EP2558456A1 - Dérivés de dithiine utilisés en tant que fongicides - Google Patents

Dérivés de dithiine utilisés en tant que fongicides

Info

Publication number
EP2558456A1
EP2558456A1 EP11713304A EP11713304A EP2558456A1 EP 2558456 A1 EP2558456 A1 EP 2558456A1 EP 11713304 A EP11713304 A EP 11713304A EP 11713304 A EP11713304 A EP 11713304A EP 2558456 A1 EP2558456 A1 EP 2558456A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
plants
alkylthio
alkoxy
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11713304A
Other languages
German (de)
English (en)
Inventor
Thomas Seitz
Jürgen BENTING
Ulrike Wachendorff-Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Intellectual Property GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Intellectual Property GmbH filed Critical Bayer Intellectual Property GmbH
Priority to EP11713304A priority Critical patent/EP2558456A1/fr
Priority to PL13190285T priority patent/PL2703397T3/pl
Priority to EP13190285.0A priority patent/EP2703397B1/fr
Priority to EP13190284.3A priority patent/EP2706058B1/fr
Priority to PL13190284T priority patent/PL2706058T3/pl
Publication of EP2558456A1 publication Critical patent/EP2558456A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/24Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms
    • A01N43/32Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/84Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms six-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,4
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00

