EP2524002A1 - Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate - Google Patents

Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate

Info

Publication number
EP2524002A1
EP2524002A1 EP11700411A EP11700411A EP2524002A1 EP 2524002 A1 EP2524002 A1 EP 2524002A1 EP 11700411 A EP11700411 A EP 11700411A EP 11700411 A EP11700411 A EP 11700411A EP 2524002 A1 EP2524002 A1 EP 2524002A1
Authority
EP
European Patent Office
Prior art keywords
elastomer
thermoplastic
weight
tire
block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11700411A
Other languages
German (de)
English (en)
Inventor
Garance Lopitaux
Didier Vasseur
Franck Varagniat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Compagnie Generale des Etablissements Michelin SCA
Original Assignee
Michelin Recherche et Technique SA Switzerland
Compagnie Generale des Etablissements Michelin SCA
Michelin Recherche et Technique SA France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Compagnie Generale des Etablissements Michelin SCA, Michelin Recherche et Technique SA France filed Critical Michelin Recherche et Technique SA Switzerland
Publication of EP2524002A1 publication Critical patent/EP2524002A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Definitions

  • the present invention relates to tire treads having inorganic filler-reinforced rubber compositions.
  • a tire tread must, as is known, obey a large number of technical, often antithetical, requirements including low rolling resistance, high wear resistance, and high adhesion on dry roads. as wet.
  • thermoplastic elastomers TPE
  • the use of such elastomers makes it possible in particular to improve certain properties of use of the tire, in particular the performance of adhesion, rolling resistance and resistance to abrasion.
  • the object of the present invention is to provide a tire mix which makes it possible to maintain the adhesion gain conferred by the use of inorganic filler, while improving the adhesion on dry ground, since the improvement of the adhesion properties of the tires remains a constant concern for tire designers.
  • the object of the present invention is achieved in that the inventors have found a specific rubber composition, based on an elastomeric matrix comprising at least one diene elastomer and a polar TPE copolymer, and a reinforcing filler comprising a reinforcing inorganic filler. , which makes it possible to obtain treads of tires having a compromise of the adhesion properties on wet ground and on dry ground Significantly improved.
  • the inventors have shown that the use of polar thermoplastic elastomers in such a rubber composition also makes it possible to respond to the problem related to improving the compromise of properties in the uncrosslinked / crosslinked states of said composition.
  • a first object of the invention is a rubber composition for tread tire based on
  • the subject of the invention is also the use of this rubber composition for the manufacture of tires or semi-finished products for tires, in particular of tire treads, which are intended for the manufacture of new tires as well as for the manufacture of new tires. retreading of used tires.
  • the invention also relates to a tread comprising a rubber composition according to the invention.
  • composition-based is meant a composition comprising the mixture and / or the reaction product of the various constituents used, some of these basic constituents being capable of or intended to react with one another, less in part, during the various phases of manufacture of the composition, in particular during its crosslinking or vulcanization.
  • any range of values designated by the expression "between a and b" represents the range of values from more than a to less than b (i.e. terminals a and b excluded) while any range of values designated by the term “from a to b” means the range from a to b (i.e., including the strict limits a and b).
  • "phr” means parts by weight per hundred parts of total elastomer, therefore including the polar TPE copolymer.
  • a first object of the invention is a rubber composition based on
  • the elastomeric matrix comprises at least one diene elastomer in proportions ranging from 60 phr to 95 phr. Below the minimum indicated, the grip performance on dry ground tend to decrease significantly, while above the maximum recommended, wet grip performance are degraded.
  • the elastomer matrix comprises between 70 and 90 phr of at least one diene elastomer.
  • elastomer of the "diene” type, it is recalled here that it is to be understood in known manner an elastomer derived at least in part (ie, a homopolymer or a copolymer) from monomers dienes (monomers carrying two carbon-carbon double bonds, conjugated or not).
  • diene elastomer it should be understood according to the invention any synthetic elastomer derived at least in part from monomers dienes. More particularly, diene elastomer is any homopolymer obtained by polymerization of a conjugated diene monomer having 4 to 12 carbon atoms, or any copolymer obtained by copolymerization of one or more conjugated dienes with one another or with one or more vinylaromatic compounds. having from 8 to 20 carbon atoms. In the case of copolymers, these contain from 20% to 99% by weight of diene units, and from 1 to 80% by weight of vinylaromatic units.
  • Conjugated dienes which can be used in the process according to the invention are especially suitable for 1,3-butadiene, 2-methyl-1,3-butadiene and 2,3-di (C 1 -C 5 alkyl) -1,3 butadiene such as, for example, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-methyl-3-ethyl-1,3-butadiene, 3-isopropyl-1,3-butadiene, phenyl-1,3-butadiene, 1,3-pentadiene, 2,4-hexadiene, etc.
  • Suitable vinylaromatic compounds are styrene, ortho-, meta, para-methylstyrene, the commercial "vinyltoluene" mixture, para-tert-butylstyrene, methoxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene and the like.
  • Suitable polybutadienes and in particular those having a content (mol%) in units -1.2 of between 4% and 80% or those having a content (mol%) of cis-1,4 greater than 80% polyisoprenes, copolymers of butadiene-styrene and in particular those having a Tg (glass transition temperature, measured according to ASTM D3418) of between 0 ° C.
  • styrene content between 5% and 60%> by weight and more particularly between 20%> and 50%>, a content (mol%) in 1,2-bonds of the butadiene part of between 4% and 75%, a content (mol%) of trans-1,4 bonds of between 10% and 80%, butadiene-isoprene copolymers and in particular those of having an isoprene content of between 5% and 90% by weight and a Tg of -40 ° C to -80 ° C, the isoprene-styrene copolymers and in particular those having a styrene content of between 5% and 50% by weight.
  • butadiene-styrene-isoprene copolymers are especially suitable those having a styrene content of between 5% and 50% by weight and more particularly between 10% and 40%), an isoprene content of between 15% and 60% by weight and more particularly between 20% and 50%, a butadiene content between 5% and 50% by weight and more particularly between 20% and 40%, a content (mol%) in units - 1, 2 of the butadiene part of between 4% and 85%, a content (mol%) in trans-1,4 units of the butadiene part of between 6% and 80%, a content (mol%) in units -1, 2 more -3,4 of the isoprenic part of between 5% and 70% and a content (mol%) in trans-1,4 units of the isoprenic part of between 10% and 50%, and more generally any butadiene-styrene copolymer; isoprene with a
  • the diene elastomer of the composition according to the invention is preferably chosen from the group of diene elastomers consisting of polybutadienes, synthetic polyisoprenes, natural rubber, butadiene copolymers, isoprene copolymers and mixtures of these elastomers.
  • Such copolymers are more preferably selected from the group consisting of styrene copolymers (SBR, SIR and SBIR), polybutadienes (BR) and natural rubber (NR).
  • the elastomer matrix comprises a diene elastomer chosen from those described above.
  • the elastomer matrix comprises at least two diene elastomers.
  • one of the two elastomers is preferably a styrene copolymer, for example an SBR, a SBIR, a SIR or their mixtures, in proportions of between 60% and 100% by weight. of the total weight of diene elastomer, the other being chosen from polybutadienes and natural rubber in proportions of between 0% and 40% by weight of the total weight of diene elastomer.
  • one of the two elastomers is preferably natural rubber in proportions of between 70% and 100% by weight of the total weight of diene elastomer, the other elastomer being preferably a copolymer of styrene, for example an SBR, a SBIR, a SIR or their mixtures, in proportions of between 0% and 30% by weight of the total weight of diene elastomer.
  • the elastomer matrix comprises, as a second component, a polar thermoplastic elastomer TPE in proportions ranging from 5 phr to 40 phr. Below the minimum indicated, wet grip performance tends to decrease significantly, while above the recommended maximum, dry grip performance is degraded.
  • the elastomer matrix comprises from 5 phr to 30 phr, more preferably from 10 phr to 25 phr of a polar TPE thermoplastic elastomer.
  • thermoplastic thermoplastic TPE elastomer is a copolymer comprising an elastomeric block (noted B for reasons of simplification) and at least one thermoplastic block, the latter being polar (noted M for reasons of simplification). It is essentially in the form of a diblock copolymer or a triblock copolymer.
  • the thermoplastic thermoplastic TPE elastomer according to the present invention may also consist of a mixture of these copolymers.
  • the elastomer block B is advantageously a diene elastomer as defined above. It is preferably a polybutadiene or a copolymer of styrene such as an SBR for example.
  • the elastomeric block B preferably has a weight average molecular weight (Mw) of 5,000 to 65,000 g / mol.
  • the polar thermoplastic block M can be either a homopolymer obtained by polymerization of at least one monomer chosen from short chain alkylacrylic acid esters (from 1 to 4 carbon atoms), the alkyl radical preferably comprising 1 to 4 atoms. of carbon, a copolymer obtained by copolymerization of one or more of these monomers with one another or with one or more monomers, acrylic or non-acrylic. If the polar thermoplastic block M is a copolymer, it preferably contains at least 70% by weight of alkylacrylate unit.
  • the alkylacrylic acid ester monomer is a short chain methacrylic acid ester, more preferably still selected from methyl methacrylate, ethyl methacrylate.
  • the polar thermoplastic block M is a polymer of polymethylmethacrylate (PMMA) or polyethylmethacrylate (PEMA) type.
  • the polar thermoplastic block M preferably has a weight average molecular weight (Mw) of 35,000 to 70,000 g / mol.
  • the thermoplastic thermoplastic TPE elastomer may comprise a third block, which is a thermoplastic block (noted S for reasons of simplification), different from the polar thermoplastic block M.
  • this thermoplastic block is either a homopolymer obtained by polymerization of at least one vinylaromatic monomer, ie a copolymer obtained by copolymerization of one or more of these vinylaromatic monomers with one another or with one or more other monomers.
  • vinylaromatic monomers are especially suitable styrene, ortho-, meta, para-methylstyrene, the commercial mixture "vinyltoluene", para-tert-butylstyrene, methoxystyrenes, vinylmesitylene, divinylbenzene, vinylnaphthalene, etc.
  • the monomer is styrene.
  • the thermoplastic block S is a polystyrene.
  • the thermoplastic block S preferably has a weight average molecular weight (Mw) of 14,000 to 55,000 g / mol.
  • the polar TPE thermoplastic elastomer preferably has a weight average molecular weight (Mw) of 40,000 to 190,000 g / mol.
  • thermoplastic thermoplastic elastomer TPE advantageously has the following composition expressed as a weight fraction:
  • the elastomer block B represents from 20% to 60%, preferably from 30% to 50%,
  • the polar thermoplastic block M represents from 21% to 42%, preferably from 30% to 42%, on 100% of polar TPE thermoplastic elastomer.
  • thermoplastic block S represents from 13% to 52%, preferably from 13% to 20%, over 100% of polar TPE thermoplastic elastomer.
  • thermoplastic thermoplastic TPE elastomer is a polystyrene-polybutadiene-polyethylmethacrylate copolymer or a polystyrene-polybutadiene-polymethylmethacrylate copolymer, the latter being particularly preferred.
  • elastomeric matrix may also comprise, in combination with the previously described components, another thermoplastic elastomer.
  • the rubber composition, object of the invention comprises as essential second component, a reinforcing filler comprising an inorganic filler.
  • the inorganic filler is the majority load of the reinforcing filler and preferably represents a weight fraction equal to or greater than 50% of this reinforcing filler, and particularly a weight fraction of between 50% and 100%, or even up to 100%.
