EP2565321B1 - Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb - Google Patents

Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb Download PDF

Info

Publication number
EP2565321B1
EP2565321B1 EP12182350.4A EP12182350A EP2565321B1 EP 2565321 B1 EP2565321 B1 EP 2565321B1 EP 12182350 A EP12182350 A EP 12182350A EP 2565321 B1 EP2565321 B1 EP 2565321B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
air
dryer
exhaust
process air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12182350.4A
Other languages
English (en)
French (fr)
Other versions
EP2565321A1 (de
Inventor
Anja Hähnel
Andreas Stolze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Priority to PL12182350T priority Critical patent/PL2565321T3/pl
Publication of EP2565321A1 publication Critical patent/EP2565321A1/de
Application granted granted Critical
Publication of EP2565321B1 publication Critical patent/EP2565321B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 
    • D06F58/24Condensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • F28D9/0068Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements with means for changing flow direction of one heat exchange medium, e.g. using deflecting zones
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0265Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box
    • F28F9/0268Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits by using guiding means or impingement means inside the header box in the form of multiple deflectors for channeling the heat exchange medium
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2103/00Parameters monitored or detected for the control of domestic laundry washing machines, washer-dryers or laundry dryers
    • D06F2103/28Air properties
    • D06F2103/36Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F2105/00Systems or parameters controlled or affected by the control systems of washing machines, washer-dryers or laundry dryers
    • D06F2105/16Air properties
    • D06F2105/24Flow or velocity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/30Drying processes 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/106Particular pattern of flow of the heat exchange media with cross flow

