbindung steht. Der Stirnwandung 25 ist der Brenner 21 zugeordnet, indem der Brenner 21 mit einer lösbaren Flanschverbindung mit der Stirnwandung 25 verbunden ist. Bei der gezeigten Vorrichtung mit einem zweizügigen Wärmetauscher 20 ist es denkbar, dass ein Ende des Wärmetauschers 20 mit der den Brenner 21 tragenden Stirnwandung 25 des Gehäuses 22 verbunden ist, so dass hier der Wärmetauscher 20 konzentrisch im Gehäuse 22 der Vorrichtung gehalten ist.
  • Konzentrisch im vom Wärmetauscher 20 eingeschlossenen Zylinderraum 26 ist ein Heizrohr 27 vorgesehen. Das in Längsrichtung des zylindrischen Gehäuses 22 verlaufende und genauso wie der Wärmetauscher 20 auf der Längsmittelachse 28 des Gehäuses 22 liegende Heizrohr 27 weist einen Außendurchmesser auf, der deutlich kleiner ist als der Innendurchmesser des Wärmetauschers 20. Im vom Wärmetauscher 20 eingeschlossenen Zylinderraum 26 entsteht dadurch ein Ringraum um das Heizrohr 27, wodurch die äußere Mantelfläche des Heizrohrs 27 von der inneren Mantelfläche des Wärmetauschers 20 umlaufend beabstandet ist. Das Heizrohr 27 ist an einem Ende mit dem Brenner 21 verbunden. Ein anderes, vorzugsweise verschlossenes, freies Ende 29 des Heizrohrs schließt etwa bündig mit der offenen Stirnseite des Wärmetauschers 20 ab. Das freie Ende 29 des Heizrohrs 27 ist dadurch genauso wie das offene Ende des Wärmetauschers 20 von der Stirnwandung 24 des Gehäuses 22 der Vorrichtung beabstandet.
  • Das Heizrohr 27 dient dazu, von den Flammen des Brenners 21 aufgeheizt zu werden. Dazu werden die Flammen des Brenners 21 durch das Innere des Heizrohrs 27 geleitet. Dabei erwärmen die Flammen im Inneren des Heizrohrs 27 die Außenseite, insbesondere die äußere Mantelfläche, desselben. Von der heißen äußeren Mantelfläche des Heizrohrs 27 wird die Energie durch Wärmestrahlung, insbesondere Infrarotstrahlung, abgegeben.
  • Das Heizrohr 27 verfügt über ein inneres Stützrohr 30 und mindestens einen auf das Stützrohr 30 aufgezogenen Glühstrumpf 32. Der Glühstrumpf 32 umgibt somit das ganze Stützrohr 30. Das Stützrohr 30 ist in seiner Mantelfläche mit Öffnungen 31 versehen (Fig. 3). Die Verteilung der Öffnungen 31 über Mantelflächen des Stützrohrs 30 ist so gewählt, dass eine gleichmäßige Hitzeverteilung über den Umfang und die Länge des Stützrohrs 30 erzielt wird. Die Gesamtfläche der Öffnungen 31 entspricht einem Teil der Gesamtfläche des Stützrohrs 30. Alternativ ist es denkbar, dass Stützrohr 30 als ein Gitter auszubilden. Der Glühstrumpf 32 ist aus einem Gewebe, Geflecht, Vlies oder einem Gitter gebildet. Das Gewebe, Geflecht, Vlies oder dergleichen bestehen aus hochhitzebeständigen Fasern, Strängen oder Fäden aus einem entsprechenden Metall oder auch aus Keramik. Denkbar ist es auch, den Glühstrumpf 32 aus einem Stahl-/Keramikgemisch zu bilden, indem das Gewebe oder Geflecht sowohl aus Keramikfasern bzw. -strängen als auch aus Metallfasern bzw. -strängen hergestellt ist. Der Glühstrumpf 32 kann aus einem ein- oder auch mehrlagigen Gewebe aus metallischen und/oder keramischen Fasern oder Strängen gebildet sein. Entscheidend ist es, dass die das Innere des Heizrohrs 27 durchströmenden Flammen des Brenners 21 nicht oder nur zu einem geringen Teil durch den Glühstrumpf 32 nach außen treten. Vom Glühstrumpf 32 werden somit die Flammen des Brenners 21 zurückgehalten. Die Flammen des Brenners 21 