  • any inorganic or mineral filler regardless of its color and origin (natural or synthetic), also called “white” charge, “clear” charge or “non-black filler”, as opposed to carbon black, capable of reinforcing on its own, without any other means than an intermediate coupling agent, a rubber composition intended for the manufacture of tires, in other words capable of replacing, in its reinforcing function, a conventional carbon black of pneumatic grade; such a filler is generally characterized, in known manner, by the presence of hydroxyl groups (-OH) on its surface.
  • -OH hydroxyl groups
  • the reinforcing inorganic filler is, wholly or at least predominantly, silica (SiO 2).
  • the silica used may be any reinforcing silica known to those skilled in the art, in particular any precipitated or fumed silica having a BET surface and a CTAB specific surface area both less than 450 m 2 / g, even if the highly dispersible precipitated silicas are preferred.
  • As reinforcing inorganic filler mention may also be made of mineral fillers of the aluminous type, in particular alumina (Al 2 O 3) or aluminum (oxide) hydroxides, or reinforcing titanium oxides.
  • reinforcing inorganic filler is present indifferent, whether in the form of powder, microbeads, granules or beads.
  • reinforcing inorganic filler is also understood to mean mixtures of different reinforcing inorganic fillers, in particular of highly dispersible silicas as described above.
  • the reinforcing filler may contain, in addition to the abovementioned reinforcing inorganic filler (s), an organic filler, such as carbon black.
  • This reinforcing organic filler is then preferably present in a weight fraction of less than 50% relative to the total weight of the filler.
  • Suitable carbon blacks are all carbon blacks conventionally used in tire rubber compositions (so-called pneumatic grade blacks). Carbon blacks could for example already be incorporated into natural rubber in the form of a masterbatch.
  • black / silica or partially or fully silica-coated blacks are suitable for forming the reinforcing filler.
  • Blacks are also suitable silica-modified carbon such as, without limitation, the charges which are sold by CABOT under the name "CRX 2000", and which are described in international patent document WO-A-96/37547.
  • organic fillers other than carbon blacks mention may be made of the organic functionalized polyvinylaromatic fillers as described in the applications WO-A-2006/069792 and WO-A-2006/069793, or else the organic fillers of polyvinyl non-aromatic functionalized as described in applications WO-A-2008/003434 and WO-A-2008/003435.
  • the weight fraction of this carbon black in said reinforcing filler is more preferably chosen less than or equal to 30% relative to the total weight of the reinforcing filler.
  • the rubber composition according to the invention comprises, as another component, a coupling agent for coupling the reinforcing inorganic filler to the elastomers that make up the elastomeric matrix.
  • coupling agent is more specifically meant an agent capable of establishing a sufficient chemical and / or physical bond between the charge in question and the elastomer, while facilitating the dispersion of this charge within the elastomeric matrix.
  • any coupling agent known for, or capable of effectively ensuring, in the rubber compositions which can be used for the manufacture of tires, the coupling between a reinforcing inorganic filler such as silica and a diene elastomer, such as, for example, organosilanes, may be used.
  • a reinforcing inorganic filler such as silica
  • a diene elastomer such as, for example, organosilanes
  • organosilanes such as, for example, organosilanes
  • polysulfurized alkoxysilanes or mercaptosilanes or alternatively polyorganosiloxanes carrying functional groups capable of binding physically and / or chemically to the inorganic filler and of functions capable of binding physically and / or chemically to the elastomer, for example by means of intermediate of a sulfur atom.
  • Silica / elastomer bonding agents in particular, have been described in a large number of documents, the best known of which are bifunctional alkoxysilanes such as polysulfurized alkoxysilanes.
  • polysulfide silanes called “symmetrical” or “asymmetrical” silanes according to their particular structure, are used, as described for example in the applications WO03 / 002648 (or US 2005/016651) and WO03 / 002649 (or US 2005/016650).
  • coupling agent other than polysulfurized alkoxysilane mention may be made in particular of bifunctional POSS (polyorganosiloxanes) or polysulfides of hydroxysilane as described in patent applications WO 02/30939 (or US Pat. No. 6,774,255) and WO 02 / 31041 (or US 2004/051210), or else silanes or POSS carrying azo functional groups. dicarbonyl, as described for example in patent applications WO 2006/125532, WO 2006/125533, WO 2006/125534.
  • the level of coupling agent is advantageously less than 20 phr, it being understood that it is generally desirable to use as little as possible. Its level is preferably between 0.5 and 12 phr, more preferably from 3 to 10 phr, in particular from 4 to 7 phr. This level is easily adjusted by those skilled in the art according to the level of inorganic filler used in the composition. Those skilled in the art will understand that, as the equivalent filler of the reinforcing inorganic filler described in this paragraph, it would be possible to use a reinforcing filler of another nature, in particular an organic filler, since this reinforcing filler would be covered with a filler. inorganic layer such as silica, or would comprise on its surface functional sites, especially hydroxyl, requiring the use of a coupling agent to establish the bond between the filler and the elastomer.
  • the rubber compositions in accordance with the invention may also contain, in addition to the coupling agents, coupling activators, inorganic charge-covering agents or, more generally, processing aid agents which may be used in a known manner, by improving the dispersion of the filler in the rubber matrix and lowering the viscosity of the compositions, to improve their ability to implement in the green state, these agents being for example hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers, primary, secondary or tertiary amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • these agents being for example hydrolysable silanes such as alkylalkoxysilanes, polyols, polyethers, primary, secondary or tertiary amines, hydroxylated or hydrolysable polyorganosiloxanes.
  • the rubber compositions in accordance with the invention may also comprise all or part of the usual additives normally used in elastomer compositions intended for the manufacture of tires, for example pigments, protective agents such as anti-ozone waxes, chemical antioxidants, anti-oxidants, anti-fatigue agents, reinforcing or plasticizing resins, acceptors (for example phenolic novolak resin) or methylene donors (for example HMT or H3M) as described, for example, in the application WO 02/10269, a crosslinking system based on either sulfur, or sulfur and / or peroxide donors and / or bismaleimides, vulcanization accelerators, vulcanization activators, adhesion promoters such as compounds based on cobalt, plasticizing agents, preferably non-aromatic or very weakly aromatic selected from the group consisting of hu naphthenic, paraffinic, MES oils, TDAE oils, ethers plasticizers, ester plasticizers (for example glycerol trioleate),
  • the invention also relates to a method for preparing a rubber composition as described above.
  • the composition is manufactured in appropriate mixers, using two successive preparation phases well known to those skilled in the art: a first phase of work or thermomechanical mixing (so-called “non-productive” phase) at high temperature, up to a maximum of maximum temperature between 110 ° C and 190 ° C, preferably between 130 ° C and 180 ° C, followed by a second phase of mechanical work (so-called “productive” phase) to a lower temperature, typically less than 110 ° C, for example between 40 ° C and 100 ° C, finishing phase during which is incorporated the crosslinking system.
  • the process according to the invention for preparing a rubber composition according to the invention comprises at least the following steps:
  • thermomechanical working time (sometimes referred to as a "non-productive" phase) of the constituents of of the rubber composition, with the exception of the crosslinking system, by intimately incorporating, by kneading into one or more steps, the elastomeric matrix based on natural rubber, of the ingredients of the composition, and the production, at a temperature below said maximum temperature of said first time, preferably below 120 ° C, of a second mechanical working time during which said crosslinking system is incorporated and, if appropriate, an adhesion promoter,
  • the final composition thus obtained can then be calendered, for example in the form of a sheet, a plate or extruded, for example to form a rubber profile and as a semi-finished rubber product for the tire.
  • the invention also relates to a tire which incorporates in at least one of its constituent elements a reinforced rubber composition according to the invention.
  • the invention particularly relates to a semi-finished rubber product comprising a reinforced rubber composition according to the invention for these tires.
  • a reinforced rubber composition according to the invention for these tires.
  • a tire whose tread comprises the composition has a grip on wet soil and improved dry soil. This improvement in grip performance is confirmed by the results of the road tests.
  • a tread comprising a rubber composition according to the invention constitutes a particularly advantageous implementation of the invention and constitutes an object of the invention.
  • the rubber compositions are characterized, before and after firing, as indicated below.
  • the Mooney plasticity measurement is carried out according to the following principle: the raw composition (i.e., before firing) is molded in a cylindrical chamber heated to 100 ° C. After one minute of preheating, the rotor rotates within the test tube at 2 revolutions / minute and the useful torque is measured to maintain this movement after 4 minutes of rotation.
  • the Shore A hardness of the compositions after firing is assessed according to ASTM D 2240-86.
  • Dynamic properties are measured on a viscoanalyzer (Metravib VA4000) according to ASTM D 5992-96.
  • the response of a sample of vulcanized composition (cylindrical specimen 4 mm in thickness and 400 mm 2 in section) is recorded, subjected to a sinusoidal stress in alternating simple shear, at the frequency of 10 Hz, during a sweeping in temperature, under a fixed stress of 0.7 MPa, the value of tan ⁇ observed at 0 ° C (ie tan ( ⁇ ) 0 ° c) is recorded and the value of tan ⁇ observed at 20 ° C (ie tan ( (b) 20 ° c).
  • tan ( ⁇ ) 0 ° c is representative of the adhesion potential on wet ground: the higher the tan ( ⁇ ) 0 ° c, the better adhesion.
  • tan ( ⁇ ) 20 ° C is representative of the adhesion potential on dry ground: the higher tan ( ⁇ ) 20 ° c is, the better the adhesion.
  • the tires are mounted on a Renault and Mégane 1.6 RTE model equipped with an ABS braking system and the distance required to go from 80 km / h to 10 km / h is measured during a sudden braking on ground watered (bituminous concrete).
  • the tires are mounted on a Renault and Mégane 1.6 RTE model equipped with an ABS braking system and the distance needed to go from 100 Km / h to 0 Km / h during a sudden braking on dry ground (bituminous concrete).
  • the mixture thus obtained is recovered, cooled, and sulfur and a sulfenamide type accelerator are incorporated on a mixer (homo-finisher) at 50 ° C., mixing the whole (productive phase) for a suitable time (for example between 5 hours). and 12 min).
  • compositions thus obtained are then calendered either in the form of plates (thickness of 2 to 3 mm) or thin sheets of rubber for the measurement of their physical or mechanical properties, or extruded in the form of a tread.
  • Plasticizer A Oleic sunflower oil
  • Plasticizer B polylimonene resin THER9872 sold under the name Dercolyte L120 by the company DRT
  • the hysteretic potential at 20 ° C (temperature sweep at 0.7 MPa) of the three compositions B, C and D, objects of the invention is higher without the hysteretic potential at 0 ° C bends.
  • Compositions A and C were used to form the tread of tires PA and PC tested under the conditions described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention concerne une composition de caoutchouc avantageusement utilisable pour constituer la bande de roulement d'un pneumatique qui comprend : (a) une matrice élastomère comprenant - de 60 à 95 pce d'au moins un élastomère diénique et - de 5 à 40 pce d'un élastomère thermoplastique TPE polaire comprenant au moins un bloc élastomère et un bloc thermoplastique polaire choisi parmi les homopolymère et copolymères d'un ester d'acide alkylacrylique, le radical alkyle contenant 1 à 4 atomes de carbone, et (b) une charge renforçante comprenant une charge inorganique renforçante, (c) un agent de couplage. La présence de l'élastomère thermoplastique polaire permet d'améliorer le compromis de performances adhérence humide et adhérence sèche de la bande de roulement.