Definitions

  • the invention relates to a dryer, comprising a control device, a process air duct in which a heater, a drying chamber for objects to be dried, a fan and a cross-flow heat exchanger are arranged, wherein the process air duct comprises a supply air duct in front of the drying chamber and an exhaust duct between the drying chamber and crossflow heat exchanger, and a preferred method of operating this dryer.
  • Under dryer in the present case is a pure dryer, which is used only for drying certain items, but also a washer dryer, which is intended for drying certain items, usually laundry.
  • the dryer is thus a tumble dryer or a washer-dryer, ie a combination of a washing machine and a tumble dryer.
  • process air Usually in a dryer air (so-called "process air") by means of a blower through a drying chamber, which contains the objects to be dried, passed.
  • the process air absorbs moisture from the objects to be dried. Since warm air is able to absorb more moisture, the process air is heated before it enters the drying chamber.
  • the warm moist process air is cooled in a heat exchanger, wherein the heat exchanger, a filter, in particular a lint filter, may be upstream.
  • the cooling of the process air in the heat exchanger generally condenses the moisture contained in the process air and can be removed as condensate.
  • the dehumidified process air is then usually reheated and fed again to the objects to be dried (circulating air dryer) or the storage room of the dryer supplied (exhaust air dryer).
  • the EP 1 050 618 B1 describes a staggered arrangement of heat exchanger plates, whereby the flow losses of the gas stream is reduced and the heat exchange performance is increased.
  • the DE 30 27 900 C2 an air-cooled heat exchanger for a domestic laundry dryer, wherein in the cooling air area air guide body are provided to improve the heat transfer and design-related improved sealing is achieved.
  • the EP 1 729 078 A2 describes a heat exchanger for a condensation clothes dryer, which has a plurality of lamellar structures in the cooling air area, whereby a larger surface for the heat transfer is achieved and the cooling air is introduced as a turbulent flow in the heat exchanger. This leads to an improved heat transfer and thus a higher efficiency of the heat exchanger.
  • the font EP 0 982 427 B1 discloses a crossflow heat exchanger for a condensation clothes dryer with plates of a highly conductive metal or thermoplastic.
  • the DE 10 2009 046 680 A1 discloses a heat exchanger constructed of a composite material including thermoplastic and carbon nanotubes.
  • the efficiency of the heat exchanger is increased mainly in terms of improved cooling performance, whereby an improved separation efficiency of the moisture in the moist, warm process air from the drying chamber (dehumidification) can be achieved.
  • Dryers with a heat pump are for example from the DE 10 2008 044 277 A1 and the DE 10 2008 043 920 A1 known.
  • a heat pump is generally associated with a comparatively high construction-related outlay, which can have an unfavorable economic effect (costs, maintenance).
  • the invention thus relates to a dryer, comprising a control device, a process air duct, in which a heater, a drying chamber for drying Objects, a fan and a cross-flow heat exchanger are arranged, wherein the process air duct comprises a supply air duct in front of the drying chamber and an exhaust duct between the drying chamber and crossflow heat exchanger, and wherein the exhaust duct and / or cross-flow heat exchanger is / are such that a larger proportion p * M a process air amount M passing through the exhaust duct into the crossflow heat exchanger, where p> 0.5, being directed to a cooling flow entrance side of the cross flow heat exchanger.
  • p * M a process air amount M passing through the exhaust duct into the crossflow heat exchanger
  • p> 0.5 being directed to a cooling flow entrance side of the cross flow heat exchanger.
  • Extraction duct in the sense of the invention means the part of the process air duct between the drying chamber and cross-flow heat exchanger, ie the part in which generally the moist, warm process air flows from the drying chamber to the crossflow heat exchanger.
  • an exhaust duct can be present both in a circulating air and in an exhaust air dryer.
  • a heat exchanger In a heat exchanger, thermal energy is generally transferred from one material stream to another.
  • a heat exchanger In this case, a heat exchanger is usually well sealed to the outside and between the streams.
  • the material flows In the case of a cross-flow heat exchanger, the material flows are guided in such a way that their directions intersect, essentially at right angles. Thus, the warmer material flow is cooled and the cooler stream, hereinafter also called cooling stream, heated.
  • the warmer material flow In a cross-flow heat exchanger in a dryer, the warmer material flow is usually the process air flow. Since the directions of the process air flow and the cooling flow intersect, the greatest temperature differences are thus found in the process air area of the heat exchanger at the side facing the cooling flow inlet, i. the cooling flow inlet side.
  • the exhaust duct and / or cross-flow heat exchanger are designed such that a larger proportion of the process air is passed to the cooling flow inlet side of the crossflow heat exchanger, at which the cooling flow occurs.
  • a larger volume fraction of the process air flows through the region of the greater temperature difference in the heat exchanger.
  • a larger proportion of the process air here usually means more than 50% by volume of the process air.
  • the reference volume (100%) is that volume of the process air which flows through the entire process air inlet surface of the heat exchanger in the same time unit (for example 1 s).
  • the volume flow can be determined, for example, by flow sensors.
  • cooling flow inlet side of the crossflow heat exchanger generally refers to a volume fraction of the heat exchanger.
  • the heat exchanger can be divided, for example, in a volume half, which faces the cooling flow inlet and in another volume half, which faces away from the cooling flow inlet.
  • Cooling flow inlet side thus refers to the volume half of the heat exchanger facing the cooling flow inlet. At least 60% by volume is preferred the process air passed to the side of the cross-flow heat exchanger, where the cooling flow occurs.
  • the attachment of at least one flow guide in the relevant process air stream i. in the exhaust air part channel and / or in the cross-flow heat exchanger, preferably.
  • a larger proportion of the process air is thus brought to the cooling flow inlet side.
  • the respective number, design and arrangement of the flow guide body depends on the geometry of the exhaust air duct and the geometry of the crossflow heat exchanger itself, on the type of flow and on the distribution of the flow velocities over the cross section.
  • At least one flow guide body is arranged in the exhaust air duct and / or cross flow heat exchanger, wherein the position of the flow guide is fixed or changeable.
  • the flow guide body e.g. a baffle, a first baffle surface and a second baffle surface, which differ in their location with respect to the cooling flow inlet side.
  • the flow guide body can generally be flowed around by the process air from the drying chamber.
  • a flow guide according to the invention may generally be any type of body that is capable of directing the process air flow according to the invention.
  • the at least one flow guide body is a guide plate.
  • "baffle” generally means a relatively thin body, the generally uniform thickness of which is relatively small compared to its length.
  • preference is given to those materials whose properties are not impaired by the contact with the moist, warm process air.
  • This material is preferably a non-corrosive metal, such as aluminum, or a plastic.
  • the flow guide body, in particular the guide plate can have a correspondingly structured surface such as a guide profile, which is then preferably located on the upstream side of the guide plate.
  • the at least one flow guide is arranged in the exhaust duct.
  • the at least one flow guide body is preferably arranged in the exhaust air duct in the inflow region of the crossflow heat exchanger.
  • inflow region generally means the section of the exhaust air duct through which the process air stream flows immediately before entry into the crossflow heat exchanger.
  • At least one flow guide body is arranged in the crossflow heat exchanger.
  • the at least one flow guide body preferably divides a process air area in the crossflow heat exchanger into at least two separate process air portions, of which a first process air portion faces the cooling flow inlet side and a second process air portion of the cooling flow inlet side faces away from the side of the cooling flow outlet.
  • the at least one flow guide body is arranged largely in the flow direction of the process air flow in the process air region of the heat exchanger.
  • a baffle divides the process air area in the cross-flow heat exchanger into two separate process air subregions, of which a first process air portion faces the cooling flow inlet side and a second process air part region faces away from the cooling flow inlet side.
  • the area of the process stream inlet is preferably smaller than the area of the process stream outlet in the first process air partial area, whereas in the second process air partial area the corresponding area ratio is preferably reversed.
  • the volume fractions of the two process air subregions are preferably not greatly different, ie the volume fraction of one of the two process air subregions at the corresponding total process air range does not exceed 70%, more preferably not 60%, particularly preferably not 55%.
  • the corresponding proportions, based on the total process air range, depending on the design of the cross-flow heat exchanger are determined differently, for example in a plate heat exchanger based on the respective plate gap. This is important in that, in the case of a plate heat exchanger, the arrangement of the at least one flow guide body can be configured differently in different plate interspaces of the process air area.
  • the heat exchange in the cross-flow heat exchanger and in particular the heat exchange accompanied by condensation of the heat exchange accompanied by the moist, warm process air in the heat exchanger can be made efficient.
  • the heat exchange via the position of the flow guide be optimally adjusted.