erhitzen so lediglich den Glühstrumpf 32, indem sie zumindest die metallischen Fasern und Stränge zur Bildung des Glühstrumpfs 32 zum Glühen bringen. Von der aufgewärmten bzw. glühenden zylindrischen Außenfläche des Glühstrumpfs 32 wird die Wärmeenergie durch Strahlung abgegeben. Vorzugsweise gibt der Glühstrumpf 32 an seinem Außenumfang Infrarotstrahlen ab. Die Strahlen, insbesondere Infrarotstrahlen, sind im Wesentlichen radial nach außen gerichtet, und zwar gegen die Innenseite des Wärmetauschers 20. Die vom Heizrohr 27 erzeugte Strahlungswärme, insbesondere Infrarotstrahlung, wird so an die innere Wärmetauscherfläche des Wärmetauschers 20 übertragen.
  • Die Rauchgase des Brenners 21 treten aus der gesamten Mantelfläche des Heizrohrs 27 aus. Infolge der Beabstandung des freien Endes 29 des Heizrohrs 27 und auch des Wärmetauschers 20 von der Stirnwandung 24 des Gehäuses 22 können die Rauchgase an der Außenseite des Wärmetauschers 20 entlangströmen. Durch einen Rauchgasaustritt 33 verlassen die Rauchgase das Gehäuse 22. Infolge der zweizügigen Ausbildung der Vorrichtung kommt es zu einer von einem Kamineffekt hervorgerufenen Luftzirkulation entlang der dem Glühstrumpf 32 gegenüberliegenden inneren Wärmetauscherfläche des Wärmetauschers 20 und entlang der äußeren Wärmetauscherfläche. Die heiße Luft an der inneren Wärmetauscherfläche strömt in Längsrichtung des Wärmetauschers 20 in Richtung zur Stirnwandung 24 des Gehäuses 22 und von da an der Außenseite des Wärmetauschers 20 entlang in Richtung zur Stirnwandung 25, von wo aus die Luft durch den Rauchgasaustritt 33 das Gehäuse 22 verlässt.
  • Der Wärmetauscher 20 ist doppelwandig ausgebildet. Die beiden aus ebenen Blechen 35 oder Platten gebildeten Wandungen sind bereichsweise miteinander verbunden, nämlich verschweißt. Danach werden die nicht miteinander verbundenen Bereiche der übereinanderliegenden Wandungen des Wärmetauschers 20 durch Einleitung einer unter hohem Druck stehenden Flüssigkeit hydraulisch aufgeweitet, wodurch der Strömungskanal 34 im Inneren des doppelwandigen Wärmetauschers 20 entsteht. Die Fig. 5 zeigt in Draufsicht den noch ebenen, rechteckförmigen Zuschnitt aus zwei übereinanderliegenden Blechen 35 zur Bildung des Wärmetauschers 20. In Längsrichtung des Wärmetauschers 20 verlaufende Längsränder 36 und Stirnflächen des Wärmetauschers 20 bildende Querränder 37 der übereinanderliegenden Platten bzw. Bleche 35 sind mit durchgehenden Schweißnähten flüssigkeitsdicht miteinander verbunden. Die Bleche 35 sind dadurch umlaufend flüssigkeitsdicht. Im Bereich der Fläche der Bleche 35 ist eine Vielzahl paralleler Verbindungsnähte 38 vorgesehen. Die Verbindungnähte 38 verlaufen parallel zu den Querrändern 37 und dadurch radial in Umfangsrichtung des aus den Blechen 35 gebildeten zylindrischen Wärmetauschers 20. In den Bereichen der Verbindungsnähte 38 sind die Bleche 35 durchgehend als Längsnaht oder partiell durch unterbrochene Längsnähte miteinander verbunden. Die Verbindungsnähte 38 sind abwechselnd mit dem einen oder anderen Längsrand 36 verbunden (Fig. 5). Benachbarte Verbindungsnähte 38 enden dadurch mit Abstand vor dem einen Längsrand 36 oder dem anderen Längsrand 36. Es entsteht so ein einziger durchgehender Strömungskanal 34 mit einem zick-zack-förmigen bzw. schlangenlinienförmigen Verlauf. Dabei begrenzen die Verbindungsnähte 38 bzw. die Querränder 37 quer zur Längsrichtung des Wärmetauschers 20 verlaufende Strömungskanalabschnitte, wobei dort, wo die jeweilige Verbindungsnaht 38 mit Abstand vor dem jeweiligen Längsrand 36 endet, sich ein Überströmabschnitt befindet, womit der den Strömungskanal 34 durchströmende Wärmeträger, insbesondere das Wärmeträgerfluid, von einem radialen Strömungskanalabschnitt zum danebenliegenden radialen Strömungskanalabschnitt umgelenkt wird.
