EP2536547A1 - Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne - Google Patents

Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne

Info

Publication number
EP2536547A1
EP2536547A1 EP11703714A EP11703714A EP2536547A1 EP 2536547 A1 EP2536547 A1 EP 2536547A1 EP 11703714 A EP11703714 A EP 11703714A EP 11703714 A EP11703714 A EP 11703714A EP 2536547 A1 EP2536547 A1 EP 2536547A1
Authority
EP
European Patent Office
Prior art keywords
channel
core
rotor blade
resin
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11703714A
Other languages
German (de)
English (en)
Inventor
Sven Muschke
Johannes Kannenberg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wobben Properties GmbH
Original Assignee
Wobben Properties GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wobben Properties GmbH filed Critical Wobben Properties GmbH
Publication of EP2536547A1 publication Critical patent/EP2536547A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/548Measures for feeding or distributing the matrix material in the reinforcing structure using distribution constructions, e.g. channels incorporated in or associated with the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/462Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/08Blades for rotors, stators, fans, turbines or the like, e.g. screw propellers
    • B29L2031/082Blades, e.g. for helicopters
    • B29L2031/085Wind turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method of manufacturing wind turbine rotor blades and a wind turbine rotor blade.
  • Rotor blades of wind turbines which are often performed as fiber composite components, are regularly exposed to years of weather and extreme weather conditions, they must be able to resist this. On the one hand, this is a matter of designing the rotor blades. On the other hand, the rotor blades then actually have to have appropriate material properties. This already results from the fact that it is precisely the fiber composite construction that makes it possible to produce durable and durable components.
  • Rotor blades for wind turbines are typically produced in a vacuum infusion process.
  • fiberglass mats and hard foam or balsa wood are designed as a core in a mold for the rotor blade and impregnated with a pump and a hose system in vacuum with resin.
  • the rotor blade then has a core member and glass fiber reinforced epoxy resin on both sides of the core in a sandwich construction.
  • the resin is typically infused or injected in a vacuum infusion or injection process.
  • a film may be provided to create a vacuum below the film.
  • the vacuum is particularly advantageous because it results in improved spreading of the resin.
  • a flow aid is placed between the core and the other layers of the fabric. The flow aid serves to allow the resin to spread quickly, so that the material of the rotor blade is uniformly saturated.
  • WO 2009/003477 A1 describes a method for manufacturing a rotor blade.
  • a core is used which has grooves on one or both sides. The grooves in the core should serve to better bend the core can.
  • a method for manufacturing a wind turbine rotor blade or a fiber composite component is provided.
  • at least one mold is provided and a scrim with at least one core is placed in the at least one mold.
  • the core has an upper side with first channel sections and a lower side with second channel sections, and connecting sections between the first and second channel sections.
  • the first and second channel sections alternate. Resin may in particular be supplied through the first and / or second channel sections until the scrim is sufficiently saturated.
  • the feeding of resin is done in a vacuum injection process.
  • the present invention also relates to a wind turbine rotor blade or a fiber composite component having at least one core having a first side and a second side. At least one first channel section is provided in the first side and at least one second channel section is provided in the second side. Further, connecting portions are provided at the transition portions of the first and second passage portions.
  • the first and second channel portions alternate along the length of the core.
  • the first and second channel sections are milled into the core.
  • the invention relates to the idea of forming at least one channel in the core or the core material of a wind turbine rotor blade or a fiber composite component.
  • a channel is at least partially formed on the top and at least one channel at least partially on the bottom, wherein a connecting portion between the channel sections on the top and the channel is provided on the bottom.
  • This can be done for example by a through hole in the region of an overlap of the channels of the top and bottom. This can but z. B. also be done on the setting of the channel depth. If this is set slightly larger than half the material thickness, openings in the overlap area of the top and bottom channels will automatically result in connections between both channels.
  • the resin can now be supplied to the channel (s). Through the connection at the intersections of the channels at the top and bottom of the resin can spread evenly over the entire length of the channel and thus along the entire core material or the entire Geleges.
  • a sprue so a connection for the supply of the resin can be provided both on the Oberais also on the bottom to supply the resin.
  • the sprues z. B. be provided at the outer ends of the channels.
  • a transverse milling may be provided at the butts between the cores to provide interconnection of the channels.
  • the channels are formed by milling in the cores.
  • the channels can be produced with known and well-controlled and proven working methods.
  • the channels can be generated already during the production of the cores, so that the cores can be inserted as finished semi-finished products in the mold.
