EP2546928A1 - Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen - Google Patents

Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen Download PDF

Info

Publication number
EP2546928A1
EP2546928A1 EP12004917A EP12004917A EP2546928A1 EP 2546928 A1 EP2546928 A1 EP 2546928A1 EP 12004917 A EP12004917 A EP 12004917A EP 12004917 A EP12004917 A EP 12004917A EP 2546928 A1 EP2546928 A1 EP 2546928A1
Authority
EP
European Patent Office
Prior art keywords
antenna arrangement
arrangement according
radiation elements
pulse
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12004917A
Other languages
English (en)
French (fr)
Other versions
EP2546928B1 (de
Inventor
Adam Umerski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP2546928A1 publication Critical patent/EP2546928A1/de
Application granted granted Critical
Publication of EP2546928B1 publication Critical patent/EP2546928B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/20Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
    • H01Q5/25Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0043Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target
    • F41H13/0068Directed energy weapons, i.e. devices that direct a beam of high energy content toward a target for incapacitating or destroying the target the high-energy beam being of microwave type, e.g. for causing a heating effect in the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41HARMOUR; ARMOURED TURRETS; ARMOURED OR ARMED VEHICLES; MEANS OF ATTACK OR DEFENCE, e.g. CAMOUFLAGE, IN GENERAL
    • F41H13/00Means of attack or defence not otherwise provided for
    • F41H13/0093Devices generating an electromagnetic pulse, e.g. for disrupting or destroying electronic devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0031Parallel-plate fed arrays; Lens-fed arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/062Two dimensional planar arrays using dipole aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/005Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements for radiating non-sinusoidal waves

