EP2543136A1 - Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant - Google Patents

Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant

Info

Publication number
EP2543136A1
EP2543136A1 EP10719533A EP10719533A EP2543136A1 EP 2543136 A1 EP2543136 A1 EP 2543136A1 EP 10719533 A EP10719533 A EP 10719533A EP 10719533 A EP10719533 A EP 10719533A EP 2543136 A1 EP2543136 A1 EP 2543136A1
Authority
EP
European Patent Office
Prior art keywords
current
output
voltage
input
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP10719533A
Other languages
German (de)
English (en)
Other versions
EP2543136B1 (fr
Inventor
Mathias Moronvalle
Pierre-Emmanuel Calmel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Devialet SA
Original Assignee
Devialet SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=42703556&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2543136(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Devialet SA filed Critical Devialet SA
Publication of EP2543136A1 publication Critical patent/EP2543136A1/fr
Application granted granted Critical
Publication of EP2543136B1 publication Critical patent/EP2543136B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/08Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements
    • H03F1/083Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers
    • H03F1/086Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying elements in transistor amplifiers with FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/30Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters
    • H03F1/301Modifications of amplifiers to reduce influence of variations of temperature or supply voltage or other physical parameters in MOSFET amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/03Indexing scheme relating to amplifiers the amplifier being designed for audio applications

