EP2551844B1 - Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke - Google Patents

Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke Download PDF

Info

Publication number
EP2551844B1
EP2551844B1 EP20110405294 EP11405294A EP2551844B1 EP 2551844 B1 EP2551844 B1 EP 2551844B1 EP 20110405294 EP20110405294 EP 20110405294 EP 11405294 A EP11405294 A EP 11405294A EP 2551844 B1 EP2551844 B1 EP 2551844B1
Authority
EP
European Patent Office
Prior art keywords
bell
electric machine
current
deflection angle
drive device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20110405294
Other languages
English (en)
French (fr)
Other versions
EP2551844A1 (de
Inventor
Achim Dassow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Muff Kirchturmtechnik AG
Original Assignee
Muff Kirchturmtechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muff Kirchturmtechnik AG filed Critical Muff Kirchturmtechnik AG
Priority to EP20110405294 priority Critical patent/EP2551844B1/de
Publication of EP2551844A1 publication Critical patent/EP2551844A1/de
Application granted granted Critical
Publication of EP2551844B1 publication Critical patent/EP2551844B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K1/00Devices in which sound is produced by striking a resonating body, e.g. bells, chimes or gongs
    • G10K1/28Bells for towers or the like
    • G10K1/30Details or accessories
    • G10K1/34Operating mechanisms
    • G10K1/344Operating mechanisms for an oscillating bell which is driven once per cycle
    • G10K1/345Operating mechanisms for an oscillating bell which is driven once per cycle electrically operated