Definitions

  • the present invention relates to the use of new and known dithiine derivatives for controlling unwanted microorganisms, in particular phytopathogenic fungi, in crop protection, in the household and hygiene sector and in the protection of materials, as well as novel dithiine derivatives, processes for their preparation, their use and crop protection products containing these new dithiine derivatives.
  • dithiine derivatives or even dihydro-dithiines are already known as fungicides or insecticides (cf., inter alia, WO 95/29181, US Pat. No. 4,150,130, JP-B 48-11020, JP-A 50-40736, JP-B 52-31407, WO 2010/043319, DE-B 1060655, US 3,663,543, US 3,265,565, US 4,004,018).
  • Other dithiine derivatives having antibacterial activity are also known (see II Farmaco 2005. 60, 944-947, WO 96/19481).
  • Other dithiine derivatives are known as chemicals, e.g.
  • n 0, 1 or 2
  • R 1 , R 2 , R 3 , R 4 are identical or different and denote hydrogen, halogen, nitro, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -alkylthio, C 1 -C 9 -halogenoalkoxy, C 1 -C 4 Haloalkylthio, -COR 5 , -CH 2 COR 5 , optionally mono- or polysubstituted, identically or differently by halogen, nitro, cyano, Ci-C i-alkyl, Ci-C i -haloalkyl or Ci-C i-alkoxy substituted Aryl, aryl- (C 1 -C 4 -alkyl), hetaryl or hetaryl- (C 1 -C 4 -alkyl) or N-phenylmonomethyl-4-carboximidoyl,
  • R 5 is hydroxy, C 1 -C 4 -alkyl or C 1 -C 4 -alkoxy
  • R 3 and R 4 either together have the same meaning as R 1 and R 2 or are simultaneously hydrogen or together with the carbon atoms to which they are attached form an aryl ring,
  • R 6 is hydroxy, C 1 -C 4 -alkyl or C 1 -C 4 -alkoxy
  • R 1 and R 2 and R 3 and R 4 are not simultaneously an optionally substituted 1H-pyrrole-2,5-dione ring;
  • X 1 is S or NR 7 ,
  • X 2 is S or NR 7a , where X 2 is the same or different from X 1 , or is phenyl-1,2-diyl,
  • R 7 is Ci-Cg-alkylthio, Ci-Cg-haloalkylthio, Ci-C 4 -alkylamino, di- (Ci-C - alkyl) amino, phenylsulfonylamino or triply, same or different, by halogen, Ci-C 4 - Alkyl, C 1 -C 4 -haloalkyl, C 1 -C 4 -alkoxy, C 1 -C 4 -haloalkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 -halogenoalkylthio, substituted aryl or aryl- (C 1 -C 4 -alkyl); R 7a is hydrogen, Ci-Cg-alkylthio, Ci-Cg-haloalkylthio, Ci-C4-alkylamino, di- (Ci-C4-alkyl) amino, phenylsulfonylamino or triply
  • R 8 and R 9 are identical or different and represent hydrogen, halogen, C 1 -C 6 -alkyl, C 1 -C 4 -alkyl,
  • R 3 and R 4 are either both simultaneously cyano or together for the group
  • R 8 and R 9 are the same or different and are hydrogen, halogen, Ci-Cg-alkyl, Ci-Cg-alkoxy, Ci-Cs-alkylthio, Ci-Cs-haloalkoxy, Ci-Cs-haloalkylthio. for controlling undesirable microorganisms, in particular phytopathogenic fungi, both in crop protection, in the household and hygiene sector and in the protection of materials.
  • the dithiine derivatives of the invention are generally defined by the formula (I).
  • Preferred dithiine derivatives of the formula (I) are those in which the radicals have the following meanings. These preferred meanings apply equally to the intermediates in the preparation of compounds of formula (I).
  • group A of the dithiine derivatives which can be used according to the invention is described by the formula (I), where R 1 , R 2 , R 3 and R 4 have the meanings mentioned above under (a).
  • the dithiine derivatives in this embodiment have no fused rings.
  • the radicals have the following preferred meanings:
  • m is preferably 0 or 2.
  • n is particularly preferably 0.
  • n is preferably 0 or 2.
  • n is particularly preferably 0.
  • n is also particularly preferably 2.m and n are preferably simultaneously 0 or simultaneously 2.
  • n and n are more preferably simultaneously 0.
  • R 1 , R 2 , R 3 , R 4 are preferably identical or different and are preferably hydrogen, fluorine, chlorine, bromine, nitro, C 1 -C 6 -alkyl, C 1 -C 6 -alkoxy, C 1 -C 6 -alkylthio , Ci-C 6 haloalkoxy, Ci-C 6 alkylthio-halo, -COR 5, -CH 2 COR 5, in each case optionally monosubstituted or polysubstituted by identical or different fluorine, chlorine, bromine, nitro, Ci-Ci Alkyl, Ci-Ci-haloalkyl or Ci-Ci-Alkoxy substituted Phenyl, Naphthyl, Biphenyl, Hetaryl or Hetaryl- (Ci-C4-alkyl), whereby Hetaryl from Pyridinyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl, Furyl, Thieny
  • R 1 , R 2 , R 3 , R 4 are more preferably identical or different and are particularly preferably hydrogen, chlorine, bromine, nitro, methyl, ethyl, n-propyl, isopropyl, n-, i-, s- or t Butyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethoxy, trichloromethoxy, trifluoromethylthio, trichloromethylthio, -COR 5 , -CH 2 COR 5 , in each case optionally mono- or polysubstituted, the same or variously substituted by fluorine, chlorine, bromine, nitro, methyl, trifluoromethyl, methoxy-substituted phenyl, naphthyl or biphenyl.
  • R, R, R, R are very particularly preferably identical or different and very particularly preferably represent hydrogen, bromine, nitro, methyl, ethyl, methoxy, ethoxy, methylthio, ethylthio, trifluoromethoxy, trichloromethoxy, trifluoromethylthio, trichloromethylthio, -COR 5 , -CH 2 COR 5 , each optionally optionally mono- or polysubstituted by identical or different fluorine, chlorine, bromine, nitro, methyl, trifluoromethyl, methoxy-substituted phenyl, naphthyl or biphenyl.
  • R 5 is preferably hydroxy, methyl, ethyl, methoxy or ethoxy.
  • R 5 particularly preferably represents hydroxy, methoxy or ethoxy.
  • each of R 1 and R 3 and R 2 and R 4 have the same meaning.
  • a further embodiment (group B) of the dithiine derivatives which can be used according to the invention can be described by the formula -a):
  • R 3a and R 4a either together have the same meaning as R la and R 2a or are simultaneously hydrogen or together with the carbon atoms to which they are attached form an aryl ring, R 6a is hydroxy, Ci-C 4 alkyl or Ci -C 4 alkoxy,
  • R la and R 2a and R 3a and R 4a are not simultaneously an optionally substituted lH-pyrrole-2,5-dione ring.
  • R 3a and R 4a preferably either together have the same meaning as R 1a and R 2a or are preferably simultaneously hydrogen or preferably together with the carbon atoms to which they are attached form an aryl ring, preferably an acenaphthylene ring.
  • R 6a is preferably hydroxy, methyl, ethyl, methoxy or ethoxy.
  • R 6a is particularly preferably hydroxy, methoxy or ethoxy.
  • X 1 is preferably S.
  • X 1 is also preferably NR 7 .
  • X 2 is preferably S.
  • X 2 is also preferably NR 7a , where X 2 is the same or different from X 1 .
  • X 2 is also preferably phenyl-1, 2-diyl.
  • R 7 is preferably C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 3 -alkylamino, di- (C 1 -C 3 -alkyl) amino, phenylsulfonylamino or triply, identically or differently, by fluorine, chlorine, bromine, Methyl, trifluoromethyl, methoxy, trifluoromethoxy, methylthio, trifluoromethylthio, substituted phenyl or phenyl- (C 1 -C 4 -alkyl).
  • R 7 particularly preferably represents methylthio, ethylthio, trifluoromethylthio, trichloromethylthio, methylamino, dimethylamino, phenylsulfonylamino, or trisubstituted, identically or differently, by fluorine, chlorine, bromine, methyl, trifluoromethyl, methoxy, trifluoromethoxy, methylthio, trifluoromethylthio phenyl.
  • R 7a is preferably hydrogen, C 1 -C 6 -alkylthio, C 1 -C 6 -haloalkylthio, C 1 -C 3 -alkylamino, di (C 1 -C 3 -alkyl) amino, phenylsulfonylamino or three times, identically or differently, by fluorine, chlorine, Bromine, methyl, trifluoromethyl, methoxy, trifluoromethoxy, methylthio, trifluoromethylthio, substituted phenyl or phenyl- (C 1 -C 4 -alkyl).
  • R 7a particularly preferably represents hydrogen, methylthio, ethylthio, trifluoromethylthio, trichloromethylthio, methylamino, dimethylamino, phenylsulfonylamino, or trisubstituted, identical or different by fluorine, chlorine, bromine, methyl, trifluoromethyl, methoxy, trifluoromethoxy, methylthio, trifluoromethylthio, substituted phenyl.
  • R 8 and R 9 otherwise have the meanings given above.
  • R 3c and R 4c are both preferably simultaneously cyano.
  • R 3c and R 4c are most preferably both simultaneously cyano.
  • R 8 and R 9 are preferably the same or different and preferably represent hydrogen, fluorine, chlorine, bromine, Ci-Ci-alkyl, Ci-Ci-alkoxy, Ci-C-alkylthio, Ci-C t haloalkoxy, Ci- C4-halogenoalkylthio.
  • R 8 and R 9 are more preferably identical or different and are particularly preferably hydrogen, fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, n-, i-, s- or t-butyl, methoxy, Ethoxy, methylthio, ethylthio.
  • R 8 and R 9 are very particularly preferably identical or different and are very particularly preferably hydrogen, chlorine, methyl, isopropyl, t-butyl, methoxy.
  • R 8 and R 9 have the meanings given above.
  • R 3d and R 4d are preferably both simultaneously for cyano.
  • R 9 are each independently selected.
  • R 3d and R 4d are most preferably both simultaneously cyano.
  • dithiine derivatives which can be used according to the invention may optionally be used as mixtures of various possible isomeric forms, in particular of stereoisomers, such as, for example, B. E and Z, threo and erythro, and optical isomers, but optionally also of tautomers. Both the E and the Z isomers, as well as the threo and erythro, and the optical isomers, any mixtures of these isomers, as well as the possible tautomeric forms claimed.
  • Dithiine derivatives of group A can be prepared, for example, analogously to Heterocycles 1983, 20, 983-984.
  • Dithiine derivatives of the formula (I-a) (group B) can be prepared in a known manner.
  • Dithiine derivatives of the formula (I-c) (group D) can be prepared by oxidizing dithiine derivatives of the formula (I-d) (see also the Preparation Examples).
  • Dithiine derivatives of the formula (I-d) (group D) can be prepared, for example, by
  • a diluent e.g., dimethylformamide, water, alcohols.
  • Benzoquinones of the formula (II) are known or can be obtained in a known manner.
  • the disodium l, 2-dicyanoethene l, 2-bis (thiolate) of the formula (III) which is furthermore required as starting material in carrying out the process (i) according to the invention is known. It is also possible to use the compound of the formula (III) in the form of a salt or hydrate (for example in the form of the dihydrate). The compound of the formula (III) can be used in (E) or (Z) form.
  • the thiourea which is furthermore required as starting material in carrying out the process (ii) according to the invention is known.
  • sulfurizing agents such as sulfides, e.g. Sodium sulfide, thiosulfate, e.g. Sodium thiosulfate and hydrogen sulfide are used.
  • the present invention further relates to a crop protection agent for controlling unwanted fungi comprising at least one of the dithiine derivatives of the formula (I).
  • a crop protection agent for controlling unwanted fungi comprising at least one of the dithiine derivatives of the formula (I).