Definitions

  • the present invention relates to a current-voltage converter with a current reflector, the input current comprising a fixed component and a variable component, the converter comprising:
  • a current reflector circuit comprising two constant current sources each connected between the output and a respective reference voltage
  • Such a converter finds its application in particular in a high fidelity amplifier with high linearity and low rate of thermal distortion. It is common, in such an amplifier, to use as input, a digital-to-analog converter such as the PCM 1792 component of Texas Instrument. This converter has a current output, so that the analog signal is modulated in intensity.
  • Digital-to-analog converters with current output are particularly appreciated since they are insensitive to thermal distortion, these operating at constant power.
  • the current sources are switched between the mass or an output fixed to a virtual mass traditionally produced by an amplifier with operational amplifier.
  • all the transistors of the converter operate at constant current and voltage, therefore at constant power, whatever the modulation of the output signal.
  • the difficulty of preserving this absence of thermal distortion is reported on the following two stages, namely, the current-voltage converter and the associated voltage gain stage.
  • the current-voltage converter is made from an operational amplifier assembly whose output is limited to a few volts of amplitude.
  • the operational amplifier is followed by a transistor assembly to ensure a rise in voltage.
  • the invention aims to provide a current-voltage converter incorporating a gain stage, which degrades less the performance of the digital-analog converter such as the PCM 1792 placed upstream.
  • the object of the invention is a current-voltage converter with a current reflector of the aforementioned type, characterized in that it comprises a cascode stage connected in series with each constant current generator to impose a constant potential difference at the same time. terminals of each constant current generator regardless of the output voltage.
  • the converter comprises one or more of the following characteristics:
  • the converter comprises a cascode stage connected in series at the input for the current to be converted;
  • the input for the current to be converted is connected to the output through one of the cascode stages connected in series with the constant current generators;
  • the converter comprises, for each cascode stage, means for reinjecting a current equal to the current absorbed in the current reflector circuit;
  • the converter comprises, for each cascode stage, means for measuring the current absorbed for the cascode stage;
  • the current measurement means comprise a measuring current mirror circuit mounted on the gate control circuit of each transistor of a cascode stage, and the means for reinjecting the current absorbed into the current reflector circuit comprise means of summation and inversion of the sign of the two currents obtained at the output of the measuring current mirrors, the output of the summing and inversion means being connected to the current mirror circuit for the injection into the current reflector circuit of the opposite of the sum of currents obtained at the output of the measurement current mirror circuits;
  • the means for summing and inverting the sign of the two currents obtained at the output of the measurement current mirrors comprise, for each current mirror, a sign-reversing current mirror connected in series, the outputs of the two current mirrors sign inversion being connected together to the current reflector circuit;
  • the means for reinjecting the current absorbed comprise means for injecting a connection signal into the current generator associated with the cascode stage so that the current generator provides an increased current of the current absorbed by the cascode stage;
  • the reinjection means are capable of reinjecting a current equal to the current absorbed into the current reflector circuit for audible frequencies, such as frequencies below 20 kHz, and the converter comprises means for stabilizing the voltage delivered on the output to reduce the rate of current feedback for frequencies above audible frequencies, such as frequencies above 20 kHz, the feedback rate being equal to the amount of reinjected current divided by the amount of current absorbed;
  • the stabilization means comprise a low-pass filter
  • the converter has no operational amplifier.
  • the difference in intensity between the two sources of constant current is equal to the fixed component of the input current.
  • the invention also relates to an input stage of a high fidelity amplifier with high linearity and low distortion rate comprising a current-output digital-to-analog converter and a current-voltage converter as defined above.
  • the invention also relates to a high fidelity amplifier with high linearity and low distortion rate comprising an input stage as defined above and an amplification stage, no voltage gain stage being interposed between the current-voltage converter and the amplification stage.
  • the amplifier has the following characteristic:
  • the conversion resistor has a value greater than or equal to the difference between the extreme values of the output voltage of the amplification stage divided by the difference between the extreme values of the intensity of the input current of the current converter; voltage.
  • FIG. 1 is a schematic view of a high fidelity amplifier according to the invention
  • FIG. 2 is an electrical diagram of the current-voltage converter of the amplifier of FIG. 1 according to a first embodiment
  • FIGS. 3 and 4 are electrical diagrams of alternative embodiments of the current-voltage converter of FIG. 2;
  • FIG. 5 is a set of curves illustrating the frequency responses for the three embodiments of FIGS. 2 to 4 of the current-voltage converter.
  • Amplifier 10, shown diagrammatically in FIG. 1, is a high fidelity amplifier able to receive an input 12 on a digital signal and to output an amplified analog signal.
  • the amplifier comprises an input stage 16 for converting the digital input signal into a voltage modulated analog output signal, as well as an amplification stage 18, ensuring the provision of a sufficient power for the load placed downstream, namely one or more speakers. It is preferably a class A amplification stage.
  • the input stage 16 comprises a digital-to-analog converter 20 whose input is connected to the input 12 of the amplifier for receiving a digital signal Lmeric- This digital-analog converter is able to output an analog signal modulated current I m0 duié- the digital to analog converter is for example a PCM 1792 Texas Instruments company.
  • the output of the digital-to-analog converter 20 is connected to a current-voltage converter 22 according to the invention.
  • This converter is able to supply a voltage V modU
  • the output of converter 22 is connected to the input of the amplifier stage 18 as known per se.
  • Figure 2 is illustrated the input stage 16.
  • the digital-to-analog converter 20 is schematized by a current source.
  • the current-voltage converter 22 has an input 24 connected at the output of the digital-analog converter 20 and a voltage output 26 able to be connected directly to the amplification stage 18.
  • the current-voltage converter 22 comprises two voltage sources 28, one of whose terminals is connected to ground and whose other terminal supplies two DC voltage buses 32, 34, one being maintained at a constant potential of + 50 V and the other maintained at a constant voltage of -50 V with respect to the mass.
  • the current-voltage converter 22 comprises a conversion resistor 36, one terminal of which is connected to the output 26, and the other terminal of which is connected to ground.
  • the input 24 of the converter is connected to the terminal of the resistor 36 constituting the output 26 of the converter through a current reflector circuit 38 capable of ensuring transmission of the entire modulation current I modU
  • the output current of the digital-to-analog converter 22 comprises a DC component of 6.2 mA and a variable component varying between -4 and +4 mA.
  • the current reflector circuit 38 is able to cancel the DC component.
  • the current reflector circuit comprises a first constant current generator 40 connecting the DC bus 32 to the output 26 and a second constant current generator 42 connecting the output 26 to the voltage bus 24.