Description

COMPOSITION DE CAOUTCHOUC COMPRENANT UN ELASTOMERE THERMOPLASTIQUE POLAIRE COMPRENANT UN BLOC ALKYLACRYLATE
La présente invention est relative aux bandes de roulement de pneumatiques comportant des compositions de caoutchouc renforcées par une charge inorganique.
Une bande de roulement de pneumatique doit obéir, on le sait, à un grand nombre d'exigences techniques, souvent antinomiques, parmi lesquelles une faible résistance au roulement, une résistance élevée à l'usure, ainsi qu'une adhérence élevée sur route sèche comme mouillée.
Ces compromis de propriétés, en particulier du point de vue de la résistance au roulement et de la résistance à l'usure, ont pu être améliorés ces dernières années sur les « Pneus Verts » à faible consommation d'énergie, destinés notamment aux véhicules tourisme, grâce à l'emploi de nouvelles compositions de caoutchouc faiblement hystérétiques ayant pour caractéristique d'être renforcées majoritairement de charges inorganiques spécifiques qualifiées de renforçantes, notamment des silices hautement dispersibles dites "HDS" (Highly Dispersible Silica), capables de rivaliser, du point de vue du pouvoir renforçant, avec les noirs de carbone conventionnels de grade pneumatique. Ainsi, aujourd'hui, ces charges inorganiques renforçantes remplacent peu à peu les noirs de carbone dans les bandes de roulement des pneumatiques, d'autant plus qu'elles possèdent une autre vertu connue, celle d'augmenter l'adhérence des pneumatiques sur route mouillée, enneigée ou verglacée. II est connu notamment d'utiliser des élastomères thermoplastiques (TPE) dans des compositions de caoutchouc destinées notamment à des applications en bande de roulement pour pneumatique. L'utilisation de tels élastomères permet notamment d'améliorer certaines propriétés d'usage du pneumatique, en particulier les performances d'adhérence, de résistance au roulement et de résistance à l'abrasion.
Le but de la présente invention est de fournir un mélange pour pneumatique qui permet de conserver le gain en adhérence conféré par l'utilisation de charge inorganique, tout en améliorant l'adhérence sur sol sec, car l'amélioration des propriétés d'adhérence des pneumatiques reste une préoccupation constante des concepteurs de pneumatiques.
Le but de la présente invention est atteint en ce que les Inventeurs ont trouvé une composition caoutchouc spécifique, à base d'une matrice élastomère comprenant au moins un élastomère diénique et un copolymère TPE polaire, et d'une charge renforçante comprenant une charge inorganique renforçante, qui permet d'obtenir des bandes de roulement de pneumatiques présentant un compromis des propriétés d'adhérence sur sol humide et sur sol sec signifïcativement amélioré. De plus, les Inventeurs ont mis en évidence que l'utilisation d'élastomères thermoplastiques polaires dans une telle composition de caoutchouc permet également de répondre au problème lié à l'amélioration du compromis de propriétés aux états non réticulé / réticulé de ladite composition.
Ainsi un premier objet de l'invention est une composition de caoutchouc pour bande de roulement de pneumatique à base
(a) d'une matrice élastomère comprenant
- de 60 à 95 pce d'au moins un élastomère diénique et
- de 5 à 40 pce d'un copolymère TPE polaire, et
(b) d'une charge renforçante comprenant une charge inorganique renforçante,
(c) d'un agent de couplage.
L'invention a également pour objet l'utilisation de cette composition de caoutchouc pour la fabrication de pneumatiques ou de produits semi finis pour pneumatiques, en particulier de bandes de roulement de pneumatique, que ces dernières soient destinées à la fabrication de pneumatiques neufs comme au rechapage de pneumatiques usagés.
L'invention a également pour objet une bande de roulement comportant une composition de caoutchouc selon l'invention.
L'invention a également pour objet les pneumatiques eux-mêmes, lorsqu'ils comportent une composition de caoutchouc conforme à l'invention. Par l'expression composition "à base de", il faut entendre une composition comportant le mélange et/ou le produit de réaction des différents constituants utilisés, certains de ces constituants de base étant susceptibles de, ou destinés à, réagir entre eux, au moins en partie, lors des différentes phases de fabrication de la composition, en particulier au cours de sa réticulation ou vulcanisation.
Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b). "pce" signifie parties en poids pour cent parties d'élastomère total, donc y compris le copolymère TPE polaire.
Ainsi, un premier objet de l'invention est une composition de caoutchouc à base
(a) d'une matrice élastomère comprenant - de 60 à 95 pce d'au moins un élastomère diénique et
- de 5 à 40 pce d'un copolymère TPE polaire, et
(b) d'une charge renforçante comprenant une charge inorganique renforçante,
(c) d'un agent de couplage.
La matrice élastomère comprend au moins un élastomère diénique dans des proportions allant de 60 pce à 95 pce. En dessous du minimum indiqué, les performances d'adhérence sur sol sec ont tendance à diminuer de manière sensible, tandis qu'au-dessus du maximum préconisé, les performances d'adhérence sur sol mouillé sont dégradées. De préférence, la matrice élastomère comprend entre 70 et 90 pce d'au moins un élastomère diénique.
Par "élastomère" du type "diénique", on rappelle ici que doit être compris de manière connue un élastomère issu au moins en partie (i.e., un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Par élastomère diénique, doit être compris selon l'invention tout élastomère synthétique issu au moins en partie de monomères diènes. Plus particulièrement, par élastomère diénique, on entend tout homopolymère obtenu par polymérisation d'un monomère diène conjugué ayant 4 à 12 atomes de carbone, ou tout copolymère obtenu par copolymérisation d'un ou plusieurs diènes conjugués entre eux ou avec un ou plusieurs composés vinylaromatiques ayant de 8 à 20 atomes de carbone. Dans le cas de copolymères, ceux-ci contiennent de 20 % à 99 % en poids d'unités diéniques, et de 1 à 80 % en poids d'unités vinylaromatiques . A titre de diènes conjugués utilisables dans le procédé conforme à l'invention conviennent notamment le butadiène-1,3, le 2-méthyl-l,3-butadiène, les 2,3 di(alcoyle en Cl à C5)-l,3- butadiène tels que par exemple le 2,3-diméthyl-l ,3-butadiène, 2,3-diéthyl-l,3-butadiène, 2- méthyl-3-éthyl-l,3-butadiène, le 2-méthyl-3-isopropyl-l,3-butadiène, le phényl-1,3- butadiène, le 1,3-pentadiène, le 2,4 hexadiène, etc.
A titre de composés vinylaromatiques conviennent notamment le styrène, l'ortho-, méta, para- méthylstyrène, le mélange commercial "vinyltoluène", le para-tertiobutylstyrène, les méthoxystyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène, etc. Conviennent les polybutadiènes et en particulier ceux ayant une teneur (% molaire) en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur (% molaire) en cis-1,4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une Tg (température de transition vitreuse, mesurée selon norme ASTM D3418) comprise entre 0°C et - 70°C et plus particulièrement entre - 10°C et - 60°C, une teneur en styrène comprise entre 5% et 60%> en poids et plus particulièrement entre 20%> et 50%>, une teneur (% molaire) en liaisons -1 ,2 de la partie butadiénique comprise entre 4% et 75%, une teneur (% molaire) en liaisons trans-1 ,4 comprise entre 10%> et 80%>, les copolymères de butadiène-isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une Tg de - 40°C à - 80°C, les copolymères isoprène-styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50%> en poids et une Tg comprise entre - 5°C et - 55°C. Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10%) et 40%), une teneur en isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20% et 40%, une teneur (% molaire) en unités - 1 ,2 de la partie butadiénique comprise entre 4% et 85%, une teneur (% molaire) en unités trans -1 ,4 de la partie butadiénique comprise entre 6% et 80%, une teneur (% molaire) en unités -1 ,2 plus -3,4 de la partie isoprénique comprise entre 5% et 70% et une teneur (% molaire) en unités trans -1 ,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiène-styrène-isoprène ayant une Tg comprise entre - 20°C et - 70°C.