  • FIG. 1 shows a schematic perspective view of a core element of a wind turbine rotor blade according to a first exemplary embodiment
  • Fig. 2 shows a simplified plan view of such a core element
  • Fig. 3 shows a schematic representation of a wind turbine according to the invention.
  • Fig. 1 shows a schematic representation of a core of a fiber composite component such as e.g. of a wind turbine rotor blade according to a first embodiment in a perspective view.
  • the core 100 has an upper side (first side) 101 and a lower side (second side) 102.
  • first side 101 a plurality of first channel sections 110 and on the lower side 102, a plurality of second channel sections 120 are formed, e.g. milled in.
  • connecting sections 130 for example in the form of through-holes 130, may be provided.
  • a continuous channel consisting of first channel sections, second channel sections and connecting sections 110, 120, 130 is provided. If the channel sections 110, 120 are made slightly deeper than half the material thickness, a connection in the intersection area of these channel sections 110, 120 results automatically.
  • the core may be configured as a solid plate.
  • the channel thus runs partly on the upper side 101 and partly on the lower side 102.
  • the channel runs alternately on the upper and lower side 101, 102, but may be formed continuously through the connections 130.
  • this channel can z.
  • a resin such as a glass fiber reinforced epoxy resin may be introduced in a vacuum infusion process which then propagates from the channel until the core element is completely covered with a predetermined thickness of the resin.
  • the core or the core element 100 and z.
  • the resin may be supplied to the channel 110, 120 in a vacuum infusion process wherein the resin first fills the channel and then spread evenly in the scrim on and under the core member 100.
  • the amount of resin is such that it comes to a sufficient impregnation of the Geleges.
  • the channel may be used with the first and second channel sections 110, 120 for transporting the epoxy resin.
  • the epoxy resin can be fed via a sprue at the ends of the channels 110, 120 both at the top and at the bottom to spread through the channel according to the invention quickly and evenly in the form and impregnate the scrim.
  • Fig. 2 shows a schematic representation of a part of a core or core element 100 according to the invention for a fiber composite component, such as. Example, a wind turbine rotor blade, in which resin 500 is supplied for example in a vacuum injection method. As can be seen in FIG. 2, the resin 500 has already partially expanded. It can be seen in FIG. 2 that the resin propagates along the channel 110, 120, 130.
  • the inventive method for producing a fiber composite component or a wind turbine rotor blade the time for the production of a wind turbine rotor blade is reduced. Furthermore, no flow aids are required. With the method according to the invention for producing a wind turbine rotor blade, production of a rotor blade in one piece can be simplified.
  • the wind turbine rotor blade according to the invention can be produced for example in a sandwich process.
  • a sandwich material such as PVC foam, balsa wood etc. provided as a core of the rotor blade.
  • a channel can be milled. Through this channel, a transport of resin can be enabled or accelerated.
  • the supply of the resin can be done directly via a sprue on the top or bottom or indirectly via channels in the component or in the core. If the core consists of several pieces, transverse cuts can also be provided at the joints of these pieces to ensure that the connection of the channel is given.
  • the resin can spread faster than outside.
  • the flow aid can be omitted when using the resin channel.
  • the resin channel is preferably provided in the longitudinal direction of the core member so that the resin can spread quickly through the resin channel along the longitudinal direction and then spread further beyond the channel. This can lead to a more uniform spreading of the resin, since the propagation within the resin channel is faster than outside.
  • Fig. 3 shows a schematic representation of a wind turbine according to the invention.
  • the wind energy installation 1 has a tower 10 with a gondola 20 at the upper end of the tower 10.
  • a gondola 20 at the upper end of the tower 10.
  • the rotor blades 30 are arranged.
  • the rotor blades 30 have a rotor blade tip 32 and a rotor blade root 31.
  • the rotor blades 30 are fastened to the rotor blade root 31, for example on the rotor hub 21.
  • the pitch angle of the rotor blades 30 is preferably controllable according to the current wind speed.
  • the wind turbine rotor blades 30 of FIG. 3 can be manufactured according to the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Wind Motors (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pale de rotor d'éolienne. Pour permettre une fabrication plus économique et de grande qualité, le procédé consiste à : mettre à disposition au moins un moule, placer une nappe munie d'au moins un noyau dans le moule, le noyau présentant une face supérieure munie de premières sections de canal et une face inférieure munie de secondes sections de canal, ainsi que des sections de liaison entre les premières et secondes sections de canal, et introduire de la résine, en particulier par les premières et/ou secondes sections de canal, jusqu'à ce que la nappe soit suffisamment imprégnée.
EP11703714A 2010-02-18 2011-02-18 Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne Withdrawn EP2536547A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010002131A DE102010002131A1 (de) 2010-02-18 2010-02-18 Verfahren zum Herstellen von Windenergieanlagen-Rotorblättern und Windenergieanlagen-Rotorblatt
PCT/EP2011/052422 WO2011101437A1 (fr) 2010-02-18 2011-02-18 Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne

Publications (1)

Publication Number Publication Date
EP2536547A1 true EP2536547A1 (fr) 2012-12-26

Family

ID=44063981

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11703714A Withdrawn EP2536547A1 (fr) 2010-02-18 2011-02-18 Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne

Country Status (17)

Country Link
US (1) US20130039775A1 (fr)
EP (1) EP2536547A1 (fr)
JP (1) JP5484596B2 (fr)
KR (1) KR101388279B1 (fr)
CN (1) CN102844166B (fr)
AR (1) AR080199A1 (fr)
AU (1) AU2011217219B2 (fr)
BR (1) BR112012020393B1 (fr)
CA (1) CA2787616C (fr)
CL (1) CL2012002282A1 (fr)
DE (1) DE102010002131A1 (fr)
EA (1) EA201290806A1 (fr)
MX (1) MX2012009184A (fr)
NZ (1) NZ601942A (fr)
TW (1) TWI481495B (fr)
WO (1) WO2011101437A1 (fr)
ZA (1) ZA201206152B (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011087622A1 (de) 2011-12-02 2013-06-06 Gaugler & Lutz Ohg Sandwichverbundbauteil und Verfahren zur Herstellung eines Sandwichverbundbauteils
DE102012211765A1 (de) 2012-07-05 2014-05-22 Gaugler & Lutz Ohg Kernschicht für ein Sandwichverbundbauteil, Sandwichverbundbauteil und Verfahren zur Herstellung eines Sandwichverbundbauteils
DE202012012785U1 (de) 2012-07-05 2014-03-06 Gaugler & Lutz Ohg Kernschicht für ein Sandwichverbundbauteil und Sandwichverbundbauteil
DE102012107932C5 (de) 2012-08-28 2024-01-11 Siemens Gamesa Renewable Energy Service Gmbh Verfahren zur Fertigung eines Rotorblattes und ein Rotorblatt einer Windenergieanlage
DE102012216830A1 (de) 2012-09-19 2014-03-20 Wobben Properties Gmbh Verfahren zur Herstellung von Windenergieanlagen-Rotorblättern, sowie zur Herstellung eines Formkerns hierfür
DE102013212884A1 (de) * 2013-07-02 2015-01-08 Wobben Properties Gmbh Probekörper, Prüfmethode, Windenergieanlage
DE102013012593A1 (de) 2013-07-30 2015-02-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung thermoplastischer Verbundbauteile
DE102013108645B4 (de) * 2013-08-09 2021-05-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum Herstellen eines Prüfkörpers und Verwendung des Prüfkörpers
EP2886322A1 (fr) 2013-12-19 2015-06-24 Bayer MaterialScience AG Procédé destiné à la fabrication de composants composites
JP6407057B2 (ja) * 2014-07-30 2018-10-17 積水化学工業株式会社 熱可塑性樹脂成形体の製造方法
KR20160067690A (ko) 2014-12-04 2016-06-14 대우조선해양 주식회사 풍력발전기 블레이드 몰드 자동조절 장치
DE102015204490A1 (de) * 2015-03-12 2016-09-15 Wobben Properties Gmbh Verfahren und Vorrichtung zum Herstellen eines Vorformlings
DE102016108785A1 (de) * 2016-05-12 2017-11-16 Wobben Properties Gmbh Verfahren zum Trennen eines trockenen Faserverbundgeleges, Verwendung einer Trennvorrichtung zum Trennen eines trockenen Faserverbundgeleges und eine Windenergieanlage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304339A (en) * 1990-05-23 1994-04-19 Le Comte Adolf Method for manufacturing a large-sized object of fiber reinforced synthetic resin

