EP2559879A1 - Antriebseinheit mit zwei koppelbaren Kühlkreisläufen zum Vorwärmen eines Verbrennungsmotors und Verfahren - Google Patents

Antriebseinheit mit zwei koppelbaren Kühlkreisläufen zum Vorwärmen eines Verbrennungsmotors und Verfahren Download PDF

Info

Publication number
EP2559879A1
EP2559879A1 EP12180366A EP12180366A EP2559879A1 EP 2559879 A1 EP2559879 A1 EP 2559879A1 EP 12180366 A EP12180366 A EP 12180366A EP 12180366 A EP12180366 A EP 12180366A EP 2559879 A1 EP2559879 A1 EP 2559879A1
Authority
EP
European Patent Office
Prior art keywords
cooling circuit
combustion engine
internal combustion
electric motor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12180366A
Other languages
English (en)
French (fr)
Other versions
EP2559879B1 (de
Inventor
Armin Engstle
Karsten Breitkopf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVL Software and Functions GmbH
Original Assignee
AVL Software and Functions GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVL Software and Functions GmbH filed Critical AVL Software and Functions GmbH
Publication of EP2559879A1 publication Critical patent/EP2559879A1/de
Application granted granted Critical
Publication of EP2559879B1 publication Critical patent/EP2559879B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/12Arrangements for cooling other engine or machine parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2037/00Controlling
    • F01P2037/02Controlling starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles

Definitions

  • the present invention relates to a drive unit for driving a vehicle drivable with electrical energy according to the preamble of claim 1 and to a method for preheating an internal combustion engine of this drive unit according to the preamble of claim 6.
  • electric power operable vehicles so-called electric vehicles or hybrid vehicles, such as motor vehicles, aircraft, two-wheelers or watercraft, can on the one hand purely electrically, by at least one electric motor as a Tranktionsmotor the drive of the vehicle to be driven automatically accepts, or even in alternating operation, namely once only the electric motor and another time with a run on conventional fuels internal combustion engine.
  • Purely electrically driven vehicles are known to have no long range, so that after only a few kilometers - depending on the size of the electric motor supplying the battery and the construction of the vehicle - the electric motor due to the discharge of the battery no electrical energy can be supplied.
  • an internal combustion engine such as a diesel, petrol or Wankel engine is switched on, which either takes over the task of the electric motor as a new traction motor and drives the vehicle or in the form of a range extender drives a generator, which the battery or the electric motor generated electrical energy is available to continue to drive the vehicle electrically.
  • the vehicle additionally has a generator in addition to the internal combustion engine and the electric motor, which is mechanically coupled to the internal combustion engine.
  • the unit of internal combustion engine and generator which is also referred to as an energy-generating charging device is preferably switched on or activated for the realization of a locally emission-free operation, when the battery for supplying the electric motor with electrical energy can no longer provide sufficient electrical energy.
  • the optimum temperature level of a power electronics which is also arranged in the vehicle and is used for example for controlling the electric motor and / or the internal combustion engine or the generator, as well as, for example, an electric motor even below 60 ° C. That is, while the electrical system, consisting of the power electronics and the electric motor should be operated at low or low temperatures as possible, it is desirable for the internal combustion engine system, such as the internal combustion engine due to emission and consumption to achieve a defined target temperature as quickly as possible and uphold.
  • a drive unit for driving a vehicle that can be driven by electrical energy has at least one electric motor driving the motor, at least one generator generating electrical energy, at least one internal combustion engine driving the generator and at least one power electronics unit for driving and / or regulating the electric motor.
  • the vehicle may be, as mentioned above, an electric vehicle or hybrid vehicle from the fields of motor vehicles, aircraft, watercraft, bicycles or the like.
  • the vehicle is driven purely electrically via at least one electric motor, wherein also each axle of the vehicle may have one or more electric motors for driving the vehicle.
  • the internal combustion engine can also serve, for example, as a range extender, which is only activated to drive a generator connected to the internal combustion engine in such a way that it generates electrical energy or converts the mechanical energy supplied to it into electrical energy which either the electric motor and / or or the battery is supplied.
  • the electric motor is also active during operation of the internal combustion engine.
  • the vehicle is operated in alternating operation. That is, the vehicle is driven purely electrically, only by the electric motor or a plurality of electric motors during the first few kilometers of driving the vehicle and the internal combustion engine only takes over the drive of the vehicle and possibly a simultaneous charging of the battery when the battery so discharged is that this can no longer provide the electric motor with electrical energy.
  • the power electronics unit or power electronics preferably has components, such as control devices for controlling and / or regulating the electric machine or the electric motor.
  • control units include, for example, AC and rectifier for rotating field and DC machines or motors, such as for driving pumps, Fans and for positioning tasks, etc.
  • DC converters can be integrated in the vehicle in order to operate preferably consumers with different voltage levels in the electrical energy network can.
  • At least the internal combustion engine and the power electronics unit are each connected to a cooling circuit having its own cooling device, the first cooling circuit of the internal combustion engine and the second cooling circuit of the power electronics unit being operatively connected to one another via a connecting element to form a common third cooling circuit and at least the electric motor is connected to one of the cooling circuits, that the resulting from the operation of the electric motor and transported over at least one of the cooling circuits waste heat for preheating the internal combustion engine is used.
  • the internal combustion engine is connected with its own cooling circuit with a cooling device arranged in the cooling circuit, this cooling circuit of the internal combustion engine being referred to as the first cooling circuit.
  • the power electronics is also connected to its own, not the first cooling circuit of the engine associated and independently acting cooling circuit, which is referred to as a second cooling circuit and preferably also has its own cooling device.
  • the drive unit of the vehicle has two independently operating cooling circuits, namely the first cooling circuit and the second cooling circuit, in order to be able to cool the internal combustion engine and the power electronics unit separately from one another to a defined temperature or to maintain it at a defined temperature level.
  • the first cooling circuit namely the cooling circuit of the internal combustion engine with the second cooling circuit, namely the cooling circuit of the power electronics unit via a connecting element
  • This connecting element is a supply or discharge and preferably consists of two lines to form a third cooling circuit.
  • the third cooling circuit is thus composed of the first and the second cooling circuit and the connecting element.
  • a valve element is arranged on the connecting element in order to interrupt or enable the operative connection between the first cooling circuit of the internal combustion engine and the second cooling circuit of the power electronics unit.
  • the first cooling circuit and the second cooling circuit act together as a third cooling circuit, so that in a purely electrical operation of the vehicle, i. during operation of the vehicle exclusively with the electric motor, at least the power electronics unit and preferably also in addition the electric motor can be cooled by means of two cooling devices from two cooling circuits.
  • the electrical system comprising the power electronics unit and the electric motor, operated for a longer time at low temperatures and thus better efficiencies due to the higher heat capacity of the interconnected cooling circuits, as if the electrical system, only a cooling circuit, such as only the second cooling circuit, would be available.
  • At least the electric motor is connected to the first cooling circuit of the internal combustion engine for substantially direct preheating of the internal combustion engine or to the second cooling circuit of the power electronics unit for substantially indirect preheating of the internal combustion engine via the third cooling circuit.
  • the electric motor can either be connected to the first cooling circuit, ie the cooling circuit of the internal combustion engine or to the second cooling circuit, ie to the cooling circuit of the power electronics unit.
  • the waste heat of the electric motor which arises during operation of the electric motor, is introduced directly into the first cooling circuit of the internal combustion engine, whereby the temperature level of the first cooling circuit increases.
  • the internal combustion engine is preheated substantially directly by the waste heat or heat loss of an active consumer connected to the same cooling circuit in that the entire cooling circuit reaches a defined temperature level.
  • the temperature level of the first cooling circuit rises to up to 60 ° C and is preferably regulated at this temperature level.
  • the internal combustion engine is preheated to 60 ° C. and requires a relatively short time until it reaches its optimum operating temperature of, for example, 100 ° C., so that the consumption and emission values of the internal combustion engine are clearly different from the operation of an internal combustion engine which has not been preheated was, can be reduced.
  • the second cooling circuit is separated by activation of the valve element from the first cooling circuit to allow a fast and sufficient slope of the temperature level of the first cooling circuit and thus an optimal preheating of the internal combustion engine.
  • both cooling circuits one and two are connected to each other, that is, that the valve element is opened to connect the first cooling circuit and the second cooling circuit to the third cooling circuit. Then, the electric motor and the power electronics unit, which is connected to the second cooling circuit, heat the third cooling circuit together to a defined temperature level by delivery their waste heat during their operation, so as to preheat the non-operating internal combustion engine.
  • the electric motor with the second cooling circuit i. the cooling circuit of the power electronics unit is connected.
  • the valve element is opened so that an operative connection between the first cooling circuit and the second cooling circuit is formed.
  • the power electronics unit and the electric motor are consequently cooled in pure electrical operation of the vehicle of two cooling devices, namely the cooling means of the first cooling circuit and the second cooling means of the second cooling circuit and collectively increase by means of their waste heat the temperature level of the third cooling circuit to preheat the internal combustion engine.
  • the internal combustion engine is preheated indirectly via consumers, which are arranged on a cooling circuit other than the cooling circuit of the internal combustion engine, via a forming common third cooling circuit.
  • the generator is connected together with the electric motor to the first cooling circuit of the internal combustion engine or to the second cooling circuit of the power electronics unit.
  • the drive unit also has a generator for generating electrical energy, which is preferably mechanically connected to the internal combustion engine.
  • the generator does not have to be connected to the same refrigeration cycle as the internal combustion engine.
  • the generator is in purely electrical operation, ie, when only the electric motor during operation and the engine is still deactivated, no waste heat, since it is preferably activated only when an activation of the internal combustion engine to generate electrical energy or mechanical energy in to convert electrical energy.
  • the generator is connected separately from the electric motor with the first cooling circuit of the internal combustion engine or with the second cooling circuit of the power electronics unit.
  • the generator would be connected to the first cooling circuit of the internal combustion engine and the electric motor to the second cooling circuit of the power electronics unit or vice versa.
  • a method for preheating an internal combustion engine of a drive unit for driving a vehicle drivable with electrical energy wherein the drive unit further comprises at least one electric power generating generator and at least one power electronics unit for driving and / or regulating the electric motor.
  • At least the internal combustion engine and the power electronics unit are each connected to a cooling circuit having its own cooling devices, the first cooling circuit of the internal combustion engine and the second cooling circuit of the power electronics unit being operatively connected to each other via a connecting element to form a common third cooling circuit and at least the electric motor is connected to one of the cooling circuits, that the waste heat generated by the operation of the electric motor is transported via at least one of the cooling circuits and used for preheating the internal combustion engine.
  • the waste heat of the consumer such as preferably the electric motor and / or the power electronics unit, which are connected depending on the configuration of the drive unit with one of the cooling circuits, preferably via the third cooling circuit or even the first cooling circuit is transported to the engine to this to heat to a defined temperature or a defined temperature level.
  • the electric motor when connected to the first cooling circuit of the internal combustion engine, heats the internal combustion engine essentially directly via the first cooling circuit, provided at least one valve element arranged on the connection element is closed, and thus an operative connection between the first cooling circuit and the first cooling circuit second cooling circuit prevented.
  • the electric motor is therefore connected not only to the first cooling circuit, but also with the third cooling circuit.
  • the waste heat of the electric motor is enabled not only via the first refrigeration cycle but also via the third refrigeration cycle resulting from the first refrigeration cycle, the second refrigeration cycle and the connecting element.
  • the electric motor heats the internal combustion engine essentially indirectly via the third cooling circuit.
  • valve element must be opened so as to allow an operative connection between the first cooling circuit and the second cooling circuit, whereby a third cooling circuit is formed, thus the waste heat of the electric motor and preferably in addition the waste heat of the power electronics, which also with the second Cooling circuit is connected to be able to transport to the first cooling circuit of the engine and in particular directly to the engine and in addition to ensure optimized cooling of the electrical system.
  • the power electronics unit, the electric motor and the internal combustion engine are equally connected to the third cooling circuit.
  • a valve element arranged on the connecting element is opened during a pure operation of the electric motor, in order to additionally cool the power electronics unit additionally with the first cooling circuit of the internal combustion engine.
  • the power electronics unit not only with the cooling device of the second cooling circuit, with which the power electronics is connected, cooled or regulated to a defined temperature level, but also with the support of the first cooling circuit of the internal combustion engine. Accordingly, the power electronics unit, which is thus connected to the third cooling circuit, cooled by means of at least two cooling means of the third cooling circuit, whereby an optimized cooling of the power electronics and possibly the electric motor is carried out to the efficiency of the increase electrical system.
  • a valve element arranged on the connecting element is closed when the second cooling circuit of the electronic power unit has a temperature above a defined maximum temperature level during operation of the internal combustion engine.
  • Fig.1 shows a schematic diagram of a first embodiment of a drive unit 1 according to the invention, which is an internal combustion engine 2, a generator 3, an electric motor 4, a power electronics unit 5, a first cooling device 6 and a second cooling device 7.
  • the internal combustion engine 2, the cooling device 6 and the electric motor 4 and the generator 3 are connected in common with a first cooling circuit 10.
  • a cooling medium which may have a liquid or gaseous state, transported via corresponding lines 10a to 10d, to absorb waste heat consumers 2, 3, 4 and the cooling device 6, which absorbs the heat and to the Environment gives off.
  • waste heat is generated which, if it is not to be used to increase the temperature level of the first cooling circuit 10, for example via cooling medium of the cooling device 6 flowing in the lines 10a and 10b supplied and discharged from this to the environment.
  • the cooling device 6 operates as a kind of heat exchanger.
  • the waste heat of the electric motor 4 in operation - the generator 3 is also deactivated - not discharged via the cooling device 6 to the environment, but used to increase the temperature level of the first cooling circuit 10.
  • the cooling medium absorbs the waste heat emitted by the electric motor 4 until it reaches a defined temperature level and preferably delivers it to the internal combustion engine 2 in order to preheat it substantially continuously even during non-operation of the internal combustion engine 2.
  • FIG Fig.1 A cooling device 7 comparable to the cooling device 6 as well as a power electronics unit 5 are shown in FIG Fig.1 connected to the second cooling circuit 20. Via lines 20a and 20b, a cooling medium is transported between the cooling device 7 and the power electronics unit 5 in order, for example, to absorb waste heat generated by the operation of the power electronics unit 5 and to transport it via the line 20a to the cooling device 7.
  • the cooling device 7 of the second cooling circuit 20 operates as a kind of heat exchanger to release the heat extracted from the cooling medium to the environment, so that the cooling medium, for example via the line 20b back to the consumer 5, i. the power electronics unit 5 can be transported in order to again absorb waste heat of the power electronics unit 5 there.
  • the third cooling circuit 30 is primarily formed in an activated or open valve element 8, which is an operative connection, i. allows a flow or a movement of the cooling medium from the first cooling circuit 10 to the second cooling circuit 20 and back and from the second cooling circuit 20 to the first cooling circuit 10 and back.
  • the cooling media of the cooling circuits 10 and 20 flow via a connecting element 9, which preferably comprises two lines 9a and 9b transporting the cooling media.
  • the third cooling circuit 30 consists of the first cooling circuit 10, the second cooling circuit 20 and the connecting element 9 and accordingly of the lines 10a, 10b, 10c, 10d, 20a, 20b, 9a, 9b of the cooling circuits 10, 20, 30th
  • heat sensors for measuring temperatures at the consumers 2, 3, 4.5 or temperature levels of the cooling circuits 10, 20, 30 preferably heat sensors (not shown here) are used, which either directly in the range of a consumer 2, 3, 4, 5 or a line 10a, 10b, 10c, 10d, 20a, 20b, 9a, 9b of one of the cooling circuits 10, 20, 30 may be arranged.
  • ventilation elements 11, 12 may be arranged on the cooling circuits 10, 20, 30 and preferably in the area of the cooling devices 6 and 7 in order, for example, to dissipate the heat given off by the cooling devices 6 and 7 to the environment in such a way that they do so is not moved in the direction of the consumer 2, 3, 4, 5, which should be cooled if necessary.
  • the waste heat of the electric motor 4 at a closed valve element 8 via the first cooling circuit 10 and an open valve element 8 via the third cooling circuit 30 to the engine 2 to preheat this. Also, the waste heat of the power electronics unit 5 is transferred at an open valve element 8 via the third cooling circuit 30 also to the engine 2 for preheating the latter.
  • the electric motor 4 and the power electronics unit 5 are also cooled by two cooling devices 6 and 7 with an open valve element 8, whereby the efficiency of these consumers 4 and 5 can be increased.
  • Fig.2 a schematic diagram of a second embodiment of the drive unit 1 according to the invention is shown, which differs from the embodiment of the Fig.1 differs in that the electric motor 4 and the generator 3 are connected to the second cooling circuit 20 of the power electronics unit 5.
  • the waste heat of the consumers 3 and / or 4 in operation is transported to the cooling device 7.
  • valve element 8 is opened in order to establish an operative connection with the first cooling circuit 10, with which now only the internal combustion engine 2 is connected.
  • the electric motor 4 and the power electronics 5 are consequently connected via the third cooling circuit 30 to the internal combustion engine 2 in order to preheat it by means of its waste heat, which is transported via the cooling medium or the cooling media and, consequently, to be cooled simultaneously by means of two cooling circuits.
  • the internal combustion engine 2 is preheated substantially indirectly via the third cooling circuit by the waste heat of the consumers 4 and 5 in order to enable optimized emission and consumption values when the internal combustion engine 2 is put into operation.
  • valve element 8 After reaching a maximum temperature of the second cooling circuit 20, the valve element 8 is preferably closed and the first cooling circuit 10 separated from the second cooling circuit 20 or disconnected to overheat the electrical system 4, 5 or the power electronics unit 5 and / or the electric motor to prevent.
  • the first cooling circuit 10 is referred to as a high-temperature circuit 10 and the second cooling circuit 20 as a low-temperature circuit 20.
  • the high-temperature circuit 10 may preferably have a higher temperature level than the low-temperature circuit 20.