En résumé, l'élastomère diénique de la composition conforme à l'invention est choisi préférentiellement dans le groupe des élastomères diéniques constitué par les polybutadiènes, les polyisoprènes de synthèse, le caoutchouc naturel, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères du styrène (SBR, SIR et SBIR), les polybutadiènes (BR) et le caoutchouc naturel (NR). Selon une mise en œuvre particulière de l'invention, la matrice élastomère comprend un élastomère diénique choisi parmi ceux décrits précédemment.
Selon une autre mise en œuvre particulière de l'invention, la matrice élastomère comprend au moins deux élastomères diéniques. Selon une première variante de cette mise en œuvre, l'un des deux élastomères est de préférence un copolymère du styrène, par exemple un SBR, un SBIR, un SIR ou leurs mélanges, dans des proportions comprises entre 60% et 100% en poids du poids total en élastomère diénique, l'autre étant choisi parmi les polybutadiènes et le caoutchouc naturel dans des proportions comprises entre 0% et 40% en poids du poids total en élastomère diénique. Selon une deuxième variante de cette mise en œuvre, l'un des deux élastomères est de préférence du caoutchouc naturel dans des proportions comprises entre 70%) et 100%) en poids du poids total en élastomère diénique, l'autre élastomère étant de préférence un copolymère du styrène, par exemple un SBR, un SBIR, un SIR ou leurs mélanges, dans des proportions comprises entre 0% et 30% en poids du poids total en élastomère diénique. La matrice élastomère comprend comme deuxième composant un élastomère thermoplastique TPE polaire dans des proportions allant de 5 pce à 40 pce. En dessous du minimum indiqué, les performances d'adhérence sur sol mouillé ont tendance à diminuer de manière sensible, tandis qu'au-dessus du maximum préconisé, les performances d'adhérence sur sol sec sont dégradées. De préférence, la matrice élastomère comprend de 5 pce à 30 pce, plus préférentiellement de 10 pce à 25 pce d'un élastomère thermoplastique TPE polaire.
L'élastomère thermoplastique TPE polaire selon la présente invention est un copolymère comprenant un bloc élastomère (noté B pour des raisons de simplification) et au moins un bloc thermoplastique, celui-ci étant polaire (noté M pour des raisons de simplification). Il se présente essentiellement sous la forme d'un copolymère diblocs ou d'un copolymère triblocs. L'élastomère thermoplastique TPE polaire selon la présente invention peut également être constitué d'un mélange de ces copolymères. Le bloc élastomère B est avantageusement un élastomère diénique tel que défini précédemment. Il est de préférence un polybutadiène ou un copolymère du styrène tel qu'un SBR par exemple. Le bloc élastomère B a de préférence une masse moléculaire moyenne en poids (Mw) de 5 000 à 65 000 g/mol. Le bloc thermoplastique polaire M peut être soit un homopolymère obtenu par polymérisation d'au moins un monomère choisi parmi les esters d'acide alkylacrylique à chaîne courte (de 1 à 4 atomes de carbone), le radical alkyl comprenant de préférence 1 à 4 atomes de carbone, soit un copolymère obtenu par copolymérisation d'un ou plusieurs de ces monomère entre eux ou avec un ou plusieurs monomères, acryliques ou non. Si le bloc thermoplastique polaire M est un copolymère, celui-ci contient de préférence au moins 70% en poids d'unité alkylacrylate. Avantageusement, le monomère ester d'acide alkylacrylique est un ester d'acide méthacrylique à chaîne courte, plus préférentiellement encore choisis parmi le méthyl méthacrylate, l'éthyl méthacrylate. Ainsi, selon un aspect préférentiel de l'invention, le bloc thermoplastique polaire M est un polymère de type polyméthylméthacrylate (PMMA) ou de polyéthylméthacrylate (PEMA).
Le bloc thermoplastique polaire M a de préférence une masse moléculaire moyenne en poids (Mw) de 35 000 à 70 000 g/mol. Selon une variante de l'invention, l'élastomère thermoplastique TPE polaire peut comporter un troisième bloc, qui est un bloc thermoplastique (noté S pour des raisons de simplification), différent du bloc thermoplastique polaire M. Avantageusement, ce bloc thermoplastique est soit un homopolymère obtenu par polymérisation d'au moins un monomère vinylaromatique, soit un copolymère obtenu par copolymérisation d'un ou plusieurs de ces monomères vinylaromatiques entre eux ou avec un ou plusieurs autres monomères. A titre de monomères vinylaromatiques conviennent notamment le styrène, l'ortho-, méta, para-méthylstyrène, le mélange commercial "vinyltoluène", le para-tertiobutylstyrène, les méthoxystyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène, etc. De préférence le monomère est le styrène.
Ainsi, selon un aspect préférentiel de l'invention, le bloc thermoplastique S est un polystyrène. Le bloc thermoplastique S a de préférence une masse moléculaire moyenne en poids (Mw) de 14 000 à 55 000 g/mol.
Selon l'invention, l'élastomère thermoplastique TPE polaire a de préférence une masse moléculaire moyenne en poids (Mw) de 40 000 à 190 000 g/mol.
Selon l'invention, l'élastomère thermoplastique TPE polaire présente avantageusement la composition suivante exprimée en fraction pondérale:
- le bloc élastomère B représente de 20% à 60%, de préférence de entre 30%> et 50%>,
- le bloc thermoplastique polaire M représente de 21% à 42%, de préférence de entre 30%) et 42%o, sur 100% d'élastomère thermoplastique TPE polaire.
Selon la variante de l'invention où l'élastomère thermoplastique polaire est un tribloc, le bloc thermoplastique S, représente de 13% à 52%, de préférence entre 13% et 20%, sur 100% d'élastomère thermoplastique TPE polaire.
Selon une mise en œuvre préférée de cette variante, l'élastomère thermoplastique TPE polaire est un copolymère polystyrène - polybutadiène - polyéthylméthacrylate ou un copolymère de polystyrène - polybutadiène - polyméthylméthacrylate, ce dernier étant particulièrement préféré.
De tels produits sont commercialement disponibles. On peut citer par exemple le produit vendu sous la dénomination Nanostrengh® par la société ARKEMA avec différents grades référencés A012 ou GV100. La matrice élastomère peut comprendre également en combinaison avec les composants précédemment décrits, un autre élastomère thermoplastique.
La composition de caoutchouc, objet de l'invention comprend en tant que deuxième composant essentiel, une charge renforçante comprenant une charge inorganique. Avantageusement, la charge inorganique est la charge majoritaire de la charge renforçante et représente de préférence une fraction pondérale égale ou supérieure à 50% de cette charge renforçante, et particulièrement une fraction pondérale comprise entre 50% et 100%, voire jusqu'à 100%.
Par "charge inorganique renforçante", doit être entendu dans la présente demande, par définition, toute charge inorganique ou minérale quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche", charge "claire" voire "charge non noire" ("non-black filler") par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une composition de caoutchouc destinée à la fabrication de pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (-OH) à sa surface.
Préférentiellement, la charge inorganique renforçante est, en totalité ou tout du moins majoritairement, de la silice (Si02). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m2/g, même si les silices précipitées hautement dispersibles sont préférées. A titre de charge inorganique renforçante, on citera également les charges minérales du type alumineuse, en particulier de l'alumine (A1203) ou des (oxyde)hydroxydes d'aluminium, ou encore des oxydes de titane renforçants.
L'état physique sous lequel se présente la charge inorganique renforçante est indifférent, que ce soit sous forme de poudre, de microperles, de granulés, ou encore de billes. Bien entendu on entend également par charge inorganique renforçante des mélanges de différentes charges inorganiques renforçantes, en particulier de silices hautement dispersibles telles que décrites ci-dessus.
On notera que la charge renforçante peut contenir en coupage (mélange), en plus de la ou des charges inorganiques renforçantes précitées, une charge organique, telle que du noir de carbone. Cette charge organique renforçante est alors préférentiellement présente selon une fraction pondérale inférieure à 50 % par rapport au poids total de la charge.
