WO2012072503A1 - Cellule de commutation de puissance et équipement électronique correspondant - Google Patents

Cellule de commutation de puissance et équipement électronique correspondant Download PDF

Info

Publication number
WO2012072503A1
WO2012072503A1 PCT/EP2011/071003 EP2011071003W WO2012072503A1 WO 2012072503 A1 WO2012072503 A1 WO 2012072503A1 EP 2011071003 W EP2011071003 W EP 2011071003W WO 2012072503 A1 WO2012072503 A1 WO 2012072503A1
Authority
WO
WIPO (PCT)
Prior art keywords
hand
switching cell
transistor
source
switching
Prior art date
Application number
PCT/EP2011/071003
Other languages
English (en)
Inventor
Ludovic Bacque
Philippe Bouysse
Raymond Quere
Luc Lapierre
Original Assignee
Centre National De La Recherche Scientifique (C.N.R.S)
Thales
Centre National D'etudes Spatiales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientifique (C.N.R.S), Thales, Centre National D'etudes Spatiales filed Critical Centre National De La Recherche Scientifique (C.N.R.S)
Publication of WO2012072503A1 publication Critical patent/WO2012072503A1/fr

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/09403Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using junction field-effect transistors
    • H03K19/09407Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using junction field-effect transistors of the same canal type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only
    • H03K19/018507Interface arrangements
    • H03K19/018535Interface arrangements of Schottky barrier type [MESFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a power switching cell.
  • the present invention also relates to an electronic power switching equipment such as switches, digital power converters, PWM modulators or DC / DC energy converters, comprising a plurality of switching cells, of the aforementioned type, arranged in parallel to each other. through anti-return diodes.
  • an electronic power switching equipment such as switches, digital power converters, PWM modulators or DC / DC energy converters, comprising a plurality of switching cells, of the aforementioned type, arranged in parallel to each other. through anti-return diodes.
  • the field of power switching covers many electronic equipment requiring the use of switching cells, as basic elements, characterized by various parameters such as, for example, power, speed or performance.
  • the object of the invention is therefore to provide a switching cell having a simple architecture for high-speed, high-power switching applications.
  • the subject of the invention is a power switching cell of the aforementioned type, characterized in that it comprises:
  • a first field-effect transistor of normally closed type, connected, on the one hand, to the input port by its gate and, on the other hand, to ground by its source,
  • a second field-effect transistor of normally closed type, connected, on the one hand, to the first resistor by its gate and, on the other hand, to a power source by its drain,
  • a second self-biasing resistor connected between the gate and the source of the second field effect transistor.
  • the power switching cell comprises one or more of the following characteristics, taken separately or in any technically possible combination: the field effect transistors are of HEMT type,
  • the field effect transistors are in SiC technology
  • the field effect transistors are in GaN technology
  • the field effect transistors are in GaAs technology
  • the cell comprises a non-return diode connected, on the one hand, to the source of the second transistor and, on the other hand, to the output port in the forward direction,
  • the cell comprises a diode connected, on the one hand, to ground and, on the other hand, to the source of the second transistor in the forward direction,
  • each diode is of Schottky type
  • each diode is in SiC technology
  • each diode is in GaN technology
  • the cell comprises at least one capacitor connected in parallel across the terminals of the power supply.
  • the invention also relates to electronic equipment comprising such a plurality of switching cells, arranged in parallel, through non-return diodes.
  • the invention also relates to corresponding electronic equipment.
  • FIG. 1 is an electronic diagram of a switching cell according to an embodiment according to the invention
  • FIG. 2 is an electronic diagram of a switching cell according to an alternative embodiment of the invention.
  • FIG. 3 is a schematic representation of a power digital-to-analog converter comprising N switching cells
  • FIG. 4 is a schematic representation of a digital-to-analog power converter comprising three switching cells
  • FIG. 5 illustrates the evolution over time of the input voltages IN and of the output voltage OUT of the converter of FIG. 4.
  • the switching cell 10 according to the invention, illustrated in FIG. 1, comprises an input port 12, two field effect transistors 14, 16, two resistors 18, 20, a power supply 22 and a port of FIG. exit 24.
  • the first normally closed field effect transistor Ti 14 is connected on the one hand to the input port 12 by its gate 26 and on the other hand to the ground 28 by its source 30.
  • the first resistor Ri 18 is connected, upstream, to the drain 32 of the first transistor ⁇ 14.
  • the second field effect transistor T 2 16 of normally closed type, is connected to the downstream part of the first resistor Ri 18 by its gate 34.
  • the second resistor R 2 is connected, upstream, to both gate 34 of transistor T 2 16 and to the downstream part of resistor 18 and, downstream, to source 36 of transistor T 2 16.
  • the power source 22 is connected to the drain 38 of the second transistor T 2 16. Finally, the output port 24 is connected, at the same time, to the second transistor T 2 16 by its source and to the downstream part of the resistor R 2 20.
  • the field effect transistors 14, 16, of normally closed type are H EMT transistors in GaN, GaAs or SiC technology.
  • the point of self-polarization is the solution of the system of nonlinear equations:
  • Equation (1) is linked to the circuit and equation (2) represents the nonlinear current-voltage characteristic of the transistor.
  • the resolution of this system of equations gives the value of the self-biasing resistor R 2 for a given voltage V GS2 .
  • V G s 2 By designating by Vp the clamping voltage of the transistor T 2 16, V G s 2 must be chosen slightly greater than -V P so as to obtain a self-bias with a minimum current at the transistor T 2 16.