  • a position of the flow guide in the exhaust duct and / or in the crossflow heat exchanger can be adjusted by means of the control device. This makes it possible in particular for the temperature and moisture content of the moist warm process air originating from the drying chamber to be taken into account.
  • the position of the flow guide can be adjusted depending on parameters of a drying process.
  • a wall of the exhaust air duct can be designed such that a larger proportion p * M of the process air quantity M, where p> 0.5, is conducted to a cooling flow inlet side of the crossflow heat exchanger in the process air flowing in the exhaust air duct .
  • the wall of the exhaust duct for example, contain correspondingly shaped ribs, which direct the flow of process air in the direction of the cooling flow inlet side of the crossflow heat exchanger, or the wall itself may have a suitable slope or other shape. This is in particular possible by means of curvatures in the exhaust air duct, which can cause, for example, different flow velocities over the duct cross section.
  • the exhaust air duct may comprise a plurality of partial exhaust air ducts, which differ with respect to the flow of the cooling flow inlet side of the crossflow heat exchanger.
  • these may be separate pipes, each of which represents a partial exhaust air duct.
  • the at least one flow guide body divides the exhaust air duct upstream of the crossflow heat exchanger in at least two separate exhaust air ducts.
  • the at least one flow guide body is generally arranged substantially in the flow direction of the process air flow in the exhaust duct upstream of the heat exchanger, ie, generally along the exhaust passage, whereby at least two separate exhaust air ducts are formed.
  • one of the cooling flow inlet side of the heat exchanger faces and the other facing away from this.
  • the number of exhaust air partial ducts thus formed is thus determined as a rule from the number of flow guide.
  • a baffle can be introduced along the flow direction into the exhaust air duct, so that now two separate Ablufteilkanäle arise through which the cross-flow heat exchanger is flown, with an exhaust air duct facing the cooling flow inlet side and the other side facing the cooling flow outlet.
  • the entire surface of the heat exchanger which is flowed through by the process air is subdivided in such a way that a maximum of one third of the total area of the crossflow heat exchanger which is flown by the process air is occupied by the exhaust air part channel facing the cooling flow inlet side.
  • the crossflow heat exchanger is not limited by its type and design. So it may be an air-gas or air-liquid heat exchanger. For example, it may be the heat sink of a heat pump or an air-to-air heat exchanger. As a cooling medium can thus serve, for example, a refrigerant of a heat pump. Likewise, can serve as a cooling medium cold air of an air-to-air heat exchanger. According to the invention, a dryer is preferred in which the cross-flow heat exchanger is an air-air heat exchanger.
  • the heat exchanger has a suitable shape and / or surface structure to assist the heat exchange.
  • the shape and / or surface structure are suitably selected so that the heat exchange between an optionally loaded with lint moist warm process air and a coolant or refrigerant optimally.
  • a plate heat exchanger is advantageous in this case.
  • a plate heat exchanger consists of several plates, which are composed so that in each successive spaces alternately once the heat-emitting and once the cooling stream flows. Thus, the areas through which the process air flows alternate with the areas of the cooling flow.
  • the at least one flow guide body is arranged in the heat exchanger, its arrangement can take place in all process air intermediate spaces ("process air areas") in an identical manner or vary.
  • a variation of the arrangement of the at least one flow guide body over the different process air intermediate spaces is preferred in particular for different admission of the different interspaces with process air, but also with different loading of the various spaces with coolant such as cooling air.
  • a larger proportion of the process air is conducted to the side of the crossflow heat exchanger, at which the cooling flow occurs.
  • the invention also relates to a method for operating a dryer, comprising a control device, a process air duct, in which a heater, a drying chamber for objects to be dried, a fan and a cross-flow heat exchanger are arranged, wherein the process air duct a supply air duct in front of the drying chamber and an exhaust duct between drying chamber and cross-flow heat exchanger, and wherein the exhaust duct and / or cross-flow heat exchanger is / are such that a larger proportion p * M of a process air amount M flowing through the exhaust duct into the cross-flow heat exchanger, where p> 0.5, to a cooling flow inlet side the cross-flow heat exchanger is passed, wherein in the method, the moist, warm process air from the drying chamber in the exhaust duct is divided and divided so that a larger proportion p * M of a process air amount M, which flows through the exhaust duct in the cross-flow heat exchanger where p> 0.5, is passed to a cooling flow inlet side of the cross-
  • the invention has the advantage that a dryer is provided with an efficient heat exchanger, thereby enabling energy saving. This is the case in particular because, with a dryer according to the invention, the separation efficiency for the moisture from the moist, warm process air is improved, whereas an increase in the cooling capacity is unnecessary. Thus, despite more efficient heat exchanger no amplified power supply is needed to supply lost thermal energy in the heat exchanger process air.
  • the cross-flow heat dryer is an air-to-air heat exchanger, there is the advantage that it costs less and less maintenance compared to dryers with heat pump by fewer components.
  • Fig. 1 shows in particular a vertically cut dryer 1 according to a first embodiment, in which the dryer 1 is designed as a circulating air dryer, which is equipped with a cross-flow heat exchanger 14.
  • the cross-flow heat exchanger 14 is designed here as an air-to-air heat exchanger.
  • the dryer 1 has a drum 3 rotatable about a horizontal axis as a drying chamber 3, within which Carrier 4 are attached to the movement of laundry during a drum rotation.
  • Process air is conducted by means of a blower 15 through a supply air duct 12 as part of the process air duct and a heater 16 in the drum 3 and through an outlet 13 in an exhaust duct 2 and through a cross-flow heat exchanger 14 in a closed circuit (process air circuit 2, 12).
  • a rib 30 In the wall 29 of the exhaust duct 2 is a rib 30, which ensures that the air flowing in the exhaust duct 2 process air flows mainly in the direction of a cooling flow inlet side 24 in the cross-flow heat exchanger 14 and there contributes to an efficient heat exchange.
  • the part of the process air channel 2,12 from the heat exchanger 14 to the drum 3 is thus also referred to as supply air duct 12 and the part of the process air duct 2,12 from the drum 3 to the heat exchanger 14 as the exhaust duct 2.
  • the drum 3 is in the in Fig. 1 shown embodiment at the rear bottom by means of a pivot bearing and front mounted by means of a bearing plate 7, wherein the drum 3 rests with a brim on a sliding strip 8 on the bearing plate 7 and is held at the front end.
  • control of the dryer 1 via a control device 11 (also denoted by program control), which regulated by the user via an operating unit 9 can be.
  • a display device 10 By means of a display device 10 different states of the dryer 1 can be displayed visually or acoustically.
  • Fig. 2 shows a three-dimensional view of a relevant section of a second embodiment of a dryer 1 according to the invention, in which an air-air heat exchanger as a cross-flow heat exchanger 14 and adjacent process air ducts 2,12, supply air and exhaust duct, are visible.
  • a baffle is arranged as a flow guide 22 in the inflow region 23 of the cross-flow heat exchanger 14.
  • the cross-flow heat exchanger 14 is formed as an air-to-air heat exchanger with heat exchanger plates 19.
  • the hot, moist process air supplied via the supply air channel 2 to the crossflow heat exchanger 14 is guided through the intermediate spaces of the heat exchanger plates 19, which are designed as process air regions 20.
  • the process air regions 20 are arranged alternately in the cross-flow heat exchanger 14 with separate cooling air regions 21, through which cooling air flows, which is passed from the cooling air inlet 17 to the cross-flow heat exchanger 14 and from there via the cooling air outlet 18 from the dryer 1 passes.
  • a baffle 22 is arranged as a flow guide 22 in the inflow region 23 of the crossflow heat exchanger 14 such that a larger proportion of the process air is passed to the cooling flow inlet side 24 of the crossflow heat exchanger 14.
  • the guide plate 22 of the exhaust duct 2 is divided into two separate process air duct areas 25 and 26 respectively.
  • Fig. 3 shows a three-dimensional view of a relevant section of a third embodiment of a dryer 1 according to the invention, in which an air-air heat exchanger 14 as a cross-flow heat exchanger and adjacent process air ducts, supply air duct 12 and exhaust duct 2, are visible.
  • a baffle 22 is arranged in the process air region of the cross-flow heat exchanger 14.
  • the cross-flow heat exchanger 14 is also formed as an air-to-air heat exchanger with heat exchanger plates 19.
  • a baffle 22 is arranged as a flow guide 22 in the process air area 20 of the cross-flow heat exchanger 14, so that a larger proportion of the process air to the cooling flow inlet side 24 of the cross-flow heat exchanger 14 is passed.
  • the baffle 22 of the crossflow heat exchanger 14 is divided into two separate process air sections 27,28. In this case, a first process air part region 27 faces the cooling flow entry point 24 and a second process air part region 28 faces away from the cooling flow entry point 24.
  • Fig. 2 shown second embodiment of a dryer 1 according to the invention
  • Fig. 3 shown third embodiment of a dryer according to the invention therefore consists in the different arrangement of the baffle 22.
  • Fig. 2 is the baffle 22 in the exhaust duct 2 in the upstream region 23 of the cross-flow heat exchanger 14, whereas in Fig. 3 the guide plate 22 is arranged in the crossflow heat exchanger 14 itself.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Description