Comme noirs de carbone conviennent tous les noirs de carbone conventionnellement utilisés dans les compositions de caoutchouc pour pneumatiques (noirs dits de grade pneumatique). Les noirs de carbone pourraient être par exemple déjà incorporés au caoutchouc naturel sous la forme d'un masterbatch.
Par exemple, les coupages noir/ silice ou les noirs partiellement ou intégralement recouverts de silice conviennent pour constituer la charge renforçante. Conviennent également les noirs de carbone modifiés par de la silice tels que, à titre non limitatif, les charges qui sont commercialisées par la société CABOT sous la dénomination « CRX 2000 », et qui sont décrites dans le document de brevet international WO-A-96/37547.
Comme exemples de charges organiques autres que des noirs de carbone, on peut citer les charges organiques de polyvinylaromatique fonctionnalisé telles que décrites dans les demandes WO-A-2006/069792 et WO-A-2006/069793, ou encore les charges organiques de polyvinyl non aromatique fonctionnalisé telles que décrites dans les demandes WO-A- 2008/003434 et WO-A-2008/003435. Dans le cas où la charge renforçante ne contient qu'une charge inorganique renforçante et du noir de carbone, la fraction pondérale de ce noir de carbone dans ladite charge renforçante est plus préférentiellement choisie inférieure ou égale à 30 % par rapport au poids total de la charge renforçante. La composition de caoutchouc selon l'invention comprend comme autre composant un agent de couplage pour coupler la charge inorganique renforçante aux élastomères qui composent la matrice élastomérique.
Par agent de couplage, on entend plus précisément un agent apte à établir une liaison suffisante de nature chimique et/ou physique entre la charge considérée et l'élastomère, tout en facilitant la dispersion de cette charge au sein de la matrice élastomère.
On peut utiliser tout agent de couplage connu pour, ou susceptible d'assurer efficacement dans les compositions de caoutchouc utilisables pour la fabrication de pneumatiques, le couplage entre une charge inorganique renforçante telle que de la silice et un élastomère diénique, comme par exemple des organosilanes, notamment des alkoxysilanes polysulfurés ou des mercaptosilanes, ou encore des polyorganosiloxanes porteurs de fonctions capables de se lier physiquement et/ou chimiquement à la charge inorganique et de fonctions capables de se lier physiquement et/ou chimiquement à l'élastomère, par exemple par l'intermédiaire d'un atome de soufre. Des agents de liaison silice/élastomère, notamment, ont été décrits dans un grand nombre de documents, les plus connus étant des alkoxysilanes bifonctionnels tels que des alkoxysilanes polysulfurés. On utilise notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes WO03/002648 (ou US 2005/016651) et WO03/002649 (ou US 2005/016650).
A titre d'agent de couplage autre qu'alkoxysilane polysulfuré, on citera notamment des POSS (polyorganosiloxanes) bifonctionnels ou encore des polysulfurés d'hydroxysilane tels que décrits dans les demandes de brevet WO 02/30939 (ou US 6,774,255) et WO 02/31041 (ou US 2004/051210), ou encore des silanes ou POSS porteurs de groupements fonctionnels azo- dicarbonyle, tels que décrits par exemple dans les demandes de brevet WO 2006/125532, WO 2006/125533, WO 2006/125534.
Dans les compositions conformes à l'invention, le taux d'agent de couplage est avantageusement inférieur à 20 pce, étant entendu qu'il est en général souhaitable d'en utiliser le moins possible. Son taux est préférentiellement compris entre 0,5 et 12 pce, plus préférentiellement de 3 à 10 pce, en particulier de 4 à 7 pce. Ce taux est aisément ajusté par l'homme du métier selon le taux de charge inorganique utilisé dans la composition. L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique, dès lors que cette charge renforçante serait recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère.
Les compositions de caoutchouc conformes à l'invention peuvent également contenir, en complément des agents de couplage, des activateurs de couplage, des agents de recouvrement des charges inorganiques ou plus généralement des agents d'aide à la mise en œuvre susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur faculté de mise en œuvre à l'état cru, ces agents étant par exemple des silanes hydrolysables tels que des alkylalkoxysilanes, des polyols, des polyéthers, des aminés primaires, secondaires ou tertiaires, des polyorganosiloxanes hydroxylés ou hydrolysables.
Les compositions de caoutchouc conformes à l'invention peuvent comporter également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères destinées à la fabrication de pneumatiques, comme par exemple des pigments, des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des agents anti- fatigue, des résines renforçantes ou plastifiantes, des accepteurs (par exemple résine phénolique novolaque) ou des donneurs de méthylène (par exemple HMT ou H3M) tels que décrits par exemple dans la demande WO 02/10269, un système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde et/ou de bismaléimides, des accélérateurs de vulcanisation, des activateurs de vulcanisation, des promoteurs d'adhésion tels que des composés à base de cobalt, des agents plastifiants, préférentiellement non aromatiques ou très faiblement aromatiques choisis dans le groupe constitué par les huiles naphténiques, paraffmiques, huiles MES, huiles TDAE, les plastifiants éthers, les plastifiants esters (par exemple les trioléates de glycérol), les résines hydrocarbonées présentant une haute Tg, de préférence supérieure à 30 °C, telles que décrites par exemple dans les demandes WO 2005/087859, WO 2006/061064 et WO 2007/017060, et les mélanges de tels composés.
L'invention concerne également un procédé de préparation d'une composition de caoutchouc telle que décrite précédemment.
La composition est fabriquée dans des mélangeurs appropriés, en utilisant deux phases de préparation successives bien connues de l'homme du métier : une première phase de travail ou malaxage thermomécanique (phase dite "non-productive") à haute température, jusqu'à une température maximale comprise entre 110°C et 190°C, de préférence entre 130°C et 180°C, suivie d'une seconde phase de travail mécanique (phase dite "productive") jusqu'à une plus basse température, typiquement inférieure à 110°C, par exemple entre 40°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation. Le procédé conforme à l'invention pour préparer une composition de caoutchouc selon l'invention comporte au moins les étapes suivantes :
• la réalisation, à une température maximale comprise entre 130 °C et 200 °C, de préférence entre 145°C et 185°C, d'un premier temps de travail thermomécanique (parfois qualifié de phase " non productive") des constituants de base nécessaires de la composition de caoutchouc, à l'exception du système de réticulation, par incorporation de manière intime, par malaxage en une ou plusieurs étapes, à la matrice élastomère à base de caoutchouc naturel, d'ingrédients de la composition, puis · la réalisation, à une température inférieure à ladite température maximale dudit premier temps, de préférence inférieure à 120 °C, d'un second temps de travail mécanique au cours duquel est incorporé ledit système de réticulation et le cas échéant un promoteur d'adhésion, La composition finale ainsi obtenue peut ensuite être calandrée, par exemple sous la forme d'une feuille, d'une plaque ou encore extrudée, par exemple pour former un profilé de caoutchouc utilisable comme produit semi- fini en caoutchouc destiné au pneumatique.
L'invention a également pour objet un pneumatique qui incorpore dans au moins un de ses éléments constitutifs une composition de caoutchouc renforcée selon l'invention.
L'invention a tout particulièrement pour objet un produit semi-fini en caoutchouc comprenant une composition de caoutchouc renforcée selon l'invention, destiné à ces pneumatiques. En raison de certaines propriétés dynamiques, mises en exergue dans les exemples qui suivent, qui caractérisent une composition de caoutchouc renforcée selon l'invention, on notera qu'un pneumatique dont la bande de roulement comprend la composition présente une adhérence sur sol humide et sur sol sec améliorée. Cette amélioration des performances d'adhérence est confirmée par les résultats des essais sur route. Ainsi, une bande de roulement comprenant une composition de caoutchouc selon l'invention constitue une mise en œuvre particulièrement avantageuse de l'invention et constitue un objet de l'invention.