  • the current generators 40 and 42 are perfect current generators, the generator 40 being able to provide an intensity greater than 6.2 mA and the current generator 42 being able to provide an intensity equal to that of the generator 40 increased of 6.2 mA.
  • variable component of the output current of the digital-to-analog converter 20 is entirely directed into the resistor 36, performing a current-voltage conversion whose linearity limitation resides only in the defects of the resistor 36.
  • the conversion resistor 36 has a value greater than or equal to the difference between the extreme values of the output voltage of the amplification stage 18 divided by the difference between the extreme values of the intensity I m0C i u i é of the input current of the current-voltage converter 22.
  • a first cascode stage 44 is connected in series between the generator 40 and the output
  • a second cascode stage 46 is interposed between the current source 42 and the output 26.
  • These two cascode stages each comprise an MOS transistor 44A, 46A whose drain is connected to the output 26 and whose source is connected to the current generator 40 and 42.
  • the gates of the two transistors 40, 46 are each maintained at a fixed voltage. + 45.3 V and - 45.3 V, respectively for the transistors 44 and 46.
  • the gates of the transistors 44, 46 are respectively connected to the voltage buses 32, 34 by a zener diode 48, 50.
  • a resistor 52 ensuring the circulation of a low intensity current through the diodes 48, 50 connects the anode of the diode 48 to the cathode of the diode 50. This resistance has for example a value of 100 k ⁇ .
  • the input 24 of the current-voltage converter is connected between the cascode stage 46 and the current generator 42.
  • an additional cascode stage 54 is disposed between the input 24 of the converter and the current reflector circuit 38 to which it is connected.
  • This cascode stage comprises a transistor MOS type 54A whose source is connected to the input 24. The drain is connected to the current reflector circuit 38 and the gate is connected to ground. It will be understood that the cascode stages 44 and 46 make it possible for the current sources 40, 42 to have no voltage variation at their terminals when the output voltage at the point 26 varies even by several tens of volts.
  • the cascode stages 44, 46 ensure that the voltage differences across the current generator terminals 40, 42 are constantly equal to 2.7 V, regardless of the output voltage of the circuit. This voltage across the current generator terminals is fixed to the fixed voltage of 4.7 V across the diodes 48, 50 minus the fixed voltage, for example equal to 2 V between the gate and the source of each transistor 44A, 46A.
  • the cascode stage 54 ensures that the voltage at the output of the digital-to-analog converter 20 is maintained in the range of 0 to 5 V, to compensate for the fact that the digital-to-analog converter does not act as a source of perfect current.
  • FIGS. 3 and 4 provide a solution to the charge and discharge of parasitic capacitors by eliminating the resulting harmonic distortion, which can reach a relatively high level of the order of -70 dBc.
  • Figure 3 shows the elements of Figure 2 supplemented by additional elements.
  • the elements identical or corresponding to those of Figure 2 are designated by the same reference numbers and will not be described in detail again, since they are connected identically.
  • the constant current generators 40, 42 are each formed of a resistor 124, 126 of which one terminal is connected to the respective voltage bus 32, 34, and the other terminal is connected to the cascode stage 44, 46 associated, through a transistor MOS type 128, 130 whose gate is respectively connected to the voltage bus 32 and 34 by a zener diode respectively 132, 134.
  • the grids and anodes of the diodes 132, 134 are connected by a resistor 136 adapted to ensure the flow of a current through the diodes 132, 134 in reverse bias or zen.
  • the gates of the transistors 44A, 46A of the cascode stages 44, 46 are interconnected by a current generator 138 able to establish a constant current of the order of 0.8 mA.
  • the current generator terminal 138 connected to the gate of the transistor 44 is connected to the voltage bus by a resistor 140 while the other terminal of the generator connected to the gate of the transistor 46A is connected to the voltage bus 44 by a resistor 142.
  • the circuit of FIG. 3 comprises means 144, 146 for measuring the current absorbed by the cascode stage 44, 46 and means for reinjecting a current equal to the current absorbed in the current reflector circuit 38.
  • These means 144, 146 are formed, in the embodiment of FIG. 3, by a link respectively comprising in series a capacitor 150, 152 and a resistor 154, 156. This link connects the gate of the transistors 44A, 46A to the terminals of the resistors 124, 126 connected to cascode stages 44, 46 through transistors 128, 130.
  • the reinjection means are, for example, adapted to reinject a current equal to the current absorbed in the current reflector circuit 38 for the audible frequencies, such as frequencies below 20 kHz, and the circuits 144, 146 comprise stabilizing means the voltage delivered on the output 26 to reduce the rate of current feedback for frequencies above the audible frequencies, such as frequencies above 20 kHz.
  • the reinjection rate is equal to the amount of reinjected current divided by the amount of current absorbed.
  • a capacitor 158, 160 is disposed between each voltage bus 32, 34 and the gate of the transistors 44A, 46A. These capacitors 158, 160 form, with the resistors 154, 156, a low-pass filter, avoiding correction for frequencies higher than the audible frequencies.
  • the circuits 144, 146 do not include a capacitor disposed between each voltage bus 32, 34 and the gate of the transistors 44A, 46A, the correction then also being carried out for the high frequencies, such as the frequencies greater than 20 kHz .
  • circuits 144, 146 act to correct the current generators 40,
  • the circuits 144 and 146 act as an error current trap, the error current being the current through the gates of the transistors 44A and 46A which should ideally have remained through the drain-source dipole of these transistors. This current is trapped in the sense that it is reinjected, inside the current sources 40 and 42, into the same branch from which it has escaped, the drain-source junction of transistors 44A and 46A, which junction conveys the summed current through output resistor 36.
  • FIG. 4 shows another embodiment in which elements identical or corresponding to those of FIG. 2 are designated by the same reference numerals.
  • the means for measuring the current absorbed by each cascode stage 44, 46 comprise a current mirror circuit 224, 226 whose input branch is placed on the control circuit of the gate of each transistor 44A, 46A.
  • each current mirror circuit comprises two MOS type transistors, whose gates are interconnected, the input branch transistor is connected in series with a resistor and is interposed between the DC voltage bus 32 , 34 and the zener diode 48, 50.
  • the output branches of the current mirror circuits 224, 226 also consisting of a transistor in series with a resistor are connected to the input branches of another current mirror circuit 244. , 246 each forming an inverter. These current mirror circuits have their output branches connected together at the point of connection of the input 24 to the current reflector circuit 38.
  • the current mirror circuits 244, 246 forming an inverter and whose outputs are connected, ensuring a feedback in the reflector circuit 38 of the current absorbed by the transistors 44A, 46A, this current being measured in the control branches of these transistors by the current mirror circuits 224, 226.
  • FIG. 5 shows the respective frequency responses of the circuits of FIGS. 2, 3 and 4. Each frequency response contains a combination of an expected fundamental frequency and unwanted harmonic frequencies corresponding to the harmonic distortion of the circuit response.
  • Curve 402 shown in strong solid line, shows the response of the circuit of FIG. 2, curve 403 in solid continuous line, the response for the circuit of FIG. 3, and the dotted curve, the response for the circuit of FIG. Figure 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