Abstract

Die Erfindung bezieht sich auf eine Antriebseinheit zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges mit mindestens einem das Fahrzeug antreibenden Elektromotor, mindestens einem die elektrische Energie erzeugenden Generator, mindestens einem den Generator antreibenden Verbrennungsmotor und mindestens einer Leistungselektronikeinheit zum Ansteuern und/oder Regeln des Elektromotors sowie auf ein Verfahren zum Vorwärmen des Verbrennungsmotors, wobei zumindest der Verbrennungsmotor und die Leistungselektronikeinheit mit jeweils einem eine eigene Kühleinrichtung aufweisenden Kühlkreislauf verbunden sind, wobei der erste Kühlkreislauf des Verbrennungsmotors und der zweite Kühlkreislauf der Leistungselektronikeinheit über ein Verbindungselement in Wirkverbindung zur Ausbildung eines gemeinsamen dritten Kühlkreislaufes miteinander stehen und zumindest der Elektromotor derart mit einem der Kühlkreisläufe verbunden ist, dass die durch den Betrieb des Elektromotors entstehende und über mindestens einen der Kühlkreisläufe transportierte Abwärme zum Vorwärmen des Verbrennungsmotors verwendbar ist.

Description

  • Die vorliegende Erfindung bezieht sich auf eine Antriebseinheit zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges gemäß dem Oberbegriff des Anspruches 1 sowie auf ein Verfahren zum Vorwärmen eines Verbrennungsmotors dieser Antriebseinheit gemäß dem Oberbegriff des Anspruches 6.
  • Mit elektrischer Energie betreibbare Fahrzeuge, sogenannte Elektrofahrzeuge oder auch Hybridfahrzeuge, wie Kraftfahrzeuge, Luftfahrzeuge, Zweiräder oder Wasserfahrzeuge, können zum einen rein elektrisch, indem zumindest ein Elektromotor als Tranktionsmotor den Antrieb der anzutreibenden Fahrzeugachse selbsttätig übernimmt, oder auch im Wechselbetrieb, nämlich einmal lediglich durch den Elektromotor und ein anderes Mal mit einem mit herkömmlichen Kraftstoffen betriebenen Verbrennungsmotor betrieben werden.
  • Rein elektrisch angetriebene Fahrzeuge weisen bekanntermaßen keine große Reichweite auf, so dass schon nach wenigen Kilometern - abhängig beispielsweise von der Größe der den Elektromotor speisenden Batterie sowie der Konstruktion des Fahrzeuges - dem Elektromotor aufgrund der Entladung der Batterie keine elektrische Energie mehr zugeführt werden kann. In diesem Falle wird entweder ein Verbrennungsmotor, wie ein Diesel-, Otto- oder Wankelmotor zugeschalten, welcher entweder die Aufgabe des Elektromotors als neuer Traktionsmotor übernimmt und das Fahrzeug antreibt oder in Form eines Range Extenders einen Generator antreibt, welcher der Batterie bzw. dem Elektromotor erzeugte elektrische Energie zur Verfügung stellt, um das Fahrzeug weiterhin elektrisch antreiben zu können.
  • In beiden Fällen ist es möglich die Reichweite des Fahrzeuges von beispielsweise 30 - 100km auf beispielsweise 200- 400km zu erhöhen.
  • Wird ein Verbrennungsmotor als Range Extender zur Ausweitung des unterbrechungsfreien Fahrbetriebes bzw. zur Erhöhung der Reichweite verwendet, weist das Fahrzeug neben dem Verbrennungsmotor und dem Elektromotor zusätzlich einen Generator auf, welcher mechanisch mit dem Verbrennungsmotor gekoppelt ist. Die Einheit aus Verbrennungsmotor und Generator, welche auch als energieerzeugende Ladeeinrichtung bezeichnet wird, wird zur Realisierung eines lokal emissionsfreien Betriebes vorzugsweise erst zugeschalten bzw. aktiviert, wenn die Batterie zur Speisung des Elektromotors mit elektrischer Energie nicht mehr ausreichend elektrische Energie zur Verfügung stellen kann.
  • Weiterhin ist aus dem allgemeinen Stand der Technik bekannt, dass ein Verbrennungsmotor, welcher als Range Extender oder auch Traktionsmotor verwendet wird, für optimale Emissions- und Verbrauchswerte bei einer Temperatur von ca. 100°C betrieben werden sollte.
  • Dagegen liegt das optimale Temperaturniveau einer Leistungselektronik, welche ebenfalls in dem Fahrzeug angeordnet ist und beispielsweise zum Steuern des Elektromotors und/oder des Verbrennungsmotors bzw. des Generators dient, sowie beispielsweise auch eines Elektromotors selbst bei unter 60°C. D.h., während das elektrische System, bestehend aus der Leistungselektronik und dem Elektromotor, bei möglichst geringen bzw. tiefen Temperaturen betrieben werden sollte, ist es dagegen für das verbrennungsmotorische System, wie dem Verbrennungsmotor aufgrund von Emission und Verbrauch erstrebenswert eine definierte Zieltemperatur möglichst schnell zu erreichen und aufrecht zu erhalten.
  • Demnach ist es die Aufgabe der vorliegenden Erfindung eine Antriebseinheit und ein Verfahren zur Verfügung zu stellen, mittels denen ein Verbrennungsmotor eines elektrisch antreibbaren Fahrzeuges im Wesentlichen kontinuierlich während eines Betriebes des Elektromotors durch dessen Abwärme vorgewärmt wird, um eine Optimierung des Emissions-und/oder Kraftstoffverbrauchs zu erzielen, während vorzugsweise eine Leistungselektronikeinheit des Fahrzeuges eine optimierte Kühlung erfährt.
  • Diese Aufgabe löst die vorliegende Erfindung mittels der Antriebseinheit gemäß Anspruch 1 und dem Verfahren gemäß Anspruch 6.
  • Vorteilhafte Ausführungsformen und Weiterbildungen sind Gegenstand der Unteransprüche.
  • Eine erfindungsgemäße Antriebseinheit zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges weist mindestens einen das Fahrzeug antreibenden Elektromotor, mindestens einen die elektrische Energie erzeugenden Generator, mindestens einen den Generator antreibenden Verbrennungsmotor und mindestens eine Leistungselektronikeinheit zum Ansteuern und/oder Regeln des Elektromotors auf.
  • Das Fahrzeug kann dabei, wie oben erwähnt, ein Elektrofahrzeug oder Hybridfahrzeug aus den Bereichen der Kraftfahrzeuge, Luftfahrzeuge, Wasserfahrzeuge, Zweiräder oder ähnlichem sein.
  • Vorzugsweise wird das Fahrzeug rein elektrisch über mindestens einen Elektromotor angetrieben, wobei auch jede Achse des Fahrzeuges einen oder mehrere Elektromotoren zum Antreiben des Fahrzeuges aufweisen kann. Hierbei kann der Verbrennungsmotor beispielsweise auch als Range Extender dienen, welcher lediglich dann aktiviert wird, um einen mit dem Verbrennungsmotor verbundenen Generator derart anzutreiben, dass dieser elektrische Energie erzeugt bzw. die ihm zugeführte mechanische Energie in elektrische Energie umwandelt, welche entweder dem Elektromotor und/oder der Batterie zugeführt wird.
  • Demzufolge findet ein zeitlich versetzter Betrieb von elektromotorischem Betrieb und verbrennungsmotorischem Betrieb statt. Vorzugsweise ist der Elektromotor auch bei einem Betrieb des Verbrennungsmotors aktiv.
  • Es ist jedoch auch denkbar, dass das Fahrzeug im Wechselbetrieb betrieben wird. D.h., dass das Fahrzeug während der ersten Kilometer des Fahrbetriebes des Fahrzeuges rein elektrisch, lediglich durch den Elektromotor oder eine Vielzahl von Elektromotoren angetrieben wird und der Verbrennungsmotor erst den Antrieb des Fahrzeuges und eventuell auch eine gleichzeitige Aufladung der Batterie übernimmt, wenn die Batterie derart entladen ist, dass diese dem Elektromotor keine elektrische Energie mehr zur Verfügung stellen kann.
  • Die Leistungselektronikeinheit bzw. Leistungselektronik weist vorzugsweise Komponenten, wie Steuergeräte zur Ansteuerung und /oder Regelung der elektrischen Maschine bzw. des Elektromotors auf. Diese Steuergeräte beinhalten beispielsweise Wechsel- und Gleichrichter für Drehfeld- und Gleichstrommaschinen bzw. -motoren, wie z.B. zum Antrieb von Pumpen, Ventilatoren und für Positionieraufgaben etc. Ebenfalls können Gleichspannungswandler im Fahrzeug integriert sein, um vorzugsweise Verbraucher mit unterschiedlichem Spannungsniveau im elektrischen Energienetz betreiben zu können.