  • the transistor T 2 16 is therefore at the limit of the blocking but still allows to circulate the current necessary for its self-polarization.
  • the "OFF" state is characterized by a non-zero output voltage V 0 UT, according to the equation:
  • V OUT OFF (R j + R 2 ) .I R2 (3) (ideally assuming that the RDS series resistance between the drain and the T1 source is zero) Is :
  • V _ _ (R t + R 2 ) (R t + R 2 )
  • the output voltage VQUT OFF is at least equal to V P. It is therefore necessary to use transistors having the lowest possible clamping voltages in order to obtain a voltage VOUT OFF close to 0 V.
  • a low clamping voltage V P makes it possible to reduce the resistance R2 to obtain the same self-biasing current. This makes it possible, on the one hand, to reduce the power dissipated in the OFF state and, on the other hand, to increase the switching speed which depends on R 18, R 2 and the gate-source capacitance C G s 2 of T 2 , not shown in Figure 1.
  • the switching times for the transition to the ON state or the OFF state of the cell 10 are directly related to the time constants due to the gate-source capacitance C c , s of the transistor T 2 16 and to the resistors R 18 and R2 20.
  • the charging and discharging time constants of C G s can be of the order of a few tens or hundreds of picoseconds.
  • the possible switching frequencies can reach several hundred MHz even GHz.
  • this cell 10 is that the switching occurs with respect to a triggering threshold.
  • the value of the tripping threshold can be adjusted as a function of the resistance R 18 and the self-biasing resistor R 2 20. It is sufficient for a very small variation, of the order of a few mV, of the input voltage V ! N near the trip threshold to effect the change of state. We can therefore switch from high power to high frequency with a minimum of control energy.
  • the switching cell 10 further comprises two diodes D1 40, D2 42.
  • the first diode D1 40 is connected on the one hand to the ground 28 by its anode, and on the other hand, to the source 36 of the second transistor 16 by its cathode. This diode D1 40 is adapted to prevent the potential on the source of the transistor T 2 16 becoming too negative during a transient phase.
  • the second diode D2 42 is connected on the one hand by its anode, both to the source 36 and to the cathode of the diode D1 40, and on the other hand, to the output port 24 by its cathode. This anti-return diode D2 42 is able to ensure isolation of the cell.
  • the diodes D1 40, D2 42 are Schottky diodes in GaN or Sic technology.
  • the switching cell 10 further comprises two capacitors Ci 44, C2 46 arranged in parallel with the power source 22. These capacitors are suitable for assisting the power supply. supply of the cell during the switching transition phases.
  • FIG. 3 represents a diagram of a power digital-to-analog converter 48 comprising a plurality of switching cells 10, of the aforementioned type, arranged in parallel through non-return diodes (42), not shown in this figure. .
  • the power source 22 of each switching cell 10 is independently controlled and is used to supply the cells 10, denoted by Ci to CN, with a different voltage level, designated VDDI to VDDN.
  • Each input port 12 is adapted to receive an independent square-shaped control digital signal 50, representing a binary sequence and designated by A1 to AN.
  • Each digital signal 50 is variable in time and its amplitude corresponds to the voltage, designated by VINI VINN applied to the input of a cell 10.
  • the input voltage levels vary between 0 V and -Vp, the voltage Vp corresponding at the clamping voltage of the switch 14 (not shown) of the switching cell 10.
  • each signal 50 is identical. At each period 52 of the signal 50 is associated a binary code.
  • the level 0 V thus corresponds to the state 0, the level -Vp corresponding to the state 1.
  • the voltage generated at the output port 24 varies between values close to 0 V and VDDN according to the applied binary code.
  • the first period 52 corresponds to the state 0
  • a voltage close to 0 V is thus generated at the output port 24 of the cell C1.
  • the third period 52 corresponds to the state 1, a voltage close to VDDI is thus generated at the output port 24 of the cell C1.
  • a digital code corresponding to a binary number, consisting of N bits is applied to the input of the digital-to-analog converter 48
  • the output voltage at the common analog output 54 of the converter 48 corresponds to the sum of the elementary voltages at the output of each output port. 24 of each switching cell 10.
  • the output current, at the common analog output 54, of the converter 48 corresponds to the sum of the elementary currents at the output of each switching cell 10.
  • the converter 48 converts a binary number into an analog voltage or current proportional thereto. It should be noted that the output curves 56 are only indicative in order to illustrate that the output voltage consists of N voltage levels and that the output current has the same shape as the voltage, if a purely resistive output load (not shown) is considered.
  • This converter 48 comprises three input ports 12 able to receive a digital signal, three switching cells 10 arranged in parallel and a common analog output 54.
  • Each switching cell 10 comprises a power source 22 whose value is represented by VDDI, VDD2 and VDD3, respectively.
  • the architecture of each switching cell 10 is based on that illustrated in FIG. In addition, it comprises an anti-return diode D2 42 connected according to the same connection mode as that shown in FIG.
  • the maximum power supplied to the load is then about 160 W.
  • Figure 5 illustrates the operation of such a converter 48 in a three-level power switch application, at a switching speed of 10 Mhz.
  • the curve IN represents the measurement of the input voltage, relative to the signal Ai, carried out at 10 MHz.
  • the signals A2 and A3, not shown in FIG. 5, are similar to the signal Ai with a time shift in order to obtain the desired bit codes at the input.
  • the OUT curve represents the measurements of the output voltage made at 10 Mhz.
  • the power switching cell according to the invention has the advantage of having a simple architecture without the use of complex control circuits to manage the fact that the source of transistor T2 is floating.
  • the use of such cells with HEMT transistors provides switching speeds 10 to 100 times higher than current conventional systems based on MOSFET transistors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Power Engineering (AREA)
  • Electronic Switches (AREA)