Ce convertisseur (22) courant-tension à réflecteur de courant, le courant d'entrée comportant une composante fixe et une composante variable, comporte : une entrée (24) pour le courant à convertir; une sortie (26) pour la tension convertie; une résistance (36) de conversion du courant en tension agencée entre la sortie (26) et la masse, l'entrée (24) étant reliée à la sortie (26) pour la circulation du courant à convertir dans la résistance (36); et un circuit réflecteur de courant (38) comportant deux sources de courant constant (40, 42) reliées chacune entre la sortie (26) et une tension de référence respective (32, 34). Ce convertisseur (22) comporte également un étage cascode (44, 46) monté en série avec chaque générateur de courant constant (40, 42) pour imposer une différence de potentiel constante aux bornes de chaque générateur de courant constant (40, 42) quelle que soit la tension de sortie.

Description

Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un
amplificateur et amplificateur correspondant
La présente invention concerne un convertisseur courant-tension à réflecteur de courant, le courant d'entrée comportant une composante fixe et une composante variable, le convertisseur comportant :
- une entrée pour le courant à convertir ;
- une sortie pour la tension convertie ;
- une résistance de conversion du courant en tension agencée entre la sortie et la masse, l'entrée étant reliée à la sortie pour la circulation du courant à convertir dans la résistance ; et
- un circuit réflecteur de courant comportant deux sources de courant constant reliées chacune entre la sortie et une tension de référence respective
Un tel convertisseur trouve son application en particulier dans un amplificateur haute fidélité à haute linéarité et à faible taux de distorsion thermique. Il est courant, dans un tel amplificateur, d'utiliser en entrée, un convertisseur numérique-analogique tel que le composant PCM 1792 de la société Texas Instrument. Ce convertisseur possède une sortie en courant, de sorte que le signal analogique est modulé en intensité.
Dans la mesure où l'étage d'amplification placé en aval utilise en entrée une tension modulée, il convient de disposer un convertisseur courant-tension entre le convertisseur analogique-numérique et l'étage d'amplification proprement dit.
Les convertisseurs numérique-analogique à sortie en courant sont particulièrement appréciés puisqu'ils sont insensibles à la distorsion thermique, ceux-ci fonctionnant à puissance constante.
En effet, les sources de courant sont commutées entre la masse ou une sortie fixée à une masse virtuelle réalisée traditionnellement par un montage à amplificateur opérationnel. De cette manière, tous les transistors du convertisseur fonctionnent à courant et tension constants, donc à puissance constante, quelque soit la modulation du signal de sortie.
Cependant, la difficulté de préserver cette absence de distorsion thermique est reportée sur les deux étages suivants, à savoir, le convertisseur courant-tension et l'étage de gain de tension associé. Traditionnellement, le convertisseur courant-tension est réalisé à partir d'un montage à amplificateur opérationnel dont la sortie est limitée à quelques volts d'amplitude. L'amplificateur opérationnel est suivi d'un montage à transistors pour assurer une élévation de la tension.
Ces solutions, bien qu'elles soient complexes et coûteuses dégradent toutefois significativement les performances initiales en introduisant de la distorsion harmonique et thermique, du retard et de la distorsion d'inter-modulation et de transitoire, dus notamment à l'amplificateur opérationnel.
L'invention a pour but de réaliser un convertisseur courant-tension incorporant un étage de gain, qui dégrade moins les performances du convertisseur numérique- analogique tel que le PCM 1792 placé en amont.
A cet effet, l'invention a pour objet un convertisseur courant-tension à réflecteur de courant du type précité, caractérisé en ce qu'il comporte un étage cascode monté en série avec chaque générateur de courant constant pour imposer une différence de potentiel constante aux bornes de chaque générateur de courant constant quelle que soit la tension de sortie.
Suivant des modes particuliers de réalisation, le convertisseur comporte l'une ou plusieurs des caractéristiques suivantes :
- le convertisseur comporte un étage cascode monté en série à l'entrée pour le courant à convertir ;
- l'entrée pour le courant à convertir est reliée à la sortie au travers de l'un des étages cascode montés en série avec les générateurs de courant constant ;
- le convertisseur comporte, pour chaque étage cascode, des moyens de réinjection d'un courant égal au courant absorbé dans le circuit réflecteur de courant ;
- le convertisseur comporte, pour chaque étage cascode, des moyens de mesure du courant absorbé pour l'étage cascode ;
- les moyens de mesure du courant comportent un circuit miroir de courant de mesure monté sur le circuit de commande de la grille de chaque transistor d'un étage cascode, et les moyens de réinjection du courant absorbé dans le circuit réflecteur de courant comprennent des moyens de sommation et d'inversion du signe des deux courants obtenus en sortie des miroirs de courant de mesure, la sortie des moyens de sommation et d'inversion étant connectée au circuit miroir de courant pour l'injection dans le circuit réflecteur de courant de l'opposé de la somme de courants obtenus en sortie des circuits miroir de courant de mesure ;
- les moyens de sommation et d'inversion du signe des deux courants obtenus en sortie des miroirs de courant de mesure comprennent pour chaque miroir de courant, un miroir de courant d'inversion de signe monté en série, les sorties des deux miroirs de courant d'inversion de signe étant reliées ensemble au circuit réflecteur de courant ;
- les moyens de réinjection du courant absorbé comportent des moyens d'injection d'un signal de connexion dans le générateur de courant associé à l'étage cascode pour que le générateur de courant fournisse un courant augmenté du courant absorbé par l'étage cascode ; - les moyens de réinjection sont propres à réinjecter un courant égal au courant absorbé dans le circuit réflecteur de courant pour les fréquences audibles, telles que les fréquences inférieures à 20 kHz, et le convertisseur comporte des moyens de stabilisation de la tension délivrée sur la sortie afin de réduire le taux de réinjection du courant pour les fréquences supérieures aux fréquences audibles, telles que les fréquences supérieures à 20 kHz, le taux de réinjection étant égal à la quantité de courant réinjecté divisée par la quantité de courant absorbé ;
- les moyens de stabilisation comportent un filtre passe-bas ;
- le convertisseur est dépourvu d'amplificateur opérationnel.
- la différence d'intensité entre les deux sources de courant constant est égale à la composante fixe du courant d'entrée.
L'invention a également pour objet un étage d'entrée d'un amplificateur haute fidélité à haute linéarité et faible taux de distorsion comportant un convertisseur numérique-analogique à sortie en courant et un convertisseur courant-tension tel que défini ci-dessus.
L'invention a également pour objet un amplificateur haute fidélité à haute linéarité et faible taux de distorsion comportant un étage d'entrée tel que défini ci-dessus et un étage d'amplification, aucun étage de gain de tension n'étant interposé entre le convertisseur courant-tension et l'étage d'amplification.
Suivant un mode particulier de réalisation, l'amplificateur comporte la caractéristique suivante :