  • Die Erfindung betrifft einen Trockner, umfassend eine Steuereinrichtung, einen Prozessluftkanal, in welchem eine Heizung, eine Trocknungskammer für zu trocknende Gegenstände, ein Gebläse und ein Kreuzstromwärmetauscher angeordnet sind, wobei der Prozessluftkanal einen Zuluftkanal vor der Trocknungskammer und einen Abluftkanal zwischen Trocknungskammer und Kreuzstromwärmetauscher umfasst, sowie ein bevorzugtes Verfahren zum Betrieb dieses Trockners.
  • Unter Trockner wird vorliegend ein reiner Trockner, welcher nur zum Trocknen bestimmter Gegenstände dient, aber auch ein Waschtrockner verstanden, welcher zum Trocknen bestimmter Gegenstände, in der Regel Wäschestücke, bestimmt ist. Insbesondere ist der Trockner somit ein Wäschetrockner oder ein Waschtrockner, also eine Kombination aus einer Waschmaschine und einem Wäschetrockner.
  • Üblicherweise wird in einem Trockner Luft (sogenannte "Prozessluft") mittels eines Gebläses durch eine Trocknungskammer, welche die zu trocknenden Gegenstände enthält, geleitet. Dabei nimmt die Prozessluft Feuchtigkeit aus den zu trocknenden Gegenständen auf. Da warme Luft mehr Feuchtigkeit aufzunehmen vermag, wird die Prozessluft vor Eintritt in die Trocknungskammer erwärmt. Nach Austritt aus der Trocknungskammer wird die warme feuchte Prozessluft in einem Wärmetauscher abgekühlt, wobei dem Wärmetauscher ein Filter, insbesondere ein Flusenfilter, vorgeschaltet sein kann. Durch die Abkühlung der Prozessluft im Wärmetauscher kondensiert im Allgemeinen die in der Prozessluft enthaltene Feuchtigkeit und kann als Kondensat abgeführt werden. Die entfeuchtete Prozessluft wird danach in der Regel wieder erwärmt und erneut den zu trocknenden Gegenständen zugeführt (Umlufttrockner) oder aber dem Abstellraum des Trockners zugeführt (Ablufttrockner).
  • Da der Trocknungsvorgang sehr energieintensiv ist, ist es aus Umwelt- und ökonomischen Gründen erstrebenswert, den Energieverbrauch des Trockners zu senken. Dies kann durch eine gesteigerte Effizienz des Wärmetauschers erreicht werden.
  • Es ist bekannt, die Effizienz eines Wärmetauschers in einem Trockner dadurch zu steigern, dass eine möglichst gleichmäßige Verteilung des Prozessluftstroms über die Fläche des Wärmetauschers gewährleistet wird. Dies spielt insbesondere deshalb eine Rolle, weil Prozessluftkanäle in Trocknern bauartbedingt häufig Krümmungen aufweisen, wodurch der Prozessluftstrom ungleichmäßig in den Wärmetauscher eintritt.
  • So offenbart die DE 196 44 711 A1 einen Trockner mit einem zumindest in einem Teilbereich gekrümmten Prozessluftkanal, in dem vor dem Eingang in den Wärmetauscher Strömungsleitkörper derart angeordnet sind, dass die Strömung gleichmäßiger wird.
  • Die EP 1 050 618 B1 beschreibt eine treppenförmig versetzte Anordnung von Wärmetauscherplatten, wodurch die Strömungsverluste des Gasstroms verringert und die Wärmetauschleistung erhöht wird.
  • Weiterhin ist es ist bekannt, die Effizienz eines Luft-Luft-Wärmetauschers durch Verbesserung der Wärmeabfuhr auf der Kühlluftseite zu steigern. Auf der Kühlluftseite liegt durch die dort vorhandene trockene Luft ein deutlich schlechterer Wärmeübergang als auf der Prozessluftseite vor, da auf der Prozessluftseite ein sehr guter Wärmeübergang durch die dort stattfindende Kondensation begünstigt wird. Aus diesem Grund wirken sich Maßnahmen auf der Kühlluftseite stark auf die Effizienz des Wärmetauschers aus.
  • In diesem Zusammenhang offenbart die DE 30 27 900 C2 einen luftgekühlten Wärmetauscher für einen Haushaltswäschetrockner, wobei im Kühlluftbereich Luftleitkörper zur Verbesserung des Wärmeübergangs vorgesehen sind und bauartbedingt eine verbesserte Abdichtung erreicht wird.
  • Die EP 1 729 078 A2 beschreibt einen Wärmetauscher für einen Kondensationswäschetrockner, der über eine Vielzahl lamellenartiger Strukturen im Kühlluftbereich verfügt, wodurch eine größere Oberfläche für den Wärmeübergang erreicht wird und die Kühlluft als turbulente Strömung in den Wärmetauscher eingeführt wird. Dies führt zu einem verbesserten Wärmeübergang und somit einer höheren Effizienz des Wärmetauschers.
  • Um durch eine verbesserte Wärmeabfuhr die Effizienz des Wärmetauschers zu erhöhen, ist weiterhin der Einsatz von Materialien mit verbesserter Leitfähigkeit bekannt. Die Schrift EP 0 982 427 B1 offenbart einen Kreuzstromwärmetauscher für einen Kondensationswäschetrockner mit Platten aus einem gut leitenden Metall oder thermoplastischen Kunststoff. Die DE 10 2009 046 680 A1 offenbart einen Wärmetauscher, der aus einem Verbundwerkstoff, der thermoplastischen Kunststoff sowie Kohlenstoffnanoröhren enthält, aufgebaut ist.
  • Durch solche Maßnahmen wird die Effizienz des Wärmetauschers hauptsächlich hinsichtlich einer verbesserten Kühlleistung gesteigert, wodurch auch eine verbesserte Abscheideleistung der Feuchte in der feuchtwarmen Prozessluft aus der Trocknungskammer (Entfeuchtung) erreicht werden kann.
  • Es ist überdies bekannt, die in einem Trockner eingesetzte Energie durch Verwendung einer Wärmepumpe effizient zu nutzen. Trockner mit einer Wärmepumpe sind beispielsweise aus der DE 10 2008 044 277 A1 und der DE 10 2008 043 920 A1 bekannt. Mit einer Wärmepumpe ist im Allgemeinen ein vergleichsweise hoher bauartbedingter Aufwand verbunden, der sich in ökonomischer Sicht ungünstig auswirken kann (Kosten, Wartung).
  • Es ist vor diesem Hintergrund Aufgabe der vorliegenden Erfindung, einen Trockner mit einem effizienten Wärmetauscher bereitzustellen, wobei insbesondere die Abscheideleistung bezüglich Feuchtigkeit aus feuchtwarmer Prozessluft aus der Trocknungskammer verbessert ist, eine Verstärkung der Kühlleistung hingegen vermieden werden kann.
  • Die Lösung der Aufgabe wird nach dieser Erfindung erreicht durch einen Trockner mit den Merkmalen des entsprechenden unabhängigen Patentanspruchs sowie das Verfahren des entsprechenden unabhängigen Patentanspruchs. Bevorzugte Ausführungsformen des erfindungsgemäßen Trockners sind in entsprechenden abhängigen Patentansprüchen aufgeführt. Bevorzugten Ausführungsformen des erfindungsgemäßen Trockners entsprechen bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens und umgekehrt, auch wenn dies hierin nicht explizit festgestellt ist.
  • Gegenstand der Erfindung ist somit ein Trockner, umfassend eine Steuereinrichtung, einen Prozessluftkanal, in welchem eine Heizung, eine Trocknungskammer für zu trocknende Gegenstände, ein Gebläse und ein Kreuzstromwärmetauscher angeordnet sind, wobei der Prozessluftkanal einen Zuluftkanal vor der Trocknungskammer und einen Abluftkanal zwischen Trocknungskammer und Kreuzstromwärmetauscher umfasst, und wobei Abluftkanal und/oder Kreuzstromwärmetauscher derart ausgebildet ist/sind, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal in den Kreuzstromwärmetauscher fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite des Kreuzstromwärmetauschers geleitet wird. Hierbei gilt vorzugsweise p ≥ 0,6 und besonders bevorzugt p ≥ 0,7.
  • "Abluftkanal" im Sinne der Erfindung bedeutet den Teil des Prozessluftkanals zwischen Trocknungskammer und Kreuzstromwärmetauscher, also den Teil, in dem im Allgemeinen die feuchtwarme Prozessluft von der Trocknungskammer zum Kreuzstromwärmetauscher fließt. In diesem Sinne kann ein Abluftkanal sowohl in einem Umluft- als auch in einem Ablufttrockner vorhanden sein.
  • Bei einem Wärmetauscher wird thermische Energie im Allgemeinen von einem Stoffstrom auf einen anderen übertragen. Dabei ist ein Wärmetauscher in der Regel nach außen und zwischen den Stoffströmen gut abgedichtet. Bei einem Kreuzstromwärmetauscher werden dabei die Stoffströme so geführt, dass sich ihre Richtungen kreuzen, im Wesentlichen im rechten Winkel. So wird der wärmere Stoffstrom abgekühlt und der kühlere Stoffstrom, im Folgenden auch Kühlstrom genannt, erwärmt. Bei einem Kreuzstromwärmetauscher in einem Trockner ist der wärmere Stoffstrom in der Regel der Prozessluftstrom. Da sich die Richtungen des Prozessluftstroms und des Kühlstroms kreuzen, finden sich im Prozessluftbereich des Wärmetauschers die größten Temperaturunterschiede somit an der dem Kühlstromeintritt zugewandten Seite, d.h. der Kühlstromeintrittsseite.
  • Erfindungsgemäß sind Abluftkanal und/oder Kreuzstromwärmetauscher derart ausgebildet, dass ein größerer Anteil der Prozessluft zu der Kühlstromeintrittsseite des Kreuzstromwärmetauschers geleitet wird, an der der Kühlstrom eintritt. Dadurch durchströmt ein größerer Volumenanteil der Prozessluft den Bereich der größeren Temperaturdifferenz im Wärmetauscher. Überraschend wurde gefunden, dass dies vor allem zu einer höheren Abscheidung der Feuchtigkeit aus der feuchtwarmen Prozessluft und somit zu einer verstärkten Entfeuchtung der Prozessluft führt, ohne dass eine verstärkte Abkühlung der Prozessluft erfolgt. Somit hat die Prozessluft daraufhin die gewünschte geringere Wasserbeladung, ohne dass durch gleichzeitig gesteigerte Abkühlung im Folgenden die Prozessluft stärker erwärmt werden müsste. Ein erfindungsgemäßer Trockner, bei dem im Prozessluftbereich des Kreuzstromwärmetauschers die Kühlluftseite stärker angeströmt wird, ist somit aufgrund seiner höheren Abscheideleistung effizienter.
  • Ein größerer Anteil der Prozessluft bedeutet hierin in der Regel mehr als 50 Volumen-% der Prozessluft. Dabei ist das Referenz-Volumen (100%) dasjenige Volumen der Prozessluft, das in der gleichen Zeiteinheit (beispielsweise 1s) die gesamte Prozesslufteintrittsfläche des Wärmetauschers durchströmt. Im Allgemeinen wird das Volumen eines Mediums, das sich in einer Zeiteinheit durch einen Querschnitt bewegt, als Volumenstrom bezeichnet mit: Q = dV / dt
    Figure imgb0001