Les caractéristiques précitées de la présente invention, ainsi que d'autres, seront mieux comprises à la lecture de la description suivante de plusieurs exemples de réalisation de l'invention, donnés à titre illustratif et non limitatif.
MESURES ET TESTS UTILISES I - Essais de caoutchouterie
Les compositions de caoutchouc sont caractérisées, avant et après cuisson, comme indiqué ci- après.
1-1. Plasticité Mooney
On utilise un consisto mètre oscillant tel que décrit dans la norme française NF T 43-005 (1991). La mesure de plasticité Mooney se fait selon le principe suivant : la composition à l'état cru (i.e., avant cuisson) est moulée dans une enceinte cylindrique chauffée à 100°C. Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La plasticité Mooney (ML 1+4) est exprimée en "unité Mooney" (UM, avec 1 UM=0,83 Newton.mètre).
1.2 - Dureté shore A
La dureté shore A des compositions après cuisson est appréciée conformément à la norme ASTM D 2240-86.
1-3 Essais de traction
Ces essais permettent de déterminer les contraintes d'élasticité et les propriétés à la rupture. Sauf indication différente, ils sont effectués conformément à la norme française NF T 46-002 de septembre 1988. On mesure en seconde élongation (i.e. après un cycle d'accommodation) les modules sécants dits "nominaux" (ou contraintes apparentes, en MPa) à 100% d'allongement (notéS "M 100"). Toutes ces mesures de traction sont effectuées dans les conditions normales de température (23±2°C) et d'hygrométrie (50±5% d'humidité relative), selon la norme française NF T 40-101 (décembre 1979). I.4 - Propriétés dynamiques
Les propriétés dynamiques sont mesurées sur un viscoanalyseur (Metravib VA4000), selon la norme ASTM D 5992-96. On enregistre la réponse d'un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d'épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz, lors d'un balayage en température, sous une contrainte fixe de 0,7 MPa, on enregistre la valeur de tan δ observée à 0°C (soit tan(ô)0°c) et la valeur de tan δ observée à 20°C (soit tan(ô)20°c).
On rappelle que, de manière bien connue de l'homme du métier, la valeur de tan(ô)0°c est représentative du potentiel d'adhérence sur sol mouillé : plus tan(ô)0°c est élevée, meilleure est l'adhérence. La valeur de tan(ô)20°c est représentative du potentiel d'adhérence sur sol sec : plus tan(ô)20°c est élevée, meilleure est l'adhérence.
IL - Essais sur pneumatiques
IL 1 - Freinage sur sol humide, avec un système ABS
Les pneumatiques sont montés sur un véhicule automobile de marque Renault et de modèle Mégane 1.6 RTE, équipé d'un système de freinage ABS et la distance nécessaire pour passer de 80 km/h à 10 km h est mesurée lors d'un freinage brutal sur sol arrosé (béton bitumineux). Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré, c'est-à-dire une distance de freinage plus courte.
II.2 - Freinage sur sol sec, avec un système ABS
Les pneumatiques sont montés sur un véhicule automobile de marque Renault et de modèle Mégane 1.6 RTE, équipé d'un système de freinage ABS et on mesure la distance nécessaire pour passer de 100 Km/h à 0 Km/h lors d'un freinage brutal sur sol sec (béton bitumineux).
II.3 - Comportement routier
Pour apprécier les performances d'adhérence sur sol humide, on analyse le comportement des pneumatiques montés sur un véhicule automobile de marque Renault et de modèle Mégane 1.6 RTE , parcourant sous des conditions de vitesse limite, un circuit fortement sinueux et arrosé de manière à maintenir le sol humide. On mesure le temps minimal nécessaire pour parcourir la totalité du circuit ; une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire un temps de parcours plus court.
III. - Résultats
III.1 - Préparation des compositions.
On procède pour les essais qui suivent de la manière suivante : on introduit dans un mélangeur interne de 3 litres (taux de remplissage final : environ 70% en volume), dont la température initiale de cuve est d'environ 70 °C, successivement le copolymère styrène- butadiène, l'élastomère thermoplastique TPE polaire, les 2/3 de la charge renforçante (silice), l'agent de couplage. Lorsque la température atteint environ 95°C, on introduit le reste de la charge ainsi que les divers autres ingrédients à l'exception du système de vulcanisation. On conduit alors un travail thermomécanique (phase non-productive) en une étape, qui dure au total environ 5 min pour une vitesse moyenne de pâlies de 50 tr/min, jusqu'à atteindre une température maximale de « tombée » de 165°C.
On récupère le mélange ainsi obtenu, on le refroidit puis on incorpore du soufre et un accélérateur type sulfénamide sur un mélangeur (homo-finisseur) à 50 °C, en mélangeant le tout (phase productive) pendant un temps approprié (par exemple entre 5 et 12 min).
Les compositions ainsi obtenues sont ensuite calandrées soit sous la forme de plaques (épaisseur de 2 à 3 mm) ou de feuilles fines de caoutchouc pour la mesure de leurs propriétés physiques ou mécaniques, soit extrudées sous la forme d'une bande de roulement.
Quatre compositions de caoutchouc ont été préparées comme indiqué précédemment, trois conformes à l'invention (notées ci-après B, C et D) et une non conforme (témoin A).
Leurs formulations (en pce) ont été résumées dans le tableau ci-après.
(1) SBR solution étendu à Wpce d'huile
(2) copolymère Styrène (13%)-Butadiène (45%)-Méthylméthacrylate (42%) (SBM) commercialisé sous le nom Nanostrengh A012 par la société ARKEMA
(3) silice commercialisée sous le nom Ultrasil 7000 GR par la société Degussa
(4) agent de couplage TESPT commercialisé sous le nom "Si69" par la société Degussa
(5) Plastifiant A : huile de tournesol oleique
(6) Plastifiant B : résine polylimonène THER9872 commercialisé sous le nom Dercolyte L120 par la société DRT
(7) N-l,3-diméthylbutyl-N-phénylparaphénylènediamine (Santoflex 6-PPD de la société Flexsys); (8) Diphénylguanidine (« Perkacit DPG » de la société Flexsys) ;
(9)N-cyclohexyl-2-benzothiazyl-sulfénamide (Santocure CBS de la société Flexsys)
III.2 - Résultats :
A - Essais caoutchouterie
Les résultats des tests ont été résumés dans le tableau 1
Tableau 1
De façon surprenante, le potentiel hystérétique à 20°C (balayage en température à 0.7 MPa) des trois compositions B, C et D, objets de l'invention, est plus élevé sans que le potentiel hystérétique à 0°C s'infléchisse.
Parallèlement, nous observons que les trois compositions B, C et D montrent un compromis de propriété aux états non réticulé / réticulé fortement amélioré. En effet, la viscosité Mooney diminue tandis que les rigidités à petite déformation (shore) comme à grande déformation (MA 100) restent stables.
En conclusion, la substitution d'une fraction de l'élastomère diénique de la matrice par un élastomère thermoplastique polaire, comprenant des blocs méthacrylate, permet d'augmenter tan(ô) à 20°C sans pénaliser tan(ô) à 0°C. Ceci semble indiquer que ces mélanges permettraient d'améliorer les performances adhérence des pneumatiques dont la bande de roulement est constituée de tels mélanges.
De façon surprenante, il a aussi été mis en évidence que l'utilisation d'élastomère thermoplastique polaire permet d'améliorer le compromis de propriété aux états non réticulé / réticulé.
B - Essais sur pneumatiques
Les compositions A et C ont été utilisées pour constituer la bande de roulement de pneumatiques PA et PC testés dans les conditions décrites plus haut.
Les résultats des tests ont été résumés dans le tableau 2.
Tableau 2
Pneumatique PA (témoin) PC freinage sol mouillé 100 105
freinage sol sec 100 100
adhérence transversale
100 120
sol mouillé
A la lecture du tableau 2 (résultats en unités relatives), on constate que le roulage des pneumatiques révèle une amélioration particulièrement notable de l'adhérence sur sol mouillé de la bande de roulement du pneumatique PC comportant la composition C selon l'invention comparativement au témoin PA, avec une amélioration significative de l'adhérence transversale sur sol mouillé de 20%, tout en conservant le même excellent niveau d'adhérence sur sol sec.