Definitions

  • the present invention relates to an antenna arrangement for emitting microwave pulses of high energy.
  • Microwave pulses high energy density, especially those based on the HPEM (High Power Electromagnetics) technology are nowadays used to electronic components threatening objects, such as those of time-triggered or mobile phone-controlled explosives such. B. booby traps or the like. To destroy or at least dysfunctional.
  • Corresponding microwave pulse generating systems are preferably used in the form of portable systems or carried on vehicles. They should therefore be as compact as possible. The possibility of using such systems is not limited to the near field, but can be extended to larger ranges, for example, with the aim of impairing the trajectory of electronically controlled objects such. B. missiles or the like. One strives for the applications described to produce pulses with the highest possible energy density and power.
  • HPEM sources have the disadvantage that the switching process is dependent on a sparkover.
  • HPEM sources are subject to an increased mechanical stress due to the aforementioned switching operation and therefore have a comparatively limited life.
  • a microwave pulse generator in which a pulse with a rise in the order of a nanosecond and an amplitude in the range of 12-20 kV is generated at a first spark gap.
  • This pulse is subsequently converted into a damped sinusoidal oscillation (DS pulse) via another series-connected spark gap, which functions as a switch, and emitted via a reflector or an antenna.
  • DS pulse damped sinusoidal oscillation
  • the object of the present invention is to provide a novel antenna arrangement which allows to emit pulse-shaped signals with improved properties.
  • an antenna arrangement which is characterized by a first planar electrode, a second planar electrode, wherein the first electrode and second electrode are connectable to a generator for generating an excitation pulse, a plurality of non-linear radiation elements, the first and also connect the second electrode to one another as well as semiconductor diodes, which are provided in the region of the non-linear radiation elements and switch through at a certain breakdown voltage and thereby a pulse-shaped total pulse can be emitted by the antenna.
  • the novel antenna arrangement ensures a high reproducibility of the emitted pulse-shaped signals (pulses) as well as the emission time, since the switching process is not due to a spark gap but by a semiconductor namely by the semiconductor diode.
  • the novel antenna arrangement allows the use of slower pulse generators, at the same time the emission of pulsed signals with higher frequencies (> 300 MHz) than before (maximum 50 MHz) can be achieved.
  • the emission of pulsed signals with frequencies> 300 MHz can be carried out with excitation with slow rise times of approx. 10 ns.
  • the first planar electrode and the second planar electrode are conductive plates, preferably metal plates, so that the antenna arrangement forms a plate capacitor in which there are a plurality of radiation elements distributed over the surface of the plates in the form of dipoles.
  • the supply line in the form of a plate capacitor as part of the antenna arrangement allows a three-dimensional arrangement of the radiation elements depending on the desired application. In particular, this also increases the radiated field. Depending on the location of the supply line, the emission direction of the antenna device can be influenced.
  • the radiation elements suitably comprise two elongated conductive elements z. B metal strips which communicate with each other via the semiconductor diode.
  • the semiconductor diodes accommodated in the radiation elements have a so-called "avalanche breakdown characteristic". These are semiconductor diodes with very fast decay times. A voltage is applied to the diodes via the supply line and the two inductors. From a certain breakdown voltage, the diodes switch through and a pulse-shaped signal is emitted. The radiated frequency is independent of the rise time of the excitation signal. For this reason, one does not need a generator with fast rise time in the novel antenna arrangement. Nevertheless, switching times in the range of less than 500 ps can be achieved.
  • the antenna arrangement according to the invention ensures great freedom in terms of its application and its use.
  • a plurality of radiation sources can be arranged in series one behind the other between the planar electrodes or plates, so that, for example, with two radiation elements, the distance between the electrodes or plates is about twice as long as the dipole length of each radiation element.
  • a distance may be provided which is smaller than the length of the respective radiation element or as the dipole length.
  • apertures are arranged in the electrodes through which the radiation elements protrude. The distance between the two electrodes or plates is smaller than the length of the radiation element, d. H. the dipole length.
  • the rise times of the excitation signal of the generator may preferably be ⁇ 1 ns, particularly preferably ⁇ 5 ns.
  • the antenna arrangement according to the invention can be combined in a simple manner with at least one passive reflector.
  • a reflector can be arranged laterally to the arrangement of the plurality of individual radiation elements and electrodes, whereby a targeted propagation device of the pulse-shaped signal thus optimizes the signal in the desired direction.
  • a reflector can also enforce the arrangement of the individual radiation elements and the electrodes or plates, so that a propagation device of the pulse-shaped signal in z. B. results in two directions.
  • a plurality of reflectors can also be provided.
  • a reflector cross may be formed, in which the individual radiation elements are arranged substantially concentrically around the point of intersection of the reflectors.
  • the Fig. 1 shows the shape of a typical excitation signal of a generator.
  • the excitation signal has a short rise time in the nanosecond range, for example a rise time of 10 ns, until the signal reaches its peak.
  • the amplitude is on the order of usually about 150-200 KV.
  • the frequency of such a pulse-shaped signal is in the MHz range. The higher the frequency, the higher the energy of the pulse-shaped signal.
  • the higher the rise time of the excitation signal the higher the frequency of the signal to be radiated.
  • Fig. 2 shows a highly simplified schematic representation of a first embodiment of the antenna arrangement 2 according to the invention.
  • the antenna arrangement 2 comprises a first planar electrode 3 and a second planar electrode 4, for example in the form of planar conductive plates z.