Abstract

Cellule de commutation de puissance et équipement électronique correspondant L'invention concerne une cellule de commutation de puissance, caractérisée en ce qu'elle comprend: - un port d'entrée (12) destiné à recevoir un signal numérique, - un premier transistor à effet de champ (14), de type normalement fermé, connecté, d'une part, au port d'entrée (12) par sa grille (26) et, d'autre part, à la masse (28) par sa source (30), - une première résistance (18) connectée, en amont, au drain (32) du premier transistor (14), - un second transistor à effet de champ (16), de type normalement fermé, connecté, d'une part, à la première résistance (18) par sa grille (34) et, d'autre part, à une source d'alimentation (22) par son drain (38), - un port de sortie (24) connecté au second transistor (16) par sa source (36), et - une seconde résistance d'auto-polarisation (20) connectée entre la grille (34) et la source (36) du second transistor à effet de champ (16).

Description

Ce!SuSe de commutation de puissance et équipement électronique correspondant La présente invention concerne une cellule de commutation de puissance.
La présente invention concerne également un équipement électronique de commutation de puissance tel que commutateurs, convertisseurs numériques analogiques de puissance, modulateurs PWM ou encore convertisseurs d'énergie DC/DC, comprenant une pluralité de cellules de commutation, du type précité, disposées en parallèle à travers des diodes d'anti-retour.
Le domaine de la commutation de puissance recouvre de nombreux équipements électroniques nécessitant l'utilisation de cellules de commutation, comme éléments de base, caractérisées par différents paramètres comme, par exemple, la puissance, la rapidité ou encore le rendement.
L'architecture de telles cellules influe directement sur les critères précités et notamment sur le rendement et la rapidité. Il est notamment connu de l'état de la technique d'utiliser des transistors de commutation à effet de champ, de type normalement fermé, commandés par des circuits «contrôleurs de grille» pour réaliser la commutation. Or, ces circuits de par leur complexité limitent la vitesse et le rendement de telles cellules de commutation et, par conséquent, des équipements électroniques de commutation de puissance les utilisant.
Le but de l'invention est donc de proposer une cellule de commutation présentant une architecture simple pour des applications de commutation de puissance ultrarapide et à haut rendement.
A cet effet, l'invention a pour objet une cellule de commutation de puissance du type précité, caractérisé en ce qu'elle comprend :
- un port d'entrée destiné à recevoir un signal numérique,
- un premier transistor à effet de champ, de type normalement fermé, connecté, d'une part, au port d'entrée par sa grille et, d'autre part, à la masse par sa source,
- une première résistance connectée, en amont, au drain du premier transistor,
- un second transistor à effet de champ, de type normalement fermé, connecté, d'une part, à la première résistance par sa grille et, d'autre part, à une source d'alimentation par son drain,
- un port de sortie connecté au second transistor par sa source, et
- une seconde résistance d'auto-polarisation connectée entre la grille et la source du second transistor à effet de champ.
Suivant d'autres modes de réalisation, la cellule de commutation de puissance comprend une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons techniquement possibles : - les transistors à effet de champ sont de type HEMT,
- les transistors à effet de champ sont en technologie SiC,
- les transistors à effet de champ sont en technologie GaN,
- les transistors à effet de champ sont en technologie GaAs,
- la cellule comprend une diode d'anti-retour connectée, d'une part, à la source du second transistor et, d'autre part, au port de sortie dans le sens passant,
- la cellule comprend une diode connectée, d'une part, à la masse et, d'autre part, à la source du second transistor dans le sens passant,
- chaque diode est de type Schottky,
- chaque diode est en technologie SiC,