  • the invention relates to a method for controlling unwanted microorganisms, characterized in that according to the invention dithiine derivatives of the formula (I) on the phytopathogenic fungi and / or their habitat brings.
  • the carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, especially for application to plants or parts of plants or seeds mixed or connected.
  • the carrier which may be solid or liquid, is generally inert and should be useful in agriculture.
  • Suitable solid or liquid carriers are: e.g. Ammonium salts and ground natural minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as fumed silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially Butanol, organic Solven- tien, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • Suitable solid carriers for granules are: e.g.
  • Cracked and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, coconut shells, corn cobs and tobacco stems.
  • Suitable liquefied gaseous diluents or carriers are those liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants, such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose, natural and synthetic powdery, granular or latex-type polymers can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, natural phospholipids such as cephalins and lecithins, and synthetic phospholipids.
  • Other additives may be mineral and vegetable oils.
  • Suitable liquid solvents are essentially: aromatics, such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons, such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons, such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethylsulfoxide, and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethylformamide and dimethylsulfoxide, and water.
  • compositions of the invention may additionally contain other ingredients, such as surfactants.
  • Suitable surface-active substances are emulsifying and / or foam-producing agents, dispersants or wetting agents having ionic or nonionic properties or mixtures of these surface-active substances.
  • Examples thereof are salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylarylpolyglycol ethers, alkylsulphonates, alkylsulphates, arylsulphonates, protein hydrolysates, lignin sulphite liquors and methylcellulose.
  • the presence of a surfactant is necessary when one of the active ingredients and / or one of the inert carriers is not soluble in water and when the application is done in water.
  • the proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention.
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additional components may also be included, e.g. protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, stabilizers, sequestering agents, complexing agents.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the formulations generally contain between 0.05 and 99 wt .-%, 0.01 and 98 wt .-%, preferably between 0, 1 and 95 wt .-%, particularly preferably between 0.5 and 90% active ingredient, completely more preferably between 10 and 70 weight percent.
  • the active compounds or compositions according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, Pastes, pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powder
  • the formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active compounds with at least one customary extender, solvent or diluent, emulsifier, dispersing and / or binding or fixing agent, wetting agent, water repellent, optionally siccatives and UV stabilizers and optionally dyes and pigments, antifoams, Preservatives, secondary thickeners, adhesives, gibberellins and other processing aids.
  • compositions according to the invention comprise not only formulations which are already ready for use and which can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention can be used as such or in their (commercially available) formulations and in the formulations prepared from these formulations in admixture with other (known) active ingredients, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals.
  • the treatment according to the invention of the plants and plant parts with the active compounds or agents takes place directly or by acting on their environment, habitat or storage space according to the usual treatment methods, eg by dipping, spraying, spraying, sprinkling, evaporation, Spraying, atomizing, sprinkling, foaming, spreading, spreading, drenching, drip irrigation and, in the case of propagating material, in particular for seeds, further by dry pickling, wet dressing, slurry pickling, encrusting, single or multi-layer coating, etc. It is further It is possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • the invention further comprises a method of treating seed.
  • the invention further relates to seed which has been treated according to one of the methods described in the previous paragraph.
  • the seeds according to the invention are used in methods for protecting seed from undesirable fungi.
  • a seed treated with at least one active ingredient according to the invention is used.
  • the active compounds or compositions according to the invention are also suitable for the treatment of seed.
  • Much of the crop damage caused by harmful organisms is caused by infestation of the seed during storage or after sowing, and during and after germination of the plant. This phase is particularly critical because the roots and shoots of the growing plant are particularly sensitive and may cause only a small damage to the death of the plant. There is therefore a great interest in protecting the seed and the germinating plant by using suitable means.
  • the present invention therefore also relates to a method of protecting seed and germinating plants from the infestation of phytopathogenic fungi by treating the seed with an agent according to the invention.
  • the invention also relates to the use of the seed treatment agents of the invention for protecting the seed and the germinating plant from phytopathogenic fungi.
  • WEI terhin the invention relates to seed which has been treated for protection against phytopathogenic fungi with an agent according to the invention.
  • One of the advantages of the present invention is that due to the particular systemic properties of the active compounds or compositions according to the invention, the treatment of the seeds with these active ingredients or agents protects not only the seed itself, but also the resulting plants after emergence from phytopathogenic fungi , In this way, the immediate treatment of the culture at the time of sowing or shortly afterwards can be omitted.
  • the active compounds or agents according to the invention can also be used in particular in the case of transgenic seed, wherein the plant growing from this seed is capable of expressing a protein which acts against pests.
  • the active compounds or agents according to the invention By treating such seeds with the active compounds or agents according to the invention, it is possible to combat pests already determined by the expression of, for example, insecticidal protein.
  • a further synergistic effect can be observed, which additionally increases the effectiveness for protection against pest infestation.
  • compositions according to the invention are suitable for the protection of seed of any plant variety used in agriculture, in the greenhouse, in forests or in horticulture and viticulture.
  • these are seeds of cereals (such as wheat, barley, rye, triticale, millet and oats), corn, cotton, soya, rice, potatoes, sunflower, bean, coffee, turnip (eg sugar beet and fodder beet), peanut, Rapeseed, poppy, olive, coconut, cocoa, sugarcane, tobacco, vegetables (such as tomato, cucumber, onions and lettuce), turf and ornamental plants (see also below).
  • cereals such as wheat, barley, rye, triticale and oats
  • corn and rice are seeds of cereals (such as wheat, barley, rye, triticale, millet and oats), corn, cotton, soya, rice, potatoes, sunflower, bean, coffee, turnip (eg sugar beet and fodder beet), peanut, Rapeseed,
  • transgenic seed As also described below, the treatment of transgenic seed with the active compounds or agents according to the invention is of particular importance.
  • the heterologous gene in transgenic seed can be derived, for example, from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • this heterologous gene is derived from Bacillus sp., Wherein the gene product has an activity against the European corn borer and / or Western Com Rootworm.
  • the heterologous gene is from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a condition that is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used which has been harvested, cleaned and dried to a moisture content below 15% by weight.
  • seed can also be used, which after drying, for example, treated with water and then dried again.
  • care must be taken in the treatment of the seed that the amount of the agent and / or other additives applied to the seed is chosen so that germination of the seed is not impaired or the resulting plant is not damaged. This must be taken into account, above all, with active ingredients which can show phytotoxic effects at certain application rates.
  • the agents according to the invention can be applied directly, ie without containing further components and without being diluted. In general, it is preferable to apply the agents to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430 A, US 5,876,739 A, US 2003/0176428 AI, WO 2002/080675 AI, WO 2002/028186 A2.
  • the active compounds which can be used according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water.
  • conventional additives such as conventional extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the designations Rhodamin B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds.
  • Preferably used are alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates.
  • dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention, all are used for the formulation of agrochemical active compounds conventional nonionic, anionic and cationic dispersants into consideration.
  • nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants are, in particular, ethylene oxide-propylene oxide, block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the gibberellins are known (see R. Wegler "Chemie der convinced- und Swdlingsbekungsstoff", Vol. 2, Springer Verlag, 1970, pp. 401-412).
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including seed of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the seed dressing formulations which can be used according to the invention or the preparations prepared therefrom by the addition of water
  • all mixing devices which can usually be used for the dressing can be considered. Specifically, in the pickling procedure, the seed is placed in a mixer which adds either desired amount of seed dressing formulations either as such or after prior dilution with water and mixes until evenly distributed the formulation on the seed.