Definitions

  • the present invention relates to a method for controlling the deflection angle of a temporarily driven by a drive device and coupled to this oscillating bell, especially church bell.
  • Methods for controlling the deflection angle, or swing angle of a swinging bell are basically known in the art, see for example the documents EP 1 094 443 A1 or EP 1 310 941 A1 ,
  • a suspended on a suspension device, in particular a bell yoke bell, in particular a church bell is in this case connected to a drive device, wherein the drive device is designed to hold the oscillating bell more or less well on a predetermined target swing angle after the successful high-bell.
  • the maximum deflection angle or the maximum desired deflection angle of the bell oscillating about its rest position during one of the two bellwheel half-periods is referred to as such angle.
  • the aim is to make the bell vibrate uniformly on both sides, with the result that the desired target pivot angle in one of the two deflection directions of the bell is usually the same size as the desired target pivot angle in the other direction of deflection.
  • the electric machine which is coupled to the drivable oscillating bell, is operated for driving by motor and measuring as a sensor, preferably as a generator.
  • a sensor preferably as a generator.
  • separate angle sensors which, for example, the deflection angle of the bell or to detect the achievement of a predetermined desired flywheel angle can be saved.
  • the reversal points of the bell oscillation periods or half periods can then be determined, since in the reversal points, ie when the deflection angle is reached, the bell speed is zero.
  • this current deflection angle which is determined from the deflection duration, is compared with a desired flywheel angle and acted upon by a controller in accordance with the drive device, so that any deviations between desired and actual values are compensated.
  • the present invention is based on the problem that this conventional determination of the current deflection angle on the determination of the deflection is inaccurate.
  • the approximately linear relationship between Auslenkdauer and current deflection angle is in particular in a non-linear relationship when the deflection angle is relatively large.
  • Relatively large deflection angles can result in certain bell types, for example smaller bells, directly by providing a large desired flywheel angle (in order to be able to produce a stronger beater impact, see DIN 4178);
  • a non-linear relationship also makes a disturbing effect when, during a high-ringing phase of a larger bell with a relatively large desired flywheel angle in the initial phase of the upshoot, the current deflection angle during a half period is naturally still relatively small.
  • the present invention has the object, a method for controlling the deflection angle of a swinging bell and a matching Specify drive device, which improve the control accuracy.
  • This object is achieved by a method for controlling the deflection angle of a temporarily driven by a drive device and coupled to this vibrating bell according to the features of claim 1.
  • the object is achieved by a drive device for the controlled operation of a coupled to the drive device bell according to the features of claim 11.
  • the object is achieved in particular by a method in which initially an electric machine of the drive device, which is operable as a sensor, preferably as a generator, and as a motor, is operated in generator mode.
  • the frequency of at least one of the generator voltages generated on the electric machine by the pendulum movement of the bell is first measured continuously. The continuous measurement is performed at least until a time at which a maximum of the measured frequency is reached. This frequency maximum is reached when passing the rest position of the oscillating bell, ie at the standstill point of a dormant bell.
  • the speed of the bell in the passage of this rest position can thus be determined, the bell speed being almost directly proportional to the actual deflection angle of the bell up to a deflection angle of 60 degrees.
  • a linearization method is required, but this is much less complex than that required for the conversion of a time measurement and the Therefore, it can be calculated directly via a closed function during operation.
  • a direct calculation is always superior to a table-based linearization because of the higher resolution.
  • This first correction factor results from the deviation of the determined current deflection angle from a predetermined or predefinable target pivot angle. If the current deflection angle does not deviate from the predetermined or predefinable target deflection angle, then the correction factor becomes zero, and no correction or no corrective intervention in the current drive parameters is required. In the event of a deviation of the current deflection angle from the target fly angle, the first correction factor becomes non-zero, and a drive parameter is determined from this first correction factor. According to this drive parameter, the electric machine is operated in the engine mode to intervene in the current bell crank and to compensate for the deviation between the current deflection angle and the target flywheel angle.
  • the solution according to the invention has the particular advantage that due to the significantly lower nonlinearity of the current deflection angle of the current half cycle of the bell crank can be determined very accurately, without the exact positions of the turning points of the bell crank are required for this purpose. Due to the thus improved accuracy, the possibility of intervention by the controller is much faster and more accurate, which in particular at small deflection angles, for example, by specifying a small desired flywheel angle, a much more precise Auslenkwinkelregelung is possible.
  • the drive parameter corresponds to a duty cycle for the operation of the electric machine during engine operation.
  • this duty cycle of the electric machine which is linked to a time component, during engine operation to the sweeping over of a specific deflection angle range.
  • the drive parameters in the drive operation of the bell intervened so regulating that the drive period, which is usually in the range of the passage point of the bell through the rest position, the bell crank correspondingly expanded or shortened by the deviation of the current deflection angle to minimize from the nominal flywheel angle.
  • a drive parameter can be implemented by simply activating or deactivating the engine operation of the electric machine.
  • driving the bell in the area outside its rest passage point with an approximately equal amount of driving during the falling and during the increasing proportion of movement of the bell for a homogeneous and balanced drive.
  • the drive parameter is a switch-off time or a switch-off deflection angle, such a switch-off time or switch-off deflection angle indicating the time for the termination of the operation of the electric machine during engine operation.
  • a switch-off time or switch-off deflection angle indicating the time for the termination of the operation of the electric machine during engine operation.
  • the drive parameter is a direct engine parameter related to the engine operation of the electric machine, such as engine energy, engine power or engine torque.
  • a machine phase shift between at least two of the machine phases of the generator voltages generated at the electric machine is determined. Since the phase position of the machine phases is known to each other, based on the measured phase shift, the current deflection of the current half cycle of the bell crank from the sign of the machine phase shift can be determined. This ensures in a particularly simple manner that in a possibly subsequent corrective intervention in the engine operation of the electric machine, the motor in the correct, that is, the momentary Bockenschwungides the current half-cycle is driven.
  • the inventive method further comprises the step of demagnetizing the electric machine.
  • This step of demagnetizing the electric machine is carried out in time prior to the operation of the electric machine in the generator mode and ensures that the measurement results, which form the basis for a corrective controller intervention, not by a possibly existing residual magnetization of the engine (inherent remanence) are falsified.
  • the method further provides that from the time at which the maximum of the measured frequency was reached, the voltage periods of at least one of the generator voltages generated at the electrical machine are counted continuously.
  • the translation of the system (gear) and the number of pole pairs of the electric machine are known, can be determined due to such a counting process, in particular from the passage point of the rest position of the bell, the instantaneous deflection angle of this bell. This makes it possible in a particularly simple manner to relate possible drive parameters related to such a momentary deflection angle of the bell, in particular for defining a deflection angle range or for determining a switch-off deflection angle, to a specific execution time.
  • a further advantageous development consists in that the current bobbin impact strength of the resonant clapper striking the bell at the instantaneous deflection angle is adjusted.
  • a current bobbin impact strength is determined with the aid of the speed of the bell in the rest position passage point and this current bobbin impact strength is compared with a predetermined or specifiable target beater impact strength, a second correction factor being determined from this comparison result. With the aid of this second correction factor, a switch-on time or a switch-on deflection angle is then determined, from which the electric machine is operated during engine operation.
  • the switch-on duration of the electric machine in motor operation is not symmetrical about the rest position passage point, but rather that the switch-on time should be timed according to the desired target impact strength, ie during the falling movement of the bell, provide a large part of the switch-on period, or vice versa, the switch-on time to move back, ie to provide during the increasing movement of the bell.
  • the switch-on period of the electric machine in engine operation in the period of falling movement of the bell is preferred, the clapper mass is additionally accelerated, thereby increasing the batting impact strength.
  • a temporal shift of the motor drive of the bell in the increasing movement of the bell in that the bobbin mass is decelerated relative to the bell, which reduces the impact strength.
  • the bobbin impact strength can be influenced independently of the respective instantaneous deflection angles.
  • a further advantageous development is that the current bobbin impact time is determined. Furthermore, a correction factor from the deviation of the current bobbin impact time of a predetermined or predetermined Bobbin lace time determined. From this determined correction factor, a switch-on time (31) or a switch-on deflection angle (30) is determined. Furthermore, the distribution of the switch-on duration (20) of the electrical machine over the currently possible deflection angle is determined. There is an advantage in that the bobbin impact strength can be influenced independently of the respective instantaneous deflection angles.
  • a third correction factor from the deviation of the measured mains voltage curve is determined to a desired network voltage curve, with the aid of this third correction factor of the drive parameters can be corrected to the effect that any mains voltage fluctuations, which express themselves in a deviation, are effectively compensated. Even in the case of a mains voltage fluctuation is thus ensured that the deflection angle of the bell is reliably controlled.