- la résistance de conversion présente une valeur supérieure ou égale à la différence entre les valeurs extrêmes de la tension en sortie de l'étage d'amplification divisée par la différence entre les valeurs extrêmes de l'intensité du courant en entrée du convertisseur courant-tension.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins sur lesquels :
- la figure 1 est une vue schématique d'un amplificateur haute fidélité selon l'invention ;
- la figure 2 est un schéma électrique du convertisseur courant-tension de l'amplificateur de la figure 1 suivant un premier mode de réalisation;
- les figures 3 et 4 sont des schémas électriques de variantes de réalisation du convertisseur courant-tension de la figure 2 ; et
- la figure 5 est un ensemble de courbes illustrant les réponses fréquentielles pour les trois modes de réalisation des figures 2 à 4 du convertisseur courant-tension. L'amplificateur 10, représenté schématiquement sur la figure 1 , est un amplificateur haute fidélité propre à recevoir sur une entrée 12 un signal numérique et à produire en sortie 14 un signal analogique amplifié.
Comme connu en soi , l'amplificateur comporte un étage d'entrée 16 assurant la conversion du signal numérique d'entrée en un signal analogique de sortie modulé en tension, ainsi qu'un étage d'amplification 18, assurant la fourniture d'une puissance suffisante pour la charge placée en aval, à savoir un ou plusieurs hauts parleurs. Il s'agit de préférence d'un étage d'amplification de classe A.
L'étage d'entrée 16 comporte un convertisseur numérique-analogique 20 dont l'entrée est reliée à l'entrée 12 de l'amplificateur pour recevoir un signal numérique Lmérique- Ce convertisseur numérique-analogique est propre à fournir en sortie un signal analogique modulé en courant lm0duié- Le convertisseur numérique-analogique est par exemple un PCM 1792 de la société Texas Instrument.
La sortie du convertisseur numérique-analogique 20 est reliée à un convertisseur courant-tension 22 selon l'invention.
Ce convertisseur est propre à fournir une tension VmodU|é modulée et avec un gain de tension à partir du courant modulé lm0Ciuié produit par le convertisseur numérique- analogique 20. La sortie du convertisseur 22 est reliée à l'entrée de l'étage d'amplification 18 comme connu en soi.
Sur la figure 2 est illustré l'étage d'entrée 16. Sur cette vue, le convertisseur numérique-analogique 20 est schématisé par une source de courant.
Le convertisseur courant-tension 22 présente une entrée 24 reliée en sortie du convertisseur numérique-analogique 20 et une sortie de tension 26 propre à être reliée directement à l'étage d'amplification 18.
Le convertisseur courant-tension 22 comporte deux sources de tension 28, 30 dont une borne est reliée à la masse et dont l'autre borne alimente deux bus de tension continue respectivement 32, 34, l'un étant maintenu à un potentiel constant de +50 V et l'autre maintenu à une tension constante de -50 V par rapport à la masse.
Le convertisseur courant-tension 22 comporte une résistance de conversion 36, dont une borne est reliée à la sortie 26, et dont l'autre borne est reliée à la masse.
L'entrée 24 du convertisseur est reliée à la borne de la résistance 36 constituant la sortie 26 du convertisseur au travers d'un circuit réflecteur de courant 38 propre à assurer une transmission de l'intégralité du courant de modulation lmodU|é produit par la convertisseur numérique-analogique jusqu'à la résistance de conversion 36 référencée à la masse sans que le courant de modulation du convertisseur numérique-analogique ne soit modifié ou soumis à une distorsion thermique. Comme connu en soi, le courant de sortie du convertisseur numérique-analogique 22 comprend une composante continue de 6,2 mA et une composante variable variant entre -4 et +4 mA.
Le circuit réflecteur de courant 38 est propre à annuler la composante continue. A cet effet, et comme connu en soi, le circuit réflecteur de courant comporte un premier générateur de courant constant 40 reliant le bus continu 32 à la sortie 26 et un second générateur de courant constant 42 reliant la sortie 26 au bus de tension 24.
Idéalement, les générateurs de courant 40 et 42 sont des générateurs de courant parfaits, le générateur 40 étant propre à fournir une intensité supérieure à 6,2 mA et le générateur de courant 42 étant propre à fournir une intensité égale à celle du générateur 40 augmenté de 6,2 mA.
Dans ces conditions, la composante variable du courant de sortie du convertisseur numérique-analogique 20 se trouve intégralement dirigée dans la résistance 36, réalisant une conversion courant-tension dont la limitation de linéarité ne réside que dans les défauts de la résistance 36.
La résistance de conversion 36 présente une valeur supérieure ou égale à la différence entre les valeurs extrêmes de la tension en sortie de l'étage d'amplification 18 divisée par la différence entre les valeurs extrêmes de l'intensité lm0Ciuié du courant en entrée du convertisseur courant-tension 22.
Un premier étage cascode 44 est monté en série entre le générateur 40 et la sortie
26. De même, un second étage cascode 46 est interposé entre la source courant 42 et la sortie 26.
Ces deux étages cascode comportent chacun un transistor MOS 44A, 46A dont le drain est relié à la sortie 26 et dont la source est reliée au générateur de courant 40 et 42. Les grilles des deux transistors 40, 46 sont maintenus chacun à une tension fixe de + 45,3 V et - 45,3 V, respectivement pour les transistors 44 et 46. A cet effet, les grilles des transistors 44, 46 sont reliés respectivement aux bus de tension 32, 34 par une diode zéner 48, 50. Une résistance 52 assurant la circulation d'un courant de faible intensité au travers des diodes 48, 50 relie l'anode de la diode 48 à la cathode de la diode 50. Cette résistance a par exemple une valeur de 100 kQ.
De préférence, l'entrée 24 du convertisseur courant-tension est reliée entre l'étage cascode 46 et le générateur de courant 42.
En outre, un étage cascode supplémentaire 54 est disposé entre l'entrée 24 du convertisseur et le circuit réflecteur de courant 38 auquel elle est connectée. Cet étage cascode comporte un transistor 54A de type MOS dont la source est reliée à l'entrée 24. Le drain est relié au circuit réflecteur de courant 38 et la grille est reliée à la masse. On comprend que les étages cascode 44 et 46 permettent que les sources de courant 40, 42 ne présentent pas de variation de tension à leur bornes quand la tension de sortie au point 26 varie même de plusieurs de dizaines de Volt.
Les étages cascode 44, 46 garantissent que les différences de tension aux bornes de générateur de courant 40, 42 soient constamment égales à 2,7 V, quelque soit la tension de sortie du circuit. Cette tension aux bornes de générateur de courant étant fixée à la tension fixe de 4,7 V aux bornes des diodes 48, 50 diminuée de la tension fixe par exemple égale à 2 V entre la grille et la source de chaque transistor 44A, 46A.
De même, l'étage cascode 54 garantit que la tension à la sortie du convertisseur numérique-analogique 20 soit maintenue dans la plage de 0 à 5 V, pour palier au fait que le convertisseur numérique-analogique n'agit pas comme une source de courant parfaite.
Le circuit illustré sur la figure 2 fonctionne de manière satisfaisante. Toutefois, la présence des étages cascode 44, 46 introduit des perturbations du fait de la présence de condensateurs parasites dans les transistors d'une part entre le drain et la grille et d'autre part entre la source et la grille. Ces condensateurs subissent une charge et décharge lorsque la tension à la sortie 26 varie.