  • a drying process follows.
  • the active compounds or compositions according to the invention have a strong fungicidal action and can be used to combat unwanted fungi in crop protection and in the protection of materials.
  • the dithiine derivatives according to the invention can be used in crop protection for controlling Plasmodiophoromyces, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes and Deuteromycetes.
  • the fungicidal compositions according to the invention can be used curatively or protectively for controlling phytopathogenic fungi.
  • the invention therefore also relates to curative and protective methods for controlling phytopathogenic fungi by the use of the active compounds or agents according to the invention, which are applied to the seed, the plant or plant parts, the fruits or the soil in which the plants grow.
  • compositions of the invention for controlling phytopathogenic fungi in crop protection comprise an effective but non-phytotoxic amount of the active compounds according to the invention.
  • Effective but non-phytotoxic amount means an amount of the agent of the invention sufficient to control or completely kill the fungal disease of the plant and at the same time not cause any significant symptoms of phytotoxicity It depends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingredients of the agents according to the invention.
  • the good plant tolerance of the active ingredients in the necessary concentrations for controlling plant diseases allows treatment of aboveground plant parts, of plant and seed, and the soil.
  • plants are understood as meaning all plants and plant populations, such as desired and undesired wild plants or crop plants (including naturally occurring crop plants).
  • Crop plants can be plants which can be obtained by conventional breeding and optimization methods or by biotechnological and genetic engineering methods or combinations of these methods, including the transgenic plants and including the plant varieties which can or can not be protected by plant breeders' rights.
  • Plant parts are to be understood as meaning all aboveground and subterranean parts and organs of the plants, such as shoot, leaf, flower and root, examples of which include leaves, needles, stems, stems, flowers, fruiting bodies, fruits and seeds, and roots, tubers and rhizomes.
  • the plant parts also include crops and vegetative and generative propagation material, such as cuttings, tubers, rhizomes, offshoots and seeds.
  • the active compounds according to the invention are suitable for good plant tolerance, favorable toxicity to warm-blooded animals and good environmental compatibility for the protection of plants and plant organs, for increasing crop yields, improving the quality of the harvested crop. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development As plants which can be treated according to the invention, mention may be made of the following: cotton, flax, grapevine, fruits, vegetables, such as Rosaceae sp.
  • pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example, banana trees and plantations), Rubiaceae sp.
  • Poaceae sp. eg sugarcane
  • Asteraceae sp. for example sunflower
  • Brassicaceae sp. for example, white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes and rapeseed, mustard, horseradish and cress
  • Fabacae sp. for example, bean, peanuts
  • Papilionaceae sp. for example, soybean
  • Solanaceae sp. for example potatoes
  • Chenopodiaceae sp. for example, sugar beet, fodder beet, chard, beet
  • plants and their parts can be treated.
  • wild plant species or plant cultivars obtained by conventional biological breeding methods such as crossing or protoplast fusion, and parts thereof are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering, if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “parts of plants” has been explained above, plants according to the invention being treated according to the invention in each case for the commercially available or in use plant varieties, plant varieties having new properties ("traits"). which have been bred either by conventional breeding, by mammagenesis or by recombinant DNA techniques. These may be varieties, breeds, biotypes and genotypes.
  • the treatment method of the invention may be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds are used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene essentially means a gene which is provided or assembled outside the plant and which, when introduced into the cell nucleotide, chloroplast genome or mitochondrone genome, imparts new or improved agronomic or other properties to the transformed plant Expressing protein or polypeptide or that it downregulates or shuts down another gene present in the plant or other genes present in the plant (for example by means of antisense technology, cosuppression technology or RNAi technology [RNA Interference ]).
  • a heterologous one Genes present in the genome are also referred to as transgene.
  • a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • the following effects are possible, which go beyond the expected effects: reduced application rates and / or extended spectrum of action and / or increased efficacy of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low Temperatures, increased tolerance to dryness or water or soil salinity, increased flowering, crop relief, ripening, higher yields, larger fruits, greater plant height, intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the crop, higher Sugar concentration in the fruits, better storage and / or processability of the harvested products.
  • the active compound combinations according to the invention can also exert a strengthening effect on plants. They are therefore suitable for mobilizing the plant defense system against attack by undesirable phytopathogenic fungi and / or microorganisms and / or viruses. This may optionally be one of the reasons for the increased effectiveness of the combinations according to the invention, for example against fungi.
  • Plant-strengthening (resistance-inducing) substances in the present context should also mean those substances or substance combinations capable of stimulating the plant defense system in such a way that the treated plants, when subsequently inoculated with undesirable phytopathogenic fungi, have a considerable degree of resistance to these undesired ones exhibit phytopathogenic fungi.
  • the substances according to the invention can therefore be employed for the protection of plants against attack by the mentioned pathogens within a certain period of time after the treatment.
  • the period of time over which a protective effect is achieved generally extends from 1 to 10 days, preferably 1 to 7 days, after the treatment of the plants with the active substances.
  • Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology). Plants and plant varieties which are also preferably treated according to the invention are resistant to one or more biotic stressors, i. These plants have an improved defense against animal and microbial pests such as nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and / or viroids.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are resistant to one or more abiotic stress factors.
  • abiotic stress conditions can for example, drought, cold and heat conditions, osmotic stress, waterlogging, increased soil salt content, increased exposure to minerals, ozone conditions, high light conditions, limited availability of nitrogen nutrients, limited availability of phosphorous nutrients, or avoidance of shade.
  • Plants and plant varieties which can also be treated according to the invention are those plants which are characterized by increased yield properties. An increased yield can in these plants z. B. based on improved plant physiology, improved plant growth and improved plant development, such as water utilization efficiency, water retention efficiency, improved nitrogen utilization, increased carbon assimilation, improved photosynthesis, increased germination and accelerated Abreife.
  • the yield may also be influenced by improved plant architecture (under stress and non-stress conditions), including early flowering, control of flowering for hybrid seed production, seedling vigor, plant size, internode count and spacing, rooting, Seed size, fruit size, pod size, pod or ear number, number of seeds per pod or ear, seed mass, increased seed filling, reduced seed drop, reduced pod popping and stability.
  • improved plant architecture under stress and non-stress conditions
  • Other yield-related traits include seed composition such as carbohydrate content, protein content, oil content and composition, nutritional value, reduction in nontoxic compounds, improved processability, and improved shelf life.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of the heterosis or of the hybrid effect, which generally leads to higher yields, higher vigor, better health and better resistance to biotic and abiotic stress factors.
  • Such plants are typically produced by crossing an inbred male sterile parental line (the female crossover partner) with another inbred male fertile parent line (the male crossbred partner).
  • the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
  • Pollen sterile plants can sometimes be produced (eg in maize) by delaving (ie mechanical removal of the male reproductive organs or male flowers); however, it is more common for male sterility to be due to genetic determinants in the plant genome.
  • a ribonuclease such as a Bamase is selectively expressed in the tapetum cells in the stamens.
  • the fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant varieties obtained by plant biotechnology methods, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, i. H. Plants tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, i. H. Plants tolerant to the herbicide glyphosate or its salts.
  • glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS).
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium, the CP4 gene of the bacterium Agrobacterium sp., The genes for a EPSPS from the petunia, for a EPSPS from the tomato or for a Encoding EPSPS from Eleusine.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate oxidoreductase enzyme. Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme. Glyphosate-tolerant plants can also be obtained by selecting plants which select naturally occurring mutations of the above mentioned genes. Other herbicidally resistant plants are, for example, plants which have been tolerated against herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • hydroxyphenylpyruvate dioxygenase HPPD
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogentisate.
  • Plants tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutant HPPD enzyme.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor.