  • a drive device for the controlled operation of a coupled to this drive device bell wherein the drive device alternately as a sensor, preferably a generator, and motor operable electric machine, preferably an asynchronous machine, a voltage measuring device for measuring the frequency response and / or for measuring the amplitude curve at least one of the voltage applied to the electrical machine or generated voltages, an adjusting device, in particular a switching device for alternately switching the electrical machine between the generator operation and the engine operation, and a control device for driving the adjusting device in response to a measured value obtained by means of a voltage measuring device or current measuring device.
  • the drive device alternately as a sensor, preferably a generator, and motor operable electric machine, preferably an asynchronous machine, a voltage measuring device for measuring the frequency response and / or for measuring the amplitude curve at least one of the voltage applied to the electrical machine or generated voltages, an adjusting device, in particular a switching device for alternately switching the electrical machine between the generator operation and the engine operation, and a control device for driving the adjusting device
  • the voltage measuring device of such a drive device according to the invention is designed to measure the mentioned measured frequency profile and / or the amplitude characteristic not only during generator operation of the electrical machine but also during motor operation of the electrical machine.
  • Such a drive device according to the invention with a permanently driven measuring device can thus be used in a particularly good way to minimize the control deviation by reducing the reaction time of the regulator.
  • the voltage measuring device has at least one measuring current source, in particular at least one high-impedance measuring current source.
  • a high-impedance measuring current source is in this case designed to drive a measuring current through at least one phase of the electrical machine. This is particularly necessary because of the necessary external excitation when an asynchronous machine is used.
  • the measuring current can be conducted into one phase and conducted out of two phases.
  • the measuring current can be conducted into two phases and led out of one phase.
  • the drive device further comprises a demagnetizer.
  • a demagnetization device serves to free the electrical machine from magnetic remanence fields (inherent remanence) in a short time, which allows a further increase in the controller accuracy.
  • electronic switches which can selectively and controllably bring about a low-impedance termination between the respective phases of the electric machine (disconnected from the mains) can be used as the demagnetization device.
  • the drive device has impedance control elements.
  • impedance control elements are designed to match the measured by the voltage measuring device gradients at the individual phases of the electric machine by an impedance equalization of the terminals of the electric machine to each other.
  • the amplitudes of the phase-shifted signal voltages in the generator mode, i. during the measurement can be adjusted and thus the signals can be better correlated. This in turn increases the controller accuracy.
  • the impedance control members have a device for limiting the power loss they generate during engine operation of the electric machine.
  • the voltage measuring device has at least one separating element, in particular a galvanic separating element and in this case preferably optocouplers.
  • the at least one separating element serves to establish a (galvanic) separation between the phases of the electrical machine and the voltage measuring device in order to protect the voltage measuring device from the high voltage possibly applied to the electric machine.
  • the at least one separating element has an adjustable operating point and / or an adjustable gain in order to allow an adaptation of the measuring parameters. Possible nonlinearities of the optocoupler can be compensated by a second optocoupler in the feedback loop of the phototransistor / receiver circuit.
  • a servo amplifier for linearization is used.
  • This servo drive is the fact that the servo amplifier is built with ordinary transistor optocouplers. Another advantage is that, in contrast to general practice, the servo amplifier is located on the receiver side, not on the transmitter side, which in particular allows a simple setup of balancing elements.
  • an adjustment device is furthermore provided, which is designed to set such an operating point and / or such a reinforcement of the at least one separating element.
  • the setting device operates automatically and is furthermore designed to carry out such an automatic setting as a function of a measured variable, with a temperature measurement or a control voltage measurement in particular being considered here.
  • temperature influences such as the temperature-dependent motor internal resistance or the signal behavior of the temperature-dependent Signal processing elements are effectively compensated.
  • Fig. 1 schematically shows a suspended in a suspension point A bell 10.
  • a reference point M on the bell defines the deflection or the deflection angle 14 of the oscillating bell relative to a solder B. Accordingly, the solder B indicates the rest position of the bell 10, if it does not swing and runs
  • the bell reference point M represents a selected reference point and lies on the axis of symmetry of the bell body.
  • the oscillating bell 10 has reached its reversal point, so that the deflection angle ⁇ (t) 14 between the solder B and a passing through the suspension point A and the bell reference point M axis coincides with the deflection angle ⁇ (p) 12.
  • the target pivot angle ⁇ (p) should 13, which is to be achieved by controlling the deflection angle 12 of the bell, deviates at the in Fig. 1 shown vibration state of the bell 10 from the deflection angle ⁇ (p) 12 from.
  • Fig. 2 is a swinging bell 10 similar to the swinging bell Fig. 1 in this case, the deflection angle ⁇ (p) 12 and the deflection angle ⁇ (t) 14 of the bell 10 do not coincide. Consequently, the in Fig. 2 illustrated oscillating bell 10 is not in its reversal point, but will reach this reversal point in deflection angle ⁇ (p) 12 yet, which is indicated by the direction of rotation 15 indicative arrow.
  • the deflection angle ⁇ (p) 12 After reaching the reversal point, ie the deflection angle ⁇ (p) 12 will have the direction of deflection 15 reversed, the oscillating bell, in the subsequent half cycle of its momentum, passes through its zero crossing point, which coincides with the perpendicular B, and is translated in the corresponding other direction, in Fig. 2 So lying schematically to the left of the Lot, deflected. In this case, therefore, the signs of the respective angles or directions, such as desired flywheel angle ⁇ (p) to 13 or deflection direction 15, are reversed.
  • Fig. 3 shows a course diagram of the deflection angle ⁇ (t) 14 of a vibrating bell 10 according to the Fig. 1 or 2 over time.
  • Fig. 3 describes the bell swing, ie the diagram of the deflection angle ⁇ (t) 14 over time an approximately sinusoidal course.
  • the maximum amount of deflection ⁇ (t) 14 achieved in terms of absolute value corresponds, as in FIG Fig. 3
  • the momentum from one reversal point to the next reversal point of opposite sign describes the half cycles 16 and 17 of the swing of the bell 10.
  • the frequency characteristic 111 is one of the machine phases of the electric machine 110 in FIG Figure 8 shown over time.
  • the bell 10 passes its rest position between two reversal points, ie during a half-period 16, it reaches its highest speed for the current half-period 16 at this rest point crossing point.
  • the electric machine coupled to the oscillating bell becomes the highest frequency induced voltages measured in With respect to the current half period 16 of the bell crank, the electric machine 110 is also driven at its highest speed at this time.
  • the maximum 113 of the frequency 111 thus coincides with the time at which the bell passes through its zero crossing point.
  • the bell speed of the bell 10 can again be determined, which is almost directly proportional to the deflection angle 12 in known other bell parameters, whereby the deflection angle 12 can be derived from this measurement of the frequency 111 without the provision of angle sensors.
  • Fig. 5 is the amplitude curve 112 of the first machine phase U, the second machine phase V, and the third machine phase W during the swinging of a bell 10, which is connected to the electric machine 110, shown.
  • Both the frequency 111 and the amplitude 112 of the respective machine phases U, V, W increase in the course of a bell crank, ie from a reversal point to the transit point of the rest position. Then they take off again until reaching the reversal point of opposite sign. From the sign of the phase shift 114 between two machine phases of the machine phases U, V, W selected by way of example, the deflection direction 15 of the bell 10 can be determined.
  • Fig. 6 shows the desired network voltage profile of an exemplary selected first network phase L1 of network phases L1, L2, L3 and an actually measured line voltage profile 190 of this network phase L1.
  • Fig. 7 shows a logic diagram illustrating when the electric machine 110 is operated in the engine mode. Between a switch-on 31 according to the Turn-on deflection angle 30 in Fig. 3 and a switch-off time 21 corresponding to the switch-off deflection angle 23, the electric machine 110 is over the duty cycle 20 in engine operation.
  • Fig. 8 shows the block diagram of an inventive drive device 100 for the controlled operation of a coupled to this drive device 100, not shown bell 10.
  • the drive device 100 in this case has an electrical machine 110, which is preferably an asynchronous and alternately as a sensor, preferably a generator, and operated by a motor can.
  • a voltage measuring device 130 is provided, which at least one, in the block diagram shown in FIG Fig. 8 is connected to all three phases of the electrical machine 110, and is designed to measure a frequency variation and / or an amplitude characteristic of the respective machine phases U, V, W of the electric machine 110 or the respective network phases L1, L2, L3 of the network.
  • a switching device 151 which serves to switch on the electrical machine 110 to or from the disconnection of the electrical machine 110 from the supply network, ie the mains phases L1, L2, L3. This switches between the generator operation and the engine operation of the electric machine 110.
  • a control device 180 which activates the switching device 151 or also a more generally configured setting device 150 as a function of a measured value obtained by means of the voltage measuring device 130 or a current measuring device.
  • the voltage measuring device 130 is constantly trained running, ie, it is not disconnected from the terminals of the electric machine 110 when the electric machine 110 is coupled to the grid phases L1, L2, L3.
  • the switching device 151 the mains phases L1, L2, L3 has separated from the machine phases U, V, W and the electric machine 110 is to be operated in generator mode, it is necessary in particular for an asynchronous machine to apply at least one motor phase with an excitation voltage.
  • a measuring current source 131 is provided, which is formed high impedance. This high-impedance measuring current source 131 drives a measuring current 135 in the illustrated embodiment through the third machine phase W of the electric machine 110.
  • a demagnetization device 170 which switchably and selectively for the purpose of demagnetizing the electric machine 110 allows a low-impedance loading of the respective phases of the electric machine 110 to remove a remanence magnetization and thus to improve the measurement of the voltage curve.
  • the drive device 100 has in the illustrated embodiment according to the block diagram Fig. 8 continue impedance control 132 on. This ensures that the voltage profiles measured at the individual phases U, V, W of the electric machine 110 by means of the voltage measuring device 130 are matched to one another and a comparability of the voltage amplitudes of the induced voltages is ensured.