  • Each electrode 3, 4 has a feed point 11 or 12 for feeding the pulse-shaped signal from a generator 1, in this case approximately in the middle of the left side edge of the electrode 3 or 4.
  • the generator 1 may be a generator with a comparatively "small" rise time, for example, of> 1 ns.
  • the two electrodes 3, 4 are a plurality of parallel, dipole-like non-linear radiation elements 5, which connect the two electrodes 3, 4 with each other.
  • a pulse-shaped signal fed in via the feed-in point 11, 12 is fed into all the radiation elements 5.
  • the radiation elements are elongated, conductive elements, for example metal strips made of Cu or Al, which are in each case connected to one another via a semiconductor diode 6.
  • the use of the inductors 7, 8 improves the emission time of the radiated from the antenna device 2 pulse and allows the increase of the pulse sharpness while increasing the pulse intensity.
  • the semiconductor diode 6 is expediently a semiconductor diode with a so-called avalanche breakdown characteristic, that is to say a semiconductor diode which is installed in the reverse direction with a fast fall time. Via the supply line and the two inductances 7, 8, a voltage is applied to the respective semiconductor diode 6. From a certain breakdown voltage, the semiconductor diode turns on and a pulse-shaped signal is emitted from the respective radiation element 5. The sum of the individual signals of the radiation elements 5 generated simultaneously yields the radiated from the antenna assembly total impulse. This is when the one-sided feed of Fig. 1 emitted in the direction of A.
  • the radiated frequency f depends on the rise time t as follows: f ⁇ 1 / 2 xt
  • the antenna arrangement Due to the special feed of the antenna arrangement and the switching operation by the semiconductor diode can be advantageously dispensed with a generator with fast rise time. Because the radiated frequency is in this case independent of the rise time of the excitation signal.
  • the antenna arrangement allows the use of slow pulse generators with a rise time of about 10 ns for the emission of pulsed signals with high frequencies of over 200 MHz, preferably of over 250 MHz, more preferably of over 300 MHz.
  • the radiation elements 5 represent dipoles.
  • the number and arrangement in the antenna arrangement depends on the specific application.
  • the distance between the electrodes 3, 4, d. H. the plates can be changed arbitrarily, depending on the application, impedance matching and radiation characteristics.
  • Fig. 3 shows a further embodiment of the antenna arrangement according to the invention can be seen in which the distance between the electrodes 3, 4 in comparison to the dipole length, ie the length of the individual radiation element, is increased.
  • This is done by a plurality of radiation elements 5a, 5b connected in series are located between the electrodes 3, 4.
  • the feeding of the excitation signal also takes place on both sides of the radiation element 5a, 5b provided inductances 7a, 7b and 8a, 8b.
  • two radiating elements 5a and 5b are connected in series. However, even more radiation elements can be connected in series.
  • This antenna arrangement radiates due to the lateral feed of the excitation signal from the generator 1 to the two electrodes 3, 4 in the direction A.
  • the distance between the electrodes 3, 4 smaller than the dipole length or length of the radiation element 5 ( Fig. 4 ).
  • openings 12 and 13 are provided in the respective electrodes 3, 4, so that the radiation elements 5 pass through the electrodes 3 and 4, respectively.
  • the feed The excitation signal is also here via inductors 7 and 8, which contact the electrodes 3, 4 in the region of the openings 13, 14 and contact the radiation element 5 on the radiation element 5 on both sides of the semiconductor diode 6.
  • the capacitance of the plate capacitor changes, so that by adjusting the distance, an adaptation of the energy of the generator can be made to the antenna arrangement.
  • the emission direction is indicated by the arrow A.
  • the arrangement according to the invention can also be combined with a passive reflector 10 in order to influence the emission, ie propagation direction A of the pulse to be generated.
  • the reflector 10 is laterally to the arrangement of the individual radiation elements 5, so that a propagation direction of the generated pulse in the direction A according to Fig. 5A results.
  • Fig. 5B results, the reflector 10, the arrangement of the individual radiation elements 5 completely covers.
  • the passive reflector In order to allow the propagation of the pulse to be radiated in two directions, according to Fig. 6 the passive reflector also enforce the arrangement of the individual radiation elements 5 and electrodes 3, 4. As a result, the radiated pulse propagates in both the direction A and the direction B, as shown Fig. 6A obviously, off.
  • Fig. 7 an arrangement can be seen in which the pulse to be radiated by the antenna arrangement is to be transmitted on all sides.
  • two reflectors 10, 11 are arranged crosswise to each other, wherein the individual radiation elements 5 in different rows concentrically around the crossing point of the reflectors 10, 11 are running around.
  • the respective electrode 3 or 4 is divided into two electrodes 3a, 3b and 4a, 4b. Each of the electrodes 3a and 3b or 4a and 4b become, as in FIG Fig. 7A represented, acted upon directly by the generator 1.
  • the new antenna arrangement makes it possible to radiate microwave pulses with very high energy density and sharpness, without excitation signals with a very high rise time must be used. Due to the good reproducibility of the switching time, arrays of individual radiation elements can be produced in any desired arrangement and size. The invention therefore represents a very significant contribution in the relevant field of technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Die Erfindung betrifft eine Antennenanordnung zur Abstrahlung von Mikrowellenimpulsen hoher Energie mit einer ersten flächigen Elektrode (3) sowie einer zweiten flächigen Elektrode (4), wobei die erste Elektrode (3) sowie zweite Elektrode (4) mit einem Generator (1) zur Erzeugung eines Anregungspulses verbindbar sind, ferner mit einer Vielzahl von Strahlungselementen (7), die die erste (3) sowie zweite Elektrode (4) miteinander verbinden sowie Halbleiterdioden (6) aufweisen, die im Bereich der Strahlungselemente (5) vorgesehen sind und ab einer bestimmten Durchbruchspannung durchschalten und hierdurch ein pulsförmiger Gesamtimpuls von der Antenne (2) abstrahlbar ist.