  • Bei der erfindungsgemäßen Antriebseinheit sind zumindest der Verbrennungsmotor und die Leistungselektronikeinheit mit jeweils einem eine eigene Kühleinrichtung aufweisenden Kühlkreislauf verbunden, wobei der erste Kühlkreislauf des Verbrennungsmotors und der zweite Kühlkreislauf der Leistungselektronikeinheit über ein Verbindungselement in Wirkverbindung zur Ausbildung eines gemeinsamen dritten Kühlkreislaufes miteinander stehen und zumindest der Elektromotor derart mit einem der Kühlkreisläufe verbunden ist, dass die durch den Betrieb des Elektromotors entstehende und über mindestens einen der Kühlkreisläufe transportierte Abwärme zum Vorwärmen des Verbrennungsmotors verwendbar ist.
  • D.h., dass der Verbrennungsmotor mit einem eigenen Kühlkreislauf mit einer in dem Kühlkreislauf angeordneten Kühleinrichtung verbunden ist, wobei dieser Kühlkreislauf des Verbrennungsmotors als erster Kühlkreislauf bezeichnet wird.
  • Zudem ist die Leistungselektronik ebenfalls mit einem eigenen, nicht dem ersten Kühlkreislauf des Verbrennungsmotors zugeordneten und eigenständig wirkenden Kühlkreislauf verbunden, welcher als zweiter Kühlkreislauf bezeichnet wird und vorzugsweise ebenfalls eine eigene Kühleinrichtung aufweist.
  • Folglich weist die Antriebseinheit des Fahrzeuges zwei voneinander unabhängig agierende Kühlkreisläufe, nämlich den ersten Kühlkreislauf und den zweiten Kühlkreislauf auf, um den Verbrennungsmotor und die Leistungselektronikeinheit getrennt voneinander auf eine definierte Temperatur kühlen bzw. auf einem definierten Temperaturniveau halten zu können.
  • D.h., aufgrund unterschiedlicher optimaler Temperaturbereiche des Verbrennungsmotors und der Leistungselektronikeinheit werden in dem Fahrzeug unterschiedliche Kühlkreisläufe mit unterschiedlichen Temperaturniveaus verbaut.
  • Erfindungsgemäß ist der erste Kühlkreislauf, nämlich der Kühlkreislauf des Verbrennungsmotors mit dem zweiten Kühlkreislauf, nämlich dem Kühlkreislauf der Leistungselektronikeinheit über ein Verbindungselement koppelbar bzw. verbindbar. Dieses Verbindungselement ist beispielsweise eine Zuleitung bzw. Ableitung und besteht bevorzugt aus zwei Leitungen zum Bilden eines dritten Kühlkreislaufes.
  • Der dritte Kühlkreislauf setzt sich folglich aus dem ersten und dem zweiten Kühlkreislauf sowie dem Verbindungselement zusammen.
  • Vorzugsweise ist an dem Verbindungselement ein Ventilelement angeordnet, um die Wirkverbindung zwischen dem ersten Kühlkreislauf des Verbrennungsmotors und dem zweiten Kühlkreislauf der Leistungselektronikeinheit zu unterbrechen bzw. zu ermöglichen.
  • D.h. wird das Ventilelement bzw. das Ventil geöffnet, wirken der erste Kühlkreislauf und der zweite Kühlkreislauf als ein dritter Kühlkreislauf zusammen, so dass in einem rein elektrischen Betrieb des Fahrzeuges, d.h. während des Betriebes des Fahrzeuges ausschließlich mit dem Elektromotor, zumindest die Leistungselektronikeinheit und vorzugsweise auch zusätzlich der Elektromotor mittels zweier Kühleinrichtungen aus zwei Kühlkreisläufen gekühlt werden können. Damit wird das elektrische System, welches die Leistungselektronikeinheit und den Elektromotor aufweist, aufgrund der höheren Wärmekapazität der miteinander verbundenen Kühlkreisläufe längere Zeit bei niedrigen Temperaturen und somit bei besseren Wirkungsgraden betrieben, als wenn dem elektrischen System lediglich ein Kühlkreislauf, wie beispielsweise lediglich der zweite Kühlkreislauf, zu Verfügung stehen würde.
  • Lediglich durch eine optimierte Kühlung des elektrischen Systems im Gegensatz zu herkömmlich gekühlten elektrischen Systemen wird beispielsweise eine Wirkungsgradsteigerung von ca. bis zu 5 % erreicht, wodurch dementsprechend auch die Reichweite des Fahrzeuges bzw. die Zeit des unterbrechungsfreien Fahrbetriebes erhöht wird.
  • In einer bevorzugten Ausführungsform ist zumindest der Elektromotor mit dem ersten Kühlkreislauf des Verbrennungsmotors zum im Wesentlichen direkten Vorwärmen des Verbrennungsmotors oder mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit zum im Wesentlichen indirekten Vorwärmen des Verbrennungsmotors über den dritten Kühlreislauf verbunden.
  • D.h., dass der Elektromotor entweder mit dem ersten Kühlkreislauf, d.h. dem Kühlkreislauf des Verbrennungsmotors oder mit dem zweiten Kühlkreislauf, d.h. mit dem Kühlkreislauf der Leistungselektronikeinheit verbunden sein kann.
  • Ist der Elektromotor mit dem ersten Kühlkreislauf verbunden, wird die Abwärme des Elektromotors, welche während des Betriebes des Elektromotors entsteht, direkt in den ersten Kühlkreislauf des Verbrennungsmotors eingeleitet, wodurch das Temperaturniveau des ersten Kühlkreislaufes steigt. Somit wird der Verbrennungsmotor im Wesentlichen direkt durch die Abwärme bzw. Verlustwärme eines mit demselben Kühlkreislauf verbundenen aktiven Verbrauchers vorgewärmt, indem der gesamte Kühlkreislauf ein definiertes Temperaturniveau erreicht.
  • Da vorzugsweise ein Elektromotor, wie auch eine Leistungselektronikeinheit bei Temperaturen unter 60°C betrieben werden sollten, wäre es denkbar, dass das Temperaturniveau des ersten Kühlkreislaufes auf bis zu 60°C ansteigt und vorzugsweise auf diesem Temperaturniveau reguliert wird. Dadurch wird der Verbrennungsmotor auf 60°C vorgeheizt und bedarf relativ kurzer Zeit bis zum Erreichen seiner optimalen Betriebstemperatur von beispielsweise 100°C, so dass die Verbrauchs- und Emissionswerte des Verbrennungsmotor ab Betrieb desselben deutlich, im Vergleich zum Betrieb eines Verbrennungsmotors, welcher nicht vorgewärmt wurde, reduziert werden können.
  • Es ist jedoch auch bekannt, dass es Elektromotoren und Leistungselektronikeinheiten, d.h. elektrische Systeme gibt, welche bei höheren Temperaturen, wie beispielsweise über 60 bis 100°C und höher betrieben werden können. Bei Vorliegen derartiger elektrischer Systeme ist es folglich möglich den Verbrennungsmotor über den ersten Kühlkreislauf bis 100°C und mehr vorzuwärmen, so dass dieser schon zu Beginn seines Betriebes ein optimales Temperaturniveau aufweist.
  • Bei einem Verbinden des Elektromotors mit dem ersten Kühlkreislauf ist es denkbar, dass der zweite Kühlkreislauf durch Aktivierung des Ventilelementes von dem ersten Kühlkreislauf getrennt wird, um eine schnelle und ausreichende Steigung des Temperaturniveaus des ersten Kühlkreislaufes und damit ein optimales Vorwärmen des Verbrennungsmotors zu ermöglichen.
  • Es ist jedoch auch möglich, dass beide Kühlkreisläufe eins und zwei miteinander verbunden sind, d.h., dass das Ventilelement geöffnet ist, um den ersten Kühlkreislauf und den zweiten Kühlkreislauf zu dem dritten Kühlkreislauf zu verbinden. Dann erwärmen der Elektromotor und die Leistungselektronikeinheit, welche mit dem zweiten Kühlkreislauf verbunden ist, den dritten Kühlkreislauf gemeinsam bis zu einem definierten Temperaturniveau durch Abgabe deren Abwärme während ihres Betriebes, um somit den sich nicht in Betrieb befindlichen Verbrennungsmotor vorzuwärmen.
  • Andererseits ist es auch möglich, dass der Elektromotor mit dem zweiten Kühlkreislauf, d.h. dem Kühlkreislauf der Leistungselektronikeinheit verbunden ist. In diesem Fall ist vorzugsweise das Ventilelement derart geöffnet, dass eine Wirkverbindung zwischen dem ersten Kühlkreislauf und dem zweiten Kühlkreislauf entsteht. Beide, d.h. die Leistungselektronikeinheit und der Elektromotor, werden folglich im reinen elektrischen Betrieb des Fahrzeuges von zwei Kühleinrichtungen, nämlich der Kühleinrichtung des ersten Kühlkreislaufes und der zweiten Kühleinrichtung des zweiten Kühlkreislaufes gekühlt und erhöhen gemeinsam mittels deren Abwärme das Temperaturniveau des dritten Kühlkreislaufes, um dem Verbrennungsmotor vorzuwärmen.
  • Demzufolge wird der Verbrennungsmotor indirekt über Verbraucher, welche an einem anderen Kühlkreislauf, als dem Kühlkreislauf des Verbrennungsmotors angeordnet sind, über einen sich bildenden gemeinsamen dritten Kühlkreislauf vorgewärmt.
  • In einer weiteren bevorzugten Ausführungsform ist der Generator zusammen mit dem Elektromotor mit dem ersten Kühlkreislauf des Verbrennungsmotors oder mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit verbunden.