- chaque diode est en technologie GaN, et
- la cellule comprend au moins un condensateur connectée en parallèle aux bornes de la source d'alimentation.
L'invention concerne également un équipement électronique comprenant une telle pluralité de cellules de commutation, disposées en parallèle, à travers des diodes d'anti- retour.
Selon un autre aspect, l'invention concerne également un équipement électronique correspondant.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
- la figure 1 est un schéma électronique d'une cellule de commutation selon un mode de réalisation suivant l'invention,
- la figure 2 est un schéma électronique d'une cellule de commutation selon une variante de réalisation de l'invention,
- la figure 3 est une représentation schématique d'un convertisseur numérique- analogique de puissance comprenant N cellules de commutation,
- la figure 4 est une représentation schématique d'un convertisseur numérique- analogique de puissance comprenant trois cellules de commutation, et
- la figure 5 illustre l'évolution dans le temps des tensions en entrée IN et de la tension en sortie OUT du convertisseur de la figure 4.
La cellule de commutation 10 selon l'invention, illustrée sur la figure 1 , comprend un port d'entrée 12, deux transistors à effet de champ 14,16, deux résistances 18,20, une source d'alimentation 22 et un port de sortie 24. Le premier transistor à effet de champ T-i 14, de type normalement fermé, est connecté d'une part au port d'entrée 12 par sa grille 26 et, d'autre part, à la masse 28 par sa source 30.
La première résistance Ri 18 est connectée, en amont, au drain 32 du premier transistor ΤΊ 14.
Le second transistor à effet de champ T2 16, de type normalement fermé, est connecté à la partie aval de la première résistance Ri 18 par sa grille 34.
La seconde résistance R2 20 est connectée, en amont, à la fois à la grille 34 du transistor T2 16 et à la partie aval de la résistance 18 et, en aval, à la source 36 du transistor T2 16.
La source d'alimentation 22 est connectée au drain 38 du second transistor T2 16. Enfin, le port de sortie 24 est connecté, à la fois, au second transistor T2 16 par sa source et à la partie aval de la résistance R2 20.
Avantageusement, les transistors à effet de champ 14, 16, de type normalement fermé, sont des transistors H EMT en technologie GaN, GaAs ou SiC.
Le fonctionnement de la cellule de commutation 10, tel que représenté sur la figure 1 , va être à présent décrit.
Comme un signal numérique est appliqué en entrée de la cellule 10, deux états sont possibles pour caractériser cette cellule 10.
Dans un premier état, désigné par « état OFF », lorsque V!N=0V, le transistor ΤΊ 14 est saturé, le transistor T2 16, à source flottante, s'auto-polarise à une tension VGS2. Le point d'auto-polarisation est la solution du système d'équations non-linéaires:
Figure imgf000005_0001
L'équation (1 ) est liée au circuit et l'équation (2) représente la caractéristique non- linéaire courant-tension du transistor. La résolution de ce système d'équations donne la valeur de la résistance d'auto-polarisation R2 20 pour une tension VGS2 donnée.
En désignant par Vp la tension de pincement du transistor T2 16, Il faut choisir VGs2 légèrement supérieure à -VP de façon à obtenir une auto-polarisation avec un courant minimum au niveau du transistor T2 16. Le transistor T2 16 est donc à la limite du blocage mais laisse toujours circuler le courant nécessaire à son auto-polarisation. L'état "OFF" se caractérise par une tension de sortie V0UT non nulle, selon l'équation :
VOUT OFF = (Rj + R2).IR2 (3) (en supposant idéalement que la résistance série RDS entre le drain et la source de T1 est nulle) Soit :
V _ _ (Rt + R2) (Rt + R2 )
VOUT_OFF D · V GS2 „ · V P \
κ2 κ2
Ainsi, si on choisit
Figure imgf000006_0001
on obtient V0UT_OFF=Vp. Cependant pour garantir la stabilité de la cellule, il convient de prendre une résistance R-i 18 de quelques ohms.
Quelque soient les valeurs des résistances, la tension de sortie VQUT OFF est au minimum égale à VP. Il faut donc utiliser des transistors présentant des tensions de pincement les plus faibles possibles afin d'obtenir une tension VOUT OFF proche de 0 V.