Description

  • Die vorliegende Erfindung betrifft eine Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen hoher Energie.
  • Mikrowellen-Impulse hoher Energiedichte, insbesondere solcher auf der Basis der HPEM (High Power Electromagnetics) Technologie werden heutzutage dazu eingesetzt, elektronische Komponenten bedrohlicher Gegenstände, beispielsweise solche von zeitgezündeten oder handygesteuerten Sprengsätzen wie z. B. Sprengfallen oder dgl. zu zerstören oder zumindest funktionsuntüchtig zu machen. Entsprechende Mikrowellen-Impulse generierende Systeme werden vorzugsweise in Form von tragbaren Systemen verwendet oder an Fahrzeugen mitgeführt. Sie sollen daher möglichst kompakt sein. Die Möglichkeit des Einsatzes derartiger Systeme ist aber nicht nur auf den Nahbereich beschränkt, sondern kann auch auf größere Reichweiten ausgedehnt werden, beispielsweise mit dem Ziel der Beeinträchtigung der Flugbahn von elektronisch gesteuerten Objekten wie z. B. Raketen oder dgl. Man ist für die beschriebenen Einsatzmöglichkeiten bestrebt, Impulse mit möglichst hoher Energiedichte und Leistung zu erzeugen. HPEM-Quellen haben allerdings den Nachteil, dass der Schaltvorgang abhängig ist von einem Funkenüberschlag. Daraus wiederum resultiert der Nachteil, dass der Zeitpunkt der Abstrahlung nicht mit ausreichender Genauigkeit reproduzierbar ist. Der Aufbau des Quellen-Arrays deshalb schwierig ist. Darüber unterliegen HPEM-Quellen aufgrund des vorerwähnten Schaltvorgangs einer erhöhten mechanischen Beanspruchung und haben daher eine vergleichsweise begrenzte Lebensdauer. Zudem ist es für HPEM-Quellen erforderlich, ein Anregungssignal mit einer möglichst kurzen Anstiegszeit vorzusehen, was einer gerätemäßigen Begrenzung unterliegt.
  • Aus der US 3,748,528 ist ein Mikrowellen-Impuls-Generator bekannt, bei dem an einer ersten Funkenstrecke ein Impuls mit einem Flankenanstieg in der Größenordnung einer Nanosekunde und einer Amplitude im Bereich von 12-20 kV erzeugt wird. Dieser Impuls wird anschließend über eine weitere, in Serie geschaltete Funkenstrecke, die als Schalter fungiert, in eine gedämpfte Sinusschwingung (DS-Impuls) konvertiert und über einen Reflektor bzw. eine Antenne abgestrahlt.
  • Zur Erhöhung der Energiedichte derartiger Impulse ist man zusätzlich dazu übergegangen, wie dies in der DE 10 2006 014 230 A1 oder in der DE 103 13 286 B3 aufgezeigt ist, Anordnungen aus einer Mehrzahl von parallel geschalteter Mikrowellengeneratoren vorzusehen. Solche Anordnungen haben allerdings den Nachteil, dass sie einen gewissen Platzbedarf benötigen und daher für Anordnungen mit reduzierten Dimensionen nur bedingt geeignet sind.
  • Die Aufgabe der vorliegenden Erfindung besteht darin, eine neuartige Antennenanordnung zur Verfügung zu stellen, die es erlaubt, pulsförmige Signale mit verbesserten Eigenschaften abzustrahlen.
  • Die vorstehende Aufgabe wird durch eine Antennenanordnung gelöst, welche gekennzeichnet ist durch eine erste flächige Elektrode, eine zweite flächige Elektrode, wobei die erste Elektrode sowie zweite Elektrode mit einem Generator zur Erzeugung eines Anregungspulses verbindbar sind, eine Vielzahl von nicht linearen Strahlungselementen, die die erste sowie zweite Elektrode miteinander verbinden sowie Halbleiterdioden, die im Bereich der nichtlinearen Strahlungselemente vorgesehen sind und ab einer bestimmten Durchbruchspannung durchschalten und hierdurch ein pulsförmiger Gesamtimpuls von der Antenne abstrahlbar ist. Die neuartige Antennenanordnung gewährleistet eine hohe Reproduzierbarkeit der abgestrahlten pulsförmigen Signale (Pulse) sowie des Abstrahlungszeitpunktes, da der Schaltvorgang nicht durch eine Funkenstrecke sondern durch einen Halbleiter nämlich durch die Halbleiterdiode begründet wird. Daraus wiederum resultieren deutlich geringere Verluste sowie eine deutlich höhere Lebensdauer. Ferner ermöglicht die neuartige Antennenanordnung den Einsatz langsamerer Pulsgeneratoren, wobei gleichzeitig die Abstrahlung von pulsförmigen Signalen mit höheren Frequenzen (> 300 MHz) als bisher (maximal 50 MHz) erreicht werden kann. So zum Beispiel kann die Abstrahlung von pulsförmigen Signalen mit Frequenzen > 300 MHz bei Anregung mit langsamen Anstiegszeiten von ca. 10 ns durchgeführt werden.
  • Zweckmäßigerweise handelt es sich bei der ersten flächigen Elektrode sowie zweiten flächigen Elektrode um leitfähige Platten, vorzugsweise Metallplatten, so dass die Antennenanordnung einen Plattenkondensator bildet, in dem sich eine Vielzahl von über die Fläche der Platten verteilter Strahlungselemente in Form von Dipolen befindet.
  • Die Zuleitung in Form eines Plattenkondensators als Bestandteil der Antennenanordnung ermöglicht eine dreidimensionale Anordnung der Strahlungselemente abhängig von der gewünschten Anwendung. Insbesondere wird hierdurch auch das abgestrahlte Feld erhöht. Abhängig von dem Ort der Zuleitung kann die Abstrahlrichtung der Antenneneinrichtung beeinflusst werden.
  • Die Strahlungselemente umfassen zweckmäßigerweise zwei längliche leitende Elemente z. B Metallstreifen, die über die Halbleiterdiode miteinander in Verbindung stehen.
  • Dadurch, dass die Einspeisung der Strahlungselemente an der jeweiligen Elektrode über Induktivitäten erfolgt, wird die Effizienz der Antennenanordnung in besonderem Maße erhöht.
  • Zweckmäßigerweise besitzen die in den Strahlungselementen untergebrachten Halbleiterdioden eine sogenannte "Lawinendurchbruch-Charakteristik". Hierbei handelt es sich um Halbleiterdioden mit sehr schnellen Abfallzeiten in Sperrrichtung. An die Dioden wird über die Zuleitung und die beiden Induktivitäten eine Spannung angelegt. Ab einer gewissen Durchbruchspannung schalten die Dioden durch und es wird ein pulsförmiges Signal abgestrahlt. Die abgestrahlte Frequenz ist von der Anstiegszeit des Anregungssignals unabhängig. Aus diesem Grund benötigt man bei der neuartigen Antennenanordnung keinen Generator mit schneller Anstiegszeit. Nichtsdestotrotz können Schaltzeiten im Bereich von unter 500 ps erreicht werden.