    wobei Q den Volumenstrom [m3/s], V das Volumen [m3] und t die Zeit [s] darstellt. Der Volumenstrom lässt sich beispielsweise durch Durchflusssensoren bestimmen. Weiterhin gilt für den Volumenstrom: Q = c * A
    Figure imgb0002

    wobei c die mittlere Strömungsgeschwindigkeit [m/s] und A die durchströmte Fläche [m2] darstellt. Folglich kann ein größerer Anteil der Prozessluft, der erfindungsgemäß zur Kühlstromeintrittsseite des Wärmetauschers geleitet wird, beispielsweise durch eine vergrö-ßerte Eintrittsfläche des zur Kühlstromeintrittsseite zu leitenden Prozessluftanteils in den Wärmetauscher (mehr als 50 % der Prozesslufteintrittsfläche) oder durch Erhöhung der Strömungsgeschwindigkeit in dem zur Kühlstromeintrittsseite zu leitenden Prozessluftanteil erreicht werden.
  • "Kühlstromeintrittsseite" des Kreuzstromwärmetauschers bezieht sich dementsprechend in der Regel auf einen Volumenanteil des Wärmetauschers. Der Wärmetauscher kann beispielsweise in eine Volumenhälfte eingeteilt werden, die dem Kühlstromeintritt zugewandt ist und in eine andere Volumenhälfte, die dem Kühlstromeintritt abgewandt ist. "Kühlstromeintrittsseite" bezieht sich somit auf die Volumenhälfte des Wärmetauschers, die dem Kühlstromeintritt zugewandt ist. Bevorzugt werden mindestens 60 Volumen-% der Prozessluft zu der Seite des Kreuzstromwärmetauschers geleitet, an der der Kühlstrom eintritt.
  • Da es in einem Trockner aufgrund der baulichen Gegebenheiten in der Regel nur wenig Spielraum für eine Veränderung der Geometrie der Prozessluftkanäle gibt, ist das Anbringen von mindestens einem Strömungsleitkörper im relevanten Prozessluftstrom, d.h. im Abluftteilkanal und/oder im Kreuzstromwärmetauscher, bevorzugt. Durch das Einbringen von einem oder mehreren Strömungsleitkörpern wird somit ein größerer Anteil der Prozessluft zu der Kühlstromeintrittsseite gebracht. Die jeweilige Anzahl, Ausbildung und Anordnung der Strömungsleitkörper hängt von der Geometrie des Abluftkanals und der Geometrie des Kreuzstromwärmetauschers selbst, von der Art der Strömung sowie von der Verteilung der Strömungsgeschwindigkeiten über den Querschnitt ab.
  • In einer bevorzugten Ausführungsform des Trockners ist im Abluftkanal und/oder Kreuzstromwärmetauscher mindestens ein Strömungsleitkörper angeordnet, wobei die Position des Strömungsleitkörpers fest oder veränderbar ist. Im Allgemeinen weist der Strömungsleitkörper, z.B. ein Leitblech, eine erste Leitkörperoberfläche und eine zweite Leitkörperoberfläche auf, die sich in ihrer Lage hinsichtlich der Kühlstromeintrittsseite unterscheiden. Hierbei kann der Strömungsleitkörper in der Regel von der Prozessluft aus der Trocknungskammer umströmt werden.
  • Ein Strömungsleitkörper im Sinne der Erfindung kann im Allgemeinen jede Art von Körper sein, der in der Lage ist, den Prozessluftstrom erfindungsgemäß zu lenken. In einer bevorzugten Ausführungsform des erfindungsgemäßen Trockners ist der mindestens eine Strömungsleitkörper ein Leitblech. Hierbei bedeutet "Leitblech" im Allgemeinen einen relativ dünnen Körper, dessen im Allgemeinen einheitliche Dicke relativ klein verglichen mit seiner Länge ist. Hinsichtlich des Materials sind solche Materialien bevorzugt, deren Eigenschaften nicht durch den Kontakt mit der feuchten, warmen Prozessluft beeinträchtigt werden. Dieses Material ist vorzugsweise ein nicht korrodierendes Metall, wie beispielsweise Aluminium, oder ein Kunststoff. Zur verbesserten Strömungsleitung kann der Strömungsleitkörper, insbesondere das Leitblech, eine entsprechend strukturierte Oberfläche wie ein Leitprofil aufweisen, die sich dann vorzugsweise auf der angeströmten Seite des Leitbleches befindet.
  • Es ist erfindungsgemäß bevorzugt, dass der mindestens eine Strömungsleitkörper im Abluftkanal angeordnet ist. Hierbei ist der mindestens eine Strömungsleitkörper vorzugsweise im Abluftkanal im Anströmbereich des Kreuzstromwärmetauschers angeordnet. Hierbei bedeutet Anströmbereich im Allgemeinen den Abschnitt des Abluftkanals, den der Prozessluftstrom unmittelbar vor Eintritt in den Kreuzstromwärmetauscher durchströmt.
  • In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Trockners ist mindestens ein Strömungsleitkörper im Kreuzstromwärmetauscher angeordnet. Vorzugsweise unterteilt hierbei der mindestens eine Strömungsleitkörper einen Prozessluftbereich im Kreuzstromwärmetauscher in mindestens zwei getrennte Prozessluftteilbereiche, von denen ein erster Prozesslufteilbereich der Kühlstromeintrittseite zugewandt ist und ein zweiter Prozessluftteilbereich der Kühlstromeintrittseite der Seite des Kühlstromaustritts abgewandt ist. Dabei ist der mindestens eine Strömungsleitkörper weitgehend in der Strömungsrichtung des Prozessluftstroms im Prozessluftbereich des Wärmetauschers angeordnet.
  • Besonders bevorzugt ist dabei, dass ein Leitblech den Prozessluftbereich im Kreuzstromwärmetauscher in zwei getrennte Prozessluftteilbereiche unterteilt, von denen ein erster Prozessluftteilbereich der Kühlstromeintrittsseite zugewandt und ein zweiter Prozessluftteilbereich der Kühlstromeintrittsseite abgewandt ist. Dabei ist vorzugsweise beim ersten Prozessluftteilbereich die Fläche des Prozessstromeintritts kleiner als die Fläche des Prozessstromaustritts, wohingegen beim zweiten Prozessluftteilbereich das entsprechende Flächenverhältnis vorzugsweise umgekehrt ist. Die Volumenanteile der beiden Prozessluftteilbereiche sind vorzugsweise nicht stark unterschiedlich, d.h. der Volumenanteil einer der beiden Prozessluftteilbereiche am entsprechenden gesamten Prozessluftbereich überschreitet nicht 70 %, mehr bevorzugt nicht 60 %, besonders bevorzugt nicht 55 %. Dabei werden die entsprechenden Anteile, bezogen auf den gesamten Prozessluftbereich, je nach Bauart des Kreuzstromwärmetauschers unterschiedlich bestimmt, beispielsweise bei einem Plattenwärmetauscher bezogen auf den jeweiligen Plattenzwischenraum. Dies ist insofern von Bedeutung, da bei einem Plattenwärmetauscher die Anordnung des mindestens einen Strömungsleitkörpers in verschiedenen Plattenzwischenräumen des Prozessluftbereichs unterschiedlich ausgestaltet sein kann.
  • Mit der vorliegenden Erfindung kann der Wärmeaustausch im Kreuzstromwärmetauscher und insbesondere der von einer Kondensation der in der feuchtwarmen Prozessluft im Wärmetauscher begleitete Wärmetausch effizient gestaltet werden. Vorzugsweise kann hierbei der Wärmeaustausch über die Position des Strömungsleitkörpers optimal eingestellt werden.
  • Vorzugsweise kann im erfindungsgemäßen Trockner daher eine Position des Strömungsleitkörpers im Abluftkanal und/oder im Kreuzstromwärmetauscher mittels der Steuereinrichtung eingestellt werden. Hierdurch ist es insbesondere möglich, dass Temperatur und Feuchtigkeitsgehalt der aus der Trocknungskammer herrührenden feuchtwarmen Prozessluft berücksichtigt werden.
  • Beispielsweise kann vorzugsweise die Position des Strömungsleitkörpers in Abhängigkeit von Parametern eines Trocknungsprozesses eingestellt werden.
  • Alternativ oder in Ergänzung hierzu kann bei einem erfindungsgemäßen Trockner eine Wand des Abluftkanals so ausgestaltet sein, dass bei der im Abluftkanal fließenden Prozessluft ein größerer Anteil p*M der Prozessluftmenge M, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite des Kreuzstromwärmetauschers geleitet wird. Hierzu kann die Wand des Abluftkanals beispielsweise entsprechend ausgeformte Rippen enthalten, welche die Strömung der Prozessluft in Richtung der Kühlstromeintrittsseite des Kreuzstromwärmetauschers leiten, oder die Wand selbst kann eine hierzu geeignete Schräge oder sonstige Form aufweisen. Dies ist insbesondere durch Krümmungen im Abluftkanal, die beispielweise unterschiedliche Strömungsgeschwindigkeiten über den Kanalquerschnitt verursachen können, möglich.
  • In einer weiteren bevorzugten Ausführungsform der Erfindung kann der Abluftkanal mehrere Abluftteilkanäle umfassen, die sich in Hinblick auf die Anströmung der Kühlstromeintrittsseite des Kreuzstromwärmetauschers unterscheiden. Beispielsweise kann es sich hierbei um getrennte Rohre handeln, die jeweils einen Abluftteilkanal darstellen.
  • In einer bevorzugten Ausführungsform des erfindungsgemäßen Trockners unterteilt der mindestens eine Strömungsleitkörper den Abluftkanal vor dem Kreuzstromwärmetauscher in mindestens zwei getrennte Abluftteilkanäle. Dabei ist der mindestens eine Strömungsleitkörper im Allgemeinen weitgehend in der Strömungsrichtung des Prozessluftstroms im Abluftkanal vor dem Wärmetauscher angeordnet, d.h. in der Regel längs des Abluftkanals, wodurch mindestens zwei getrennte Abluftteilkanäle gebildet werden. Von diesen ist einer der Kühlstromeintrittsseite des Wärmetauschers zugewandt und der andere dieser abgewandt. Die Anzahl der entstehenden Abluftteilkanäle bestimmt sich somit in der Regel aus der Anzahl der Strömungsleitkörper. Beispielsweise kann ein Leitblech längs der Strömungsrichtung in den Abluftkanal eingebracht werden, sodass nunmehr zwei getrennte Ablufteilkanäle entstehen, durch welche der Kreuzstromwärmetauscher angeströmt wird, wobei ein Abluftteilkanal der Kühlstromeintrittsseite zugewandt und der andere der Seite des Kühlstromaustritts zugewandt ist. Dabei ist vorzugsweise die gesamte von der Prozessluft angeströmte Fläche des Wärmetauschers derart unterteilt, dass maximal ein Drittel der gesamten von der Prozessluft angeströmten Fläche des Kreuzstromwärmetauschers von dem der Kühlstromeintrittsseite zugewandten Abluftteilkanal eingenommen wird.
  • Der Kreuzstromwärmetauscher ist von seiner Art und Ausgestaltung her nicht eingeschränkt. So kann es sich um einen Luft-Gas- oder Luft-Flüssigkeit-Wärmetauscher handeln. Beispielsweise kann es sich um die Wärmesenke einer Wärmepumpe oder einen Luft-Luft-Wärmetauscher handeln. Als Kühlmedium kann somit beispielsweise ein Kältemittel einer Wärmepumpe dienen. Ebenso kann als Kühlmedium kalte Luft eines Luft-Luft-Wärmetauschers dienen. Erfindungsgemäß bevorzugt ist ein Trockner, bei dem der Kreuzstromwärmetauscher ein Luft-Luft-Wärmetauscher ist.
  • Weiterhin können verschiedene Bauarten des Kreuzstromwärmetauschers eingesetzt werden, beispielsweise Rohrbündelwärmetauscher und Plattenwärmetauscher. Vorzugsweise hat der Wärmetauscher eine geeignete Form und/oder Oberflächenstruktur, um den Wärmetausch zu unterstützen. Hierbei werden Form und/oder Oberflächenstruktur geeignet ausgewählt, damit der Wärmetausch zwischen einer ggf. mit Flusen beladenen feuchtwarmen Prozessluft und einem Kühl- oder Kältemittel optimal erfolgt.