  • the tolerance of plants to HPPD inhibitors can also be improved by cultivating zen in addition to a gene coding for an HPPD-tolerant enzyme, transformed with a gene encoding a prephenate dehydrogenase enzyme.
  • ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • plants tolerant to imidazolinone and / or sulfonylurea can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention are insect-resistant transgenic plants, i. Plants that have been made resistant to attack by certain target insects. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such insect resistance.
  • insect-resistant transgenic plant includes any plant containing at least one transgene comprising a coding sequence encoding:
  • insecticidal crystal protein from Bacillus thuringiensis or an insecticide part thereof, such as the insecticidal crystal proteins found online at:
  • a Bacillus thuringiensis crystal protein or a part thereof which is insecticidal in the presence of a second crystal protein other than Bacillus thuringiensis or a part thereof, such as the binary toxin consisting of the crystal proteins Cy34 and Cy35; or
  • an insecticidal hybrid protein comprising parts of two different insecticides of Bacillus thuringiensis crystal proteins, such as a hybrid of the proteins of 1) above or a hybrid of the proteins of 2) above, e.g. The protein CrylA.105 produced by the corn event MON98034 (WO 2007/027777); or
  • VTP3Aa an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus or an insecticidal part thereof, such as the vegetative insecticidal proteins (VIPs) available at http://www.lifesci.sussex.ac.uk/home/ Neil_Crickmore / Tit / vip.html are cited, e.g. Proteins of the protein class VTP3Aa; or
  • a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in the presence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as the binary toxin consisting of the proteins VIP 1 A and VTP2A.
  • an insecticidal hybrid protein comprising parts of various secreted proteins of Bacillus thuringiensis or Bacillus cereus, such as a hybrid of the proteins of 1) or a hybrid of the proteins of 2) above; or
  • one of the Insect-resistant transgenic plants in the present context also any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 8.
  • an insect resistant plant contains more than one transgene encoding a protein of any one of the above 1 to 8 in order to extend the spectrum of the corresponding target insect species or to thereby delay the development of insect resistance to the plants, that one uses different proteins that are insecticidal for the same target insect species, but have a different mode of action, such as binding to different receptor binding sites in the insect.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant to abiotic stressors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following:
  • Plants which contain a transgene capable of reducing the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants.
  • PARP poly (ADP-ribose) polymerase
  • Transgenic plants which synthesize a modified starch with respect to their physicochemical properties, in particular amylose content or amylose / amylopectin ratio, degree of branching, average chain length, side chain distribution, viscosity behavior, gel strength, starch grain size and / or starch grain morphology is altered in comparison to the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • Transgenic plants which synthesize non-starch carbohydrate polymers, or non-starch carbohydrates, whose properties are altered in comparison to wild-type plants without genetic modification.
  • Examples are plants that produce polyfructose, particularly of the inulin and levan type, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans, and plants that produce Produce alternan.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering, which can also be treated according to the invention, are plants such as cotton plants with altered fiber properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered fiber properties; these include:
  • plants such as cotton plants, containing an altered form of cellulose synthase genes
  • plants such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids
  • plants such as cotton plants having increased expression of sucrose phosphate synthase
  • plants such as cotton plants with increased expression of sucrose synthase
  • plants such as cotton plants with modified reactivity fibers, e.g. By expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes.
  • Plants or plant varieties which have been obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered properties of the oil composition. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include:
  • plants such as oilseed rape plants, which produce oil of high oleic acid content
  • plants such as oilseed rape plants producing low linolenic acid oil
  • plants such as rape plants producing oil of low saturated fatty acid content.
  • transgenic plants which can be treated according to the invention are plants with one or more genes coding for one or more toxins, the transgenic plants offered under the following commercial names: YIELD GARD® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example maize), BT-Xtra® (for example corn), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (for example corn), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • BiteGard® for example maize
  • BT-Xtra® for example corn
  • StarLink® for example maize
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NatureGard® for example corn
  • Protecta® and NewLeaf® pot
  • Herbicide-tolerant crops to be mentioned include, for example, corn, cotton and soybean varieties sold under the following tradenames: Roundup Ready® (glyphosate tolerance, for example, corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example Oilseed rape), ⁇ ® (imidazolinone tolerance) and SCS® (Sylfonylurea tolerance), for example maize.
  • Herbicide-resistant plants (plants traditionally grown for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield® (for example corn).
  • transgenic plants that can be treated according to the invention are plants that contain transformation events, or a combination of transformation events, and that are listed, for example, in the files of various national or regional authorities (see, for example, http: // /gmoinfo.jrc.it/gmp_browse.aspx and http://www.agbios.com/dbase.php).
  • the active compounds or compositions according to the invention can also be used in the protection of materials for the protection of industrial materials against infestation and destruction by undesired microorganisms, such as e.g. Mushrooms, are used.
  • Technical materials as used herein mean non-living materials that have been prepared for use in the art.
  • technical materials to be protected from fungal change or destruction by the active compounds of the present invention may be adhesives, glues, paper, wallboard and board, textiles, carpets, leather, wood, paints and plastics, coolants, and other materials infested by microorganisms or can be decomposed.
  • the materials to be protected also include parts of production plants and buildings, eg cooling water circuits, cooling and heating systems and ventilation and air conditioning systems, which may be affected by the proliferation of microorganisms.
  • adhesives, glues, papers and cardboard, leather, wood, paints, cooling lubricants and heat exchangers it is preferable to use adhesives, glues, papers and cardboard, leather, wood, paints, cooling lubricants and heat exchangers.
  • Called transfer fluids more preferably wood.
  • the active compounds or compositions according to the invention can prevent adverse effects such as decay, deterioration, decomposition, discoloration or mold.
  • the compounds according to the invention can be used to protect against the growth of objects, in particular hulls, sieves, nets, structures, wharfage systems and signal systems, which come into contact with seawater or brackish water.
  • Storage Goods are understood natural substances of plant or animal origin or their processing products, which were taken from nature and for long-term protection is desired
  • Storage goods of plant origin such as plants or plant parts, such as stems, leaves, tubers, seeds , Fruits, grains, can be protected in freshly harvested condition or after processing by (pre-) drying, wetting, crushing, grinding, pressing or roasting
  • Storage Goods also includes lumber, whether unprocessed, such as lumber, power poles and gullies, or in the form of finished products, such as furniture, storage goods of animal origin are, for example, skins, leather, furs and hair.
  • the active compounds according to the invention can prevent adverse effects such as modernization, deterioration, disintegration, discoloration or mold.
  • Blumeria species such as Blumeria graminis
  • Podosphaera species such as Podosphaera leucotricha
  • Sphaeroteca species such as Sphaerotheca fuliginea
  • Uncinula species such as Uncinula necator
  • Gymnosporangium species such as Gymnosporangium sabinae
  • Hemileia species such as Hemileia vastatrix
  • Phocopsora species such as Phakopsora pachyrhizi and Phakopsora meibomiae
  • Puccinia species such as Puccinia recondita or Puccinia triticina
  • Uromyces species such as Uro- myces appendiculatus
  • Bremia species such as Bremia lactucae
  • Peronospora species such as Peronospora pisi or P. brassicae
  • Phytophthora species such as Phytophthora infestans
  • Plasmopara species such as Plasmopara viticola
  • Pseudoperonospora species such as, for example, Pseudoperonospora humuli or Pseudoperonospora cubensis
  • Pythium species such as Pythium ultimum
  • Leaf spot diseases and leaf wilt caused by, for example, Alternaria species such as Alternaria solani; Cercospora species, such as Cercospora beticola; Cladiosporum species, such as Cladiosporium cucumerinum; Cochliobolus species, such as Cochliobolus sativus (conidia form: Drechslera, Syn: Helminthosporium); Colletotrichum species, such as Colletotrichum lindemuthanium; Cycloconium species such as cycloconium oleaginum; Slide- porthe species such as Diaporthe citri; Elsinoe species, such as Elsinoe fawcettii; Gloeosporium species, such as, for example, Gloeosporium laeticolor; Glomerella species, such as Glomerella cingulata; Guignardia species, such as Guignardia bidwelli; Leptosphaeria species, such as Leptos
  • Phaeosphaeria species such as Phaeosphaeria nodorum
  • Pyrenophora species such as, for example, Pyrenophora teres
  • Ramularia species such as Ramularia collo-cygni
  • Rhynchosporium species such as Rhynchosporium secalis
  • Septoria species such as Septoria apii
  • Typhula species such as Typhula incarnata
  • Venturia species such as Venturia inaequalis