  • Die erfindungsgemäße Antennenanordnung gewährleistet große Freiheitsgrade hinsichtlich ihrer Anwendung sowie ihres Einsatzes. Beispielsweise können zwischen den flächigen Elektroden bzw. Platten mehrere Strahlungsquellen in Serie hintereinander jeweils angeordnet sein, so dass beispielsweise bei zwei Strahlungselementen der Abstand zwischen den Elektroden bzw. Platten etwa doppelt so lang ist wie die Dipollänge eines jeden Strahlungselementes.
  • Alternativ kann auch ein Abstand vorgesehen sein, der kleiner ist als die Länge des jeweiligen Strahlungselementes bzw. als die Dipollänge. Hierbei sind in den Elektroden Durchbrüche angeordnet, durch die die Strahlungselemente hindurch ragen. Der Abstand der beiden Elektroden bzw. Platten ist hierbei kleiner als die Länge des Strahlungselementes, d. h. die Dipollänge. Durch die Änderung des Abstandes ändert sich die Kapazität, so dass durch Anpassung des Abstandes eine Anpassung der Energie des Generators an die Antennenanordnung erfolgen kann.
  • Mit der neuartigen Antennenanordnung ist es möglich, mit vergleichsweise langsamen Generatoren ein abgestrahltes pulsförmiges Signal mit einer hohen Frequenz beispielsweise mit Frequenzen von > 200 MHz, vorzugsweise > 250 MHz, besonders vorzugsweise > 300 MHz zu erzeugen.
  • Die Anstiegszeiten des Anregungssignals des Generators können vorzugsweise ≥ 1 ns, besonders vorzugsweise ≥ 5 ns betragen.
  • Zur Steigerung der Wirksamkeit des abgestrahlten pulsförmigen Signals kann die erfindungsgemäße Antennenanordnung in einfacher Weise mit mindestens einem passiven Reflektor kombiniert werden.
  • Je nach Einsatzzweck kann ein Reflektor seitlich zu der Anordnung der Vielzahl der einzelnen Strahlungselemente sowie Elektroden angeordnet sein, wodurch sich eine gezielte Ausbreitungseinrichtung des pulsförmigen Signals also eine Optimierung des Signals in der gewünschten Richtung einstellt.
  • Alternativ kann ein Reflektor auch die Anordnung der einzelnen Strahlungselemente sowie die Elektroden bzw. Platten durchsetzen, so dass sich eine Ausbreitungseinrichtung des pulsförmigen Signals in z. B. zwei Richtungen ergibt.
  • Sofern eine allseitige Ausbreitungsrichtung beabsichtigt ist, können auch mehrere Reflektoren vorgesehen sein. Beispielsweise kann ein Reflektorkreuz ausgebildet sein, bei dem die einzelnen Strahlungselemente im Wesentlichen konzentrisch um den Kreuzungspunkt der Reflektoren verlaufend angeordnet sind.
  • Zweckmäßige Ausgestaltungen der vorliegenden Erfindung werden nachstehend anhand von Zeichnungsfiguren näher erläutert. Sich wiederholende Merkmale werden der Übersichtlichkeit halber lediglich einmal mit einem betreffenden Bezugszeichen versehen.
  • Es zeigen:
  • Fig. 1
    eine vereinfachte Darstellung der Impulsform eines von einem Impulsgenerator direkt erzeugten Impulses,
    Fig. 2
    eine vereinfachte Darstellung einer ersten Ausgestaltung der erfindungsgemäßen Antennenanordnung in perspektivischer Ansicht,
    Fig. 3
    eine Darstellung einer weiteren Ausführungsform der erfindungsgemäßen Antennenanordnung in perspektivischer Ansicht,
    Fig. 4
    eine weitere Ausgestaltung der erfindungsgemäßen Antennenanordnung in perspektivischer Ansicht,
    Fig.5
    eine Darstellung der erfindungsgemäßen Antennenanordnung unter Verwendung eines seitlich angeordneten passiven Reflektors in Seitenansicht des Reflektors (Fig. 5A) sowie Draufsicht auf den Reflektor (Fig. 5B),
    Fig. 6
    eine Darstellung der erfindungsgemäßen Antennenanordnung mit einem die Antennenanordnung durchsetzenden passiven Reflektor für eine beidseitige Abstrahlung in Seitenansicht des Reflektors (Fig. 6A) sowie Draufsicht auf den Reflektor (Fig. 6B) sowie
    Fig.7
    eine Darstellung der erfindungsgemäßen Antennenanordnung unter Verwendung zweier sich kreuzender Reflektoren für eine allseitige Abstrahlung in Seitenansicht des einen Reflektors (Fig. 7A) sowie in einer Draufsicht auf die Oberseite der Anordnung gemäß Fig. 7A unter Weglassung der oberen Elektrode (Fig. 7B).
  • Die Fig. 1 zeigt die Form eines typischen Anregungssignals eines Generators. Das Anregungssignal besitzt eine kurze Anstiegszeit im Nanosekundenbereich, beispielsweise eine Anstiegszeit von 10 ns, bis das Signal seinen Scheitelpunkt erreicht. Die Amplitude liegt in der Größenordnung von üblicherweise ca. 150 - 200 KV. Die Frequenz eines derartigen pulsförmigen Signals liegt im MHz-Bereich. Je höher die Frequenz, desto energiereicher ist das pulsförmige Signal. Üblicherweise ist die Frequenz des abzustrahlenden Signals umso höher je höher die Anstiegszeit des Anregungssignals ist.
  • Fig. 2 zeigt eine stark vereinfachte schematische Darstellung einer ersten Ausgestaltung der erfindungsgemäßen Antennenanordnung 2. Die Antennenanordnung 2 umfasst eine erste flächige Elektrode 3 sowie eine zweite flächige Elektrode 4 beispielsweise in Form von ebenen leitfähigen Platten z. B. Metallplatten, die in einem bestimmten Abstand zueinander angeordnet sind und einen Plattenkondensator bilden. Jede Elektrode 3, 4 verfügt über einen Einspeisepunkt 11 bzw. 12 zum Einspeisen des pulsförmigen Signals von einem Generator 1, in diesem Fall etwa in der Mitte der linken Seitenkante der Elektrode 3 bzw. 4. Bei dem Generator 1 kann es sich um einen Generator mit einer vergleichsweise "geringen" Anstiegszeit, beispielsweise von > 1 ns handeln.
  • Zwischen den beiden Elektroden 3, 4 befinden sich eine Vielzahl von parallel geschalteten, dipolartigen nichtlinearen Strahlungselemente 5, die die beiden Elektroden 3, 4 miteinander verbinden. Ein über die Einspeisepunkt 11, 12 eingespeistes pulförmiges Signal wird in sämtliche Strahlungselemente 5 eingespeist.
  • Bei den Strahlungselementen handelt es sich um längliche, leitfähige Elemente, beispielsweise Metallstreifen aus Cu oder Al, die jeweils über eine Halbleiterdiode 6 miteinander in Verbindung stehen. Die Einspeisung des pulsförmigen Signals vom Generator 1 über die jeweilige Elektrode 3, 4 in das jeweilige Strahlungselement 5 erfolgt über Induktivitäten 7 sowie 8. Die Verwendung der Induktivitäten 7, 8 verbessert den Abstrahlzeitpunkt des von der Antenneneinrichtung 2 abzustrahlenden Impulses und ermöglicht die Erhöhung der Impulsschärfe bei gleichzeitiger Erhöhung der Impulsintensität.