  • Nachdem die beiden gleich dicken Platten oder Bleche 35 mit einer Stärke zwischen 0,5 mm und 3 mm, vorzugsweise 1 mm bis 2 mm, aus Stahl, insbesondere Edelstahl, miteinander zur Bildung des Strömungskanals 34 verschweißt sind, werden die beiden bereichsweise miteinander verbundenen Platten bzw. Bleche 35 gerundet, so dass ein zylindrisches Rohr entsteht. Anschließend werden die beiden eine Längsnaht des Rohrs bildenden Längsränder 36 der verbundenen Bleche 35 durch eine Längsschweißnaht 39 miteinander verbunden, so dass ein geschlossenes Rohr zur Bildung des rohrförmigen Wärmetauschers 20 entsteht (Fig. 4). Danach werden hydraulisch miteinander nicht verbundene Bereiche der Bleche 35 zwischen den Schweißnähten aufgeweitet zur Bildung des zick-zack-förmig bzw. schlangenlinienförmig im rohrförmigen Wärmetauscher 20 verlaufenden Strömungskanals 34.
  • Die Fig. 6 und 7 zeigen eine Vorrichtung, die sich von derjenigen der Fig. 1 bis 5 nur dadurch unterscheidet, dass der ebenfalls rohrartige Wärmetauscher 40 zur Bildung des Strömungskanals 41 zwischen den Platten oder Blechen 35 anstatt mit durchgehenden Verbindungsnähten 38 gemäß dem Ausführungsbeispiel der Fig. 1 bis 5 durch mehrere Schweißpunktreihen 42 gebildet ist. Mehrere parallele Schweißpunktreihen 42 verlaufen parallel zum Querrand 37, und zwar genauso wie die Verbindungsnähte 38. Die etwa gleich großen Abstände der Schweißpunkte 43 jeder Schweißpunktreihe 42 sind kleiner als der Abstand zwischen jeweils zwei benachbarten Schweißpunktreihen 42 bzw. dem jeweiligen Querrand 37 und der hierzu benachbarten Schweißpunktreihe 42. Auf diese Weise entsteht im doppelwandigen Wärmetauscher 40 der Strömungskanal 41, der wie beim Ausführungsbeispiel der Fig. 1 bis 5 einen zick-zack-förmigen bzw. schlangenlinienförmigen Verlauf aufweist, wobei wiederum benachbarte radial umlaufende Strömungskanalabschnitte entstehen. Dadurch, dass jede Schweißpunktreihe 42 abwechselnd mit einem größeren Abstand zu jeweils einem Längsrand 36 endet, entstehen wiederum Überströmkanäle zwischen benachbarten Strömungskanalabschnitten. Abweichend vom beschriebenen Ausführungsbeispiel sind andere Verteilungen der Schweißpunkte 43 - auch ohne Schweißpunktreihen 42 - denkbar. Auch beim Wärmetauscher 40 der Fig. 6 und 7 sind die Längsränder 36 der Bleche 35 nach dem Runden zu einem Rohr mit einer Längsschweißnaht miteinander verbunden. Die Vorrichtung mit dem Wärmetauscher 40 ist genauso ausgebildet wie die Vorrichtung der Fig. 1 bis 5. Die Vorrichtung arbeitet auch genauso.
  • Die Fig. 8 und 9 zeigen eine Vorrichtung, die sich von denjenigen der zuvor beschriebenen Ausführungsbeispiele nur durch einen anders gestalteten Wärmetauscher 44 unterscheidet. Der Wärmetauscher 44 ist auch zylindrisch und doppelwandig ausgebildet. Im Wärmetauscher 44 befindet sich ein einziger Strömungskanal 45, der wendel- bzw. schraubenlinienartig durchgehend im doppelwandigen Wärmetauscher 44 umläuft. Der Strömungskanal 45 ist beidseitig begrenzt durch eine ununterbrochen schraubenlinienartig umlaufende Verbindungsnaht 46, die entweder als eine ununterbrochene Längsnaht oder als eine Schweißpunktreihe aus einer Vielzahl einzelner, voneinander beabstandeter Schweißpunkte gebildet ist.