Ces phénomènes génèrent des courants d'erreur qui viennent s'ajouter ou se retrancher au courant issu du convertisseur numérique-analogique. Le courant circulant jusqu'à la résistance 36 et donc la tension à ses bornes lue depuis la sortie 26 s'en trouve modifiée. L'importance de ce phénomène est proportionnelle à la fréquence du signal converti car les courants dans les condensateurs dépendent de la dérivée de la tension à la sortie 26.
Les montages des figures 3 et 4 apportent une solution à la charge et décharge des condensateurs parasites en supprimant la distorsion harmonique en résultant, laquelle peut atteindre un niveau relativement élevé de l'ordre de - 70 dBc.
La figure 3 reprend les éléments de la figure 2 complétée par des éléments additionnels. Les éléments identiques ou correspondant à ceux de la figure 2 sont désignés par les mêmes numéros de référence et ne seront pas décrits en détail à nouveau, puisqu'ils sont connectés de manière identique.
Dans ce mode de réalisation, les générateurs de courant constant 40, 42 sont formés chacun d'une résistance 124 , 126 dont une borne est reliée au bus de tension 32, 34 respectif, et l'autre borne est reliée à l'étage cascode 44, 46 associé, au travers d'un transistor 128, 130 de type MOS dont la grille est reliée respectivement au bus de tension 32 et 34 par une diode zéner respectivement 132, 134. Les grilles et anodes des diodes 132, 134 sont reliées par une résistance 136 propre à assurer la circulation d'un courant au travers des diodes 132, 134 en polarisation inverse ou zéner. Dans ce mode de réalisation, les grilles des transistors 44A, 46A des étages cascode 44, 46 sont reliées entre elles par un générateur de courant 138 propre à établir un courant constant de l'ordre de 0,8 mA. La borne du générateur de courant 138, connectée à la grille du transistor 44 est reliée au bus de tension par une résistance 140 alors que l'autre borne du générateur reliée à la grille du transistor 46A est reliée au bus de tension 44 par une résistance 142.
Le circuit de la figure 3 comporte des moyens 144, 146 de mesure du courant absorbé par l'étage cascode 44, 46 et des moyens pour réinjecter un courant égal au courant absorbé dans le circuit réflecteur de courant 38.
Ces moyens 144, 146 sont formés, dans le mode de réalisation de la figure 3, par une liaison comprenant respectivement en série un condensateur 150, 152 et une résistance 154, 156. Cette liaison relie la grille des transistors 44A, 46A aux bornes des résistances 124, 126 reliées aux étages cascode 44, 46 au travers des transistors 128, 130.
Les moyens de réinjection sont, par exemple, propres à réinjecter un courant égal au courant absorbé dans le circuit réflecteur de courant 38 pour les fréquences audibles, telles que les fréquences inférieures à 20 kHz, et les circuits 144, 146 comportent des moyens de stabilisation de la tension délivrée sur la sortie 26 afin de réduire le taux de réinjection du courant pour les fréquences supérieures aux fréquences audibles, telles que les fréquences supérieures à 20 kHz. Le taux de réinjection est égal à la quantité de courant réinjecté divisée par la quantité de courant absorbé. Dans l'exemple de réalisation de la figure 3, un condensateur 158, 160 est disposé entre chaque bus de tension 32, 34 et la grille des transistors 44A, 46A. Ces condensateurs 158, 160 forment, avec les résistances 154, 156, un filtre passe bas, évitant la correction pour les fréquences supérieures aux fréquences audibles.
En variante, les circuits 144, 146 ne comportent pas de condensateur disposé entre chaque bus de tension 32, 34 et la grille des transistors 44A, 46A, la correction étant alors également effectuée pour les hautes fréquences, telles que les fréquences supérieures à 20 kHz.
Ainsi, les circuits 144, 146 agissent pour corriger les générateurs de courant 40,
42, en imposant à ceux-ci de réinjecter un courant égal au courant absorbé par les capacités parasites des transistors 44A, 46A.
Les circuits 144 et 146 agissent comme un piège à courant d'erreur, le courant d'erreur étant le courant à travers les grilles des transistors 44A et 46A qui aurait dû idéalement rester à travers le dipôle drain-source de ces transistors. Ce courant est piégé en ce sens qu'il est réinjecté, à l'intérieur des sources de courant 40 et 42, dans la branche même de laquelle il s'est échappé, la jonction drain-source des transistors 44A et 46A, jonction qui véhicule le courant sommé à travers la résistance de sortie 36.
Sur la figure 4 est représenté encore un autre mode de réalisation dans lequel les éléments identiques ou correspondant à ceux de la figure 2 sont désignés par les mêmes numéros de référence.
Dans ce mode de réalisation, les moyens de mesure du courant absorbé par chaque étage cascode 44, 46 comportent un circuit miroir de courant 224, 226 dont la branche d'entrée est placée sur le circuit de commande de la grille de chaque transistor 44A, 46A.
Comme connu en soi, chaque circuit miroir de courant comporte deux transistors de type MOS, dont les grilles sont reliées entre elles, le transistor de la branche d'entrée est monté en série avec une résistance et est interposé entre le bus de tension continu 32, 34 et la diode zéner 48, 50. Les branches de sortie des circuits miroir de courant 224, 226 constitués, également d'un transistor en série avec une résistance sont reliés aux branches d'entrée d'un autre circuit miroir de courant 244, 246 formant chacun un inverseur. Ces circuits miroirs de courant ont leurs branches de sortie reliées ensemble au point de connection de l'entrée 24 au circuit réflecteur de courant 38.
Ainsi, les circuits miroir de courant 244, 246 formant un inverseur et dont les sorties sont connectées, assurant une réinjection dans le circuit réflecteur 38 du courant absorbé par les transistors 44A, 46A, ce courant étant mesuré dans les branches de commande de ces transistors par les circuits miroir de courant 224, 226.
On conçoit ainsi que dans ce mode de réalisation, un courant de valeur égale à la somme des courants absorbés par les transistors 44A, 46A est réinjecté dans le circuit réflecteur de courant 38 et donc au travers de la résistance 36, compensant ainsi le courant nécessaire pour la charge ou la décharge des condensateurs parasites des transistors 44A, 46A.
Sur la figure 5 sont représentées les réponses fréquentielles respectives des circuits des figures 2, 3 et 4. Chaque réponse fréquentielle contient une combinaison d'une fréquence fondamentale attendue et de fréquences harmoniques non souhaitées correspondant à la distorsion harmonique de la réponse du circuit. La courbe 402, représentée en trait continu fort, montre la réponse du circuit de la figure 2, la courbe 403 en trait continu fin, la réponse pour le circuit de la figure 3, et la courbe en pointillé, la réponse pour le circuit de la figure 4.
On constate que pour certaines fréquences, telles que les fréquences de 2 et 3 kHz, la réponse est meilleure pour le circuit de la figure 4 utilisant des circuits miroirs de courant pour mesurer et réinjecter le courant absorbé par les transistors, cette réponse étant plus médiocre mais de bonne qualité pour les circuits de la figure 3, alors que le circuit de la figure 2, même s'il conduit à des résultats exploitables, présente une distorsion harmonique plus élevée due à l'absence de correction du courant absorbé par les transistors des étages cascode.