Une faible tension de pincement VP permet de diminuer la résistance R2 20 pour obtenir un même courant d'auto-polarisation. Ceci permet d'une part de diminuer la puissance dissipée à l'état OFF et d'autre part d'augmenter la vitesse de commutation qui dépend de R^ 18, R2 20 et de la capacité grille-source CGs2 de T2, non représentée sur la figure 1 .
Dans un second état, désigné par « état ON », lorsque V!N=-V le transistor ΤΊ 14 est bloqué, le courant lR2 s'annule. La tension VGs2 passe à 0V et le transistor T2 16 se sature. La tension V0UT vaut idéalement VDD. Le courant traversant le transistor T2 16 dépend de la charge, non représentée sur la figure 1 , connectée en sortie.
Les temps de commutation pour le passage à l'état ON ou à l'état OFF de la cellule 10 sont directement liés aux constantes de temps dues à la capacité grille-source Cc,s du transistor T2 16 et aux résistances R^ 18 et R2 20. En minimisant les résistances R-i 18 et R2 20, les constantes de temps de charge et décharge de CGs peuvent être de l'ordre de quelques dizaines ou centaines de picosecondes. Les fréquences de commutation possibles peuvent atteindre plusieurs centaines de MHz voire les GHz.
Par ailleurs, un autre intérêt de cette cellule 10 est que la commutation se produit par rapport à un seuil de déclenchement. La valeur du seuil de déclenchement peut être ajustée en fonction de la résistance R^ 18 et de la résistance d'auto-polarisation R2 20. Il suffit en effet d'une variation très faible, de l'ordre de quelques mV, de la tension d'entrée V!N au voisinage du seuil de déclenchement pour réaliser le changement d'état. On peut donc commuter de la forte puissance à haute fréquence avec un minimum d'énergie de commande.
Selon un autre mode de réalisation de l'invention, illustré sur la figure 2, la cellule de commutation 10 comprend, en outre, deux diodes D1 40, D2 42.
La première diode D1 40 est connectée d'une part à la masse 28 par son anode, et d'autre part, à la source 36 du second transistor 16 par sa cathode. Cette diode D1 40 est propre à éviter que le potentiel sur la source du transistor T2 16 ne devienne trop négatif lors d'une phase transitoire. La seconde diode D2 42 est connectée d'une part par son anode, à la fois à la source 36 et à la cathode de la diode D1 40, et d'autre part, au port de sortie 24 par sa cathode. Cette diode d'anti-retour D2 42 est propre à assurer une isolation de la cellule.
Avantageusement, les diodes D1 40, D2 42 sont des diodes Schottky en technologie GaN ou Sic.
Selon un autre mode de réalisation, également illustré sur la figure 2, la cellule de commutation 10 comprend, en outre, deux condensateurs Ci 44, C2 46 disposés en parallèle de la source d'alimentation 22. Ces condensateurs sont propres à aider l'alimentation de la cellule lors des phases de transitions de commutation.
La figure 3 représente un schéma d'un convertisseur numérique-analogique de puissance 48 comprenant une pluralité de cellules de commutation 10, du type précité, disposées en parallèle à travers des diodes d'anti-retour (42), non représentées sur cette figure.
La source d'alimentation 22 de chaque cellule de commutation 10 est contrôlée indépendamment et permet d'alimenter les cellules 10, désignées par Ci à CN, avec un niveau de tension différent, désignés par VDDI à VDDN.
Chaque port d'entrée 12 est apte à recevoir un signal numérique de commande de forme carrée 50 indépendant, représentant une suite binaire et désigné par Ai à AN. Chaque signal numérique 50 est variable dans le temps et son amplitude correspond à la tension, désignée par VINI à VINN, appliquée en entrée d'une cellule 10. Les niveaux de tension en entrée varient entre 0 V et -Vp, la tension Vp correspondant à la tension de pincement du commutateur 14 (non représenté) de la cellule de commutation 10.
La fréquence de chaque signal 50 est identique. A chaque période 52 du signal 50 est associé un code binaire. Le niveau 0 V correspond ainsi à l'état 0, le niveau -Vp correspondant à l'état 1 .