  • Der zylindrische Wärmetauscher 44 dieses Ausführungsbeispiels verfügt über keine Längsschweißnaht 39. Statt dessen ist der Wärmetauscher 44 aus wendelförmig gewickelten doppellagigen Streifen gebildet, die an ihren schraubenlinienartig um die Längsmittelachse 28 des zylindrischen Wärmetauschers 44 verlaufenden Rändern durch eine umlaufende wendelförmige bzw. schraubenlinienartige Durchgangsschweißnaht 47 verbunden sind, die auch gleichzeitig die Verbindungsnaht 46 bilden kann. Der Wärmetauscher 44 dient auch zur Bildung einer Vorrichtung gemäß den Fig. 1 bis 5. Er arbeitet auf gleiche Weise. Alternativ ist es denkbar, den zylindrischen Wärmetauscher 44 auch aus an den Rändern mit durchgehenden Längsschweißnähten verbundenen rechteckförmigen plattenartigen Blechen zu bilden. Die aus Schweißpunkten gebildeten Schweißpunktreihen verlaufen dann gewendelt, insbesondere diagonal gewendelt zur punktuellen Verbindung der Platten bzw. Bleche zur Bildung des zylindrischen Wärmetauschers 44.
  • Die Fig. 10 bis 12 zeigen ein weiteres Ausführungsbeispiel der Vorrichtung, was sich von den zuvor beschriebenen Vorrichtungen wiederum nur durch einen anders ausgebildeten Wärmetauscher 48 unterscheidet. Der Wärmetauscher 48 ist auch als zylindrischer, doppelwandinger Wärmetauscher 48 ausgebildet. Im Wärmetauscher 48 sind mehrere parallele, gleiche Strömungskanälen 49 angeordnet. Die Strömungskanäle 49 verlaufen in Längsrichtung des Wärmetauschers 48, also parallel zu seiner Längsmittelachse 28.
  • Der doppelwandige Wärmetauscher 48 ist auch aus zwei parallelen, gleich großen ebenen Platten bzw. Blechen 35 aus Stahl oder Edelstahl mit einer gleichen Dicke zwischen 0,5 mm bis 3 mm, insbesondere 1 mm bis 2 mm, gebildet. Die parallelen Längsränder 50 und die parallelen Querränder 51 der beiden gleich dicken Bleche 35 sind mittels durchgehender Schweißnähte flüssigkeitsdicht miteinander verbunden. Zur Bildung der Strömungskanäle 49 sind zwischen den Längsrändern 50 parallel zu denselben verlaufende, geradlinige Verbindungsnähte 52 vorgesehen. Die Verbindungsnähte 52 sind so voneinander bzw. vom jeweiligen Längsrand 50 beabstandet, dass dazwischen jeweils ein Strömungskanal 49 gewünschter Größe entsteht. Die Verbindungsnähte 52 können von durchgehenden Längsschweißnähten oder Reihen von Schweißpunkten gebildet sein. Die Verbindungsnähte 52 enden jeweils mit Abstand vor beiden Querrändern 51 der beiden Bleche 35 zur Bildung des Wärmetauschers 48 (Fig. 12). Dadurch sind alle Strömungskanäle 49 an gegenüberliegenden Enden offen zum Eintritt und Austritt des in Längsrichtung durch die Strömungskanäle 49 fließenden Wärmeträgers. Der Wärmeträger wird an einer Stirnseite dem Wärmetauscher 48 zugeführt und an der anderen Stirnseite des zylinderförmigen Wärmetauschers 48 abgeführt. Im gezeigten Ausführungsbeispiel dienen dazu zwei Speiseleitungen 53 an der einen Stirnseite und zwei Abfuhrleitungen 54 für erwärmten oder aufgeheizten Wärmeträger an der anderen Stirnseite des Wärmetauschers 48, und zwar im gezeigten Ausführungsbeispiel an derjenigen Stirnseite, der der Brenner 21 zugeordnet ist. Alternativ ist es denkbar, den gegenüberliegenden Stirnseiten mehr als zwei Speiseleitungen 53 bzw. Abfuhrleitungen 54 oder auch nur eine einzige Speiseleitung 53 bzw. Abfuhrleitung 54 zuzuordnen.