  • the drive device 100 according to block diagram 8 furthermore has galvanic separating elements 133, in the embodiment shown in the form of optocouplers.
  • the separators 133 i. the optocouplers are equipped on the secondary side with signal amplifiers. As a result, the operating point and / or the gain of the separating elements 133 are adjustable.
  • the drive device 100 has, according to the in Fig. 8 shown embodiment, an adjustment 134, which makes it possible depending on a measurement, such as a temperature measurement or a control voltage measurement, an automatic adjustment, ie an automatic adjustment of the operating points or the reinforcements of the separating elements 133 make.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Regeln des Auslenkwinkels einer mittels einer Antriebsvorrichtung zeitweise antreibbaren und an diese angekoppelten schwingenden Glocke, insbesondere Kirchenglocke.
  • Verfahren zum Regeln des Auslenkwinkels, bzw. Schwungwinkels einer schwingenden Glocke sind dem Grunde nach aus der Technik bekannt, siehe z.B. die Dokumente EP 1 094 443 A1 oder EP 1 310 941 A1 . Eine an einer Aufhängeinrichtung, insbesondere einem Glockenjoch aufgehängte Glocke, insbesondere eine Kirchenglocke ist hierbei mit einer Antriebsvorrichtung verbunden, wobei die Antriebsvorrichtung ausgelegt ist, nach dem erfolgten Hochläuten die schwingende Glocke mehr oder weniger gut auf einem vorgegebenen Sollschwungwinkel zu halten. Als solcher Winkel wird im Allgemeinen der maximale Auslenkwinkel bzw. der maximal gewünschte Auslenkwinkel der um ihre Ruhelage schwingenden Glocke während einer der beiden Glockenschwung-Halbperioden bezeichnet. Im Allgemeinen wird angestrebt, die Glocke gleichmässig zu beiden Seiten schwingen zu lassen, was zur Folge hat, dass der gewünschte Sollschwungwinkel in die eine der beiden Auslenkrichtungen der Glocke gewöhnlicherweise gleich gross wie der gewünschte Sollschwungwinkel in die jeweils andere Auslenkrichtung ist.
  • Zu diesem Zweck sind herkömmlicherweise Verfahren vorgesehen, in welchen die elektrische Maschine, welche mit der antreibbaren schwingenden Glocke gekoppelt ist, zum Antreiben motorisch und zum Messen als Sensor, vorzugsweise generatorisch, betrieben wird. Auf diese Weise können separate Winkelsensoren, welche beispielsweise den Auslenkwinkel der Glocke oder auch das Erreichen eines vorgegebenen Sollschwungwinkels detektieren, eingespart werden. Anhand des Amplitudenverlaufes einer oder mehrerer der Generatorphasen der elektrischen Maschine im Generatorbetrieb können dann die Umkehrpunkte der Glockenschwingungsperioden bzw. -halbperioden bestimmt werden, da in den Umkehrpunkten, d.h. bei Erreichen des Auslenkwinkels, die Glockengeschwindigkeit null ist.
  • Gemäss den herkömmlichen Verfahren zum Steuern oder Regeln des Auslenkwinkels einer Glocke durch Vorgabe eines gewünschten Sollschwungwinkels ist vorgesehen, nach dem erfolgten Hochläuten bzw. Anfangsläuten der Glocke diese im schwingenden Zustand zu halten, indem die Antriebsvorrichtung, welche mit der aufgehängten Glocke gekoppelt ist, jeweils in einem zeitlichen Bereich in die jeweilige Auslenkrichtung der aktuellen Glockenschwunghalbperiode angetrieben wird, in welchem die schwingende Glocke in etwa ihre Ruhelage passiert. Dieses "Anschwung geben" wird hierbei gemäss dem gängigen herkömmlichen Verfahren an die Glockenparameter sowie die Parameter der Antriebsvorrichtung einmalig angepasst. Zu diesen Parametern zählen insbesondere das Trägheitsmoment der Glocke, das Motormoment der Antriebsvorrichtung sowie die Glockenmasse und der Aufhängungspunkt der Glocke. Um systembedingten Parameteränderungen insbesondere durch Alterungsprozesse oder Temperatur (Änderung der Systemreibung) wirkungsvoll begegnen zu können, sehen herkömmliche Verfahren vor, die Umkehrpunkte der schwingenden Glocke am Ende einer jeweiligen Halbperiode, d.h. die Zeitpunkte, zu welchen der aktuelle Auslenkwinkel der in die eine wie in die andere Richtung schwingenden Glocke erreicht wird, zu bestimmen.
  • Aus der Kenntnis des Zeitabstandes zwischen den jeweiligen maximalen Auslenkwinkeln während einer Halbperiode der Glockenschwingung, d.h. aus der Kenntnis der Auslenkdauer, bzw. Schwungdauer kann bei verhältnismässig kleinen Auslenkwinkeln durch eine annähernd lineare Beziehung unmittelbar auf den aktuellen Auslenkwinkel geschlossen werden. Gemäss den bekannten herkömmlichen Verfahren wird dieser aus der Auslenkdauer bestimmte aktuelle Auslenkwinkel mit einem Sollschwungwinkel verglichen und über einen Regler entsprechend auf die Antriebsvorrichtung eingewirkt, sodass eventuelle Abweichungen zwischen Soll und Istwerten ausgeglichen werden.
  • Der vorliegenden Erfindung liegt die Problemstellung zugrunde, dass diese herkömmliche Bestimmung des aktuellen Auslenkwinkels über die Bestimmung der Auslenkdauer ungenau ist. Die näherungsweise lineare Beziehung zwischen Auslenkdauer und aktuellem Auslenkwinkel geht insbesondere dann in eine nichtlineare Beziehung über, wenn der Auslenkwinkel relativ gross ist. Relativ grosse Auslenkwinkel können sich bei bestimmten Glockenarten, beispielsweise kleineren Glocken unmittelbar durch Vorsehen eines grossen Sollschwungwinkels (um einen festeren Klöppelschlag erzeugen zu können, vgl. DIN 4178) ergeben; ebenso macht sich eine derartige nichtlineare Beziehung auch störend bemerkbar, wenn während einer Hochläutphase einer grösseren Glocke mit einem relativ grossem Sollschwungwinkel in der Anfangsphase des Hochläutens der aktuelle Auslenkwinkel während einer Halbperiode naturgemäss noch relativ klein ist.
  • Neben der geschilderten Nichtlinearität der Beziehung bei grossen aktuellen Auslenkwinkeln ergibt sich zusätzlich das Problem, dass bei einem Heranziehen der Umkehrpunkte der schwingenden Glocke während einer Halbperiode die genaue Lage dieser Umkehrpunkte nicht zuverlässig bestimmt werden kann. Durch die sehr geringe Geschwindigkeit der Glocke kurz vor oder auch kurz nach einem Wendepunkt ist die Generatorspannung bzw. sind die Generatorspannungen, welche an der als Sensor, vorzugsweise generatorisch, betriebenen elektrischen Maschine abgegriffen werden können, relativ klein. Derartig kleine Spannungsamplituden weisen dann nur noch einen sehr geringen Signal-Rausch-Abstand auf, was die Bestimmung der genauen Lage des Wendepunktes erschwert, zumal die Zuleitungen zu den Motoren i.d.R. lang und damit anfällig gegenüber Störeinflüssen sind. Weiter hinzu kommt das Problem, dass die im System vorhandene Reibung insbesondere durch Temperaturschwankungen (Änderung der Viskosität der Schmierstoffe von Antriebsketten) und Abnutzungserscheinungen nicht konstant ist, sodass sich (aufgrund des Einflusses der Reibung auf die Auslenkdauer) weitere Ungenauigkeiten beim Bestimmen des Auslenkwinkels ergeben. Ein weiterer Nachteil herkömmlicher Verfahren zum Regeln des Auslenkwinkels ist die zeitliche Verzögerung, die sich zwischen der Auslenkwinkelbestimmung und der Eingriffsmöglichkeit des Reglers ergibt. Da es gemäss den herkömmlichen Verfahren notwendig ist, zwei Umkehrpunkte, nämlich einen zu Beginn der aktuellen Auslenkhalbperiode und einen zum Ende der aktuellen Auslenkhalbperiode in Betracht zu ziehen, ist es nicht möglich, regelnd auf die aktuelle Schwingungshalbperiode, sondern lediglich auf die nächstfolgende einzuwirken.
  • Durch die geschilderten Ungenauigkeiten, welche sich bei derartigen herkömmlichen Verfahren zum Regeln des Auslenkwinkels einer Glocke ergeben, kann eine zuverlässige Regelung und insbesondere das Erreichen und Aufrechterhalten des Glockenschwunges eines vorgegebenen oder vorgebbaren Sollschwungwinkels nicht immer eingehalten werden. Auf Grundlage dieser geschilderten Problemstellung liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zum Regeln des Auslenkwinkels einer schwingenden Glocke sowie eine passende Antriebsvorrichtung anzugeben, welche die Regelgenauigkeit verbessern.
  • Diese Aufgabe wird durch ein Verfahren zum Regeln des Auslenkwinkels einer mittels einer Antriebsvorrichtung zeitweise antreibbaren und an diese angekoppelten schwingenden Glocke gemäss den Merkmalen des Anspruches 1 gelöst. Ausserdem wird die Aufgabe durch eine Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke gemäss den Merkmalen des Anspruchs 11 gelöst.
  • Die Aufgabe wird insbesondere durch ein Verfahren gelöst, bei welchem zunächst eine elektrische Maschine der Antriebsvorrichtung, welche als Sensor, vorzugsweise generatorisch, und motorisch betreibbar ist, im Generatorbetrieb betrieben wird. Davon ausgehend, dass die Antriebsvorrichtung mit einer bereits schwingenden, an die Antriebsvorrichtung gekoppelten Glocke verbunden ist, wird gemäss dem erfindungsgemässen Verfahren zunächst die Frequenz zumindest einer der an der elektrischen Maschine durch die Pendelbewegung der Glocke erzeugten Generatorspannungen fortlaufend gemessen. Das fortlaufende Messen wird mindestens bis zu einem Zeitpunkt durchgeführt, an welchem ein Maximum der gemessenen Frequenz erreicht ist. Dieses Frequenzmaximum wird bei Durchlauf der Ruhelage der schwingenden Glocke, d.h. im Stillstandspunkt einer ruhenden Glocke erreicht. Auf Grundlage des Frequenzmaximums ist somit die Geschwindigkeit der Glocke im Durchlauf dieser Ruhelage bestimmbar, wobei die Glockengeschwindigkeit bis zu einem Auslenkwinkel von 60 Grad nahezu direkt proportional zum aktuellen Auslenkwinkel der Glocke ist. Bei grösseren Auslenkwinkeln ist ein Linearisierungsverfahren erforderlich, das aber deutlich weniger komplex als das für die Umrechnung einer Zeitmessung erforderliche ist und das deshalb direkt über eine geschlossene Funktion während des Betriebs berechnet werden kann. Eine direkte Berechnung ist einer tabellengestützten Linearisierung wegen der höheren Auflösung immer überlegen. Nachdem dieser aktuelle Auslenkwinkel der aktuellen Halbperiode des Glockenschwunges bestimmt ist, sieht das erfindungsgemässe Verfahren vor, nachdem die aktuelle Maximalfrequenz der Maschine innerhalb der aktuellen Halbperiode des Glockenschwunges bestimmt ist, einen ersten Korrekturfaktor zu bestimmen. Dieser erste Korrekturfaktor ergibt sich aus der Abweichung des bestimmten aktuellen Auslenkwinkels von einem vorgegebenen oder vorgebbaren Sollschwungwinkel. Weicht der aktuelle Auslenkwinkel nicht vom vorgegebenen oder vorgebbaren Sollschwungwinkel ab, so wird der Korrekturfaktor null, und es ist keine Korrektur bzw. kein korrigierender Eingriff in die aktuellen Antriebsparameter vonnöten. Bei Vorliegen einer Abweichung des aktuellen Auslenkwinkels von dem Sollschwungwinkel wird der erste Korrekturfaktor ungleich null, und aus diesem ersten Korrekturfaktor wird ein Antriebsparameter bestimmt. Gemäss diesem Antriebsparameter wird die elektrische Maschine im Motorbetrieb betrieben, um regelnd in den aktuellen Glockenschwung einzugreifen und die Abweichung zwischen dem aktuellen Auslenkwinkel und dem Sollschwungwinkel zu kompensieren.
  • Die erfindungsgemässe Lösung weist hierbei insbesondere den Vorteil auf, dass aufgrund der deutlich geringeren Nichtlinearität der aktuelle Auslenkwinkel der aktuellen Halbperiode des Glockenschwunges sehr genau bestimmt werden kann, ohne dass die genauen Lagen der Umkehrpunkte des Glockenschwunges hierzu vonnöten sind. Durch die hierdurch verbesserte Genauigkeit ist die Eingriffsmöglichkeit durch den Regler wesentlich schneller und genauer, wodurch insbesondere bei kleinen Auslenkwinkeln, beispielsweise durch Vorgabe eines kleinen Sollschwungwinkels, eine wesentlich präzisere Auslenkwinkelregelung möglich ist.
  • Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.