  • Ear and panicle diseases caused by e.g. Alternaria species, such as Alternaria spp .; Aspergillus species, such as Aspergillus flavus; Cladosporium species, such as Cladosporium cladosporioides; Claviceps species, such as Claviceps purpurea; Fusarium species such as Fusarium culmorum; Gibberella species, such as Gibberella zeae; Monographella species, such as Monographella nivalis; Septoria species, such as Septoria nodorum;
  • Alternaria species such as Alternaria spp .
  • Aspergillus species such as Aspergillus flavus
  • Cladosporium species such as Cladosporium cladosporioides
  • Claviceps species such as Claviceps purpurea
  • Fusarium species such as Fusarium culmorum
  • Gibberella species such as Gibber
  • Sphacelotheca species such as, for example, Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries, T. controversa
  • Urocystis species such as Urocystis occulta
  • Ustilago species such as Ustilago nuda, U. nuda tritici
  • Botrytis species such as Botrytis cinerea
  • Penicillium species such as Penicillium expansum and P. purpurogenum
  • Sclerotinia species such as Sclerotinia sclerotiorum
  • Sphacelotheca species such as, for example, Sphacelotheca reiliana
  • Tilletia species such as Tilletia caries, T. controversa
  • Urocystis species such as Urocystis occulta
  • Ustilago species such
  • Verticilium species such as Verticilium alboatrum
  • Nectria species such as Nectria galligena
  • Rhizoctonia species such as Rhizoctonia solani
  • Helminthosporium species such as Helminthosporium solani
  • Xanthomonas species such as Xanthomonas campestris pv. Oryzae
  • Pseudomonas species such as Pseudomonas syringae pv. Lachrymans
  • Erwinia species such as Erwinia amylovora.
  • the following diseases of soybean beans can be controlled:
  • Dactuliophora leaf spot (Dactuliophora glycines), Downy Mildew (Peronospora manshurica), Drechslera blight (Drechslera glycini), Frogeye leaf spot (Cercospora sojina), Leptosphaerulina leaf spot (Phyllostica soyaecola), Phyllostica leaf spot (Phyllostica sojaecola) , Pod and Stem Blight (Phomopsis sojae), Powdery Mildew (Microsphaera diffusa), Pyrenochaeta Leaf Spot (Pyrenochaeta glycines), Rhizoctonia Aerial, Foliage, and Web Blight (Rhizoctonia solani), Rust (Phakopsora pachyrhizi, Phakopsora meibomiae), Scab (Sphaceloma glycines), Stemphyli Leaf Blight (Stemphy
  • Phytophthora red (Phytophthora megasperma), Brown Stem Red (Phialophora gregata), Pythium Red (Py - Thium aphanidermatum, Pythium irregular, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), Rhizoctonia Root Red, Stem Decay, and Damping Off (Rhizoctonia solani), Sclerotinia Stem Decay (Sclerotinia sclerotiorum), Sclerotinia Southern Blight (Sclerotinia rolfsii) , Thielaviopsis Root Red (Thielaviopsis basicola).
  • the active compounds according to the invention preferably act against fungi, in particular molds, wood-discolouring and wood-destroying fungi (Basidiomycetes).
  • fungi in particular molds, wood-discolouring and wood-destroying fungi (Basidiomycetes).
  • Basidiomycetes fungi of the following genera: Alternaria, such as Alternaria tenuis; Aspergillus, such as Aspergillus niger; Chaetomium, like Chaetomium globosum; Coniophora, like Coniophora puetana; Lentinus, like Lentinus tigrinus; Penicillium, such as Penicillium glaucum; Polyporus, such as Polyporus versicolor; Aureobasidium, such as Aureobasidium pullulans; Sclerophoma, such as Sclerophoma pityophila; Trichoderma, like Trichoderma viride.
  • the active compounds according to the invention also have very good antifungal effects. They have a very broad antimycotic action spectrum, in particular against dermatophytes and yeasts, mold and diphasic fungi (for example against Candida species such as Candida albicans, Candida glabrata) and Epidermophyton floccosum, Aspergillus species such as Aspergillus niger and Aspergillus fumigatus, Trichophyton species such as Trichophyton mentagrophytes, Microsporon species such as Microporon canis and audouinii.
  • Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum for example against Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum for example against Candida species such as Candida albicans, Candida glabrata
  • Epidermophyton floccosum for example against Candida species such as Candida albicans, Candida glabrata
  • the application rates can be varied within a relatively wide range, depending on the mode of administration.
  • the application rate of the active compounds according to the invention is
  • Leaves from 0.1 to 10 000 g / ha, preferably from 10 to 1000 g / ha, more preferably from 50 to 300 g / ha (when applied by pouring or dropping, the rate of application can even be reduced, especially if inert substrates such as rockwool or perlite are used);
  • seed treatment from 2 to 200 g per 100 kg of seed, preferably from 3 to 150 g per 100 kg of seed, more preferably from 2.5 to 25 g per 100 kg of seed, most preferably from 2.5 to 12.5 g per 100 kg of seed;
  • the active compounds or compositions according to the invention can therefore be used to protect plants within a certain period of time after the treatment against attack by the mentioned pathogens.
  • the period of time within which protection is afforded generally ranges from 1 to 28 days, preferably from 1 to 14 days, more preferably from 1 to 10 days, most preferably from 1 to 7 days after treatment of the plants with the active ingredients or up to 200 days after seed treatment.
  • mycotoxins include: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2 and HT2 toxin, fumonisins, zearalenone, moniliformin, fusarin, diaceotoxyscirpenol (DAS) , Beauvericin, enniatine, fusaroproliferin, fusarenol, ochratoxins, patulin, maternal alkaloids and aflatoxins, which may be caused, for example, by the following fungi: Fusarium spec., Such as Fusarium acuminatum, F.
  • 6-CMor-5,8-dihydroxy-7-methoxy-1,4-benzodithine-2,3-dicarbonitrile (Compound No. 48, see below) was dissolved under reflux in 17 mL of glacial acetic acid. In the heat, 7 mL of 65% nitric acid was added. After hot filtration and cooling to room temperature, it was diluted with 25 mL of water. The crystals were filtered off with suction and washed with water. 415 mg (93% purity, 44.0% of theory) of 6-CMor-7-methoxy-5,8-dioxo-5,8-dihydro-1,4-benzodithine-2,3-dicarbomate III were obtained
  • 6-tert-butyl-5,8-dihydroxy-1,4-benzodithine-2,3-dicarbonitrile (Compound No. 49, see below) were dissolved under reflux in 20 mL of glacial acetic acid. In the heat, 10 mL of 65% nitric acid was added. After hot filtration and cooling to room temperature, it was diluted with 25 mL of water. The Crystals were filtered off with suction, washed with water and chromatographed on silica gel (cyclohexane, ethyl acetate 1: 1). This gave 346 mg (29.0% of theory) of 6-tert-butyl-5,8-dioxo-5,8-dihydro-l, 4-benzodithiine-2,3-dicarbonitrile.
  • the calibration is carried out with unbranched alkan-2-ones (having 3 to 16 carbon atoms) whose logP values are known (determination of the logP values by retention times by linear interpolation between two consecutive alkanones).
  • the lambda max values were determined on the basis of the UV spectra from 200 nm to 400 nm in the maxima of the chromatographic signals.
  • Example A Alternaria test (tomato) / protective
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young tomato plants are sprayed with the preparation of active compound in the stated application rate.
  • the plants are inoculated with a spore suspension of Alternaria solani and then stand for 24 h at 100% rel. Humidity and 22 ° C.
  • the plants are at 96% rel. Humidity and a temperature of 20 ° C. 7 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • the following compounds of the invention show an efficacy of 70%> or more at a concentration of active ingredient of 1500 ppm.
  • Example B Botrytis test (bean) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether To prepare a suitable preparation of active compound, 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration. To test for protective activity, young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried, 2 small pieces of agar covered with Botrytis cinerea are placed on each leaf. The inoculated plants are placed in a darkened chamber at about 20 ° C and 100% relative humidity. 2 days after the inoculation, the size of the infestation spots on the leaves is evaluated. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed. In this test, the following compounds according to the invention show an efficacy of 70% or more at a concentration of active ingredient of 500 ppm.
  • Emulsifier 1 part by weight of alkylaryl polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • active compound preparation 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young tomato plants are sprayed with the active compound preparation at the stated application rate.
  • the plants are inoculated with a spore suspension of Phytophthora infestans and then stand for 24 h at 100% rel. Humidity and 22 ° C.
  • the plants are placed in a climate cell at about 96% relative humidity and a temperature of about 20 ° C. 7 days after the inoculation the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • the following compounds according to the invention show an efficacy of 70% or more at a concentration of active ingredient of 1500 ppm.
  • Example D Plasmopara test (vine) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Plasmopara viticola and then left for 1 day in an incubation booth at about 20 ° C. and 100% relative atmospheric humidity. Subsequently, the plants are placed in the greenhouse for 4 days at about 21 ° C and about 90% humidity. The plants are then moistened and placed in an incubation booth for 1 day. 6 days after the inoculation the evaluation takes place. In this case, 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • the following compounds according to the invention show an efficacy of 70% or more at an active ingredient concentration of 250 ppm.
  • Example E Venturia test (apple) / protective
  • Emulsifier 1 part by weight of alkyl-aryl-polyglycol ether
  • a suitable preparation of active compound 1 part by weight of active compound is mixed with the indicated amounts of solvent and emulsifier, and the concentrate is diluted with water to the desired concentration.
  • young plants are sprayed with the preparation of active compound in the stated application rate. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the apple scab pathogen Venturia inaequalis and then remain in an incubation cabin for 1 day at about 20 ° C. and 100% relative atmospheric humidity. The plants are then placed in the greenhouse at about 21 ° C and a relative humidity of about 90%. 10 days after the ino- the evaluation takes place.
  • 0% means an efficiency which corresponds to that of the control, while an efficiency of 100% means that no infestation is observed.
  • the following compounds according to the invention show an efficacy of 70% or more at an active ingredient concentration of 250 ppm.
  • Table E Venturia test (apple) / protective