  • Wie oben beschrieben, weist die Antriebseinheit auch einen Generator zur Erzeugung von elektrischer Energie auf, welcher vorzugsweise mechanisch mit dem Verbrennungsmotor verbunden ist. Jedoch muss der Generator nicht mit demselben Kühlkreislauf wie der Verbrennungsmotor verbunden sein.
  • Der Generator gibt im rein elektrischen Betrieb, d.h., wenn lediglich der Elektromotor im Betrieb und der Verbrennungsmotor noch deaktiviert ist, keine Abwärme ab, da er sich vorzugsweise erst bei einer Aktivierung des Verbrennungsmotors ebenfalls aktiviert, um elektrische Energie zu erzeugen bzw. mechanische Energie in elektrische Energie umzuwandeln.
  • Andererseits ist es denkbar, dass der Generator getrennt von dem Elektromotor mit dem ersten Kühlkreislauf des Verbrennungsmotors oder mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit verbunden ist.
  • Demzufolge wäre beispielsweise der Generator mit dem ersten Kühlkreislauf des Verbrennungsmotor und der Elektromotor mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit oder anders herum verbunden.
  • Des Weiteren wird ein Verfahren zum Vorwärmen eines Verbrennungsmotors einer Antriebseinheit zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges beansprucht, wobei die Antriebseinheit zudem mindestens einen die elektrische Energie erzeugenden Generator und mindestens eine Leistungselektronikeinheit zum Ansteuern und/oder Regeln des Elektromotors aufweist.
  • Entsprechend dem erfindungsgemäßen Verfahren werden zumindest der Verbrennungsmotor und die Leistungselektronikeinheit mit jeweils einem eine eigene Kühleinrichtungen aufweisenden Kühlkreislauf verbunden, wobei der erste Kühlkreislauf des Verbrennungsmotors und der zweite Kühlkreislauf der Leistungselektronikeinheit über ein Verbindungselement in Wirkverbindung zur Ausbildung eines gemeinsamen dritten Kühlkreislaufes miteinander stehen und zumindest der Elektromotor derart mit einem der Kühlkreisläufe verbunden wird, dass die durch den Betrieb des Elektromotors entstehende Abwärme über mindestens einen der Kühlkreisläufe transportiert und zum Vorwärmen des Verbrennungsmotors verwendet wird.
  • D.h., dass die Abwärme der Verbraucher, wie vorzugsweise dem Elektromotor und/oder auch der Leistungselektronikeinheit, welche je nach Ausgestaltung der Antriebseinheit mit einem der Kühlkreisläufe verbunden sind, über vorzugsweise den dritten Kühlkreislauf oder auch lediglich den ersten Kühlkreislauf zum Verbrennungsmotor transportiert wird, um diesen auf eine definierte Temperatur bzw. ein definiertes Temperaturniveau zu erwärmen.
  • D.h., dass der Elektromotor in einer bevorzugten Ausführungsform bei einer Verbindung mit dem ersten Kühlkreislauf des Verbrennungsmotors den Verbrennungsmotor im Wesentlichen direkt über den ersten Kühlkreislauf erwärmt, sofern zumindest ein sich an dem Verbindungselement angeordnetes Ventilelement geschlossen ist und damit eine Wirkverbindung zwischen dem ersten Kühlkreislauf und dem zweiten Kühlkreislauf verhindert.
  • Ist ein an dem Verbindungselement befindliches bzw. angeordnetes Ventilelement geöffnet und ermöglicht eine Wirkverbindung zwischen dem ersten Kühlkreislauf und dem zweiten Kühlkreislauf, ist der Elektromotor folglich nicht nur mit dem ersten Kühlkreislauf, sondern auch mit dem dritten Kühlkreislauf verbunden.
  • Folglich wird die Abwärme des Elektromotors nicht nur über den ersten Kühlkreislauf, sondern auch über den dritten Kühlkreislauf, welcher sich aus dem ersten Kühlkreislauf, dem zweiten Kühlkreislauf und dem Verbindungselement ergibt, ermöglicht.
  • In einer anderen bevorzugten Ausführungsform, gemäß welcher der Elektromotor mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit verbunden ist, erwärmt der Elektromotor den Verbrennungsmotors im Wesentlichen indirekt über den dritten Kühlkreislauf.
  • D.h., dass das Ventilelement derart geöffnet sein muss, um eine Wirkverbindung zwischen dem ersten Kühlkreislauf und dem zweiten Kühlkreislauf zu ermöglichen, wodurch ein dritter Kühlkreislauf gebildet wird, um folglich die Abwärme des Elektromotors und vorzugsweise zusätzlich die Abwärme der Leistungselektronik, welche ebenfalls mit dem zweiten Kühlkreislauf verbunden ist, bis zum ersten Kühlkreislauf des Verbrennungsmotors und insbesondere direkt zum Verbrennungsmotor transportieren zu können und zusätzlich eine optimierte Kühlung des elektrischen Systems zu gewährleisten.
  • Infolgedessen sind die Leistungselektronikeinheit, der Elektromotor und auch der Verbrennungsmotor gleichermaßen mit dem dritten Kühlkreislauf verbunden.
  • In einer weiteren bevorzugten Ausführungsform ist es denkbar, dass ein an dem Verbindungselement angeordnetes Ventilelement während eines reinen Betriebes des Elektromotors geöffnet wird, um zumindest die Leistungselektronikeinheit zusätzlich mit dem ersten Kühlkreislauf des Verbrennungsmotors zu kühlen.
  • D.h., dass die Leistungselektronikeinheit nicht nur mit dem Kühleinrichtung des zweiten Kühlkreislaufes, mit welchem die Leistungselektronik verbunden ist, gekühlt bzw. auf ein definiertes Temperaturniveau geregelt wird, sondern auch mit Unterstützung des ersten Kühlkreislaufes des Verbrennungsmotors. Demzufolge wird die Leistungselektronikeinheit, die demnach mit dem dritten Kühlkreislauf verbunden ist, mittels mindestens zweier Kühleinrichtungen des dritten Kühlkreislaufes gekühlt, wodurch eine optimierte Kühlung der Leistungselektronik und gegebenenfalls des Elektromotors erfolgt, um den Wirkungsgrad des elektrischen Systems zu erhöhen.
  • Des Weiteren ist es denkbar, dass ein an dem Verbindungselement angeordnetes Ventilelement geschlossen wird, wenn der zweite Kühlkreislauf der Leistungselektronikeinheit während des Betriebes des Verbrennungsmotors eine Temperatur oberhalb eines definierten Maximaltemperaturniveaus aufweist.
  • Dies bietet die Möglichkeit eine Überhitzung der Leistungselektronik und gegebenenfalls des Elektromotors, sofern dieser mit dem zweiten Kühlkreislauf der Leistungselektronikeinheit verbunden ist, zu verhindern, indem der Verbrennungsmotor vom zweiten Kühlkreislauf der Leistungselektronikeinheit abgekoppelt wird. Dadurch wird keine Abwärme des Verbrennungsmotors mehr über den dritten Kühlkreislauf an die Leistungselektronik und gegebenenfalls den Elektromotor übertragen, so dass die Kühleinrichtung des zweiten Kühlkreislaufes die Temperatur der Leistungselektronikeinheit bzw. das Temperaturniveau des zweiten Kühlkreislaufes wieder auf einen optimalen Wert regulieren kann.
  • Weitere Vorteile, Ziele und Eigenschaften der vorliegenden Erfindung werden anhand nachfolgender Beschreibung anliegender Zeichnung erläutert, in welcher beispielhaft Ausführungsformen der erfindungsgemäßen Antriebseinheit mit mindestens zwei Kühlkreisläufen dargestellt wird.
  • Komponenten, welche in den Figuren wenigstens im Wesentlichen hinsichtlich ihrer Funktion übereinstimmen, können hierbei mit gleichen Bezugszeichen gekennzeichnet sein, wobei diese Komponenten nicht in allen Figuren gekennzeichnet und erläutert sein müssen.
  • In den Figuren zeigen:
  • Fig.1
    eine Prinzipskizze einer ersten Ausführungsform einer erfindungsgemäßen Antriebseinheit; und
    Fig.2
    eine Prinzipskizze einer zweiten Ausführungsform einer erfindungsgemäßen Antriebseinheit.
  • Fig.1 zeigt eine Prinzipskizze einer ersten Ausführungsform einer erfindungsgemäßen Antriebseinheit 1, welche einen Verbrennungsmotor 2, einen Generator 3, einen Elektromotor 4, eine Leistungselektronikeinheit 5, eine erste Kühleinrichtung 6 und eine zweite Kühleinrichtung 7 aufweist.
  • Der Verbrennungsmotor 2, die Kühleinrichtung 6 sowie der Elektromotor 4 und der Generator 3 sind gemeinsam mit einem ersten Kühlkreislauf 10 verbunden. In diesem ersten Kühlkreislauf 10 wird über entsprechende Leitungen 10a bis 10d ein Kühlmedium, welches einen flüssigen oder gasförmigen Aggregatzustand aufweisen kann, transportiert, um Abwärme der Verbraucher 2, 3, 4 aufzunehmen und der Kühleinrichtung 6 zu übertragen, welche die Wärme aufnimmt und an die Umgebung abgibt.