  • Beispielsweise ist es vorgesehen, dass der Antriebsparameter einer Einschaltdauer für den Betrieb der elektrischen Maschine im Motorbetrieb entspricht. Genauso ist es aber auch möglich, diese an eine zeitliche Komponente gebundene Einschaltdauer der elektrischen Maschine im Motorbetrieb an das Überstreichen eines bestimmten Auslenkwinkelbereiches zu koppeln. In beiden Fällen wird durch Änderung der Antriebsparameter in den Antriebsvorgang der Glocke derart regelnd eingegriffen, dass der Antriebszeitraum, welcher in der Regel im Bereich des Durchgangspunktes der Glocke durch die Ruhelage liegt, dem Glockenschwung entsprechend gedehnt oder gekürzt wird, um die Abweichung des aktuellen Auslenkwinkels vom Sollschwungwinkel zu minimieren. Hierbei ist insbesondere von Vorteil, dass ein derartiger Antriebsparameter durch einfaches Aktivieren bzw. Deaktivieren des Motorbetriebes der elektrischen Maschine umgesetzt werden kann. Gleichzeitig sorgt ein Antreiben der Glocke in dem Bereich ausserhalb ihres Ruhelagendurchgangspunkts mit einem annähernd gleichen Anteil des Antreibens während des fallenden und während des steigenden Bewegungsanteils der Glocke für einen homogenen und ausgeglichenen Antrieb.
  • Genauso gut kann aber auch vorgesehen sein, dass der Antriebsparameter ein Abschaltzeitpunkt oder ein Abschaltauslenkwinkel ist, wobei ein derartiger Abschaltzeitpunkt bzw. Abschaltauslenkwinkel den Zeitpunkt für das Beenden des Betriebes der elektrischen Maschine im Motorbetrieb angibt. Dies ist insbesondere von Vorteil, wenn der motorische Antrieb der elektrischen Maschine zeitlich vor dem Erreichen des Durchgangspunktes durch die Ruhelage aktiviert wird, die Glocke dann die Ruhelage durchläuft und dann anhand der gemessenen Maximalfrequenz auf den momentanen Auslenkwinkel der aktuellen Glockenschwunghalbperiode geschlossen wird. In diesem Fall ist es möglich, bereits für die aktuelle Halbperiode des Glockenschwunges dadurch eine Regelmöglichkeit zu schaffen, dass der motorische Antrieb der elektrischen Maschine bereits im aktuellen Glockenschwung je nach Korrekturnotwendigkeit frühzeitiger oder verspäteter als ursprünglich vorgesehen abgeschaltet wird. Hierdurch kann bereits der Auslenkwinkel der aktuellen Glockenhalbperiode an den Sollschwungwinkel angeglichen werden, was die Reglerverzögerung minimiert.
  • Genauso gut kann es aber auch vorgesehen sein, dass der Antriebsparameter ein direkter, auf den Motorbetrieb der elektrischen Maschine bezogener Motorparameter ist, wie beispielsweise eine Motorenergie, eine Motorleistung oder ein Motormoment.
  • In bevorzugter Weise ist es vorgesehen, dass, während die elektrische Maschine im Generatorbetrieb betrieben wird, eine Maschinenphasenverschiebung zwischen mindestens zwei der Maschinenphasen der an der elektrischen Maschine erzeugten Generatorspannungen bestimmt wird. Da die Phasenlage der Maschinenphasen zueinander bekannt ist, kann anhand der gemessenen Phasenverschiebung die aktuelle Auslenkrichtung der aktuellen Halbperiode des Glockenschwunges aus dem Vorzeichen der Maschinenphasenverschiebung bestimmt werden. Hierdurch ist auf besonders einfache Weise gewährleistet, dass bei einem möglicherweise anschliessenden Korrektureingriff im Motorbetrieb der elektrischen Maschine der Motor in die richtige, d.h. die momentane Glockenschwungrichtung der aktuellen Halbperiode angetrieben wird.
  • Um die Reglergenauigkeit weiter zu verbessern, ist es in bevorzugter Weise vorgesehen, dass das erfindungsgemässe Verfahren weiterhin den Verfahrensschritt des Entmagnetisierens der elektrischen Maschine aufweist. Dieser Verfahrensschritt des Entmagnetisierens der elektrischen Maschine wird zeitlich vor dem Betreiben der elektrischen Maschine im Generatorbetrieb ausgeführt und stellt sicher, dass die Messergebnisse, welche die Grundlage für einen korrigierenden Reglereingriff bilden, nicht durch eine eventuell vorhandene Restmagnetisierung des Motors (inhärente Remanenz) verfälscht werden.
  • In besonders bevorzugter Weise ist es vorgesehen, dass das Verfahren ferner vorsieht, dass ab dem Zeitpunkt, an welchem das Maximum der gemessenen Frequenz erreicht wurde, die Spannungsperioden mindestens einer der an der elektrischen Maschine erzeugten Generatorspannungen fortlaufend gezählt werden. Dadurch, dass die Übersetzung des Systems (Getriebe) sowie die Polpaarzahl der elektrischen Maschine bekannt sind, kann aufgrund eines solchen Zählvorganges insbesondere ab dem Durchlaufpunkt der Ruhelage der Glocke der momentane Auslenkwinkel dieser Glocke bestimmt werden. Hierdurch ist es besonders einfach möglich, eventuelle, auf einen derartigen momentanen Auslenkwinkel der Glocke bezogene Antriebsparameter, insbesondere zum Festlegen eines Auslenkwinkelbereiches bzw. zum Bestimmen eines Abschaltauslenkwinkels relativ exakt auf einen bestimmten Ausführzeitpunkt zu beziehen.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass die aktuelle Klöppelschlagstärke des auf die Glocke treffenden mitschwingenden Klöppels an den momentanen Auslenkwinkel angepasst wird. Hierbei ist es insbesondere vorgesehen, dass eine aktuelle Klöppelschlagstärke mit Hilfe der Geschwindigkeit der Glocke im Ruhelagendurchgangspunkt bestimmt wird und diese aktuelle Klöppelschlagstärke mit einer vorgegebenen oder vorgebbaren Sollklöppelschlagstärke verglichen wird, wobei aus diesem Vergleichsergebnis ein zweiter Korrekturfaktor ermittelt wird. Mit Hilfe dieses zweiten Korrekturfaktors wird anschliessend ein Einschaltzeitpunkt oder ein Einschalt-Auslenkwinkel bestimmt, ab welchem die elektrische Maschine im Motorbetrieb betrieben wird. Es ist insbesondere vorgesehen, die Einschaltdauer der elektrischen Maschine im Motorbetrieb nicht zeitlich symmetrisch um den Ruhelagendurchgangspunkt vorzusehen, sondern den Einschaltzeitpunkt vielmehr entsprechend der gewünschten Sollklöppelschlagstärke zeitlich vorzuziehen, d.h. während der fallenden Bewegung der Glocke einen Grossteil des Einschaltzeitraumes vorzusehen, bzw. umgekehrt den Einschaltzeitpunkt nach hinten zu verschieben, d.h. während der steigenden Bewegung der Glocke vorzusehen. Wird der Einschaltzeitraum der elektrischen Maschine im Motorbetrieb in den Zeitraum der fallenden Bewegung der Glocke vorgezogen, so wird die Klöppelmasse zusätzlich beschleunigt, wodurch sich die Klöppelschlagstärke erhöht. Im Gegenzug sorgt eine zeitliche Verlagerung des Motorantriebes der Glocke in die steigende Bewegung der Glocke hinein dafür, dass die Klöppelmasse relativ zur Glocke abgebremst wird, wodurch sich die Schlagstärke vermindert. Insbesondere ist hierbei von Vorteil, dass die Klöppelschlagstärke unabhängig von den jeweiligen momentanen Auslenkwinkeln beeinflusst werden kann.
  • Eine weitere vorteilhafte Weiterbildung besteht darin, dass der aktuelle Klöppelschlagzeitpunkt bestimmt wird. Ferner wird ein Korrekturfaktor aus der Abweichung des aktuellen Klöppelschlagzeitpunktes von einem vorgegebenen oder vorgebbaren Klöppelschlagzeitpunkt bestimmt. Aus diesem ermittelten Korrekturfaktor wird ein Einschaltzeitpunkt (31) oder ein Einschalt-Auslenkwinkel (30) bestimmt. Ferner wird die Verteilung der Einschaltdauer (20) der elektrischen Maschine über den aktuell möglichen Auslenkwinkel bestimmt. Es besteht ein Vorteil darin, dass die Klöppelschlagstärke unabhängig von den jeweiligen momentanen Auslenkwinkeln beeinflusst werden kann.
  • Weiterhin ist zur Verbesserung der Reglergenauigkeit in besonders vorteilhafter Weise vorgesehen, dass die während des Betreibens der elektrischen Maschine im Motorbetrieb anliegende Netzspannung oder der dabei in den Motor fliessende Strom zumindest an einer Phase fortlaufend gemessen wird. Anhand dieses Messwertes wird ein dritter Korrekturfaktor aus der Abweichung des gemessenen Netzspannungsverlaufes zu einem Sollnetzspannungsverlauf ermittelt, wobei mit Hilfe dieses dritten Korrekturfaktors der Antriebsparameter dahingehend korrigiert werden kann, dass eventuelle Netzspannungsschwankungen, welche sich in einer Abweichung ausdrücken, wirkungsvoll kompensiert werden. Auch im Falle einer Netzspannungsschwankung ist somit sichergestellt, dass der Auslenkwinkel der Glocke zuverlässig geregelt wird.
  • Weiterhin ist eine Antriebsvorrichtung zum geregelten Betreiben einer an diese Antriebsvorrichtung angekoppelten Glocke vorgesehen, wobei die Antriebsvorrichtung eine wechselweise als Sensor, vorzugsweise generatorisch, und motorisch betreibbare elektrische Maschine, vorzugsweise eine Asynchronmaschine, eine Spannungsmesseinrichtung zum Messen des Frequenzverlaufes und/oder zum Messen des Amplitudenverlaufes zumindest einer der an der elektrischen Maschine anliegenden oder erzeugten Spannungen, eine Stelleinrichtung, insbesondere eine Umschalteinrichtung zum wechselweisen Umschalten der elektrischen Maschine zwischen dem Generatorbetrieb und dem Motorbetrieb, sowie eine Regeleinrichtung zum Ansteuern der Stelleinrichtung in Abhängigkeit eines mittels einer Spannungsmesseinrichtung oder Strommesseinrichtung erhaltenen Messwertes aufweist. Die Spannungsmesseinrichtung einer derartigen erfindungsgemässen Antriebsvorrichtung ist dazu ausgelegt, den erwähnten gemessenen Frequenzverlauf und/oder den Amplitudenverlauf nicht nur während des Generatorbetriebes der elektrischen Maschine, sondern auch während des Motorbetriebes der elektrischen Maschine zu messen. Hierbei ist insbesondere vorteilhaft, das sich die Umschaltzeit der elektrischen Maschine aus dem Motorbetrieb (Antreiben) in den Generatorantrieb (Messen) signifikant verkürzt, da im Gegensatz zu herkömmlichen Antriebsvorrichtungen vor diesem Umschalten erfindungsgemäss nicht sichergestellt werden muss, dass die Spannungsmesseinrichtung vor dem Umschalten in den Generatorbetrieb von den Anschlusspunkten getrennt wird. Eine derartige erfindungsgemässe Antriebsvorrichtung mit einer permanent mitbetriebenen Messeinrichtung kann also in besonders guter Weise dazu verwendet werden, durch eine Reduktion der Reaktionszeit des Reglers die Regelabweichung zu minimieren.
  • In besonders vorteilhafter Weise ist hierbei vorgesehen, dass die Spannungsmesseinrichtung mindestens eine Messstromquelle, insbesondere mindestens eine hochohmige Messstromquelle aufweist. Eine derartige hochohmige Messstromquelle ist hierbei dazu ausgelegt, einen Messstrom durch zumindest eine Phase der elektrischen Maschine zu treiben. Dies ist aufgrund der notwendigen Fremderregung insbesondere dann von Nöten, wenn eine Asynchronmaschine zum Einsatz kommt. Durch ein hochohmiges Auslegen der Messstromquelle ist dann sichergestellt, dass auch im Motorbetrieb der elektrischen Maschine ein schadenfreies Mitlaufen der Spannungsmesseinrichtung möglich ist. Beispielsweise kann der Messstrom in eine Phase hinein geleitet und aus zwei Phasen heraus geleitet werden. Alternativ kann der Messstrom in zwei Phasen hinein geleitet und aus einer Phase heraus geleitet werden.
  • In besonders bevorzugter Weise ist es vorgesehen, dass die Antriebsvorrichtung weiterhin eine Entmagnetisierungseinrichtung aufweist. Eine derartige Entmagnetisierungseinrichtung dient dazu, die elektrische Maschine von magnetischen Remanenzfeldern (inhärente Remanenz) in kurzer Zeit zu befreien, was eine weitere Erhöhung der Reglergenauigkeit ermöglicht. Als Entmagnetisierungseinrichtung kommen insbesondere elektronische Schalter in Frage, welche selektiv und ansteuerbar einen niederohmigen Abschluss zwischen den jeweiligen Phasen der (vom Netz getrennten) elektrischen Maschine herbeiführen können.
  • Ferner kann vorgesehen sein, dass die Antriebsvorrichtung Impedanzsteuerglieder aufweist. Derartige Impedanzsteuerglieder sind ausgelegt, durch eine Impedanzangleichung der Anschlüsse der elektrischen Maschine die mittels der Spannungsmesseinrichtung gemessenen Verläufe an den einzelnen Phasen der elektrischen Maschine aneinander anzugleichen. Hierbei ist insbesondere vorteilhaft, dass die Amplituden der phasenversetzten Signalspannungen im Generatorbetrieb, d.h. während der Messung, angeglichen werden können und somit die Signale besser aufeinander bezogen werden können. Dies erhöht wiederum die Reglergenauigkeit.
  • Ferner kann vorgesehen sein, dass die Impedanzsteuerglieder eine Vorrichtung zur Begrenzung der in ihnen entstehenden Verlustleistung während des Motorbetriebs der elektrischen Maschine aufweisen.