  • Der Wärmetauscher 48 wird ähnlich hergestellt wie der Wärmetauscher 20. Nach dem Verschweißen der Bleche 35 bzw. Platten im ebenen Zustand werden die an bestimmten Stellen zusammengeschweißten und dadurch verbundenen Bleche 35 gerundet zum zylindrischen Wärmetauscher 48. Die Längsränder 50 werden dann wie beim Wärmetauscher 20 mit einer parallel zur Längsmittelachse 28 des zylindrischen Wärmetauschers 48 verlaufenden Längsschweißnaht 39 verschweißt. Nach dem Herstellen der Längsschweißnaht 39 werden die Strömungskanäle 49 des Wärmetauschers 48 gebildet durch hydraulisches Aufweiten der Bleche 35 in den miteinander nicht verbundenen Bereichen der übereinanderliegenden Bleche 35. Dies geschieht vorzugsweise wiederum durch Einleitung einer unter hohem Druck stehenden Flüssigkeit.
  • Der Wärmetauscher 48 dient zur Bildung einer Vorrichtung, die derjenigen entspricht, die im Zusammenhang mit dem ersten Ausführungsbeispiel der Fig. 1 bis 5 beschrieben worden ist. Die Arbeitsweise ist die gleiche.
  • Die Fig. 13 bis 15 zeigen ein weiteres Ausführungsbeispiel der Erfindung mit zwei zylindrischen, doppelwandigen Wärmetauschern 55, 56. Die Wärmetauscher 55, 56 sind unterschiedlich groß. Das Heizrohr 27 ist vom im Durchmesser kleineren Wärmetauscher 56 umgeben. Dieser Wärmetauscher 56 ist vom im Durchmesser größeren Wärmetauscher 55 umgeben. Beide Wärmetauscher 55 und 56 sind koaxial zueinander angeordnet, so dass ihre Längsachsen genauso wie die Längsachse des Heizrohrs 27 auf einer gemeinsamen Achse liegen, und zwar der Längsmittelachse 28 des Gehäuses 22 der Vorrichtung. Die Durchmesser der Wärmetauscher 55 und 56 unterscheiden sich so sehr voneinander, dass zwischen den zylindrischen Wärmetauschern ein mittlerer Kreisringraum 57 entsteht. Ein äußerer Kreisringraum 58 befindet sich zwischen dem äußeren, größeren Wärmetauscher 55 und dem Gehäuse 22. Ein innerer Kreisringraum 59 ist zwischen der zylindrischen Außenfläche des Glühstrumpfs 32 des Heizrohrs 27 und der inneren Wärmetauscherfläche des kleineren (inneren) Wärmetauschers 56 gebildet. Durch diese drei koaxialen Kreisringräume 57 bis 59 wird eine Vorrichtung mit einem dreizügigen Wärmeaustausch geschaffen.
  • Gemäß der Fig. 13 weist das Gehäuse 22 in der dem Brenner 21 gegenüberliegenden Stirnwandung 24 einen mittigen Rauchgasaustritt 60 auf. Außerdem ist der innere, kleinere Wärmetauscher 56 kürzer als der äußere, größere Wärmetauscher 55. Demzufolge ist die offene Stirnseite des zylindrischen kleineren Wärmetauschers 56 gegenüber der offenen Stirnseite des größeren Wärmetauschers 55 zurückversetzt. Auf der gegenüberliegenden, zum Brenner 21 weisenden Seite liegen die offenen Stirnflächen beider Wärmetauscher 55, 56 in einer gemeinsamen Ebene, die beabstandet ist von der Stirnwandung 25. Das offene Ende des im Durchmesser größeren Wärmetauschers 55 ist auch von der gegenüberliegenden Stirnwandung 24 mit dem Rauchgasaustritt 60 beabstandet.