Claims

Revendications
1. Bande de roulement pour pneumatique comprenant une composition de caoutchouc à base
(a) d'une matrice élastomère comprenant
- de 60 à 95 pce d'au moins un élastomère diénique et
- de 5 à 40 pce d'un élastomère thermoplastique TPE polaire comprenant au moins un bloc élastomère et un bloc thermoplastique polaire choisi parmi les homopolymère et copolymères d'un ester d'acide alkylacrylique, le radical alkyle contenant 1 à 4 atomes de carbone, et
(b) d'une charge renforçante comprenant une charge inorganique renforçante,
(c) d'un agent de couplage.
2. Bande de roulement pour pneumatique selon la revendication 1, caractérisée en ce que l'élastomère diénique est choisi parmi le caoutchouc naturel, les copolymères du styrène, les polybutadiènes et les mélanges de ces élastomères.
3. Bande de roulement pour pneumatique selon la revendication 1 ou 2, caractérisée en ce que la matrice élastomère comprend à titre d'élastomère diénique, entre 60% et 100% en poids du poids total en élastomère diénique d'un copolymère du styrène et entre 0%> et 40%> en poids du poids total en élastomère diénique d'un polybutadiène, de caoutchouc naturel ou d'un mélange de ces élastomères.
4. Bande de roulement pour pneumatique selon la revendication 1 ou 2, caractérisée en ce que la matrice élastomère comprend à titre d'élastomère diénique, entre 70% et 100%) en poids du poids total en élastomère diénique de caoutchouc naturel et entre 0%) et 30%) en poids du poids total en élastomère diénique d'un copolymère du styrène.
5. Bande de roulement pour pneumatique selon l'une quelconque des revendications 1 à
4, caractérisée en ce que le bloc élastomère de l'élastomère thermoplastique est un élastomère diénique choisi parmi le butadiène et un copolymère butadiène-styrène.
6. Bande de roulement pour pneumatique selon l'une quelconque des revendications 1 à
5, caractérisée en ce que le bloc thermoplastique polaire est un polymère de méthyl méthacrylate ou éthyl méthacrylate.
7. Bande de roulement pour pneumatique selon la revendication 1 à 6, caractérisée en ce que l'élastomère thermoplastique TPE polaire présente la composition suivante exprimée en fraction pondérale: - le bloc élastomère B représente de 20% à 60%,
- le bloc thermoplastique polaire M représente de 21% à 42%.
8. Bande de roulement pour pneumatique selon l'une quelconque des revendications 1 à 7, caractérisée en ce que l'élastomère thermoplastique TPE polaire comprend également un autre bloc thermoplastique.
9. Bande de roulement pour pneumatique selon la revendication 8, caractérisée en ce que l'autre bloc thermoplastique est un polymère d'un composé vinylaromatique.
10. Bande de roulement pour pneumatique selon la revendication 8 ou 9, caractérisée en ce que l'élastomère thermoplastique TPE polaire présente la composition suivante exprimée en fraction pondérale:
- le bloc élastomère B représente de 20%> à 60%>,
- le bloc thermoplastique polaire M représente de 21% à 42%
- l'autre bloc thermoplastique S représente de 13% à 52%.
11. Bande de roulement pour pneumatique selon l'une quelconque des revendications 8 à
10, caractérisée en ce que l'élastomère thermoplastique TPE polaire est un copolymère polystyrène - polybutadiène - polyéthylméthacrylate ou un copolymère de polystyrène - polybutadiène - polyméthylméthacrylate.
12. Bande de roulement pour pneumatique selon l'une quelconque des revendications 1 à
11 , caractérisée en ce que la charge renforçante comprend une fraction pondérale de charge inorganique renforçante supérieure ou égale à 50%.
13. Pneumatique comprenant une bande de roulement telle que définie dans les revendications 1 à 12.
EP11700411A 2010-01-14 2011-01-13 Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate Withdrawn EP2524002A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1050237A FR2955116B1 (fr) 2010-01-14 2010-01-14 Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate
PCT/EP2011/050381 WO2011086119A1 (fr) 2010-01-14 2011-01-13 Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate

Publications (1)

Publication Number Publication Date
EP2524002A1 true EP2524002A1 (fr) 2012-11-21

Family

ID=42315878

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11700411A Withdrawn EP2524002A1 (fr) 2010-01-14 2011-01-13 Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate

Country Status (6)