  • Ausserdem kann vorgesehen sein, dass die Spannungsmesseinrichtung mindestens ein Trennelement, insbesondere ein galvanisches Trennelement und hierbei vorzugsweise Optokoppler aufweist. Das mindestens eine Trennelement dient dazu, eine (galvanische) Trennung zwischen den Phasen der elektrischen Maschine und der Spannungsmesseinrichtung herzustellen, um die Spannungsmesseinrichtung vor der möglicherweise an der elektrischen Maschine anliegenden Hochspannung zu schützen. Hierbei ist vorgesehen, dass das mindestens eine Trennelement einen einstellbaren Arbeitspunkt und/oder eine einstellbare Verstärkung aufweist, um eine Anpassung der Messparameter zu ermöglichen. Mögliche Nichtlinearitäten des Optokopplers können durch einen zweiten Optokoppler in der Rückkopplungsschleife des Fototransistor-/Empfangskreises ausgeglichen werden. Hierbei kommt ein Servoverstärker für die Linearisierung zum Einsatz. Die Besonderheit dieses Servoverstärkers liegt in der Tatsache begründet, dass der Servoverstärker mit gewöhnlichen Transistor-Optokopplern aufgebaut ist. Ein weiterer Vorteil liegt darin, dass sich der Servoverstärker im Gegensatz zur allgemeinen Praxis auf der Empfängerseite befindet, nicht auf der Senderseite, was insbesondere eine einfache Einrichtung von Abgleichelementen erlaubt.
  • In besonders vorteilhafter Weise ist hierbei weiterhin eine Einstelleinrichtung vorgesehen, welche ausgelegt ist, einen derartigen Arbeitspunkt und/oder eine derartige Verstärkung des mindestens einen Trennelementes einzustellen. Die Einstelleinrichtung arbeitet dabei automatisch und ist weiterhin ausgelegt, ein derartiges automatisches Einstellen in Abhängigkeit von einer Messgrösse vorzunehmen, wobei hierbei insbesondere eine Temperaturmessung oder eine Steuerspannungsmessung in Betracht kommt. Auf diese Weise können Temperatureinflüsse, wie beispielsweise der temperaturabhängige Motorinnenwiderstand oder das Signalverhalten der temperaturabhängigen signalaufbereitenden Elemente wirkungsvoll kompensiert werden.
  • Im Folgenden werden das erfindungsgemässe Verfahren sowie die erfindungsgemässe Antriebsvorrichtung anhand einer Zeichnung näher erläutert. Hierbei zeigen:
  • Fig. 1
    eine schematische Darstellung einer schwingenden Glocke, welche gemäss dem erfindungsgemässen Verfahren angetrieben wird, bei Erreichen ihres Auslenkwinkels;
    Fig. 2
    eine schematische Ansicht einer schwingenden Glocke ähnlich Fig. 1, wobei die Glocke einen momentanen Auslenkwinkel erreicht hat, welcher noch nicht ihrem Auslenkwinkel entspricht;
    Fig. 3
    ein Diagramm, welches den Verlauf des Auslenkwinkels der Glocke über der Zeit darstellt;
    Fig. 4
    ein Frequenz-Zeit-Diagramm des Frequenzverlaufes einer Generatorspannung während des Glockenschwunges;
    Fig. 5
    den Amplitudenverlauf über der Zeit an den Klemmen der elektrischen Maschine mit einer entsprechenden Phasenverschiebung zueinander;
    Fig. 6
    den Amplitudenverlauf einer der drei Netzphasen sowie den Sollnetzspannungsverlauf dieser Phase;
    Fig. 7
    ein Logikdiagramm über der Zeit zum Verdeutlichen der Betriebszustände der elektrischen Maschine; und
    Fig. 8
    ein Blockschaltbild der erfindungsgemässen Antriebsvorrichtung.
  • Fig. 1 zeigt schematisch eine in einem Aufhängpunkt A aufgehängte Glocke 10. Ein Bezugspunkt M auf der Glocke definiert die Auslenkung bzw. den Auslenkwinkel 14 der schwingenden Glocke gegenüber einem Lot B. Das Lot B kennzeichnet dementsprechend die Ruhelage der Glocke 10, wenn sie nicht schwingt und verläuft somit durch den Ruhelagendurchgangspunkt bzw. Nulllagendurchgangspunkt der Glocke 10. Der Glockenbezugspunkt M stellt hierbei einen gewählten Bezugspunkt dar und liegt auf der Symmetrieachse des Glockenkörpers.
  • Wie in Fig. 1 gezeigt, hat die dort dargestellte schwingende Glocke 10 ihren Umkehrpunkt erreicht, sodass der Auslenkwinkel ϕ(t) 14 zwischen dem Lot B und einer durch den Aufhängpunkt A und den Glockenbezugspunkt M gehenden Achse mit dem Auslenkwinkel ϕ(p) 12 zusammenfällt. Der Sollschwungwinkel ϕ(p)soll 13, welcher durch Regelung des Auslenkwinkels 12 der Glocke erreicht werden soll, weicht bei dem in Fig. 1 gezeigten Schwingungszustand der Glocke 10 vom Auslenkwinkel ϕ(p) 12 ab.
  • In Fig. 2 ist eine schwingende Glocke 10 ähnlich der schwingenden Glocke aus Fig. 1 dargestellt, wobei in diesem Fall der Auslenkwinkel ϕ(p) 12 und der Auslenkwinkel ϕ(t) 14 der Glocke 10 nicht zusammenfallen. Folglich befindet sich die in Fig. 2 dargestellte schwingende Glocke 10 nicht in ihrem Umkehrpunkt, sondern wird diesen Umkehrpunkt in Auslenkwinkel ϕ(p) 12 erst noch erreichen, was durch den die Schwungrichtung 15 bezeichnenden Pfeil angedeutet ist. Nachdem sich nach dem Erreichen des Umkehrpunktes, d.h. des Auslenkwinkels ϕ(p) 12 die Auslenkrichtung 15 umgekehrt haben wird, durchquert die schwingende Glocke in der darauffolgenden Halbperiode ihres Schwunges ihren Nulldurchgangspunkt bzw. Ruhelagenpunkt, welcher mit dem Lot B zusammenfällt und wird in die entsprechend andere Richtung, in Fig. 2 also schematisch links vom Lot liegend, ausgelenkt. In diesem Fall kehren sich somit die Vorzeichen der jeweiligen Winkel bzw. Richtungen, wie Sollschwungwinkel ϕ(p)soll 13 oder Auslenkrichtung 15, um.
  • Fig. 3 zeigt ein Verlaufsdiagramm des Auslenkwinkels ϕ(t) 14 einer schwingenden Glocke 10 gemäss der Fig. 1 oder 2 über der Zeit. In Fig. 3 beschreibt der Glockenschwung, d.h. das Diagramm des Auslenkwinkels ϕ(t) 14 über der Zeit einen annähernd sinusförmigen Verlauf. Der betragsmässig jeweils maximal erreichte Auslenkwinkel ϕ(t) 14 entspricht, wie in Fig. 3 gezeigt, dem Auslenkwinkel 12. Bei Erreichen des Auslenkwinkels 12 jeweils in der einen oder in der anderen Auslenkrichtung, bezogen auf das Lot B, liegt ein Umkehrpunkt, d.h. ein Zustand minimaler Auslenkgeschwindigkeit der Glocke 10 vor. Der Schwung von einem Umkehrpunkt zu dem nächsten Umkehrpunkt mit entgegengesetztem Vorzeichen beschreiben die Halbperioden 16 und 17 des Schwunges der Glocke 10.
  • In Fig. 4 ist der Frequenzverlauf 111 einer der Maschinenphasen der elektrischen Maschine 110 in Fig.8 über der Zeit gezeigt. Wenn die Glocke 10 ihren Ruhelagenpunkt zwischen zwei Umkehrpunkten, d.h. während einer Halbperiode 16 durchläuft, erreicht sie in diesem Ruhelagendurchgangspunkt ihre höchste Geschwindigkeit für die aktuelle Halbperiode 16. In diesem Punkt wird an den Generatorklemmen der an die schwingende Glocke angekoppelten elektrischen Maschine die höchste Frequenz der induzierten Spannungen gemessen, da in Bezug auf die aktuelle Halbperiode 16 des Glockenschwunges auch die elektrische Maschine 110 zu diesem Zeitpunkt mit ihrer höchsten Geschwindigkeit angetrieben wird. Das Maximum 113 der Frequenz 111 fällt also mit dem Zeitpunkt zusammen, in welchem die Glocke ihren Nulldurchgangspunkt durchläuft. Aus dem Wert dieses Frequenzmaximums 113 lässt sich wiederum die Glockengeschwindigkeit der Glocke 10 bestimmen, welche bei bekannten weiteren Glockenparametern nahezu direkt proportional zum Auslenkwinkel 12 ist, wodurch sich ohne das Vorsehen von Winkelsensoren der Auslenkwinkel 12 aus dieser Messung der Frequenz 111 ableiten lässt.
  • In Fig. 5 ist der Amplitudenverlauf 112 der ersten Maschinenphase U, der zweiten Maschinenphase V, sowie der dritten Maschinenphase W während des Schwingens einer Glocke 10, welche mit der elektrischen Maschine 110 verbunden ist, dargestellt. Sowohl die Frequenz 111 als auch die Amplitude 112 der jeweiligen Maschinenphasen U, V, W nehmen im Verlauf eines Glockenschwunges, d.h. von einem Umkehrpunkt bis zum Durchgangspunkt der Ruhelage zu. Anschliessend nehmen sie bis zum Erreichen des Umkehrpunktes entgegengesetzten Vorzeichens wieder ab. Aus dem Vorzeichen der Phasenverschiebung 114 zwischen zwei beispielhaft gewählten Maschinenphasen der Maschinenphasen U, V, W kann die Auslenkrichtung 15 der Glocke 10 ermittelt werden.
  • Fig. 6 zeigt den Sollnetzspannungsverlauf einer beispielhaft gewählten ersten Netzphase L1 von Netzphasen L1, L2, L3 sowie einen tatsächlich gemessenen Netzspannungsverlauf 190 dieser Netzphase L1.
  • Fig. 7 zeigt ein Logikdiagramm, welches darstellt, wann die elektrische Maschine 110 im Motorbetrieb betrieben wird. Zwischen einem Einschaltzeitpunkt 31 entsprechend dem Einschalt-Auslenkwinkel 30 in Fig. 3 und einem Abschaltzeitpunkt 21 entsprechend dem Abschalt-Auslenkwinkel 23 befindet sich die elektrische Maschine 110 über die Einschaltdauer 20 im Motorbetrieb.
  • Fig. 8 zeigt das Blockschaltbild einer erfindungsgemässen Antriebsvorrichtung 100 zum geregelten Betreiben einer an dieser Antriebsvorrichtung 100 angekoppelten, nicht dargestellten Glocke 10. Die Antriebsvorrichtung 100 weist hierbei eine elektrische Maschine 110 auf, welche vorzugsweise eine Asynchronmaschine ist und wechselweise als Sensor, vorzugsweise generatorisch, und motorisch betrieben werden kann. Weiterhin ist eine Spannungsmesseinrichtung 130 vorgesehen, welche an mindestens eine, im dargestellten Blockschaltbild gemäss Fig. 8 an alle drei Phasen der elektrischen Maschine 110, angeschlossen ist und ausgelegt ist, einen Frequenzverlauf und/oder einen Amplitudenverlauf der jeweiligen Maschinenphasen U, V, W der elektrischen Maschine 110 bzw. der jeweiligen Netzphasen L1, L2, L3 des Netzes zu messen. Weiterhin ist eine Umschalteinrichtung 151 vorgesehen, welche dem Anschalten der elektrischen Maschine 110 an das bzw. dem Trennen der elektrischen Maschine 110 vom Versorgungsnetz, d.h. den Netzphasen L1, L2, L3 dient. Hierdurch wird zwischen dem Generatorbetrieb und dem Motorbetrieb der elektrischen Maschine 110 umgeschaltet.
  • Weiterhin ist eine Regeleinrichtung 180 vorgesehen, welche die Umschalteinrichtung 151 oder auch eine genereller ausgebildete Stelleinrichtung 150 in Abhängigkeit eines mittels der Spannungsmesseinrichtung 130 oder einer Strommesseinrichtung erhaltenen Messwertes ansteuert.
  • Wie im Blockschaltbild gemäss Fig. 8 gezeigt, ist die Spannungsmesseinrichtung 130 ständig mitlaufend ausgebildet, d.h. sie wird nicht von den Klemmen der elektrischen Maschine 110 getrennt, wenn die elektrische Maschine 110 an die Netzphasen L1, L2, L3 angekoppelt wird.
  • Wenn die Stelleinrichtung 150, im Blockschaltbild gemäss Fig. 8 also die Umschalteinrichtung 151, die Netzphasen L1, L2, L3 von den Maschinenphasen U, V, W getrennt hat und die elektrische Maschine 110 im Generatorbetrieb betrieben werden soll, ist es insbesondere bei einer Asynchronmaschine erforderlich, mindestens eine Motorphase mit einer Erregerspannung zu beaufschlagen. In dem Blockschaltbild der erfindungsgemässen Antriebsvorrichtung 100 gemäss Fig. 8 ist zu diesem Zweck eine Messstromquelle 131 vorgesehen, welche hochohmig ausgebildet ist. Diese hochohmige Messstromquelle 131 treibt einen Messstrom 135 im dargestellten Ausführungsbeispiel durch die dritte Maschinenphase W der elektrischen Maschine 110.
  • Weiterhin ist eine Entmagnetisierungseinrichtung 170 vorgesehen, welche schaltbar und selektiv zum Zwecke des Entmagnetisierens der elektrischen Maschine 110 ein niederohmiges Belasten der jeweiligen Phasen der elektrischen Maschine 110 erlaubt, um eine Remanenzmagnetisierung zu entfernen und somit die Messung des Spannungsverlaufes zu verbessern.
  • Die Antriebsvorrichtung 100 weist im dargestellten Ausführungsbeispiel gemäss dem Blockschaltbild aus Fig. 8 weiterhin Impedanzsteuerglieder 132 auf. Hierdurch ist sichergestellt, dass die mittels der Spannungsmesseinrichtung 130 gemessenen Spannungsverläufe an den einzelnen Phasen U, V, W der elektrischen Maschine 110 aneinander angeglichen werden und eine Vergleichbarkeit der Spannungsamplituden der induzierten Spannungen gewährleistet ist.
  • Die Antriebsvorrichtung 100 gemäss Blockschaltbild 8 weist weiterhin galvanische Trennelemente 133, im gezeigten Ausführungsbeispiel in Gestalt von Optokopplern, auf. Die Trennelemente 133, d.h. die Optokoppler, sind sekundärseitig mit Signalverstärkern ausgestattet. Hierdurch sind der Arbeitspunkt und/oder die Verstärkung der Trennelemente 133 einstellbar.
  • Zum Zwecke einer automatischen Einstellung der Arbeitspunkte bzw. Verstärkungen der Trennelemente 133, weist die erfindungsgemässe Antriebsvorrichtung 100 gemäss dem in Fig. 8 gezeigten Ausführungsbeispiel eine Einstelleinrichtung 134 auf, welche es ermöglicht, in Abhängigkeit von einer Messung, beispielsweise einer Temperaturmessung oder einer Steuerspannungsmessung, einen automatischen Abgleich, d.h. ein automatisches Einstellen der Arbeitspunkte bzw. der Verstärkungen der Trennelemente 133 vorzunehmen.