  • An der innenliegenden, zum Glühstrumpf 32 weisenden Wärmetauscherfläche des kleineren Wärmetauschers 56 strömt Luft in Richtung des Flammenaustritts aus dem Brenner 21 zur Stirnwandung 24. An den Wärmetauscherflächen beider Wärmetauscher 55 und 56 strömt im mittleren Kreisringraum 57 die Luft zurück in Richtung zum Brenner 21. Schließlich strömt im äußeren Kreisringraum 58 an der äußeren Wärmetauscherfläche des größeren Wärmetauschers 55 Luft wieder in die entgegengesetzte Richtung zur Stirnwandung 24 und von dort durch den Rauchgasaustritt 60 aus dem Gehäuse 22 heraus.
  • Die Wärmetauscher 55 und 56 sind in gleicher Weise ausgebildet, und zwar auch ihre Strömungskanäle. Beim Ausführungsbeispiel der Fig. 13 ist in jedem Wärmetauscher 55, 56 ein einziger Strömungskanal gebildet, und zwar so, wie in den Fig. 1, 2 und 4 dargestellt. Demnach ist jeder der rohrförmigen Wärmetauscher 55, 56 auch mit einer Längsschweißnaht 61, 62 versehen (Fig. 14). Hiermit sind die beiden Platten bzw. Bleche 35 zur Bildung der doppelwandigen Wärmetauscher 55, 56 sowie die Längsränder der Platten bzw. Bleche 35 miteinander verbunden.
  • Die Fig. 15 zeigt eine alternative Ausgestaltung der Vorrichtung der Fig. 13 und 14 mit einem dreizügigen Wärmeaustausch. Nur ist hier ein einziger Wärmetauscher 63 vorhanden, der durch eine zweikreisige spiralförmige Rundung den inneren Kreisringraum 59, den mittleren Kreisringraum 57 und den äußeren Kreisringraum 58 zwischen dem Wärmetauscher 63 und dem in der Fig. 15 nicht gezeigten Gehäuse 22 erhält. Infolge der spiralförmigen Rundung der doppellagigen Bleche 35 sind die Längsränder 64, 65 beim Wärmetauscher 63 nicht miteinander verbunden. Beide Längsränder 64, 65 liegen auf einer Längsmittelebene des Wärmetauschers 63, aber mit unterschiedlichen Abständen von der Längsmittelachse 28 (Fig. 15).
  • Auch im Wärmetauscher 63 kann nur ein einziger Strömungskanal vorhanden sein, der genauso gebildet ist wie bei den Wärmetauschern 55 und 56 bzw. beim Wärmetauscher 20.
  • Die dreizügigen Wärmetauscher 55, 56 und 63 können auch so ausgebildet sein, wie die Wärmetauscher 20, 40, 44 oder 48.
  • Abweichend von den gezeigten Ausführungsbeispielen ist es denkbar, die Wärmetauscher in Längsrichtung der Vorrichtung zu teilen, so dass auch bei zweizügigem Wärmeaustausch mehrere Wärmeaustauscher vorhanden sind, die in Längsrichtung der Vorrichtung aufeinanderfolgen und vorzugsweise miteinander verbunden sind. Denkbar ist es auch, die Wärmetauscher nicht zylindrisch auszubilden, sondern mit anderen Querschnitten zu versehen, beispielsweise einem viereckigen Querschnitt. Bezugszeichenliste:
    10 20 Wärmetauscher 46 Verbindungsnaht
    21 Brenner 47 Durchgangsschweißnaht
    22 Gehäuse 48 Wärmetauscher
    23 äußerer Kreisringraum 49 Strömungskanal
    24 Stirnwandung 50 Längsrand
    25 Stirnwandung 51 Querrand
    26 Zylinderraum 52 Verbindungsnaht
    27 Heizrohr 53 Speiseleitung
    28 Längsmittelachse 54 Abfuhrleitung
    29 freies Ende 55 Wärmetauscher
    30 Stützrohr 56 Wärmetauscher
    31 Öffnung 57 mittlerer Kreisringraum
    32 Glühstrumpf 58 äußerer Kreisringraum
    33 Rauchgasaustritt 59 innerer Kreisringraum
    34 Strömungskanal 60 Rauchgasaustritt
    35 Blech 61 Längsschweißnaht
    36 Längsrand 62 Längsschweißnaht
    37 Querrand 63 Wärmetauscher
    38 Verbindungsnaht 64 Längsrand
    39 Längsschweißnaht 65 Längsrand
    40 Wärmetauscher
    41 Strömungskanal
    42 Schweißpunktreihe
    43 Schweißpunkt
    44 Wärmetauscher
    45 Strömungskanal