  • Erfindungsgemäß ist hierbei ein Plattenwärmetauscher vorteilhaft. Ein Plattenwärmetauscher besteht aus mehreren Platten, die so zusammengesetzt sind, dass jeweils in den aufeinanderfolgenden Zwischenräumen abwechselnd einmal der wärmeabgebende und einmal der kühlende Stoffstrom fließt. Somit wechseln sich die von Prozessluft durchströmten Bereiche mit den Bereichen des Kühlstroms ab. Wenn bei einem Plattenwärmetauscher der mindestens eine Strömungsleitkörper im Wärmetauscher angeordnet ist, kann dessen Anordnung in allen Prozessluftzwischenräumen ("Prozessluftbereichen") auf identische Weise erfolgen oder variieren. Eine Variation der Anordnung des mindestens einen Strömungsleitkörpers über die verschiedenen Prozessluftzwischenräume ist insbesondere bei unterschiedlicher Beaufschlagung der verschiedenen Zwischenräume mit Prozessluft, aber auch bei unterschiedlicher Beaufschlagung der verschiedenen Zwischenräume mit Kühlmittel wie Kühlluft bevorzugt.
  • Erfindungsgemäß wird ein größerer Anteil der Prozessluft zu der Seite des Kreuzstromwärmetauschers geleitet, an der der Kühlstrom eintritt. Dies bedeutet beispielsweise bei einem Plattenwärmetauscher, dass hinsichtlich der "Seite des Kreuzstromwärmetauschers, an der der Kühlstrom eintritt" das Volumen über alle Prozessluftzwischenräume insgesamt betrachtet wird. Es kann bei einem Plattenwärmetauscher somit genügen, dass in einem einzigen Prozessluftzwischenraum mehr als 50 Volumen-% der Prozessluft dieses Zwischenraums zu der Seite des Kreuzstromwärmetauschers geleitet werden, an der der Kühlstrom eintritt.
  • Gegenstand der Erfindung ist außerdem ein Verfahren zum Betrieb eines Trockners, umfassend eine Steuereinrichtung, einen Prozessluftkanal, in welchem eine Heizung, eine Trocknungskammer für zu trocknende Gegenstände, ein Gebläse und ein Kreuzstromwärmetauscher angeordnet sind, wobei der Prozessluftkanal einen Zuluftkanal vor der Trocknungskammer und einen Abluftkanal zwischen Trocknungskammer und Kreuzstromwärmetauscher umfasst, und wobei Abluftkanal und/oder Kreuzstromwärmetauscher derart ausgebildet ist/sind, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal in den Kreuzstromwärmetauscher fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite des Kreuzstromwärmetauschers geleitet wird, wobei bei dem Verfahren die feuchtwarme Prozessluft aus der Trocknungskammer in den Abluftkanal geleitet und so aufgeteilt wird, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal in den Kreuzstromwärmetauscher fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite des Kreuzstromwärmetauschers geleitet wird.
  • Die Erfindung hat den Vorteil, dass ein Trockner mit einem effizienten Wärmetauscher bereitgestellt wird und dadurch eine Energieeinsparung ermöglicht wird. Dies ist insbesondere deshalb der Fall, da bei einem erfindungsgemäßen Trockner die Abscheideleistung für die Feuchtigkeit aus der feuchtwarmen Prozessluft verbessert ist, wohingegen eine Verstärkung der Kühlleistung unnötig ist. Somit ist trotz effizienterem Wärmetauscher keine verstärkte Energiezufuhr nötig, um im Wärmetauscher verlorene thermische Energie der Prozessluft wieder zuzuführen. In Ausführungsformen des erfindungsgemäßen Trockners, in denen der Kreuzstromwärmetrockner ein Luft-Luft-Wärmetauscher ist, besteht der Vorteil, dass er gegenüber Trocknern mit Wärmepumpe durch weniger Bauteile kosten- und wartungsärmer ist.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von nicht einschränkenden Ausführungsbeispielen eines erfindungsgemäßen Trockners unter Bezugnahme auf die Figuren 1 bis 3.
    • Fig. 1 zeigt einen vertikalen Schnitt durch einen Trockner gemäß einer ersten Ausführungsform, bei welcher der Trockner als Umlufttrockner ausgestaltet ist.
    • Fig. 2 zeigt eine dreidimensionale Ansicht eines relevanten Ausschnitts aus einer zweiten Ausführungsform eines erfindungsgemäßen Trockners, bei dem ein Luft-Luft-Wärmetauscher als Kreuzstromwärmetauscher und angrenzende Prozessluftkanäle, Zuluft- und Abluftkanal, sichtbar sind.
    • Fig. 3 zeigt eine dreidimensionale Ansicht eines relevanten Ausschnitts aus einer dritten Ausführungsform eines erfindungsgemäßen Trockners, bei dem ein Luft-Luft-Wärmetauscher als Kreuzstromwärmetauscher und angrenzende Prozessluftkanäle, Zuluft- und Abluftkanal, sichtbar sind. Dabei ist ein Leitblech im Prozessluftbereich des Kreuzstromwärmetauschers angeordnet.
  • Fig. 1 zeigt insbesondere einen senkrecht geschnittenen Trockner 1 gemäß einer ersten Ausführungsform, bei welcher der Trockner 1 als Umlufttrockner ausgestaltet ist, der mit einem Kreuzstromwärmetauscher 14 ausgestattet ist. Der Kreuzstromwärmetauscher 14 ist hierbei als Luft-Luft-Wärmetauscher ausgestaltet. Der Trockner 1 weist eine um eine horizontale Achse drehbare Trommel 3 als Trocknungskammer 3 auf, innerhalb welcher Mitnehmer 4 zur Bewegung von Wäsche während einer Trommeldrehung befestigt sind. Prozessluft wird mittels eines Gebläses 15 durch einen Zuluftkanal 12 als Teil des Prozessluftkanals und eine Heizung 16 in die Trommel 3 sowie durch einen Ausgang 13 in einen Abluftkanal 2 und durch einen Kreuzstromwärmetauscher 14 in einem geschlossenen Kreis geführt (Prozessluftkreislauf 2, 12). Nach dem Durchgang durch die Trommel 3 gelangt hierbei die feuchte, warme Prozessluft in den Kreuzstromwärmetauscher 14, wo sie abgekühlt und entfeuchtet wird und anschließend durch die Heizung 16 wieder erwärmt wird. Die erwärmte Prozessluft wird von hinten, d.h. von der einer Tür 5 gegenüberliegenden Seite der Trommel 3, durch deren gelochten Boden in die Trommel 3 geleitet, kommt dort mit der zu trocknenden Wäsche (hier nicht gezeigt) in Berührung und strömt durch die Befüllöffnung der Trommel 3 zu einem Flusensieb 6 innerhalb einer die Befüllöffnung verschließenden Tür 5. Anschließend wird der Prozessluftstrom in der Tür 5 nach unten umgelenkt und im Abluftkanal 2 zum Kreuzstromwärmetauscher 14 geführt, wo sie abgekühlt und entfeuchtet. In den Kreuzstromwärmetauscher 14 gelangt hierzu am Kühllufteingang 17 ein Kühlluftstrom in den Trockner 1, der diesen am Kühlluftausgang 18 wieder verlässt.
  • In der Wand 29 des Abluftkanals 2 befindet sich eine Rippe 30, die dafür sorgt, dass die im Abluftkanal 2 strömende Prozessluft vor allem in Richtung einer Kühlstromeintrittsseite 24 im Kreuzstromwärmetauscher 14 fließt und dort zu einem effizienten Wärmeaustausch beiträgt.
  • Der Teil des Prozessluftkanals 2,12 vom Wärmetauscher 14 bis zur Trommel 3 wird somit auch als Zuluftkanal 12 bezeichnet und der Teil des Prozessluftkanals 2,12 von der Trommel 3 bis zum Wärmetauscher 14 als Abluftkanal 2.
  • Die Trommel 3 wird in der in Fig. 1 gezeigten Ausführungsform am hinteren Boden mittels eines Drehlagers und vorne mittels eines Lagerschildes 7 gelagert, wobei die Trommel 3 mit einer Krempe auf einem Gleitstreifen 8 am Lagerschild 7 aufliegt und so am vorderen Ende gehalten wird.
  • Die Steuerung des Trockners 1 erfolgt über eine Steuereinrichtung 11 (auch als Programmsteuerung bezeichenbar), die vom Benutzer über eine Bedieneinheit 9 geregelt werden kann. Mittels einer Anzeigevorrichtung 10 können verschiedene Zustände des Trockners 1 optisch oder akustisch dargestellt werden.
  • Fig. 2 zeigt eine dreidimensionale Ansicht eines relevanten Ausschnitts aus einer zweiten Ausführungsform eines erfindungsgemäßen Trockners 1, bei dem ein Luft-Luft-Wärmetauscher als Kreuzstromwärmetauscher 14 und angrenzende Prozessluftkanäle 2,12, Zuluft- und Abluftkanal, sichtbar sind. Dabei ist ein Leitblech als Strömungsleitkörper 22 im Anströmbereich 23 des Kreuzstromwärmetauschers 14 angeordnet.
  • In dieser Ausführungsform ist der Kreuzstromwärmetauscher 14 als Luft-Luft-Wärmetauscher mit Wärmetauscherplatten 19 ausgebildet. Die über den Zuluftkanal 2 dem Kreuzstromwärmetauscher 14 zugeführte warme, feuchte Prozessluft wird durch die als Prozessluftbereiche 20 ausgebildeten Zwischenräume der Wärmetauscherplatten 19 geführt. Die Prozessluftbereiche 20 sind im Kreuzstromwärmetauscher 14 wechselweise mit davon getrennten Kühlluftbereichen 21 angeordnet, durch welche Kühlluft strömt, die vom Kühlluftzugang 17 zum Kreuzstromwärmetauscher 14 geleitet wird und von dort über den Kühlluftausgang 18 aus dem Trockner 1 gelangt.
  • Im Abluftkanal 2 ist ein Leitblech 22 als Strömungsleitkörper 22 im Anströmbereich 23 des Kreuzstromwärmetauschers 14 derart angeordnet, dass ein größerer Anteil der Prozessluft zu der Kühlstromeintrittsseite 24 des Kreuzstromwärmetauschers 14 geleitet wird. Durch das Leitblech 22 wird der Abluftkanal 2 in zwei getrennte Prozessluftkanalbereiche 25 bzw. 26 unterteilt.
  • Fig. 3 zeigt eine dreidimensionale Ansicht eines relevanten Ausschnitts aus einer dritten Ausführungsform eines erfindungsgemäßen Trockners 1, bei dem ein Luft-Luft-Wärmetauscher 14 als Kreuzstromwärmetauscher und angrenzende Prozessluftkanäle, Zuluftkanal 12 und Abluftkanal 2, sichtbar sind. Dabei ist ein Leitblech 22 im Prozessluftbereich des Kreuzstromwärmetauschers 14 angeordnet.
  • In dieser Ausführungsform ist der Kreuzstromwärmetauscher 14 ebenfalls als Luft-Luft-Wärmetauscher mit Wärmetauscherplatten 19 ausgebildet. Jedoch ist hierin ein Leitblech 22 als Strömungsleitkörper 22 im Prozessluftbereich 20 des Kreuzstromwärmetauschers 14 angeordnet, so dass ein größerer Anteil der Prozessluft zu der Kühlstromeintrittsseite 24 des Kreuzstromwärmetauschers 14 geleitet wird. Durch das Leitblech 22 wird der Kreuzstromwärmetauscher 14 in zwei getrennte Prozessluftteilbereiche 27,28 unterteilt. Dabei ist ein erster Prozessluftteilbereich 27 der Kühlstromeintrittstelle 24 zugewandt und ein zweiter Prozessluftteilbereich 28 der Kühlstromeintrittstelle 24 abgewandt.
  • Der Unterschied zwischen der in Fig. 2 gezeigten zweiten Ausführungsform eines erfindungsgemäßen Trockners 1 und der in Fig. 3 gezeigten dritten Ausführungsform eines erfindungsgemäßen Trockners besteht daher in der unterschiedlichen Anordnung des Leitblechs 22. In Fig. 2 befindet sich das Leitblech 22 im Abluftkanal 2 im Anströmbereich 23 des Kreuzstromwärmetauschers 14, wohingegen in Fig. 3 das Leitblech 22 im Kreuzstromwärmetauscher 14 selbst angeordnet ist.
  • Bezugszeichenliste
  • 1
    Trockner, Kondensationstrockner
    2
    Prozessluftkanal, Abluftkanal
    3
    Trocknungskammer, Trommel
    4
    Mitnehmer
    5
    Tür
    6
    Flusensieb
    7
    Lagerschild
    8
    Gleitstreifen
    9
    Bedieneinheit
    10
    Anzeigevorrichtung
    11
    Steuereinrichtung, Programmsteuerung
    12
    Prozessluftkanal, Zuluftkanal
    13
    Trommelausgang
    14
    Kreuzstromwärmetauscher
    15
    Gebläse
    16
    Heizung
    17
    Kühllufteingang
    18
    Kühlluftausgang
    19
    Wärmetauscherplatten
    20
    Prozessluftbereich
    21
    Kühlluftbereich
    22
    Leitblech, Strömungsleitkörper
    23
    Anströmbereich des Kreuzstromwärmetauschers
    24
    Kühlstromeintrittsseite
    25
    Erster Abluftteilkanal
    26
    Zweiter Abluftteilkanal
    27
    Erster Prozessluftteilbereich im Kreuzstromwärmetauscher
    28
    Zweiter Prozessluftteilbereich im Kreuzstromwärmetauscher
    29
    Wand des Abluftkanals
    30
    Rippe in Wand des Abluftkanals