  • Während eines Betriebes des Elektromotors 4 sowie des Verbrennungsmotors 2 und folglich auch des Generators 3 wird Abwärme erzeugt, welche, sofern diese nicht zur Erhöhung des Temperaturniveaus des ersten Kühlkreislaufes 10 genutzt werden soll, beispielsweise über in den Leitungen 10a und 10b fließendes Kühlmedium der Kühleinrichtung 6 zugeführt und von dieser an die Umgebung abgegeben wird. Hierbei arbeitet die Kühleinrichtung 6 als eine Art Wärmetauscher. Das von der Kühleinrichtung 6 abgekühlte Kühlmedium, welchem folglich die Abwärme der Verbraucher 2, 3, 4 entzogen wurde, fließt nun über beispielsweise die Leitungen 10c und 10d zu den Verbrauchern 2, 3, 4 zurück, um von diesen wieder Abwärme aufnehmen zu können und diese folglich zu kühlen bzw. deren Temperatur zu regulieren.
  • Vorzugsweise vor Aktivierung des Verbrennungsmotors 2 wird die Abwärme des sich in Betrieb befindlichen Elektromotors 4 - der Generator 3 ist ebenfalls deaktiviert - nicht über die Kühleinrichtung 6 an die Umgebung abgegeben, sondern zur Erhöhung des Temperaturniveaus des ersten Kühlkreislaufes 10 verwendet. D.h., dass das Kühlmedium die von dem Elektromotor 4 abgegebene Abwärme bis zum Erreichen eines definierten Temperaturniveaus aufnimmt und vorzugsweise an den Verbrennungsmotor 2 abgibt, um diesen im Wesentlichen kontinuierlich auch während eines Nichtbetriebes des Verbrennungsmotors 2 vorzuwärmen.
  • Eine zur Kühleinrichtung 6 vergleichbare Kühleinrichtung 7 sowie auch eine Leistungselektronikeinheit 5 sind gemäß der Fig.1 mit dem zweiten Kühlkreislauf 20 verbunden. Über Leitungen 20a und 20b wird ein Kühlmedium zwischen der Kühleinrichtung 7 und der Leistungselektronikeinheit 5 transportiert, um beispielsweise durch den Betrieb der Leistungselektronikeinheit 5 erzeugte Abwärme aufzunehmen und über die Leitung 20a zu der Kühleinrichtung 7 zu transportieren.
  • Insbesondere bei einem geschlossenen bzw. deaktivierten Ventil 8 bzw. Ventilelement 8 findet keine Wirkverbindung über das Verbindungselement 9 zwischen dem ersten Kühlkreislauf 10 und dem zweiten Kühlkreislauf 20 statt. Somit wird die von der Leistungselektronikeinheit 5 erzeugte Abwärme direkt an die Kühleinrichtung 7 mittels des Kühlmediums transportiert und von diesem an die Umgebung abgegeben. Demnach arbeitet auch die Kühleinrichtung 7 des zweiten Kühlkreislaufes 20 als eine Art Wärmetauscher, um die dem Kühlmedium entzogen Wärme an die Umgebung abzugeben, damit das Kühlmedium beispielsweise über die Leitung 20b zurück zum Verbraucher 5, d.h. der Leistungselektronikeinheit 5 transportiert werden kann, um dort erneut Abwärme der Leistungselektronikeinheit 5 aufnehmen zu können.
  • Der dritte Kühlkreislauf 30 bildet sich vornehmlich bei einem aktivierten bzw. geöffneten Ventilelement 8, welches eine Wirkverbindung, d.h. einen Fluss bzw. eine Bewegung des Kühlmediums aus dem ersten Kühlkreislauf 10 zum zweiten Kühlkreislauf 20 und zurück bzw. aus dem zweiten Kühlkreislauf 20 zum ersten Kühlkreislauf 10 und zurück ermöglicht.
  • Dabei fließen die Kühlmedien der Kühlkreisläufe 10 und 20 über ein Verbindungselement 9, welches vorzugsweise aus zwei die Kühlmedien transportierende Leitungen 9a und 9b aufweist.
  • Infolgedessen besteht der dritte Kühlkreislauf 30 aus dem ersten Kühlkreislauf 10, dem zweiten Kühlkreislauf 20 und dem Verbindungselement 9 und dementsprechend aus den Leitungen 10a, 10b, 10c, 10d, 20a, 20b, 9a, 9b der Kühlkreisläufe 10, 20, 30.
  • Zur Messung von Temperaturen an den Verbrauchern 2, 3, 4,5 bzw. Temperaturniveaus der Kühlkreisläufe 10, 20, 30 werden vorzugsweise Wärmesensoren (hier nicht gezeigt) verwendet, welche entweder direkt im Bereich eines Verbrauchers 2, 3, 4, 5 oder an einer Leitung 10a, 10b, 10c, 10d, 20a, 20b, 9a, 9b einer der Kühlkreisläufe 10, 20, 30 angeordnet sein können.
  • Des Weiteren können Lüftungselemente 11, 12 an den Kühlkreisläufen 10, 20, 30 und vorzugsweise im Bereich der Kühleinrichtungen 6 und 7 angeordnet sein, um beispielsweise die von den Kühleinrichtungen 6 und 7 an die Umgebung abgegebene Wärme derart zu verteilen bzw. wegzuleiten, dass diese nicht in Richtung der Verbraucher 2, 3, 4, 5 bewegt wird, welche gegebenenfalls gekühlt werden sollen.
  • Gemäß der Ausführungsform der Fig.1 wird in einem rein elektrischen Betrieb, d.h. während der Zeitdauer, in welcher lediglich der Elektromotor 4 aktiv ist, die Abwärme des Elektromotors 4 bei einem geschlossenen Ventilelement 8 über den ersten Kühlkreislauf 10 und bei einem geöffneten Ventilelement 8 über den dritten Kühlkreislauf 30 an den Verbrennungsmotor 2 übertragen, um diesen vorzuwärmen. Ebenfalls wird die Abwärme der Leistungselektronikeinheit 5 bei einem geöffneten Ventilelement 8 über den dritten Kühlkreislauf 30 ebenso an den Verbrennungsmotor 2 zum Vorwärmen des Letzteren übertragen.
  • Der Elektromotor 4 und die Leistungselektronikeinheit 5 werden bei einem geöffneten Ventilelement 8 zudem durch zwei Kühleinrichtungen 6 und 7 gekühlt, wodurch der Wirkungsgrad dieser Verbraucher 4 und 5 erhöht werden kann.
  • In der Fig.2 ist eine Prinzipskizze einer zweiten Ausführungsform der erfindungsgemäßen Antriebseinheit 1 gezeigt, welche sich von der Ausführungsform der Fig.1 dahingehend unterscheidet, dass der Elektromotor 4 und der Generator 3 mit dem zweiten Kühlkreislauf 20 der Leistungselektronikeinheit 5 verbunden sind. Über ein auch durch die entsprechenden Leitungen 20b, 20d des zweiten Kühlkreislaufes 20 fließendes Kühlmedium wird die Abwärme der sich in Betrieb befindlichen Verbraucher 3 und/oder 4 an die Kühleinrichtung 7 transportiert.
  • Befindet sich lediglich der Elektromotor 4 und die Leistungselektronik 5 in Betrieb, um das Fahrzeug anzutreiben, wird beispielsweise das Ventilelement 8 geöffnet, um eine Wirkverbindung mit dem ersten Kühlkreislauf 10 herzustellen, mit welchem nun lediglich der Verbrennungsmotor 2 verbunden ist.
  • Der Elektromotor 4 und die Leistungselektronik 5 sind folglich über den dritten Kühlkreislauf 30 mit dem Verbrennungsmotor 2 verbunden, um diesen mittels deren Abwärme, welche über das Kühlmedium bzw. die Kühlmedien transportiert wird, vorzuwärmen und demzufolge gleichzeitig mittels zweier Kühlkreisläufe gekühlt zu werden.
  • Gemäß der Ausführungsform der Fig.2 wird der Verbrennungsmotor 2 folglich im Wesentlichen indirekt über den dritten Kühlkreislauf durch die Abwärme der Verbraucher 4 und 5 vorgewärmt, um bei einer Inbetriebnahme des Verbrennungsmotors 2 optimierte Emissions-und Verbrauchswerte zu ermöglichen.
  • Nach Erreichen einer Maximaltemperatur des zweiten Kühlkreislaufes 20, wird das Ventilelement 8 vorzugsweise geschlossen und der erste Kühlkreislauf 10 von dem zweiten Kühlkreislauf 20 getrennt bzw. abgekoppelt, um eine Überhitzung des elektrischen Systems 4, 5 bzw. der Leistungselektronikeinheit 5 und/oder der Elektromotors 4 zu verhindern.
  • Dies ist ebenso bei der Ausführungsform der erfindungsgemäßen Antriebseinheit 1 gemäß der Fig.1 möglich.
  • Vorzugsweise wird der erste Kühlkreislauf 10 als Hochtemperaturkreislauf 10 und der zweite Kühlkreislauf 20 als Niedertemperaturkreislauf 20 bezeichnet.
  • Der Hochtemperaturkreislauf 10 kann vorzugsweise ein höheres Temperaturniveau aufweisen, als der Niedertemperaturkreislauf 20.
  • Die Anmelderin behält sich vor sämtliche in den Anmeldungsunterlagen offenbarten Merkmale als erfindungswesentlich zu beanspruchen, sofern sie einzeln oder in Kombination gegenüber dem Stand der Technik neu sind.
  • Bezugszeichenliste
  • 1
    Antriebseinheit
    2
    Verbrennungsmotor
    3
    Generator
    4
    Elektromotor
    5
    Leistungselektronikeinheit mit
    6, 7
    Kühleinrichtung
    8
    Ventilelement
    9
    Verbindungselement
    10
    erster Kühlkreislauf
    11, 12
    Lüftungselement
    20
    zweiter Kühlkreislauf
    30
    dritter Kühlkreislauf