Abstract

L'invention concerne l'utilisation de dérivés de dithiine, nouveaux et connus, pour lutter contre des micro-organismes indésirables, en particulier des champignons phytopathogènes, en protection phytosanitaire, dans le domaine ménager et de l'hygiène et pour la protection de matériaux. L'invention concerne en outre de nouveaux dérivés de dithiine, des procédés pour les produire, leur utilisation, ainsi que des agents phytosanitaires contenant ces nouveaux dérivés de dithiine.
EP11713304A 2010-04-14 2011-04-11 Dérivés de dithiine utilisés en tant que fongicides Withdrawn EP2558456A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11713304A EP2558456A1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine utilisés en tant que fongicides
PL13190285T PL2703397T3 (pl) 2010-04-14 2011-04-11 Pochodne ditiiny jako środki grzybobójcze
EP13190285.0A EP2703397B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
EP13190284.3A EP2706058B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
PL13190284T PL2706058T3 (pl) 2010-04-14 2011-04-11 Pochodne ditiiny jako środki grzybobójcze

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP10159904 2010-04-14
US32503010P 2010-04-16 2010-04-16
EP11713304A EP2558456A1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine utilisés en tant que fongicides
PCT/EP2011/055642 WO2011128301A1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine utilisés en tant que fongicides

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP13190285.0A Division EP2703397B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
EP13190284.3A Division EP2706058B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes

Publications (1)

Publication Number Publication Date
EP2558456A1 true EP2558456A1 (fr) 2013-02-20

Family

ID=42541527

Family Applications (3)

Application Number Title Priority Date Filing Date
EP13190284.3A Not-in-force EP2706058B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
EP13190285.0A Not-in-force EP2703397B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
EP11713304A Withdrawn EP2558456A1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine utilisés en tant que fongicides

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP13190284.3A Not-in-force EP2706058B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes
EP13190285.0A Not-in-force EP2703397B1 (fr) 2010-04-14 2011-04-11 Dérivés de dithiine comme fungicydes

Country Status (9)