Claims (15)

  1. Trockner (1), umfassend eine Steuereinrichtung (11), einen Prozessluftkanal (2,12), in welchem eine Heizung (16), eine Trocknungskammer (3) für zu trocknende Gegenstände, ein Gebläse (15) und ein Kreuzstromwärmetauscher (14) angeordnet sind, wobei der Prozessluftkanal (2,12) einen Zuluftkanal (12) vor der Trocknungskammer (3) und einen Abluftkanal (2) zwischen Trocknungskammer (3) und Kreuzstromwärmetauscher (14) umfasst, dadurch gekennzeichnet, dass der Abluftkanal (2) und/oder der Kreuzstromwärmetauscher (14) derart ausgebildet ist/sind, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal (2) in den Kreuzstromwärmetauscher (14) fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite (24) des Kreuzstromwärmetauschers (14) geleitet wird.
  2. Trockner (1) nach Anspruch 1, dadurch gekennzeichnet, dass p ≥ 0,6 gilt.
  3. Trockner (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im Abluftkanal (2) und/oder Kreuzstromwärmetauscher (14) mindestens ein Strömungsleitkörper (22) angeordnet ist, dessen Position fest oder veränderbar ist.
  4. Trockner (1) nach Anspruch 3, dadurch gekennzeichnet, dass der mindestens eine Strömungsleitkörper (22) im Abluftkanal (2) angeordnet ist.
  5. Trockner (1) nach Anspruch 4, dadurch gekennzeichnet, dass der mindestens eine Strömungsleitkörper (22) im Abluftkanal (2) im Anströmbereich (23) des Kreuzstromwärmetauschers (14) angeordnet ist.
  6. Trockner (1) nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass mindestens ein Strömungsleitkörper (22) im Kreuzstromwärmetauscher (14) angeordnet ist.
  7. Trockner (1) nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass eine Position des Strömungsleitkörpers (22) im Abluftkanal (2) und/oder im Kreuzstromwärmetauscher (14) mittels der Steuereinrichtung (11) eingestellt werden kann.
  8. Trockner (1) nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Position des Strömungsleitkörpers (22) in Abhängigkeit von Parametern eines Trocknungsprozesses eingestellt werden kann.
  9. Trockner (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass eine Wand (29) des Abluftkanals (2) so ausgestaltet ist, dass bei der im Abluftkanal (2) fließenden Prozessluft ein größerer Anteil p*M der Prozessluftmenge M, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite (24) des Kreuzstromwärmetauschers (14) geleitet wird.
  10. Trockner (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Abluftkanal (2) mehrere Abluftteilkanäle umfasst, die sich in Hinblick auf die Anströmung der Kühlstromeintrittsseite (24) des Kreuzstromwärmetauschers (14) unterscheiden.
  11. Trockner (1) nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, dass der mindestens eine Strömungsleitkörper (22) ein Leitblech ist.
  12. Trockner (1) nach einem der Ansprüche 3 bis 11, dadurch gekennzeichnet, dass der mindestens eine Strömungsleitkörper (22) den Abluftkanal (2) vor dem Kreuzstromwärmetauscher (14) in mindestens zwei getrennte Abluftteilkanäle (25,26) unterteilt.
  13. Trockner (1) nach Anspruch 8, dadurch gekennzeichnet, dass der mindestens eine Strömungsleitkörper (22) den Prozessluftbereich (20) im Kreuzstromwärmetauscher (14) in mindestens zwei getrennte Prozessluftteilbereiche (27,28) unterteilt, von denen ein erster Prozesslufteilbereich (27) der Kühlstromeintrittsseite (24) zugewandt und ein zweiter Prozessluftteilbereich (28) der Kühlstromeintrittsseite (24) abgewandt ist.
  14. Trockner (1) nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass der Kreuzstromwärmetauscher (14) ein Luft-Luft-Wärmetauscher ist.
  15. Verfahren zum Betrieb eines Trockners (1), umfassend eine Steuereinrichtung (11), einen Prozessluftkanal (2,12), in welchem eine Heizung (27), eine Trocknungskammer (3) für zu trocknende Gegenstände, ein Gebläse (15) und ein Kreuzstromwärmetauscher (14) angeordnet sind, wobei der Prozessluftkanal (2,12) einen Zuluftkanal (12) vor der Trocknungskammer (3) und einen Abluftkanal (2) zwischen Trocknungskammer (3) und Kreuzstromwärmetauscher (14) umfasst, und wobei Abluftkanal (2) und/oder Kreuzstromwärmetauscher (14) derart ausgebildet ist/sind, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal (2) in den Kreuzstromwärmetauscher (14) fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite (24) des Kreuzstromwärmetauschers (14) geleitet wird, dadurch gekennzeichnet, dass die feuchtwarme Prozessluft aus der Trocknungskammer (3) in den Abluftkanal (2) geleitet und so aufgeteilt wird, dass ein größerer Anteil p*M einer Prozessluftmenge M, die durch den Abluftkanal (2) in den Kreuzstromwärmetauscher (14) fließt, wobei p > 0,5 gilt, zu einer Kühlstromeintrittsseite (24) des Kreuzstromwärmetauschers (14) geleitet wird.
EP12182350.4A 2011-09-01 2012-08-30 Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb Active EP2565321B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL12182350T PL2565321T3 (pl) 2011-09-01 2012-08-30 Suszarka z krzyżowym wymiennikiem ciepła i sposób jej eksploatacji