  • Bei der Halbleiterdiode 6 handelt es sich zweckmäßigerweise um eine Halbleiterdiode mit sogenannter Lawinendurchbruch-Charakteristik, also um eine Halbleiterdiode, die mit einer schnellen Abfallzeit in Sperrrichtung eingebaut ist. Über die Zuleitung und die beiden Induktivitäten 7, 8 wird an der jeweiligen Halbleiterdiode 6 eine Spannung angelegt. Ab einer gewissen Durchbruchspannung schaltet die Halbleiterdiode durch und ein pulsförmiges Signal wird von dem jeweiligen Strahlungselement 5 abgestrahlt. Die Summe der gleichzeitig erzeugten Einzelsignale der Strahlungselemente 5 ergibt den von der Antennenanordnung abgestrahlten Gesamtimpuls. Dieser wird bei der einseitigen Einspeisung von Fig. 1 in Richtung A abgestrahlt.
  • Im Normalfall hängt die abgestrahlte Frequenz f von der Anstiegszeit t wie folgt ab: f < 1 / 2 x t
    Figure imgb0001
  • Aufgrund der besonderen Einspeisung der Antennenanordnung und des Schaltvorgangs durch die Halbleiterdiode kann vorteilhaft auf einen Generator mit schneller Anstiegszeit verzichtet werden. Denn die abgestrahlte Frequenz ist vorliegend von der Anstiegszeit des Anregungssignals unabhängig. Zudem ermöglicht die Antennenanordnung die Verwendung von langsamen Pulsgeneratoren mit einer Anstiegszeit von ca. 10 ns zur Abstrahlung von pulsförmigen Signalen mit hohen Frequenzen von über 200 MHz, vorzugsweise von über 250 MHz, besonders vorzugsweise von über 300 MHz.
  • Die Strahlungselemente 5 stellen Dipole dar. Die Anzahl und Anordnung in der Antennenanordnung hängt von der konkreten Anwendung ab. Ebenso kann der Abstand zwischen den Elektroden 3, 4, d. h. den Platten, beliebig geändert werden, abhängig von der Anwendung, Impedanzanpassung und Abstrahlcharakteristik.
  • Aus Fig. 3 ist eine weitere Ausgestaltung der erfindungsgemäßen Antennenanordnung ersichtlich, bei der der Abstand zwischen den Elektroden 3, 4 im Vergleich zur Dipollänge, also der Länge des einzelnen Strahlungselements, vergrößert ist. Dies geschieht, indem mehrere Strahlungselemente 5a, 5b hintereinander geschaltet sich zwischen den Elektroden 3, 4 befinden. Die Einspeisung des Anregungssignals erfolgt ebenfalls über beidseitig zum Strahlungselement 5a, 5b vorgesehene Induktivitäten 7a, 7b bzw. 8a, 8b. Im Falle der Ausgestaltung nach Fig. 3 sind zwei Strahlungselemente 5a sowie 5b in Serie geschaltet. Es können allerdings auch noch mehr Strahlungselemente hintereinander geschaltet werden. Auch diese Antennenanordnung strahlt aufgrund der seitlichen Einspeisung des Anregungssignals vom Generator 1 auf die beiden Elektroden 3, 4 in Richtung A ab.
  • Je nach Anwendungsfall ist es auch möglich, den Abstand zwischen den Elektroden 3, 4 kleiner als die Dipollänge bzw. Länge des Strahlungselements 5 vorzusehen (Fig. 4). Hierbei sind in den jeweiligen Elektroden 3, 4 Durchbrüche 12 bzw. 13 vorgesehen, so dass die Strahlungselemente 5 die Elektroden 3 bzw. 4 durchsetzen. Die Einspeisung des Anregungssignals erfolgt auch hier über Induktivitäten 7 bzw. 8, die im Bereich der Durchbrüche 13, 14 die Elektroden 3, 4 kontaktieren und am Strahlungselement 5 beidseitig zur Halbleiterdiode 6 das Strahlungselement 5 kontaktieren. Durch die Änderung des Abstandes ändert sich die Kapazität des Plattenkondensators, so dass durch Anpassung des Abstandes eine Anpassung der Energie des Generators an die Antennenanordnung erfolgen kann. Die Abstrahlrichtung wird durch den Pfeil A gekennzeichnet.
  • Die erfindungsgemäße Anordnung kann auch mit einem passiven Reflektor 10 kombiniert werden, um die Abstrahl-, d. h. Ausbreitungsrichtung A des zu erzeugenden Impulses zu beeinflussen. Bei der Ausgestaltung nach Fig. 5 befindet sich der Reflektor 10 seitlich zur Anordnung der einzelnen Strahlungselemente 5, so dass sich eine Ausbreitungsrichtung des erzeugten Impulses in Richtung A gemäß Fig. 5A ergibt. Wie sich aus Fig. 5B ergibt, deckt der Reflektor 10 die Anordnung der einzelnen Strahlungselemente 5 vollständig ab.
  • Um die Ausbreitung des abzustrahlenden Impulses in zwei Richtungen zu ermöglichen, kann gemäß Fig. 6 der passive Reflektor auch die Anordnung der einzelnen Strahlungselemente 5 sowie Elektroden 3, 4 durchsetzen. Demzufolge breitet sich der abgestrahlte Impuls sowohl in Richtung A als auch in Richtung B, wie aus Fig. 6A ersichtlich, aus.
  • Auch hier deckt der Reflektor 10, wie aus Fig. 6B ersichtlich, die gesamte Anordnung der einzelnen Strahlungselemente 5 ab.
  • Schließlich ist aus Fig. 7 eine Anordnung ersichtlich, bei der der von der Antennenanordnung abzustrahlende Impuls allseitig ausgesendet werden soll. Hierzu sind zwei Reflektoren 10, 11 kreuzförmig zueinander angeordnet, wobei sich die einzelnen Strahlungselemente 5 in verschiedenen Reihen konzentrisch um den Kreuzungspunkt der Reflektoren 10, 11 herum verlaufend befinden. Dies ist besonders gut aus der Fig. 7B, bei der der Übersichtlichkeit halber die obere Elektrode 3 nicht dargestellt ist, ersichtlich. Die jeweilige Elektrode 3 bzw. 4 ist in jeweils zwei Elektroden 3a, 3b bzw. 4a, 4b aufgeteilt. Jede der Elektroden 3a und 3b bzw. 4a und 4b werden, wie in Fig. 7A dargestellt, vom Generator 1 direkt beaufschlagt.
  • Die neue Antennenanordnung ermöglicht es, Mikrowellenimpulse mit sehr hoher Energiedichte sowie Schärfe abzustrahlen, ohne dass Anregungssignale mit einer sehr hohen Anstiegszeit verwendet werden müssen. Aufgrund der guten Reproduzierbarkeit des Schaltzeitpunktes können Arrays aus einzelnen Strahlungselementen in beliebiger Anordnung und Größe hergestellt werden. Die Erfindung stellt daher einen ganz wesentlichen Beitrag auf dem einschlägigen Gebiet der Technik dar.
  • Bezugszeichenliste
  • 1
    Generator
    2
    Antennenanordnung
    3
    Elektrode
    4
    Elektrode
    5
    Strahlungselement
    6
    Halbleiterdiode
    7
    Induktivität
    8
    Induktivität
    9
    Reflektor
    10
    Reflektor
    11
    Einspeisepunkt
    12
    Einspeisepunkt
    13
    Durchbruch
    14
    Durchbruch