Country Link
US (3) US8729118B2 (fr)
EP (3) EP2706058B1 (fr)
CN (1) CN102947288B (fr)
BR (1) BR112012026363A2 (fr)
ES (2) ES2551435T3 (fr)
PL (2) PL2706058T3 (fr)
PT (2) PT2706058E (fr)
TW (1) TW201204249A (fr)
WO (1) WO2011128301A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8865759B2 (en) 2008-10-15 2014-10-21 Bayer Intellectual Property Gmbh Use of dithiine-tetracarboximides for controlling phytopathogenic fungi
EP2706058B1 (fr) 2010-04-14 2015-08-12 Bayer Intellectual Property GmbH Dérivés de dithiine comme fungicydes
EP2696689A1 (fr) * 2011-04-15 2014-02-19 Basf Se Utilisation de dithiine-tétracarboximides substitués pour combattre des champignons phytopathogènes
AR086961A1 (es) * 2011-06-17 2014-02-05 Basf Se Mezclas fungicidas sinergicas que comprenden 2,3,5,6-tetraciano-[1,4]ditiina
US20140135217A1 (en) * 2011-06-17 2014-05-15 Basf Se Use of Tetracyanodithiines as Fungicides
US9078443B1 (en) 2014-01-31 2015-07-14 Fmc Corporation Methods for controlling weeds using formulations containing fluthiacet-methyl and HPPD herbicides
CN110467629B (zh) * 2018-05-09 2022-04-08 上海迪诺医药科技有限公司 苯醌衍生物、其药物组合物及应用
CN112500391A (zh) * 2020-12-14 2021-03-16 江西禾益化工股份有限公司 一种连续釜式反应生产二氰蒽醌的装置及方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE362986C (de) 1921-01-25 1922-11-03 Kurt Brass Dr Verfahren zur Darstellung von Dibenzothianthrendichinon
CH351791A (de) 1957-10-26 1961-01-31 Merck Ag E Fungizides Mittel
DE1060655B (de) 1957-10-26 1959-07-02 Merck Ag E Schaedlingsbekaempfungsmittel
US3265565A (en) 1959-08-14 1966-08-09 American Cyanamid Co Preparation and fungicidal use of tetracyanodithiadiene
US3364229A (en) 1964-01-30 1968-01-16 Shell Oil Co 1, 4 dithiin-2, 3, 5, 6-tetracarboximides and process for their preparation
JPS5231407B1 (fr) 1966-06-17 1977-08-15
US3663543A (en) 1970-02-02 1972-05-16 Dow Chemical Co 2,3-dichloro-5,10-dihydropyrazino(2,3-b) quinoxaline
JPS5040736B1 (fr) * 1970-08-07 1975-12-26
JPS4811020B1 (fr) 1970-09-28 1973-04-10
JPS5040736A (fr) 1973-08-09 1975-04-14
US4004018A (en) 1974-06-20 1977-01-18 Uniroyal Inc. 2,3-Dihydro-1,4-dithiin 1,1,4,4-tetroxide antimicrobials
GB1503508A (en) 1974-07-19 1978-03-15 Burmah Oil Trading Ltd Production of phenols
US4150130A (en) 1978-03-03 1979-04-17 The Dow Chemical Company 5,6-Dihydro-5-oxo-1,4-dithiino (2,3-d) pyridazine-2,3-dicarbonitriles
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4265807A (en) 1980-01-22 1981-05-05 Hercules Incorporated Disproportionation of rosin in the presence of dithiin derivatives
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
GB8810120D0 (en) 1988-04-28 1988-06-02 Plant Genetic Systems Nv Transgenic nuclear male sterile plants
JP2995917B2 (ja) * 1991-06-29 1999-12-27 カシオ計算機株式会社 時間割表示装置
US5488051A (en) 1994-04-21 1996-01-30 The Dow Chemical Company Substituted 5,6-dihydro-5-oxo-1,4-dithiino-(2,3-d)-pyridazine-2,3-dicarbonitriles, compositions containing them and their use as antimicrobials
US5466707A (en) 1994-12-21 1995-11-14 The Dow Chemical Company Dimercapto-1,3-dithiolo-2-one or thione maleimides, compositions containing them and their use as antimicrobial and marine antifouling agents
CZ331797A3 (cs) 1995-04-20 1998-06-17 American Cyanamid Company Produkty rezistentní na herbicidy vyvíjené na struktuře založeným způsobem
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US6503904B2 (en) 1998-11-16 2003-01-07 Syngenta Crop Protection, Inc. Pesticidal composition for seed treatment
US6660690B2 (en) 2000-10-06 2003-12-09 Monsanto Technology, L.L.C. Seed treatment with combinations of insecticides
US20020134012A1 (en) 2001-03-21 2002-09-26 Monsanto Technology, L.L.C. Method of controlling the release of agricultural active ingredients from treated plant seeds
KR101107528B1 (ko) 2003-12-03 2012-01-31 아사히 가라스 가부시키가이샤 공간 광변조 소자 및 공간 광변조 방법
WO2007024782A2 (fr) 2005-08-24 2007-03-01 Pioneer Hi-Bred International, Inc. Compositions assurant une tolerance a de multiples herbicides et methodes d'utilisation
WO2007027777A2 (fr) 2005-08-31 2007-03-08 Monsanto Technology Llc Sequences nucleotidiques codant des proteines insecticides
US8865759B2 (en) 2008-10-15 2014-10-21 Bayer Intellectual Property Gmbh Use of dithiine-tetracarboximides for controlling phytopathogenic fungi
AR077956A1 (es) 2009-09-14 2011-10-05 Bayer Cropscience Ag Combinaciones de compuestos activos
KR20120096511A (ko) 2009-11-17 2012-08-30 바이엘 크롭사이언스 아게 활성 화합물의 배합물
BR112012026156A2 (pt) 2010-04-14 2015-09-08 Bayer Cropscience Ag combinações de compostos ativos.
EP2706058B1 (fr) * 2010-04-14 2015-08-12 Bayer Intellectual Property GmbH Dérivés de dithiine comme fungicydes
KR20130057994A (ko) 2010-04-14 2013-06-03 바이엘 인텔렉쳐 프로퍼티 게엠베하 디티이노-테트라카복사미드 유도체 및 미생물 또는 이소플라본의 살진균성 배합물

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011128301A1 *

Also Published As

Publication number Publication date
US9295256B2 (en) 2016-03-29
PL2703397T3 (pl) 2015-12-31
EP2706058B1 (fr) 2015-08-12
CN102947288B (zh) 2014-09-17
PT2703397E (pt) 2015-11-13
WO2011128301A1 (fr) 2011-10-20
PT2706058E (pt) 2015-11-25
EP2703397A1 (fr) 2014-03-05
BR112012026363A2 (pt) 2023-12-05
ES2551435T3 (es) 2015-11-19
EP2703397B1 (fr) 2015-08-12
US9295255B2 (en) 2016-03-29
US20110294662A1 (en) 2011-12-01
PL2706058T3 (pl) 2016-01-29
TW201204249A (en) 2012-02-01
US20130296315A1 (en) 2013-11-07
ES2552928T3 (es) 2015-12-03
CN102947288A (zh) 2013-02-27
EP2706058A1 (fr) 2014-03-12
US20140080703A1 (en) 2014-03-20
US8729118B2 (en) 2014-05-20

Similar Documents

Publication Publication Date Title
EP2271219B1 (fr) Utilisation de dithiine-tetracarboximides pour lutter contre les champignons phytopathogenes
EP2609088B1 (fr) Dérivés de 5-iode-triazole
EP2706058B1 (fr) Dérivés de dithiine comme fungicydes
EP2576527B1 (fr) Dérivés d'alkanol hétérocycliques comme fongicides
EP2576528A1 (fr) Dérivés alcanol hétérocycliques servant de fongicides
EP2576529B1 (fr) Dérivés d'alkanol hétérocycliques comme fongicides
EP2558470B1 (fr) Dérivé de dithiinopyridazindione comme fongicides
EP2451784A1 (fr) Dérivés de phényl(oxy/thio)alcanol
EP2611813B1 (fr) Dithiine-tétra(thio)carboximides pour lutter contre des champignons phytopathogènes
EP2542063B1 (fr) Utilisation de sels de maléimide pour combattre les champignons phytopathogènes
WO2011051198A2 (fr) Dérivés de pyridine en tant qu'agents phytoprotecteurs
WO2011003528A2 (fr) Dérivés phényl(oxy/thio)alcanole substitués
EP2601199B1 (fr) Dérivé de dithiinopyridazinone
WO2011117184A1 (fr) Dérivés de fludioxonil
EP2558471B1 (fr) Dérivés de thiénodithiine comme fongicides
WO2011032656A1 (fr) Dérivés de pyrimidine à substitution 5-fluor-3-thio
WO2012062749A1 (fr) Benzimidazolidinones utilisables comme fongicides
EP2646418B1 (fr) Dérivés de pyrimidine et leur utilisation comme agents parasiticides.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130807

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20140901