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011081940A DE102011081940A1 (de) 2011-09-01 2011-09-01 Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb

Publications (2)

Publication Number Publication Date
EP2565321A1 EP2565321A1 (de) 2013-03-06
EP2565321B1 true EP2565321B1 (de) 2015-01-14

Family

ID=46762906

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12182350.4A Active EP2565321B1 (de) 2011-09-01 2012-08-30 Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb

Country Status (3)

Country Link
EP (1) EP2565321B1 (de)
DE (1) DE102011081940A1 (de)
PL (1) PL2565321T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851807B2 (en) 2019-11-07 2023-12-26 Whirlpool Corporation Method of removing heat from a clothes tumbling system on the outside of the cabinet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2980306B1 (de) * 2014-07-31 2018-01-17 Whirlpool EMEA S.p.A Haushaltstrockengerät mit verbessertem einlassbereich für das trockenmedium in einem kondensator
DE102015200237A1 (de) 2015-01-12 2016-07-14 BSH Hausgeräte GmbH Kondensationstrockner mit verbesserter Trocknung und Verfahren zu seinem Betrieb
US11686530B2 (en) 2018-03-16 2023-06-27 Hamilton Sundstrand Corporation Plate fin heat exchanger flexible manifold
US10801790B2 (en) 2018-03-16 2020-10-13 Hamilton Sundstrand Corporation Plate fin heat exchanger flexible manifold structure
EP3633307B1 (de) * 2018-10-04 2023-06-07 Hamilton Sundstrand Corporation Flexibler verteiler für plattenrippenwärmetauscher

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3027900C2 (de) 1980-07-23 1986-11-06 Bosch-Siemens Hausgeräte GmbH, 7000 Stuttgart Luftgekühlter Wärmetauscher für Haushalt-Wäschetrockner
DE3446468A1 (de) * 1984-12-20 1986-07-03 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Verfahren und vorrichtung zum trocknen von waesche
DE4211011C2 (de) * 1992-04-02 1996-08-22 Bosch Siemens Hausgeraete Haushalt-Wäschetrockner mit einem Prozeßluft-Kanal und einem Wärmetauscher
DE19644709A1 (de) * 1996-10-28 1998-04-30 Aeg Hausgeraete Gmbh Trockner mit einem Diffusor mit gekrümmter Wandung
DE19644710A1 (de) * 1996-10-28 1998-04-30 Aeg Hausgeraete Gmbh Trockner mit einem strömungsoptimierten Diffusor
DE19644711A1 (de) * 1996-10-28 1998-04-30 Aeg Hausgeraete Gmbh Trockner mit einem besonderen Prozeßluftkanal
EP0982427B1 (de) 1998-08-25 2003-03-05 Joma-Polytec Kunststofftechnik GmbH Kreuzstrom-Wärmetauscher für Kondensationswäschetrockner
EP1050618B1 (de) * 1999-04-08 2003-10-15 BSH Bosch und Siemens Hausgeräte GmbH Wärmetauscher für Haushaltwäschetrockner
US6845813B1 (en) * 2003-10-13 2005-01-25 Knighthawk Engineering Intra-body flow distributor for heat exchanger
JP2006336874A (ja) * 2003-10-15 2006-12-14 Matsushita Electric Ind Co Ltd ヒートポンプ式乾燥機
KR100690891B1 (ko) 2005-05-26 2007-03-09 엘지전자 주식회사 건조기용 열교환기 및 이를 이용한 응축식 건조기
DE102007042969B4 (de) * 2007-09-10 2021-05-27 BSH Hausgeräte GmbH Trockner mit Wärmerückgewinnung und Umluftanteil
DE102008043920A1 (de) * 2008-11-20 2010-05-27 BSH Bosch und Siemens Hausgeräte GmbH Kondensationstrockner mit einer Wärmepumpe sowie Verfahren zu seinem Betrieb
DE102008044277A1 (de) 2008-12-02 2010-06-10 BSH Bosch und Siemens Hausgeräte GmbH Trockner mit einer Wärmepumpe und einer elektrischen Heizung sowie Verfahren zu seinem Betrieb
DE102009046680A1 (de) * 2009-11-13 2011-05-19 BSH Bosch und Siemens Hausgeräte GmbH Hausgerät mit Wärmetauscher aus thermoplastischem Kunststoff enthaltendem Werkstoff, sowie solcher Wärmetauscher
EP2576888B1 (de) * 2010-06-07 2014-03-19 Arçelik Anonim Sirketi Wäschetrockner mit thermoelektrischer wärmepumpe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11851807B2 (en) 2019-11-07 2023-12-26 Whirlpool Corporation Method of removing heat from a clothes tumbling system on the outside of the cabinet

Also Published As

Publication number Publication date
EP2565321A1 (de) 2013-03-06
PL2565321T3 (pl) 2015-06-30
DE102011081940A1 (de) 2013-03-07

Similar Documents

Publication Publication Date Title
EP2565321B1 (de) Trockner mit einem Kreuzstromwärmetauscher und Verfahren zu seinem Betrieb
EP2358937B1 (de) Kondensationstrockner mit einer wärmepumpe sowie verfahren zu seinem betrieb
DE102008033388B4 (de) Trockner mit Wärmepumpenkreis
EP0411080B1 (de) Wäschetrockner
DE2813933C2 (de) Trockenzylindergruppe einer Papiermaschine
DE3027900C2 (de) Luftgekühlter Wärmetauscher für Haushalt-Wäschetrockner
DE2443589C2 (de) Wasserkühlturm
DE102007034000B4 (de) Wärmetauscher und Kondensationswäschetrockner mit diesem
WO2007065768A1 (de) Vorrichtung und verfahren zum beaufschlagen von waschgut mit einem luftstrom
DE112005002755T5 (de) Wärmetauscher
DE112015001397B4 (de) Fahrzeugklimatisierungseinheit
EP1838204B1 (de) Geschirrspülmaschine mit einer trocknungsvorrichtung
EP2354687A1 (de) Deckenluftauslass für klimatechnische Anlagen
EP1833351B1 (de) Geschirrspülmaschine mit einer trocknungsvorrichtung
DE8017935U1 (de) Luftgekühlter Kondensations-Wärmetrockner
DE8915647U1 (de) Vorrichtung zur Behandlung von Monofilen
DE2826343A1 (de) Waermetauscher fuer gase, vorzugsweise fuer luft
EP1050618B1 (de) Wärmetauscher für Haushaltwäschetrockner
DE102008004322B4 (de) Luftzuführanordnung für eine Gehäusewand eines Geäuses und Gehäuse mit einer Luftzuführanordnung
DE10393127B4 (de) Kühlaggregat(e), Verfahren zum Kühlen und Kühlanordnung
DE102015216433A1 (de) Haushaltsgerät mit Abreinigungseinrichtung für Wärmetauscher
DE102006056774A1 (de) Kühlflüssigkeitskühler
DE861642C (de) Doppelmantel-Trockenzylinder und Trockenpartie fuer Papiermaschinen
DE2923701A1 (de) Waeschetrockner
EP2248456B1 (de) Haushaltsgerät, insbesondere Geschirrspüler

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130906

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: D06F 58/24 20060101AFI20140718BHEP

Ipc: D06F 58/28 20060101ALI20140718BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 707139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002097

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BSH HAUSGERAETE GMBH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012002097

Country of ref document: DE

Owner name: BSH HAUSGERAETE GMBH, DE

Free format text: FORMER OWNER: BSH BOSCH UND SIEMENS HAUSGERAETE GMBH, 81739 MUENCHEN, DE

Effective date: 20150409

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002097

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150830

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 707139

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170830

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220824

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220822

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502012002097

Country of ref document: DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230831

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230830