Claims (13)

  1. Antennenanordnung zur Abstrahlung von Mikrowellenimpulsen hoher Energie, gekennzeichnet durch
    eine erste flächige Elektrode (3),
    eine zweite flächige Elektrode (4),
    wobei die erste Elektrode (3) sowie zweite Elektrode (4) mit einem Generator (1) zur Erzeugung eines Anregungspulses verbindbar sind,
    eine Vielzahl von Strahlungselementen (7), die die erste (3) sowie zweite Elektrode (4) miteinander verbinden sowie Halbleiterdioden (6), die im Bereich der Strahlungselemente (5) vorgesehen sind und ab einer bestimmten Durchbruchspannung durchschalten und hierdurch ein pulsförmiger Gesamtimpuls von der Antenne (2) abstrahlbar ist.
  2. Antennenanordnung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass es sich bei der ersten Elektrode (3) und zweiten Elektrode (4) um leitfähige Platten handelt.
  3. Antennenanordnung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die Einspeisung der Strahlungselemente (5) von der jeweiligen Elektrode (3 bzw. 4) über Induktivitäten (7, 8) erfolgt.
  4. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Halbleiterdiode (6) eine Lawinendurchbruch-Charakteristik besitzt.
  5. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass mindestens zwei Strahlungselemente (5a, 5b) hintereinander angeordnet sind.
  6. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass der Abstand der beiden Elektroden (3, 4) zueinander kleiner ist als die Länge des Strahlungselementes (5).
  7. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Frequenz des abgestrahlten Gesamtimpulses der Antennenanordnung unabhängig von der Anstiegszeit des Anregungssignals der Antennenanordnung ist.
  8. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass das abgestrahlte pulsförmige Signal eine Frequenz von > 200 MHz, vorzugsweise eine Frequenz von > 250 MHz, besonders vorzugsweise eine Frequenz von > 300 MHz, aufweist.
  9. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Anstiegszeit des Anregungssignals ≥1 ns, vorzugsweise ≥5 ns beträgt.
  10. Antennenanordnung nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Antennenanordnung (1) mindestens einen passiven Reflektor (9 und/oder 10) umfasst.
  11. Antennenanordnung nach Anspruch 10,
    dadurch gekennzeichnet,
    dass der Reflektor (9 und/oder 10) seitlich zu der Anordnung der Strahlungselemente (5) angeordnet ist.
  12. Antennenanordnung nach Anspruch 10,
    dadurch gekennzeichnet,
    dass der Reflektor (9 und/oder 10) die Anordnung der Strahlungselemente (5) durchsetzt.
  13. Antennenanordnung nach Anspruch 12,
    dadurch gekennzeichnet,
    dass mindestens zwei sich kreuzende Reflektoren (9, 10) vorgesehen sind und die einzelnen Strahlungselemente (5) im Wesentlichen konzentrisch zu dem Kreuzungspunkt der Reflektoren (9, 10) verlaufend angeordnet sind.
EP12004917.6A 2011-07-09 2012-07-03 Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen Active EP2546928B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011107036A DE102011107036A1 (de) 2011-07-09 2011-07-09 Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen

Publications (2)

Publication Number Publication Date
EP2546928A1 true EP2546928A1 (de) 2013-01-16
EP2546928B1 EP2546928B1 (de) 2014-06-18

Family

ID=46513619

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12004917.6A Active EP2546928B1 (de) 2011-07-09 2012-07-03 Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen

Country Status (4)

Country Link
US (1) US8982010B2 (de)
EP (1) EP2546928B1 (de)
DE (1) DE102011107036A1 (de)
RU (1) RU2590317C2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018004568A1 (de) * 2018-06-08 2019-12-12 Diehl Defence Gmbh & Co. Kg Strahlungsquelle für Mikrowellen-Pulse und Strahlungseinrichtung
EP3995776A1 (de) * 2020-11-10 2022-05-11 Diehl Defence GmbH & Co. KG Wirkvorrichtung zum bekämpfen eines ziels mittels elektromagnetischer impulse, wirkvorrichtungssystem, trägereinrichtung und verfahren zum betreiben einer wirkvorrichtung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199649B1 (de) * 2014-09-26 2021-02-17 JFE Steel Corporation Herstellungsverfahren für kornorientierte elektrostahlbleche und beurteilungsverfahren für kornorientierte elektrostahlbleche
DE102018008381B4 (de) * 2018-10-19 2020-08-06 Diehl Defence Gmbh & Co. Kg HPEM-Quelle, Fahrzeug und Verfahren
CN114256612B (zh) * 2021-11-23 2023-11-10 河源广工大协同创新研究院 一种双极化集成天线源系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748528A (en) 1972-03-23 1973-07-24 Ikor Inc Microwave generator
US5774091A (en) * 1993-04-12 1998-06-30 The Regents Of The University Of California Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities
WO1998036490A1 (en) * 1997-02-17 1998-08-20 Milltronics Ltd. Microwave pulse generator and pulse-echo ranging system
DE10313286B3 (de) 2003-03-25 2005-01-20 Diehl Munitionssysteme Gmbh & Co. Kg Mikrowellengenerator
US20050285447A1 (en) * 2004-06-29 2005-12-29 Mayes Jonathan R Method and apparatus for generating short duration high voltage energy pulses using integrated generators and antennae.
DE102006014230A1 (de) 2006-03-28 2007-10-11 Diehl Bgt Defence Gmbh & Co. Kg Array aus Hochleistungs-Mikrowellengeneratoren zum Abstrahlen von Impulsen hoher Feldstärke
EP2397809A2 (de) * 2010-06-17 2011-12-21 Diehl BGT Defence GmbH & Co.KG Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5146075A (en) * 1991-04-08 1992-09-08 The United States Of America As Represented By The Secretary Of The Army Ligh activated high power integrated pulser
DE102004017875B4 (de) * 2004-04-13 2008-04-17 Diehl Bgt Defence Gmbh & Co. Kg Marx-Generator
DE102006002652A1 (de) * 2006-01-19 2007-08-02 Diehl Bgt Defence Gmbh & Co. Kg Hochleistungs-Mikrowellengenerator zum Abstrahlen kurzer Impulse, dessen Verwendung in einem Array und Array aus derartigen Mikrowellen-Generatoren