Country Link
US (1) US9080041B2 (fr)
EP (1) EP2524002A1 (fr)
JP (1) JP5744914B2 (fr)
CN (1) CN102712790A (fr)
FR (1) FR2955116B1 (fr)
WO (1) WO2011086119A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2968307B1 (fr) 2010-11-26 2018-04-06 Societe De Technologie Michelin Bande de roulement de pneumatique
FR2968006B1 (fr) 2010-11-26 2012-12-21 Michelin Soc Tech Bande de roulement de pneumatique
US8586691B2 (en) * 2011-08-01 2013-11-19 Bridgestone Corporation Method of making a blocked polymer with a siloxane linking group
FR2984339B1 (fr) * 2011-12-16 2018-01-12 Soc Tech Michelin Pneumatique pourvu d'une bande de roulement a base d'un melange d'un elastomere dienique et d'un elastomere thermoplastique
FR3015494B1 (fr) 2013-12-20 2016-01-15 Michelin & Cie Bande de roulement pour pneumatique comportant un elastomere thermoplastique
FR3015493B1 (fr) * 2013-12-20 2017-04-28 Michelin & Cie Pneumatique pour vehicules destines a porter de lourdes charges
FR3023296B1 (fr) * 2014-07-01 2016-07-22 Michelin & Cie Composition de caoutchouc comprenant un elastomere contenant des unites methacrylates
WO2016194215A1 (fr) * 2015-05-29 2016-12-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc
FR3038319B1 (fr) 2015-07-02 2017-07-07 Michelin & Cie Composition de caoutchouc comprenant une resine hydrocarbonee de faible temperature de transition vitreuse, un agent de couplage specifique et une amine primaire
FR3058729A1 (fr) * 2016-11-17 2018-05-18 Compagnie Generale Des Etablissements Michelin Pneumatique comprenant une bande de roulement comprenant un elastomere thermoplastique et un systeme de reticulation a base de soufre
FR3059669A1 (fr) * 2016-12-07 2018-06-08 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc comprenant un elastomere dienique, un derive de polyacrylate et d'un elastomere thermoplastique specifique
FR3065959A1 (fr) 2017-05-04 2018-11-09 Compagnie Generale Des Etablissements Michelin Composition de caoutchouc a base d'un derive d'acrylate de zinc incorpore a partir d'un melange-maitre
FR3085167B1 (fr) * 2018-08-23 2020-07-31 Michelin & Cie Pneumatique muni d'une composition comprenant un elastomere riche en ethylene, un peroxyde et un derive d'acrylate specifique
EP3831873A1 (fr) * 2019-12-03 2021-06-09 The Goodyear Tire & Rubber Company Composition de caoutchouc et article de fabrication comprenant une composition de caoutchouc
US20220380510A1 (en) * 2021-05-28 2022-12-01 The Goodyear Tire & Rubber Company Rubber composition comprising a block-copolymer

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5204407A (en) * 1990-06-11 1993-04-20 Bridgestone Corporation Pneumatic tires
JP3166788B2 (ja) * 1992-03-04 2001-05-14 出光興産株式会社 スチレン系樹脂組成物
WO1996037547A2 (fr) 1995-05-22 1996-11-28 Cabot Corporation Composes elastomeres incorporant des noirs de carbone traites au silicium
US6014998A (en) * 1998-06-09 2000-01-18 Pirelli Pneumatici S.P.A. Silica-reinforced tire compositions containing triazoles
WO2002010269A2 (fr) 2000-07-31 2002-02-07 Societe De Technologie Michelin Bande de roulement pour pneumatique
RU2320683C2 (ru) 2000-10-13 2008-03-27 Сосьете Де Текнолоджи Мишлен Эластомерная смесь, содержащая в качестве связывающего агента полифункциональный органосилан
EP1326871B1 (fr) 2000-10-13 2006-02-01 Société de Technologie Michelin Organosilane polyfonctionnel utilisable comme agent de couplage et son procede d'obtention
CA2410156C (fr) 2001-03-12 2011-08-23 Michelin Recherche Et Technique S.A. Composition de caoutchouc pour bande de roulement de pneumatique
JP4536375B2 (ja) 2001-06-28 2010-09-01 ソシエテ ド テクノロジー ミシュラン 極めて低い比表面積のシリカで強化されたタイヤトレッド
DE60236090D1 (de) 2001-06-28 2010-06-02 Michelin Soc Tech Iedriger spezifischer oberfläche
US7165584B2 (en) * 2002-10-01 2007-01-23 Bridgestone Corporation Rubber compositions and vulcanizates comprising nylon-containing copolymers
JP4240209B2 (ja) * 2003-05-21 2009-03-18 Jsr株式会社 変性共役ジエン系重合体、その製造方法およびそれを含む組成物
FR2866028B1 (fr) 2004-02-11 2006-03-24 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
KR20070012643A (ko) * 2004-02-24 2007-01-26 아르끄마 프랑스 삼블록 연속 공중합체를 포함하는 가교 조성물, 그의 제조방법 및 그의 용도
FR2877348B1 (fr) 2004-10-28 2007-01-12 Michelin Soc Tech Systeme plastifiant pour composition de caoutchouc
FR2880354B1 (fr) 2004-12-31 2007-03-02 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polyvinylaromatique fonctionnalise
FR2880349B1 (fr) 2004-12-31 2009-03-06 Michelin Soc Tech Nanoparticules de polyvinylaromatique fonctionnalise
FR2886304B1 (fr) 2005-05-26 2007-08-10 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un systeme de couplage organosilicique
FR2886305B1 (fr) 2005-05-26 2007-08-10 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage organosilicique et un agent de recouvrement de charge inorganique
FR2886306B1 (fr) 2005-05-26 2007-07-06 Michelin Soc Tech Composition de caoutchouc pour pneumatique comportant un agent de couplage organosiloxane
FR2889538B1 (fr) 2005-08-08 2007-09-14 Michelin Soc Tech Systeme plastifiant pour compsition de caoutchouc.
FR2894252B1 (fr) * 2005-12-07 2013-01-04 Arkema Composition reticulee comprenant un copolymere coeur ecorce, son procede d'obtention et ses utilisations
US7625985B1 (en) * 2005-12-22 2009-12-01 The Goodyear Tire & Rubber Company Water-based process for the preparation of polymer-clay nanocomposites
FR2903411B1 (fr) 2006-07-06 2012-11-02 Soc Tech Michelin Nanoparticules de polymere vinylique fonctionnalise
FR2903416B1 (fr) 2006-07-06 2008-09-05 Michelin Soc Tech Composition elastomerique renforcee d'une charge de polymere vinylique non aromatique fonctionnalise
FR2918065B1 (fr) 2007-06-28 2011-04-15 Michelin Soc Tech Procede de preparation d'un copolymere dienique a bloc polyether, composition de caoutchouc renforcee et enveloppe de pneumatique.
FR2930554B1 (fr) * 2008-04-29 2012-08-17 Michelin Soc Tech Melange elastomerique comprenant majoritairement un elastomere dienique couple par un groupe amino-alcoxysilane, composition de caoutchouc le comprenant et leurs procedes d'obtention.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011086119A1 *

Also Published As

Publication number Publication date
CN102712790A (zh) 2012-10-03
FR2955116B1 (fr) 2013-05-24
JP2013517343A (ja) 2013-05-16
FR2955116A1 (fr) 2011-07-15
JP5744914B2 (ja) 2015-07-08
US9080041B2 (en) 2015-07-14
US20130005894A1 (en) 2013-01-03
WO2011086119A1 (fr) 2011-07-21

Similar Documents

Publication Publication Date Title
WO2011086119A1 (fr) Composition de caoutchouc comprenant un elastomere thermoplastique polaire comprenant un bloc alkylacrylate
EP2501558B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique hydrogene.
EP2449023B1 (fr) Pneumatique dont la bande de roulement comprend un elastomere thermoplastique sature
EP2655089B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
EP2488373B1 (fr) Composition de caoutchouc a base de glycerol et d'un elastomere fonctionnalise et bande de roulement pour pneumatique
EP2547726A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2512826A1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2512825A1 (fr) Pneumatique hiver a adherence sur glace amelioree
WO2012069565A1 (fr) Bande de roulement de pneumatique neige
WO2015185394A1 (fr) Pneumatique à faible résistance au roulement
FR2943065A1 (fr) Composition de caoutchouc
WO2011086061A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2925913A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2488374A1 (fr) Composition de caoutchouc a base d'un caoutchouc synthetique epoxyde, bande de roulement pour pneumatique la contenant
WO2017103386A1 (fr) Pneumatique dont la bande de roulement comprend une composition de caoutchouc comprenant une silice de basse surface specifique et un elastomere dienique de faible temperature de transition vitreuse
WO2013092095A1 (fr) Composition de caoutchouc comprenant un derive de cellulose
EP3259312A1 (fr) Pneumatique dont la bande de roulement comporte un compose phenolique
WO2015097196A2 (fr) Composition de caoutchouc comprenant des fibres de cellulose
EP2852636A1 (fr) Composition de caoutchouc

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120814

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20190412