Claims (17)

  1. Verfahren zum Regeln des Auslenkwinkels (12) einer mittels einer Antriebsvorrichtung (100) zeitweise antreibbaren und an diese angekoppelten schwingenden Glocke (10), wobei die Antriebsvorrichtung (100) eine elektrische Maschine (110) aufweist, wobei die elektrische Maschine (110) gemäss den Verfahrensschritten wechselweise als Sensor und motorisch betreibbar ist, wobei das Verfahren die folgenden Verfahrensschritte aufweist:
    - Betreiben der elektrischen Maschine (110) im Generatorbetrieb;
    - Fortlaufendes Messen der Frequenz (111) zumindest einer der an der elektrischen Maschine (110) durch die Pendelbewegung der Glocke (10) erzeugten Generatorspannungen mindestens bis zu einem Zeitpunkt, an welchem ein Maximum (113) der gemessen Frequenz erreicht ist;
    - Bestimmen der Glockengeschwindigkeit im Ruhelagendurchgangspunkt der Glocke aus dem Maximum (113) der gemessenen Frequenz;
    - Bestimmen des aktuellen Auslenkwinkels (12) der aktuellen Halbperiode (16, 17) des Glockenschwunges aus der Glockengeschwindigkeit im Ruhelagendurchgangspunkt der Glocke;
    - Bestimmen der aktuellen Auslenkrichtung (15) der aktuellen Halbperiode (16, 17) des Glockenschwunges;
    - Bestimmen eines ersten Korrekturfaktors aus der Abweichung des aktuellen Auslenkwinkels (12) von einem vorgegebenen oder vorgebbaren Sollschwungwinkel (13);
    - Bestimmen eines Antriebsparameters aus dem ersten Korrekturfaktor; und
    - Betreiben der elektrischen Maschine (110) gemäss dem Antriebsparameter im Motorbetrieb.
  2. Verfahren nach Anspruch 1,
    wobei der Antriebsparameter eine Einschaltdauer (20) oder ein Auslenkwinkelbereich (22) für den Betrieb der elektrischen Maschine (110) im Motorbetrieb ist.
  3. Verfahren nach Anspruch 1,
    wobei der Antriebsparameter ein Abschaltzeitpunkt (21) oder ein Abschaltauslenkwinkel (23) für das Beenden des Betriebes der elektrischen Maschine (110) im Motorbetrieb ist.
  4. Verfahren nach Anspruch 1,
    wobei der Antriebsparameter ein Motorparameter, insbesondere eine Motorenergie, eine Motorleistung oder ein Motormoment für den Betrieb der elektrischen Maschine im Motorbetrieb ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    wobei das Verfahren weiterhin den folgenden Verfahrensschritt aufweist:
    während des Betreibens der elektrischen Maschine (110) im Generatorbetrieb,
    Bestimmen einer Maschinenphasenverschiebung (114) zwischen mindestens zwei der Maschinenphasen U, V, W der an der elektrischen Maschine (110) erzeugten Generatospannungen,
    und wobei im Verfahrensschritt des Bestimmens der aktuellen Auslenkrichtung (15) der aktuellen Halbperiode (16, 17) des Glockenschwunges die aktuelle Auslenkrichtung (15) aus dem Vorzeichen der Maschinenphasenverschiebung (114) bestimmt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5,
    wobei das Verfahren weiterhin den Verfahrensschritt des Entmagnetisierens der elektrischen Maschine (110) aufweist, wobei dieser Verfahrensschritt des Entmagnetisierens zeitlich vor dem Betreiben der elektrischen Maschine (110) im Generatorbetrieb ausgeführt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    wobei das Verfahren weiterhin die folgenden Verfahrensschritte aufweist:
    ab dem Zeitpunkt, an welchem das Maximum (113) der gemessen Frequenz (111) erreicht ist,
    fortlaufendes Zählen der Spannungsperioden (116) oder von Teilen davon an mindestens einer der an der elektrischen Maschine (110) durch die Pendelbewegung der Glocke (10) erzeugten Generatorspannungen;
    fortlaufendes Bestimmen des momentanen Auslenkwinkels (14) der Glocke (10).
  8. Verfahren nach einem der Ansprüche 1 bis 7,
    wobei das Verfahren weiterhin die folgenden Verfahrensschritte aufweist:
    Bestimmen einer aktuellen Klöppelschlagstärke;
    Bestimmen eines zweiten Korrekturfaktors aus der Abweichung der aktuellen Klöppelschlagstärke von einer vorgegeben oder vorgebbaren Sollklöppelschlagstärke;
    Bestimmen eines Einschaltzeitpunktes (31) oder eines Einschalt-Auslenkwinkels (30) aus dem zweiten Korrekturfaktor;
    Betreiben der elektrischen Maschine (110) im Motorbetrieb ab dem Einschaltzeitpunkt (31) oder bis zu dem Einschalt-Auslenkwinkel (30).
  9. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Verfahren weiterhin die folgenden Verfahrensschritte aufweist:
    Bestimmen des aktuellen Klöppelschlagzeitpunktes;
    Bestimmen eines Korrekturfaktors aus der Abweichung des aktuellen Klöppelschlagzeitpunktes von einem vorgegebenen oder vorgebbaren Klöppelschlagzeitpunkt;
    Bestimmen eines Einschaltzeitpunktes (31) oder eines Einschalt-Auslenkwinkels (30) aus dem ermittelten Korrekturfaktor; und
    Bestimmen der Verteilung der Einschaltdauer (20) der elektrischen Maschine über den aktuell möglichen Auslenkwinkel.
  10. Verfahren nach einem der Ansprüche 1 bis 9,
    wobei das Verfahren weiterhin die folgenden Verfahrensschritte aufweist:
    fortlaufendes bzw. intermittierendes Messen der an zumindest einem der Anschlüsse der elektrischen Maschine (110) während des Betreibens im Motorbetrieb anliegenden Netzspannungen (190) bzw. der in den Motor fliessenden Ströme;
    Bestimmen eines dritten Korrekturfaktors aus der Abweichung des gemessen Verlaufes der Netzspannungen (190) bzw. der in den Motor fliessenden Ströme zu einem Sollnetzspannungsverlauf (191) bzw. einem Sollstromverlauf;
    Korrigieren des Antriebsparameters gemäss dem dritten Korrekturfaktor.
  11. Antriebsvorrichtung (100) zum geregelten Betreiben einer an die Antriebsvorrichtung (100) angekoppelten Glocke (10), wobei die Antriebsvorrichtung (100) folgendes aufweist:
    eine wechselweise als Sensor und motorisch betreibbare elektrische Maschine (110);
    eine Spannungsmesseinrichtung (130) zum Messen des Frequenzverlaufes (111) und/oder zum Messen des Amplitudenverlaufes (112) zumindest einer der an der elektrischen Maschine (110) anliegenden oder erzeugten Spannungen;
    eine Stelleinrichtung (150);
    eine Regeleinrichtung (180) zum Ansteuern der Stelleinrichtung (150) in Abhängigkeit eines mittels der Spannungsmesseinrichtung (130) erhaltenen Messwertes bezüglich des Auslenkungswinkels (15) der aktuellen Halbperiode (16, 17) des Glockenschwungs,
    wobei die Spannungsmesseinrichtung (130) ausgelegt ist, den Frequenzverlauf (111) und/oder den Amplitudenverlauf (112) sowohl während des Generatorbetriebes als auch während des Motorbetriebes der elektrischen Maschine (110) zu messen; aus dem Maximum der gemessenen Frequenz die Glockengeschwindigkeit im Ruhelagendurchgangspunkt der Glocke zu ermitteln; und aus der Glockengeschwindigkeit im Ruhelagendurchgangspunkt der Glocke den aktuellen Auslenkungswinkel (15) der aktuellen Halbperiode (16, 17) des Glockenschwungs zu bestimmen.
  12. Antriebsvorrichtung (100) nach Anspruch 11,
    wobei die Spannungsmesseinrichtung (130) ferner mindestens eine Messstromquelle (131), insbesondere mindestens eine hochohmige Messstromquelle (131) aufweist,
    wobei die mindestens eine Messstromquelle (131) ausgelegt ist, einen Messstrom (135) durch zumindest eine Phase U, V, W der elektrischen Maschine (110) zu treiben.
  13. Antriebsvorrichtung (100) nach Anspruch 11 oder 12,
    wobei die Antriebsvorrichtung (100) weiterhin eine Entmagnetisierungseinrichtung (170) zum Entmagnetisieren der elektrischen Maschine (110) aufweist.
  14. Antriebsvorrichtung (100) nach einem der Ansprüche 11 bis 13,
    wobei die Antriebsvorrichtung (100) ferner Impedanzsteuerglieder (132) aufweist, welche ausgelegt sind, durch Impedanzangleichung von Anschlüssen (115) der elektrischen Maschine (110) die mittels der Spannungsmesseinrichtung (130) gemessen Verläufe an den einzelnen Phasen U, V, W der elektrischen Maschine (110) aneinander anzugleichen.
  15. Antriebsvorrichtung (100) nach Anspruch 14,
    wobei die Impedanzsteuerglieder (132) eine Vorrichtung zur Begrenzung der in ihnen entstehenden Verlustleistung während des Motorbetriebs der elektrischen Maschine (110) aufweisen.
  16. Antriebsvorrichtung (100) nach einem der Ansprüche 11 bis 15,
    wobei die Spannungsmesseinrichtung (130) mindestens ein Trennelement (133), insbesondere ein galvanisches Trennelement, vorzugsweise in Form eines Optokopplers aufweist, und
    wobei das mindestens eine Trennelement (133) in seinem Arbeitspunkt und/oder in seiner Verstärkung einstellbar ausgebildet ist.
  17. Antriebsvorrichtung (100) nach Anspruch 16,
    wobei eine Einstelleinrichtung (134) zum Einstellen des Arbeitspunktes und/oder zum Einstellen der Verstärkung des mindestens einen Trennelementes (133) vorgesehen ist, und wobei die Einstelleinrichtung (134) ausgelegt ist, das Einstellen in Abhängigkeit von einer Messung, insbesondere Temperaturmessung oder Steuerspannungsmessung automatisch vorzunehmen.
EP20110405294 2011-07-28 2011-07-28 Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke Not-in-force EP2551844B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20110405294 EP2551844B1 (de) 2011-07-28 2011-07-28 Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20110405294 EP2551844B1 (de) 2011-07-28 2011-07-28 Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke

Publications (2)

Publication Number Publication Date
EP2551844A1 EP2551844A1 (de) 2013-01-30
EP2551844B1 true EP2551844B1 (de) 2014-05-07

Family

ID=44532704

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20110405294 Not-in-force EP2551844B1 (de) 2011-07-28 2011-07-28 Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke

Country Status (1)

Country Link
EP (1) EP2551844B1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3310567C2 (de) * 1983-03-23 1985-12-12 Paul 8263 Burghausen Salomon Verfahren zum Steuern des Antriebsmotors einer Glockenläutmaschine sowie Vorrichtung zur Durchführung des Verfahrens
DE3505062A1 (de) * 1985-02-14 1986-08-14 Herforder Elektricitäts-Werke Bokelmann & Kuhlo GmbH & Co., 4900 Herford Glockenlaeutemaschine
DE3714465C3 (de) * 1987-04-30 1995-06-29 Philipp Hoerz Gmbh & Co Kg Verfahren zum Steuern des Antriebsmotors einer Glockenläutemaschine und Vorrichtung zur Durchführung des Verfahrens
BE1004028A7 (nl) * 1990-11-12 1992-09-08 Clock O Matic Nv Werkwijze en inrichting voor het laten luiden van een door een motor aangedreven klok.
ATE315268T1 (de) * 1999-10-20 2006-02-15 Joh Muff Ag Verfahren zur steuerung des schwungwinkels einer kirchenglocke
ATE470215T1 (de) * 2001-11-09 2010-06-15 Clock O Matic Nv Eine methode und ein gerät zur kontrolle des pendelwinkels einer glocke

Also Published As

Publication number Publication date
EP2551844A1 (de) 2013-01-30

Similar Documents

Publication Publication Date Title
EP2068436B1 (de) Verfahren und Vorrichtung zum Erkennen von Schrittverlusten eines Schrittmotors
EP1518318B1 (de) Verfahren zum steuern eines oszillierenden elektromotors eines elektrischen kleingeräts
WO2002103327A1 (de) Viskositäts-messgerät
DE19860446A1 (de) Verfahren zur Regelung eines spannungs-/frequenzumrichtergesteuerten Mehrphasen-Permanentmagnetmotors
EP3413458B1 (de) Ansteuerung für 1-phasen-synchronmotor
DE10357969A1 (de) Nullung eines Schrittmotors ohne Rauschen oder Bewegung
EP3196605B1 (de) Verfahren zum betreiben eines coriolis-massedurchflussmessgeräts und coriolis-massedurchflussmessgerät
EP3669452B1 (de) Verfahren und schaltungsanordnung zur resonanzdämpfung bei schrittmotoren
DE102006036288A1 (de) Synchronmotor, geberloses Motorsystem, sowie ein Verfahren zum Betreiben eines geberlosen Motorsystems mit einem Synchronmotor
WO2016156006A1 (de) Verfahren zur sensorlosen lagebestimmung des rotors von elektronisch kommutierten synchronmaschinen
EP3142244B1 (de) Verfahren zur detektion eines schrittverlustes bei einem schrittmotor und zugehörige elektronische steuerung eines schrittmotors
DE102006043683A1 (de) Verfahren zum Betreiben eines elektronisch kommutierenden Elektromotors
DE10311028B4 (de) Verfahren zur Bestimmung einer Startrotorlage und Drehzahl bei Impulsfreigabe einer stromrichtergespeisten, permanenterregten Synchronmaschine ohne Lage-und Drehzahlgeber
EP2884233B1 (de) Messgrößenerfassung im elektromagnetischen Antrieb eines Schaltgeräts
EP3100349B1 (de) Verfahren zum betreiben eines elektromotors
EP2551844B1 (de) Verfahren zum Regeln des Auslenkwinkels einer Glocke sowie Antriebsvorrichtung zum geregelten Betreiben einer an die Antriebsvorrichtung angekoppelten Glocke
DE3919927A1 (de) Verfahren zur erkennung einer vorbestimmten zeigerstellung und anzeigeeinrichtung
WO2011026681A2 (de) Verfahren und vorrichtung zur bestimmung einer rotorlage einer synchronmaschine
DE19534423A1 (de) Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagetischem Rotor
DE102017212774A1 (de) Steuerung eines Reluktanzaktuators
EP2680432B1 (de) Verfahren zur Ansteuerung eines Schrittmotors
EP1127278B1 (de) Einrichtung und verfahren zur gewinnung eines dynamisch hochwertigen, teilweise synthetisierten signals für die beschleunigung eines läufers eines elektrischen antriebs
EP3556011B1 (de) Verfahren zur bestimmung der winkellage des rotors eines von einem wechselrichter gespeisten synchronmotors und eine vorrichtung zur durchführung des verfahrens
EP2383879A2 (de) Verfahren und Synchronisationseinrichtung zur Synchronisierung von mindestens zwei RWA- und Lüftungsklappenantrieben
EP2586122B1 (de) Verfahren zum betreiben einer stelleinrichtung eines resonanzkreises sowie stelleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130725

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131220

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 667207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003002

Country of ref document: DE

Effective date: 20140618

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R.A. EGLI AND CO, PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140507

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140808

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140907

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003002

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140728

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003002

Country of ref document: DE

Effective date: 20150210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140728

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180723

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180720

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181019

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011003002

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 667207

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731