Claims (10)

  1. Antriebseinheit (1) zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges mit mindestens einem das Fahrzeug antreibenden Elektromotor (4), mindestens einem die elektrische Energie erzeugenden Generator (3), mindestens einem den Generator (3) antreibenden Verbrennungsmotor (2) und mindestens einer Leistungselektronikeinheit (5) zum Ansteuern und/oder Regeln des Elektromotors (4),
    dadurch gekennzeichnet, dass
    zumindest der Verbrennungsmotor (2) und die Leistungselektronikeinheit (5) mit jeweils einem eine eigene Kühleinrichtung (6, 7) aufweisenden Kühlkreislauf (10, 20) verbunden sind, wobei der erste Kühlkreislauf (10) des Verbrennungsmotors (2) und der zweite Kühlkreislauf (20) der Leistungselektronikeinheit (5) über ein Verbindungselement (9) in Wirkverbindung zur Ausbildung eines gemeinsamen dritten Kühlkreislaufes (30) miteinander stehen und zumindest der Elektromotor (4) derart mit einem der Kühlkreisläufe (10, 20, 30) verbunden ist, dass die durch den Betrieb des Elektromotors (4) entstehende und über mindestens einen der Kühlkreisläufe (10, 20, 30) transportierte Abwärme zum Vorwärmen des Verbrennungsmotors (2) verwendbar ist.
  2. Antriebseinheit gemäß Anspruch 1,
    dadurch gekennzeichnet, dass
    an dem Verbindungselement (9) ein Ventilelement (8) angeordnet ist, um die Wirkverbindung zwischen dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) und dem zweiten Kühlkreislauf (20) der Leistungselektronikeinheit (5) zu unterbrechen bzw. zu ermöglichen.
  3. Antriebseinheit gemäß einem der Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    zumindest der Elektromotor (4) mit dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) zum im Wesentlichen direkten Vorwärmen des Verbrennungsmotors (2) oder mit dem zweiten Kühlkreislauf (20) der Leistungselektronikeinheit (5) zum im Wesentlichen indirekten Vorwärmen des Verbrennungsmotors (2) über den dritten Kühlkreislauf (30) verbunden ist.
  4. Antriebseinheit gemäß einem der vorangegangenen Ansprüche,
    dadurch gekennzeichnet, dass
    der Generator (3) zusammen mit dem Elektromotor (4) mit dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) oder mit dem zweiten Kühlkreislauf (20) der Leistungselektronikeinheit (5) verbunden ist.
  5. Antriebseinheit gemäß einem der vorangegangenen Ansprüche
    dadurch gekennzeichnet, dass
    der Generator (3) getrennt von dem Elektromotor (4) mit dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) oder mit dem zweiten Kühlkreislauf (20) der Leistungselektronikeinheit (5) verbunden ist.
  6. Verfahren zum Vorwärmen eines Verbrennungsmotors (2) einer Antriebseinheit (1) zum Antreiben eines mit elektrischer Energie antreibbaren Fahrzeuges, wobei die Antriebseinheit (1) zudem mindestens einen die elektrische Energie erzeugenden Generator (3) und mindestens eine Leistungselektronikeinheit (5) zum Ansteuern und/oder Regeln des Elektromotors (4) aufweist,
    dadurch gekennzeichnet, dass
    zumindest der Verbrennungsmotor (2) und die Leistungselektronikeinheit (5) mit jeweils einem eine eigene Kühleinrichtungen (6, 7) aufweisenden Kühlkreislauf (10, 20) verbunden werden, wobei der erste Kühlkreislauf (10) des Verbrennungsmotors (2) und der zweite Kühlkreislauf (20) der Leistungselektronikeinheit (5) über ein Verbindungselement (9) in Wirkverbindung zur Ausbildung eines gemeinsamen dritten Kühlkreislaufes (30) miteinander stehen und zumindest der Elektromotor (4) derart mit einem der Kühlkreisläufe (10, 20, 30) verbunden wird, dass die durch den Betrieb des Elektromotors (4) entstehende Abwärme über mindestens einen der Kühlkreisläufe (10, 20, 30) transportiert und zum Vorwärmen des Verbrennungsmotors (2) verwendet wird.
  7. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass
    der Elektromotor (4) bei einer Verbindung mit dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) den Verbrennungsmotor (2) im Wesentlichen direkt über den ersten Kühlreislauf (10) erwärmt.
  8. Verfahren nach Anspruch 6,
    dadurch gekennzeichnet, dass
    der Elektromotor (4) bei einer Verbindung mit dem zweiten Kühlkreislauf (20) der Leistungselektronikeinheit (5) den Verbrennungsmotor (2) im Wesentlichen indirekt über den dritten Kühlkreislauf (30) erwärmt.
  9. Verfahren nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass
    ein an dem Verbindungselement (9) angeordnetes Ventilelement (8) während eines reinen Betriebes des Elektromotors (4) geöffnet wird, um zumindest die Leistungselektronikeinheit (5) zusätzlich mit dem ersten Kühlkreislauf (10) des Verbrennungsmotors (2) zu kühlen.
  10. Verfahren nach einem der Ansprüche 6 bis 9,
    dadurch gekennzeichnet, dass
    ein an dem Verbindungselement (9) angeordnetes Ventilelement (8) geschlossen wird, wenn der zweite Kühlkreislauf (20) der Leistungselektronikeinheit (5) während des Betriebes des Verbrennungsmotors (2) eine Temperatur oberhalb eines definierten Maximaltemperaturniveaus aufweist.
EP12180366.2A 2011-08-16 2012-08-14 Antriebseinheit mit zwei koppelbaren Kühlkreisläufen zum Vorwärmen eines Verbrennungsmotors und Verfahren Not-in-force EP2559879B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011052754.0A DE102011052754B4 (de) 2011-08-16 2011-08-16 Antriebseinheit mit zwei koppelbaren Kühlkreisläufen und Verfahren