Pour chaque cellule de commutation 10, la tension générée au niveau du port de sortie 24 varie entre des valeurs proches de 0 V et VDDN suivant le code binaire appliqué. Par exemple, pour la première cellule 10 C1 de la figure 3, la première période 52 correspond à l'état 0, une tension proche de 0 V est donc générée au niveau du port de sortie 24 de la cellule C1 . Par contre, la troisième période 52 correspond à l'état 1 , une tension proche de VDDI est donc générée au niveau du port de sortie 24 de la cellule C1.
A un instant t donné, par l'intermédiaire des N signaux numériques 50 appliqués au niveau de chaque port d'entrée 12, un code numérique, correspondant à un nombre binaire, constitué de N bits est appliqué en entrée du convertisseur numérique-analogique 48. La tension de sortie, au niveau de la sortie analogique commune 54, du convertisseur 48 correspond à la somme des tensions élémentaires en sortie de chaque port de sortie 24 de chaque cellule de commutation 10. De même, le courant de sortie, au niveau de la sortie analogique commune 54, du convertisseur 48 correspond à la somme des courants élémentaires en sortie de chaque cellule de commutation 10.
Ainsi, comme représenté par les courbes de sorties 56 V(t), l(t) de la figure 3, le convertisseur 48 convertit un nombre binaire en une tension ou un courant analogique qui lui est proportionnel. Il est à noter que les courbes de sorties 56 ne sont données qu'à titre indicatif afin d'illustrer que la tension de sortie est constituée des N niveaux de tension et que le courant de sortie a la même forme que la tension, si l'on considère une charge en sortie (non représentée) purement résistive.
Un exemple de réalisation d'un convertisseur numérique-analogique de puissance
48 est présenté sur la figure 4.
Ce convertisseur 48 comprend trois ports d'entrée 12 aptes à recevoir un signal numérique, trois cellules de commutation 10 disposées en parallèle et une sortie analogique commune 54.
Chaque cellule de commutation 10 comprend une source d'alimentation 22 dont la valeur est représentée respectivement par VDDI , VDD2 et VDD3. L'architecture de chaque cellule de commutation 10 est basée sur celle illustrée par la figure 1 . En outre, elle comprend une diode d'anti-retour D2 42 connectée selon le même mode de connexion que celui représenté sur la figure 2.
A titre d'exemple, les valeurs des tensions d'alimentation sont VDDI =15V,
VDD2=22V et VDD3=29V. Ainsi, pour une charge d'utilisation, non représentée, de 5 ohms connectée en sortie du circuit, la puissance maximale fournie à la charge est alors d'environ 160 W.
La figure 5 illustre le fonctionnement d'un tel convertisseur 48 dans une application de commutateur d'alimentation à trois niveaux, à une vitesse de commutation de 10 Mhz. La courbe IN représente la mesure de la tension d'entrée, relative au signal Ai , réalisée à 10 Mhz. Les signaux A2 et A3, non représentés sur la figure 5, sont similaires au signai Ai avec un décalage dans le temps afin d'obtenir les codes binaires souhaités en entrée. La courbe OUT représente les mesures de la tension de sortie réalisées à 10 Mhz.
Pour cette application, comme seulement trois niveaux de tension sont requis en sortie, seuls trois codes binaires de trois bits sont utilisés en entrée, au lieu des huit possibles. Ainsi, pour obtenir une tension VDDI en sortie, un code AiA2A3=100 est appliqué en entrée. Suivant le même principe, pour obtenir une tension VDD2 en sortie, un code AiA2A3=010 est appliqué en entrée et, pour obtenir une tension VDD3 en sortie, un code AiA2A3=001 est appliqué en entrée. Ainsi, la cellule de commutation de puissance selon l'invention présente l'avantage d'avoir une architecture simple sans utilisation de circuits de commande complexes pour gérer le fait que la source du transistor T2 est flottante. De plus, l'utilisation de telles cellules avec des transistors HEMT permet d'obtenir des vitesses de commutation de 10 à 100 fois supérieure aux systèmes actuels classiques basés sur des transistors MOSFET.