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3748528A (en) 1972-03-23 1973-07-24 Ikor Inc Microwave generator
US5774091A (en) * 1993-04-12 1998-06-30 The Regents Of The University Of California Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities
WO1998036490A1 (en) * 1997-02-17 1998-08-20 Milltronics Ltd. Microwave pulse generator and pulse-echo ranging system
DE10313286B3 (de) 2003-03-25 2005-01-20 Diehl Munitionssysteme Gmbh & Co. Kg Mikrowellengenerator
US20050285447A1 (en) * 2004-06-29 2005-12-29 Mayes Jonathan R Method and apparatus for generating short duration high voltage energy pulses using integrated generators and antennae.
DE102006014230A1 (de) 2006-03-28 2007-10-11 Diehl Bgt Defence Gmbh & Co. Kg Array aus Hochleistungs-Mikrowellengeneratoren zum Abstrahlen von Impulsen hoher Feldstärke
EP2397809A2 (de) * 2010-06-17 2011-12-21 Diehl BGT Defence GmbH & Co.KG Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018004568A1 (de) * 2018-06-08 2019-12-12 Diehl Defence Gmbh & Co. Kg Strahlungsquelle für Mikrowellen-Pulse und Strahlungseinrichtung
US11209247B2 (en) 2018-06-08 2021-12-28 Diehl Defence Gmbh & Co. Kg Radiation source for microwave pulses and radiation device
EP3995776A1 (de) * 2020-11-10 2022-05-11 Diehl Defence GmbH & Co. KG Wirkvorrichtung zum bekämpfen eines ziels mittels elektromagnetischer impulse, wirkvorrichtungssystem, trägereinrichtung und verfahren zum betreiben einer wirkvorrichtung

Also Published As

Publication number Publication date
DE102011107036A1 (de) 2013-01-10
RU2590317C2 (ru) 2016-07-10
RU2012126544A (ru) 2013-12-27
US20130009850A1 (en) 2013-01-10
US8982010B2 (en) 2015-03-17
EP2546928B1 (de) 2014-06-18

Similar Documents

Publication Publication Date Title
EP2546928B1 (de) Antennenanordnung zur Abstrahlung von Mikrowellen-Impulsen
DE60315654T2 (de) Kompakte Mehrbandantenne
EP2862235B1 (de) Antennenanordnung und verfahren
EP1895653B1 (de) Verfahren und Einrichtung zum Erzeugen und Abstrahlen eines Hochleistungs-Mikrowellenpulses
DE4136476C2 (de) Höchstfrequenzlinse und Antenne mit elektronischer Strahlschwenkung mit einer solchen Linse
EP3465817B1 (de) Antennenvorrichtung für einen radardetektor mit mindestens zwei strahlungsrichtungen und kraftfahrzeug mit zumindest einem radardetektor
DE1953443B2 (de) Sendeantennensystem fur ein Funkfeuer
DE102018004568B4 (de) Strahlungsquelle für Mikrowellen-Pulse und Strahlungseinrichtung
DE112018007422B4 (de) Wellenleiter-schlitzgruppenantenne
EP2397809B1 (de) Verfahren und Anordnung zur Erzeugung von Mikrowellen-Impulsen hoher Energie
DE10313286B3 (de) Mikrowellengenerator
DE102008031751B3 (de) Photoleitende Antenne zur Abstrahlung oder zum Empfang von Terahertz-Strahlung
DE112010002639B4 (de) Antenneneinrichtung
EP2728749B1 (de) Begrenzer für breitbandige Hochfrequenzsignale
DE102004034895A1 (de) Hochspannungsschalter sowie Mikrowellengenerator umfassend einen Hochspannungsschalter
DE102007044821B4 (de) Mikrowellengenerator
DE102012101443A9 (de) Planare Antennenanordnung
EP3996206B1 (de) Hornantenne und deren umkonstruktion
DE2552043C3 (de) Antenne mit einem Dipol, dessen Leiter einen treppenförmigen Verlauf haben
DE3209697C2 (de) Dämpferplatte
EP4270637A1 (de) Antennenanordnung zum auslesen von uhf rfid signalen
DE2360653C3 (de) Einrichtung zum gleichzeitigen Zünden einer Anzahl von steuerbaren Halbleiterventilen
DE102018119508A1 (de) Gruppenantenne aus einem dielektrischen Material
DE2729110A1 (de) Strahlungsgespeiste phasengesteuerte antennenanordnung
DE202011108784U1 (de) Testvorrichtung zum Testen eines Transponders in einem Testbereich eines Fertigungsgerätes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130702

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 5/00 20060101ALI20131031BHEP

Ipc: H01Q 21/06 20060101ALI20131031BHEP

Ipc: H03B 11/10 20060101ALI20131031BHEP

Ipc: H03K 3/57 20060101ALI20131031BHEP

Ipc: H01Q 21/00 20060101ALI20131031BHEP

Ipc: F41H 13/00 20060101ALI20131031BHEP

Ipc: H01Q 9/00 20060101AFI20131031BHEP

Ipc: H01Q 19/10 20060101ALI20131031BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140225

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 673828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012000869

Country of ref document: DE

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140918

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140618

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141020

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012000869

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

26N No opposition filed

Effective date: 20150319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120703

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140703

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012000869

Country of ref document: DE

Owner name: DIEHL DEFENCE GMBH & CO. KG, DE

Free format text: FORMER OWNER: DIEHL BGT DEFENCE GMBH & CO. KG, 88662 UEBERLINGEN, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 673828

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230720

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 12

Ref country code: DE

Payment date: 20230907

Year of fee payment: 12