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4560523A (en) * 1984-04-30 1985-12-24 A&M Engineered Composites Corporation Intrusion molding process for forming composite structures
US5904972A (en) * 1995-06-07 1999-05-18 Tpi Technology Inc. Large composite core structures formed by vacuum assisted resin transfer molding
US6203749B1 (en) * 1996-02-15 2001-03-20 David Loving Process for fiberglass molding using a vacuum
JP2000043173A (ja) 1998-07-31 2000-02-15 Toray Ind Inc コア材とそれを用いたfrp構造体およびその製造方法
JP2000043171A (ja) * 1998-07-31 2000-02-15 Toray Ind Inc Frp構造体およびその製造方法
US6656411B1 (en) * 1999-01-11 2003-12-02 Northrop Grumman Corporation Grooved core pattern for optimum resin distribution
DE10356135A1 (de) 2003-12-02 2005-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zur Herstellung eines Bauteils aus einem Faserverbundwerkstoff
CN2714283Y (zh) * 2004-07-28 2005-08-03 上特技材有限公司 一种蕊材的改进结构
EP2160287B1 (fr) * 2007-06-29 2012-11-28 Lm Glasfiber A/S Procédé de production d'une structure composite et structure composite
ES2358865T5 (es) * 2007-06-29 2019-06-17 Lm Wind Power As Método de uso de un bloque de núcleo formable para un proceso de impregnación de resina, método para formar una estructura compuesta y estructura compuesta obtenida de tal modo

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304339A (en) * 1990-05-23 1994-04-19 Le Comte Adolf Method for manufacturing a large-sized object of fiber reinforced synthetic resin

Also Published As

Publication number Publication date
AU2011217219A1 (en) 2012-09-13
JP2013519837A (ja) 2013-05-30
CA2787616C (fr) 2014-09-23
CL2012002282A1 (es) 2013-01-25
BR112012020393B1 (pt) 2020-12-15
EA201290806A1 (ru) 2013-02-28
KR20120135254A (ko) 2012-12-12
TW201210798A (en) 2012-03-16
CA2787616A1 (fr) 2011-08-25
AR080199A1 (es) 2012-03-21
CN102844166B (zh) 2015-06-10
NZ601942A (en) 2013-08-30
ZA201206152B (en) 2013-04-24
CN102844166A (zh) 2012-12-26
MX2012009184A (es) 2013-03-21
JP5484596B2 (ja) 2014-05-07
AU2011217219B2 (en) 2013-05-09
WO2011101437A1 (fr) 2011-08-25
US20130039775A1 (en) 2013-02-14
KR101388279B1 (ko) 2014-04-22
BR112012020393A2 (pt) 2017-03-01
DE102010002131A1 (de) 2011-08-18
TWI481495B (zh) 2015-04-21

Similar Documents

Publication Publication Date Title
EP2536547A1 (fr) Procédé de production de pales de rotor d'éolienne et d'une pale de rotor d'éolienne
DE102011082664C5 (de) Form zur Herstellung eines Steges und Steg für ein Rotorblatt einer Windenergieanlage
DE102011078951C5 (de) Verfahren zum Herstellen eines Rotorblatts für eine Windenergieanlage
EP2909013B1 (fr) Dispositif et procédé de fabrication d'une semelle de longeron de pale de rotor
EP2567807B1 (fr) Procédé de fabrication d'un composant de pale de rotor d'éolienne doté d'une courroie principale préfabriquée
EP2731789B1 (fr) Dispositif et procédé de fabrication d'un élément de structure
EP2561977B1 (fr) Procédé de fabrication d'un élément d'âme de rotor d'éolienne doté d'une structure principale renforcée de fibres de carbone
EP3018342B1 (fr) Procede de fabrication d'une pale de rotor d'eolienne
DE102015007289A1 (de) Rotorblatt, Rotorblattgurt und Verfahren zum Herstellen eines Rotorblattgurts
WO2020109221A1 (fr) Moule de pale de rotor et procédé de fabrication d'une pale de rotor pour une éolienne, ainsi qu'éolienne
EP3486476B1 (fr) Entretoise pour une pale de rotor d'une éolienne et procédé de fabrication d'une entretoise
WO2014095865A1 (fr) Dispositif de moulage variable pour fabriquer une demi-coque pour une pale de rotor d'éolienne
EP2888100B1 (fr) Procédé de fabrication, moule de fabrication et utilisation
EP2662204A1 (fr) Procédé, composant préfabriqué et moule de fabrication d'une pièce d'éolienne
EP3634730A1 (fr) Procédé pour la fabrication d'une pale de rotor pour installations éoliennes
WO2014095856A2 (fr) Dispositif de moulage variable pour fabriquer une demi-coque pour une pale de rotor d'éolienne
EP3841298B1 (fr) Pale de rotor d'éolienne
DE102011077609A1 (de) Fertigung einer Rotorblattschale
DE102014222560A1 (de) Fertigungskern und Verfahren zur Herstellung eines Faserverbundbauteils sowie Faserverbundbauteil
EP3653872A1 (fr) Procédé de fabrication de deux segments de pale de rotor, segment de pale de rotor ainsi que pale de rotor divisée

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120918

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WOBBEN PROPERTIES GMBH

17Q First examination report despatched

Effective date: 20160301

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160913