Claims

REVENDICATIONS
1 . - Convertisseur (22 ; 122 ; 222) courant-tension à réflecteur de courant, le courant d'entrée comportant une composante fixe et une composante variable, le convertisseur comportant :
- une entrée (24) pour le courant à convertir ;
- une sortie (26) pour la tension convertie ;
- une résistance (36) de conversion du courant en tension agencée entre la sortie (26) et la masse, l'entrée (24) étant reliée à la sortie (26) pour la circulation du courant à convertir dans la résistance (36) ; et
- un circuit réflecteur de courant (38) comportant deux sources de courant constant (40, 42) reliées chacune entre la sortie (26) et une tension de référence respective (32, 34),
caractérisé en ce qu'il comporte un étage cascode (44, 46) monté en série avec chaque générateur de courant constant (40, 42) pour imposer une différence de potentiel constante aux bornes de chaque générateur de courant constant (40, 42) quelle que soit la tension de sortie.
2. - Convertisseur selon la revendication 1 , caractérisé en ce qu'il comporte un étage cascode (54) monté en série à l'entrée (24) pour le courant à convertir.
3. - Convertisseur selon la revendication 1 ou 2, caractérisé en ce que l'entrée (24) pour le courant à convertir est reliée à la sortie (26) au travers de l'un des étages cascode
(46) montés en série avec les générateurs de courant constant (40, 42).
4. - Convertisseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, pour chaque étage cascode (44, 46), des moyens (150, 154, 152, 156 ; 244, 246, 250) de réinjection d'un courant égal au courant absorbé dans le circuit réflecteur de courant (38).
5. - Convertisseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte, pour chaque étage cascode (44, 46), des moyens (224, 226) de mesure du courant absorbé pour l'étage cascode (44, 46).
6. - Convertisseur selon les revendications 4 et 5, caractérisé en ce que les moyens de mesure du courant comportent un circuit miroir de courant de mesure (224,
226) monté sur le circuit de commande de la grille de chaque transistor (44A, 46A) d'un étage cascode (44, 46), et les moyens de réinjection du courant absorbé dans le circuit réflecteur de courant (38) comprennent des moyens (244, 246) de sommation et d'inversion du signe des deux courants obtenus en sortie des miroirs de courant de mesure (224, 226), la sortie des moyens de sommation et d'inversion étant connectée au circuit miroir de courant (38) pour l'injection dans le circuit réflecteur de courant (38) de l'opposé de la somme de courants obtenus en sortie des circuits miroir de courant (224, 226) de mesure.
7. - Convertisseur selon la revendication 6, caractérisé en ce que les moyens de sommation et d'inversion du signe des deux courants obtenus en sortie des miroirs de courant de mesure (224, 226) comprennent pour chaque miroir de courant (224, 226), un miroir de courant d'inversion de signe (244, 246) monté en série, les sorties des deux miroirs de courant d'inversion de signe (244, 246) étant reliées ensemble au circuit réflecteur de courant (38).
8. - Convertisseur selon la revendication 4, caractérisé en ce que les moyens de réinjection du courant absorbé comportent des moyens (150, 154, 152, 156) d'injection d'un signal de connexion dans le générateur de courant (40, 42) associé à l'étage cascode (44, 46) pour que le générateur de courant (40, 42) fournisse un courant augmenté du courant absorbé par l'étage cascode (44, 46).
9. - Convertisseur selon l'une quelconque des revendications 4 à 8, caractérisé en ce que les moyens de réinjection sont propres à réinjecter un courant égal au courant absorbé dans le circuit réflecteur de courant (38) pour les fréquences audibles, telles que les fréquences inférieures à 20 kHz, et en ce qu'il comporte des moyens (154, 158, 156, 160) de stabilisation de la tension délivrée sur la sortie (26) afin de réduire le taux de réinjection du courant pour les fréquences supérieures aux fréquences audibles, telles que les fréquences supérieures à 20 kHz, le taux de réinjection étant égal à la quantité de courant réinjecté divisée par la quantité de courant absorbé.
10. - Convertisseur selon la revendication 9, caractérisé en ce que les moyens de stabilisation comportent un filtre passe-bas (154, 158, 156, 160).
1 1 . - Convertisseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est dépourvu d'amplificateur opérationnel.
12. - Convertisseur selon l'une quelconque des revendications précédentes, caractérisé en ce que la différence d'intensité entre les deux sources de courant constant (40, 42) est égale à la composante fixe du courant d'entrée.
13. - Etage d'entrée d'un amplificateur haute fidélité à haute linéarité et faible taux de distorsion comportant un convertisseur numérique-analogique à sortie en courant et un convertisseur courant-tension selon l'une quelconque des revendications 1 à 12.
14. - Amplificateur haute fidélité à haute linéarité et faible taux de distorsion, caractérisé en ce qu'il comporte un étage d'entrée selon la revendication 13, et un étage d'amplification (18), aucun étage de gain de tension n'étant interposé entre le convertisseur courant-tension (22) et l'étage d'amplification (18).
15.- Amplificateur selon la revendication 14, caractérisé en ce que la résistance de conversion (36) présente une valeur supérieure ou égale à la différence entre les valeurs extrêmes de la tension en sortie de l'étage d'amplification (18) divisée par la différence entre les valeurs extrêmes de l'intensité (lm0duié) du courant en entrée du convertisseur courant-tension (22).
EP10719533.1A 2010-03-03 2010-03-16 Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant Active EP2543136B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1051541 2010-03-03
PCT/FR2010/050473 WO2011107671A1 (fr) 2010-03-03 2010-03-16 Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant

Publications (2)

Publication Number Publication Date
EP2543136A1 true EP2543136A1 (fr) 2013-01-09
EP2543136B1 EP2543136B1 (fr) 2017-03-08

Family

ID=42703556

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10719533.1A Active EP2543136B1 (fr) 2010-03-03 2010-03-16 Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant

Country Status (7)

Country Link
US (1) US8901998B2 (fr)
EP (1) EP2543136B1 (fr)
JP (1) JP5711273B2 (fr)
KR (1) KR101805557B1 (fr)
CN (1) CN102884723B (fr)
BR (1) BR112012022176B8 (fr)
WO (1) WO2011107671A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3024305B1 (fr) 2014-07-23 2018-03-30 Devialet Etage d'entree d'un amplificateur et amplificateur correspondant
FR3024306B1 (fr) 2014-07-23 2018-03-30 Devialet Convertisseur courant-tension, etage d'entree d'un amplificateur et amplificateur correspondant
US9590504B2 (en) 2014-09-30 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Flipped gate current reference and method of using
FR3048315B1 (fr) 2016-02-26 2019-06-28 Devialet Convertisseur courant-tension, etage d'entree d'un amplificateur et amplificateur correspondant.

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912603A (ja) * 1982-07-13 1984-01-23 Toshiba Corp カスコ−ド回路
US4563655A (en) * 1984-04-02 1986-01-07 Hewlett-Packard Company AGC Circuit
US5451909A (en) * 1993-02-22 1995-09-19 Texas Instruments Incorporated Feedback amplifier for regulated cascode gain enhancement
US6954053B2 (en) * 2002-07-10 2005-10-11 Atmel Corporation Interface for shunt voltage regulator in a contactless smartcard
US6963244B1 (en) * 2003-12-12 2005-11-08 Analog Devices, Inc. Common mode linearized input stage and amplifier topology
DE602005025760D1 (de) * 2004-06-15 2011-02-17 Analog Devices Inc Chopper-stabilisierter präzisions-stromspiegel
US7164317B1 (en) * 2004-12-03 2007-01-16 National Semiconductor Corporation Apparatus and method for a low-voltage class AB amplifier with split cascode

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011107671A1 *

Also Published As

Publication number Publication date
US8901998B2 (en) 2014-12-02
CN102884723B (zh) 2016-01-20
KR101805557B1 (ko) 2017-12-07
BR112012022176B1 (pt) 2020-12-15
KR20130009801A (ko) 2013-01-23
JP2013527997A (ja) 2013-07-04
WO2011107671A1 (fr) 2011-09-09
JP5711273B2 (ja) 2015-04-30
BR112012022176B8 (pt) 2021-01-05
EP2543136B1 (fr) 2017-03-08
CN102884723A (zh) 2013-01-16
US20130057351A1 (en) 2013-03-07
BR112012022176A2 (pt) 2016-10-25

Similar Documents

Publication Publication Date Title
EP1916762B1 (fr) Oscillateur à quartz asservi en amplitude avec domaine étendu de tension et de température
FR2819064A1 (fr) Regulateur de tension a stabilite amelioree
FR2800937A1 (fr) Circuit de commutation de courant et convertisseur numerique-analogique utilisant ce circuit
EP2543136B1 (fr) Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant
EP0562905B1 (fr) Circuit à retard variable
EP1771944B1 (fr) Amplificateur audio classe ad
EP0278534B1 (fr) Déphaseur large bande
EP1885057B1 (fr) Compensation en fréquence d'un amplificateur comportant au moins deux étages de gain
EP3172837B1 (fr) Convertisseur courant-tension, étage d'entrée d'un amplificateur et amplificateur correspondant
FR2943826A1 (fr) Systeme de couplage tele-alimente avec une liaison filaire de communication, et appareil de commande d'au moins un interrupteur electronique comprenant un tel systeme de couplage
EP2543140A1 (fr) Amplificateur de classe a de type push-pull
EP2182631A2 (fr) Cellule amplificatrice hyperfréquences large bande à gain variable et amplificateur comportant une telle cellule
FR3048315B1 (fr) Convertisseur courant-tension, etage d'entree d'un amplificateur et amplificateur correspondant.
FR2818762A1 (fr) Regulateur de tension a gain statique en boucle ouverte reduit
FR2744304A1 (fr) Convertisseur numerique-analogique differentiel a fonction de filtrage et compensation de decalage
FR2843250A1 (fr) Convertisseur numerique-analogique comprenant des moyens pour ameliorer la linearite de conversion.
WO2012072503A1 (fr) Cellule de commutation de puissance et équipement électronique correspondant
FR2602379A1 (fr) Circuit repeteur de tension pour charges a composante ohmique, avec compensation de la distorsion harmonique
EP1922807A1 (fr) Dispositif d'amplification d'une tension representative d'une information audiophonique
EP3172836B1 (fr) Etage d'entrée d'un amplificateur et amplificateur correspondant
EP1414148B1 (fr) Amplificateur de puissance pour systemes de transmission radiofrequences
FR2536224A1 (fr) Amplificateur videofrequence
EP0166643A1 (fr) Alimentation à découpage de puissance
FR3085563A1 (fr) Etage de sortie classe a notamment pour casque audio
EP3501102A1 (fr) Dispositif d'amplification comprenant un circuit de compensation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120903

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 874359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602010040565

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170609

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 874359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602010040565

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170316

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

26N No opposition filed

Effective date: 20171211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170316

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230209

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240307

Year of fee payment: 15

Ref country code: GB

Payment date: 20240325

Year of fee payment: 15