Claims

REVENDICATIONS
1 . - Cellule de commutation de puissance (10), caractérisée en ce qu'elle comprend:
- un port d'entrée (12) destiné à recevoir un signal numérique (50),
- un premier transistor à effet de champ (14), de type normalement fermé, connecté, d'une part, au port d'entrée (12) par sa grille (26) et, d'autre part, à la masse (28) par sa source (30),
- une première résistance (18) connectée, en amont, au drain (32) du premier transistor (14),
- un second transistor à effet de champ (16), de type normalement fermé, connecté, d'une part, à la première résistance (18) par sa grille (34) et, d'autre part, à une source d'alimentation (22) par son drain (38),
- un port de sortie (24) connecté au second transistor (16) par sa source (36), et - une seconde résistance d'auto-polarisation (20) connectée entre la grille (34) et la source (36) du second transistor à effet de champ (16).
2. - Cellule de commutation (10) selon la revendication 1 , dans laquelle les transistors à effet de champ (14, 16) sont de type HEMT.
3. - Cellule de commutation (10) selon la revendication 2, dans laquelle les transistors à effet de champ (14, 16) sont en technologie SiC.
4. - Cellule de commutation (10) selon la revendication 2, dans laquelle les transistors à effet de champ (14, 16) sont en technologie GaN.
5. - Cellule de commutation (10) selon la revendication 2, dans laquelle les transistors à effet de champ (14, 16) sont en technologie GaAs.
6.- Cellule de commutation (10) selon l'une quelconque des revendications précédentes, comprenant une diode d'anti-retour (42) connectée, d'une part, à la source (36) du second transistor (16) et, d'autre part, au port de sortie (24) dans le sens passant.
7. - Cellule de commutation (10) selon la revendication 6, comprenant une diode (40) connectée, d'une part, à la masse (28) et, d'autre part, à la source (36) du second transistor (16) dans le sens passant.
8. - Cellule de commutation (10) selon la revendication 6 ou 7, dans laquelle chaque diode (40, 42) est de type Schottky.
9. - Cellule de commutation selon la revendication 8 dans laquelle chaque diode (40, 42) est en technologie SiC.
10.- Cellule de commutation selon la revendication 8 dans laquelle chaque diode
(40, 42) est en technologie GaN.
1 1. - Cellule de commutation (10) selon l'une quelconque des revendications précédentes, comprenant au moins un condensateur (44, 46) connectée en parallèle aux bornes de la source d'alimentation (22).
12. - Equipement électronique (48) comprenant une pluralité de cellules de commutation (10) selon l'une quelconque des revendications 6 à 1 1 , disposées en parallèle.
PCT/EP2011/071003 2010-11-29 2011-11-25 Cellule de commutation de puissance et équipement électronique correspondant WO2012072503A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059843A FR2968131A1 (fr) 2010-11-29 2010-11-29 Cellule de commutation de puissance et equipement electronique correspondant
FR1059843 2010-11-29

Publications (1)

Publication Number Publication Date
WO2012072503A1 true WO2012072503A1 (fr) 2012-06-07

Family

ID=44227487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071003 WO2012072503A1 (fr) 2010-11-29 2011-11-25 Cellule de commutation de puissance et équipement électronique correspondant

Country Status (2)

Country Link
FR (1) FR2968131A1 (fr)
WO (1) WO2012072503A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020222A1 (fr) * 2014-04-22 2015-10-23 Thales Sa Cellule de communication de puissance a transistors a effet de champ de type normalement conducteur
US10447159B2 (en) 2015-05-29 2019-10-15 Wupatec DC-DC converter block, DC-DC converter comprising same and associated system envelope tracking system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063588B1 (fr) * 2017-03-02 2022-07-08 Thales Sa Cellule de commutation de puissance isolee

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2330221A1 (fr) * 1973-07-10 1977-05-27 Thomson Csf Perfectionnement aux circuits inverseurs de tension logique
EP0371575A2 (fr) * 1988-11-23 1990-06-06 Precision Monolithics Inc. Fet logique à couplage direct
US5323071A (en) * 1991-04-05 1994-06-21 Nec Corporation Semiconductor integrated circuit device having logic level conversion circuit
US6111430A (en) * 1998-06-24 2000-08-29 International Business Machines Corporation Circuit for interfacing a first type of logic circuit with a second type of logic circuit
EP1096681A1 (fr) * 1999-10-28 2001-05-02 Pixtech S.A. Commutateur très haute tension