Publications (2)

Publication Number Publication Date
EP2559879A1 true EP2559879A1 (de) 2013-02-20
EP2559879B1 EP2559879B1 (de) 2016-07-06

Family

ID=46679191

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12180366.2A Not-in-force EP2559879B1 (de) 2011-08-16 2012-08-14 Antriebseinheit mit zwei koppelbaren Kühlkreisläufen zum Vorwärmen eines Verbrennungsmotors und Verfahren

Country Status (2)

Country Link
EP (1) EP2559879B1 (de)
DE (1) DE102011052754B4 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105774528A (zh) * 2014-12-19 2016-07-20 北汽福田汽车股份有限公司 混合动力车辆的冷却装置及其控制方法和系统
DE102016006201A1 (de) 2016-05-19 2017-11-23 Audi Ag Antriebssystem
DE102016015256A1 (de) 2016-12-21 2018-06-21 Daimler Ag Thermomanagementvorrichtung
SE1851203A1 (en) * 2018-10-05 2019-07-05 Scania Cv Ab System and method for cooling an engine and a secondary heat source and a vehicle comprising such a system
SE1850640A1 (en) * 2018-05-28 2019-11-29 Scania Cv Ab A cooling system for cooling two objects to different temperatures
US11220931B2 (en) 2017-06-07 2022-01-11 Scania Cv Ab Cooling system for a combustion engine and a WHR system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013209045B4 (de) * 2013-05-15 2022-10-27 Bayerische Motoren Werke Aktiengesellschaft Kühlsystem für ein Hybridfahrzeug sowie Verfahren zum Betrieb eines derartigen Kühlsystems
DE102014220103A1 (de) * 2014-10-02 2016-04-07 Robert Bosch Gmbh Bedarfsgerechtes Kühlen eines Stromrichters eines Kraftfahrzeugs
DE102018205130A1 (de) * 2018-04-05 2019-10-10 Siemens Aktiengesellschaft Verfahren zum Erwärmen eines Antriebs eines Hybridfahrzeugs sowie Vorwärmeinrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251588A (en) * 1991-11-15 1993-10-12 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle drive system
GB2462904A (en) * 2009-07-29 2010-03-03 Protean Holdings Corp Cooling system for a hybrid electric vehicle (HEV)
DE102010000342A1 (de) * 2009-02-27 2010-09-02 Ford Global Technologies, LLC, Dearborn Vorrichtung zur Nutzung der von einer Komponente eines Plug-In-Hybridelektrofahrzeuges erzeugten Wärme

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3292080B2 (ja) * 1997-02-25 2002-06-17 日産自動車株式会社 ハイブリッド電気自動車の冷却装置
DE102007005391A1 (de) * 2007-02-03 2008-08-07 Behr Gmbh & Co. Kg Kühleranordnung für einen Antriebsstrang eines Kraftfahrzeugs

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5251588A (en) * 1991-11-15 1993-10-12 Toyota Jidosha Kabushiki Kaisha Controller for hybrid vehicle drive system
DE102010000342A1 (de) * 2009-02-27 2010-09-02 Ford Global Technologies, LLC, Dearborn Vorrichtung zur Nutzung der von einer Komponente eines Plug-In-Hybridelektrofahrzeuges erzeugten Wärme
GB2462904A (en) * 2009-07-29 2010-03-03 Protean Holdings Corp Cooling system for a hybrid electric vehicle (HEV)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105774528A (zh) * 2014-12-19 2016-07-20 北汽福田汽车股份有限公司 混合动力车辆的冷却装置及其控制方法和系统
DE102016006201A1 (de) 2016-05-19 2017-11-23 Audi Ag Antriebssystem
DE102016015256A1 (de) 2016-12-21 2018-06-21 Daimler Ag Thermomanagementvorrichtung
US11220931B2 (en) 2017-06-07 2022-01-11 Scania Cv Ab Cooling system for a combustion engine and a WHR system
SE1850640A1 (en) * 2018-05-28 2019-11-29 Scania Cv Ab A cooling system for cooling two objects to different temperatures
SE1851203A1 (en) * 2018-10-05 2019-07-05 Scania Cv Ab System and method for cooling an engine and a secondary heat source and a vehicle comprising such a system

Also Published As

Publication number Publication date
DE102011052754B4 (de) 2015-05-21
EP2559879B1 (de) 2016-07-06
DE102011052754A1 (de) 2013-02-21

Similar Documents

Publication Publication Date Title
EP2559879B1 (de) Antriebseinheit mit zwei koppelbaren Kühlkreisläufen zum Vorwärmen eines Verbrennungsmotors und Verfahren
DE112011104043B4 (de) Antriebsstrangkühlsystem für ein Hybridfahrzeug
DE102011000796B4 (de) Klimatisierungssystem für insbesondere ein Hybridfahrzeug
DE102011101003A1 (de) Kühlsystem
EP3403869B1 (de) Kühlvorrichtung
EP2448782A1 (de) System zum antrieb einer aggregatanordnung für ein kraftfahrzeug
DE102015110057A1 (de) Fahrzeug und steuerverfahren für ein fahrzeug
DE102013221640A1 (de) Kühlsystem für ein Elektrofahrzeug und Verfahren zur Herstellung eines Kühlsystems
EP3026237A1 (de) Verfahren und vorrichtung zum betrieb eines elektromotorisch unterstützten abgasturboladers eines kraftfahrzeugs
DE102008045101A1 (de) Doppelseitiges Wechselrichtersystem für ein Fahrzeug mit zwei Energiequellen, die unterschiedliche Betriebskennlinien aufweisen
DE102010014752A1 (de) Kühlanordnung für ein Fahrzeug mit elektrischem Antrieb und Verfahren zum Betreiben eines solchen Fahrzeugs
DE102011090147A1 (de) Kühlsystem für ein Kraftfahrzeug
DE102013225097A1 (de) Energiemanagementverfahren zum Betreiben eines elektrischen Bordnetzes eines Kraftfahrzeuges und Kraftfahrzeug
EP2844513B1 (de) Vorrichtung und verfahren zur versorgung eines elektrischen antriebes mit elektrischem strom
DE102010012464A1 (de) Heizeinrichtung zum Beheizen eines Fahrzeuginnenraums eines Fahrzeugs
DE102018214705A1 (de) Kühlsystem
DE102014117864A1 (de) Heizsystem von Hybridfahrzeug
DE102017210739A1 (de) Antriebsstrang sowie Verfahren zum Betreiben eines Antriebsstrangs
DE102012101586A1 (de) Fahrzeugvorrichtung zum Zuführen von elektrischer Leistung und System zum Zuführen von elektrischer Leistung
DE102013010331B4 (de) Antriebseinrichtung für einen Kraftwagen
DE102013202999A1 (de) Verfahren zum Erwärmen der Traktionsbatterie im Antriebssystem eines Elektrohybrid-Fahrzeuges
DE102012205141A1 (de) Fluidversorgungsanordnung für ein Hybridfahrzeug
DE102015212623A1 (de) Verfahren zum Betrieb parallel geschalteter Generatoreinheiten
DE102018205345B4 (de) Elektromotor mit Flüssigkeitskühlung und Verwendung eines derartigen Elektromotors
EP3214285B1 (de) Verfahren zum betreiben eines kraftfahrzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130222

17Q First examination report despatched

Effective date: 20150612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160202

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AVL SOFTWARE AND FUNCTIONS GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 810901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007558

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160706

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161106

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161007

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007558

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161006

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20170407

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160906

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160814

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120814

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 810901

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170814

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190827

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201007

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012007558

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220301