Claims (8)

  1. Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen mit einem Brenner (21), dem ein von innen befeuertes Heizrohr (27) zugeordnet ist und mindestens einem Wärmetauscher (20, 40, 44, 48, 55, 56, 63), der wenigstens einen Strömungskanal (34, 41, 45, 49) für den Wärmeträger aufweist, wobei das Heizrohr (27) eine auf den Wärmetauscher (20, 40, 44, 48, 56, 63) einwirkende Wärmestrahlung erzeugt, wobei das in einem vom mindestens einen zylindrisch ausgebildeten Wärmetauscher (20, 40, 44, 48, 55, 56, 63) eingeschlossenen Zylinderraum (26) angeordnete und vom Brenner (21) von innen befeuerte Heizrohr (27) zur Abgabe einer radial nach außen zum mindestens einen Wärmetauscher (20, 40, 44, 48, 56, 63) gerichteten Infrarotstrahlung ausgebildet ist, dadurch gekennzeichnet, dass der mindestens eine Wärmetauscher (5) doppelwandig ist, dass das Heizrohr (27) ein perforiertes oder gitterartiges Stützrohr (30) und mindestens einen Glühstrumpf (32) aus einem hitzebeständigen Gewebe, Geflecht und/oder Gitter aufweist, wobei der mindestens eine Glühstrumpf (32) das Stützrohr (30) von außen umgibt, und dass der mindestens eine Wärmetauscher (20, 40, 44, 48, 55, 56) eine zylindrische Innenwandung sowie eine zylindrische Außenwandung aufweist, die Wärmetauscherflächen bilden zur beidseitigen Energiezufuhr zum mindestens einen Wärmetauscher (20, 40, 44, 48, 55, 56), wobei durch mindestens eine Längsschweißnaht (39, 61) Längsränder (36) beider Wandungen des mindestens einen zylindrischen Wärmetauschers (20, 40, 44, 48, 55, 56) verbunden sind zur Bildung eines Teils des wenigstens einen Strömungskanals (34, 41, 45, 49) durch die mindestens eine Längsschweißnaht (39, 61).
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das Geflecht, Gewebe und/oder Gitter des Glühstrumpfs (32) aus hoch-temperaturbeständigen Strängen bzw. Fasern aus vorzugsweise Metall und/oder Keramik gebildet ist.
  3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Glühstrumpf (32) auf das Stützrohr (30) aufgezogen ist.
  4. Vorrichtung nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, dass das Heizrohr (27) einen solchen Innendurchmesser aufweist, dass Flammen des Brenners (21) sich durch das Heizrohr (27) mit dem mindestens einen dieses umgebenden Glühstrumpf (32) erstrecken.
  5. Vorrichtung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass der mindestens eine rohrartige Wärmetauscher (20, 40, 44, 48, 56, 63) vom Glühstrumpf (32) beabstandet ist, vorzugsweise der mindestens eine Wärmetauscher (20, 40, 44, 48, 56, 63) den mindestens einen Glühstrumpf (32) mit Abstand konzentrisch umgibt.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der wenigstens eine Strömungskanal (34, 41) mehrere parallele Strömungskanalabschnitte aufweist, die in Umfangsrichtung des mindestens einen zylindrischen Wärmetauschers (20, 40, 55, 56) verlaufen und an ihren beiderseits der Längsschweißnaht (39, 61) liegenden Endbereichen durch Überströmabschnitte verbunden sind.
  7. Vorrichtung nach Anspruch 1 oder 6, dadurch gekennzeichnet, dass wenigstens ein Strömungskanal (49) mehrere parallele Strömungskanalabschnitte aufweist, die parallel zur Längsschweißnaht (39) verlaufen und an Endbereichen des mindestens einen zylindrischen Wärmetauschers (48) durch Überströmkanäle verbunden sind.
  8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Längsschweißnaht (39) zwischen zwei benachbarten, parallelen Strömungskanalabschnitten gebildet ist.
EP12006484.5A 2011-09-23 2012-09-14 Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen Active EP2573480B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011114166 2011-09-23
DE102012000302.1A DE102012000302B4 (de) 2011-09-23 2012-01-10 Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen

Publications (3)

Publication Number Publication Date
EP2573480A2 EP2573480A2 (de) 2013-03-27
EP2573480A3 EP2573480A3 (de) 2018-07-11
EP2573480B1 true EP2573480B1 (de) 2020-06-10

Family

ID=46934374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12006484.5A Active EP2573480B1 (de) 2011-09-23 2012-09-14 Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen

Country Status (3)

Country Link
EP (1) EP2573480B1 (de)
DE (1) DE102012000302B4 (de)
DK (1) DK2573480T3 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103469531A (zh) * 2013-08-09 2013-12-25 上海赛航洗涤设备有限公司 一种用于烘干机的燃气红外加热器
DE102020118781A1 (de) 2020-07-16 2022-01-20 Miele & Cie. Kg Lamellenwärmetauscher für eine Wäschebehandlungsmaschine
CN114753110B (zh) * 2022-03-25 2023-09-08 安徽省宁国市天成科技发展有限公司 一种电加热装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847536A (en) * 1972-05-08 1974-11-12 Antargaz Radiant burner operating at high temperature
US6140658A (en) * 1973-02-16 2000-10-31 Lockheed Martin Corporation Combustion heated honeycomb mantle infrared radiation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1375306A (fr) 1963-09-23 1964-10-16 Ross Gmbh Vorm Joseph Meys & C Chaudière perfectionnée pour caloporteurs de chaleur à point d'ébullition élevé
GB1230766A (de) * 1967-07-28 1971-05-05
DE3136804A1 (de) * 1981-09-16 1983-03-31 Webasto-Werk GmbH, 8031 Stockdorf Mit stroemendem brennstoff beschickter medienerhitzer
CA1241910A (en) * 1984-02-16 1988-09-13 Dirk N. Granberg Radiant energy burner
US5687678A (en) 1995-01-26 1997-11-18 Weben-Jarco, Inc. High efficiency commercial water heater
EP0970327B1 (de) * 1997-03-24 2001-12-05 VTH Verfahrentechnik für Heizung AG Mit einem brenner ausgerüsteter heizkessel
DE102008035852A1 (de) 2008-08-01 2010-02-04 Herbert Kannegiesser Gmbh Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen und bevorzugte Verwendungen der Vorrichtung
US9353967B2 (en) 2010-02-03 2016-05-31 Farshid Ahmady Fluid heating apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3847536A (en) * 1972-05-08 1974-11-12 Antargaz Radiant burner operating at high temperature
US6140658A (en) * 1973-02-16 2000-10-31 Lockheed Martin Corporation Combustion heated honeycomb mantle infrared radiation

Also Published As

Publication number Publication date
EP2573480A2 (de) 2013-03-27
DE102012000302B4 (de) 2022-07-14
DK2573480T3 (da) 2020-09-14
DE102012000302A1 (de) 2013-03-28
EP2573480A3 (de) 2018-07-11

Similar Documents

Publication Publication Date Title
EP1995516B1 (de) Rekuperatorbrenner mit abgeflachten Wärmetauscherrohren
DE3780656T2 (de) Heizkessel.
EP2910855B1 (de) Rekuperatorbrenner mit Zusatzwärmetauscher
EP2573480B1 (de) Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen
DE1802196A1 (de) Brennereinheit fuer Heizkoerper
EP2149636B1 (de) Vorrichtung zum Aufheizen eines Wärmeträgers für insbesondere Wäschereimaschinen und bevorzugte Verwendungen der Vorrichtung
EP0903539B1 (de) Regeneratorbrenner
DE102008020424B4 (de) Ölvormischbrenner
DE10001293B4 (de) Röhren-Erhitzerofen
AT410370B (de) Wärmetauscher sowie verfahren zu seiner herstellung
AT401016B (de) Katalytischer wärmeerzeuger
EP2679897B1 (de) Ölvormischbrenner mit Drallerzeugungsvorrichtung
DE19631552A1 (de) Katalytischer Wärmeerzeuger
DE2418108A1 (de) Rekuperative form einer thermisch/ katalytischen verbrennungsvorrichtung
EP0209703B1 (de) Glüheinsatz für Öfen, insbesondere Heizungskessel, sowie Ofen mit einem derartigen Glüheinsatz
EP4198393A1 (de) Rekuperatorbrenner
EP0079980B1 (de) Warmwasser-, Heisswasser- oder Dampfkessel mit Gas- oder Ölfeuerung
AT404504B (de) Vollvormischender gebläseunterstützter katalytischer wärmeerzeuger
DE1802196C (de) Heizgerät mit einem geschlossenen, wärmeabgebenden Gehäuse
DE642596C (de) Heizofen fuer fluessige Brennstoffe
EP2679900A1 (de) Ölvormischbrenner
CH287673A (de) Wärmeaustauscher.
DE1964178A1 (de) Gasbrenner
CH690377A5 (de) Kompakter, spiralförmiger wärmtetauscher.
DE8412113U1 (de) Heizkessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 14/12 20060101ALI20180226BHEP

Ipc: F24H 1/43 20060101ALI20180226BHEP

Ipc: F24H 1/40 20060101AFI20180226BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 14/12 20060101ALI20180606BHEP

Ipc: F24H 1/43 20060101ALI20180606BHEP

Ipc: F24H 1/40 20060101AFI20180606BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190109

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1279510

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016126

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20200910

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200916

Year of fee payment: 9

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200910

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201012

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012016126

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20210311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200914

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1279510

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200914

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210914

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230529

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230821

Year of fee payment: 12

Ref country code: DK

Payment date: 20230914

Year of fee payment: 12

Ref country code: DE

Payment date: 20230929

Year of fee payment: 12