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2330221A1 (fr) * 1973-07-10 1977-05-27 Thomson Csf Perfectionnement aux circuits inverseurs de tension logique
EP0371575A2 (fr) * 1988-11-23 1990-06-06 Precision Monolithics Inc. Fet logique à couplage direct
US5323071A (en) * 1991-04-05 1994-06-21 Nec Corporation Semiconductor integrated circuit device having logic level conversion circuit
US6111430A (en) * 1998-06-24 2000-08-29 International Business Machines Corporation Circuit for interfacing a first type of logic circuit with a second type of logic circuit
EP1096681A1 (fr) * 1999-10-28 2001-05-02 Pixtech S.A. Commutateur très haute tension

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RUSSELL A. GASPARI, HAROLD H. YEE: "1978 IEEE MIT-S International Microwave Symposium Digest", 27 June 1978, Ottawa, Canada June 27-29, XP001656706 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3020222A1 (fr) * 2014-04-22 2015-10-23 Thales Sa Cellule de communication de puissance a transistors a effet de champ de type normalement conducteur
WO2015162063A1 (fr) * 2014-04-22 2015-10-29 Thales Cellule de commutation de puissance a transistors a effet de champ de type normalement conducteur
US10038441B2 (en) 2014-04-22 2018-07-31 Thales Power switching cell with normally conducting field-effect transistors
US10447159B2 (en) 2015-05-29 2019-10-15 Wupatec DC-DC converter block, DC-DC converter comprising same and associated system envelope tracking system

Also Published As

Publication number Publication date
FR2968131A1 (fr) 2012-06-01

Similar Documents

Publication Publication Date Title
FR2959624A1 (fr) Circuit de conversion de tension continue
EP2276173B1 (fr) Dispositif de commande d'un transistor de puissance
EP3134972B1 (fr) Cellule de commutation de puissance a transistors a effet de champ de type normalement conducteur
EP0674252A1 (fr) Circuit pour commander les tensions entre caisson et sources des transistors d'un circuit logique MOS et système d'asservissement de son alimentation
FR2836762A1 (fr) Circuit de conversion de tension continue pour lampe a decharge
FR2884079A1 (fr) Commande d'un transistor mos
EP3267583B1 (fr) Circuit de sélection d'une tension d'alimentation à transition contrôlée
WO2012072503A1 (fr) Cellule de commutation de puissance et équipement électronique correspondant
EP1925079A1 (fr) Commutateur de courant a paire differentielle de transistors alimente par une faible tension vcc
FR3065129B1 (fr) Convertisseur d'energie a decoupage controle en mode "charge crete" ameliore
FR2538193A1 (fr) Interface de sortie pour circuit logique a trois etats dans un circuit integre a transistors mos
EP2751916B1 (fr) Convertisseur de puissance élevée avec des transistors de faible puissance connectés en parallèle
EP2543136B1 (fr) Convertisseur courant-tension à réflecteur de courant, étage d'entrée d'un amplificateur et amplificateur correspondant
FR2943826A1 (fr) Systeme de couplage tele-alimente avec une liaison filaire de communication, et appareil de commande d'au moins un interrupteur electronique comprenant un tel systeme de couplage
FR2519212A1 (fr) Circuit logique a trois etats
FR2681993A1 (fr) Circuit de source de courant a transistors ayant des types de conductivite differents et procede pour faire fonctionner ce circuit.
EP3840205B1 (fr) Convertisseur ac-ac comportant une matrice d'interrupteurs bidirectionnels a configuration programmable
FR2971379A1 (fr) Commande a hysteresis d'un dispositif electronique par un signal module en largeur d'impulsion
EP3590190B1 (fr) Cellule de commutation de puissance isolee
EP3836398A1 (fr) Dispositif de commande d'interrupteur
EP2843816A1 (fr) Alimentation à découpage à architecture modulable
FR3094853A1 (fr) Circuit de commande de transistors
WO2024023429A1 (fr) Dispositif de commande, de protection et de surveillance de l'etat de sante d'un transistor de puissance
FR2884074A1 (fr) Convertisseur a plusieurs voies, a decoupage en cascade et limite en courant
FR3082067A1 (fr) Systeme d'interrupteur avec un circuit de limitation de tension, bras de commutation et convertisseur electrique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11788442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11788442

Country of ref document: EP

Kind code of ref document: A1