FR2925913A1 - Composition de caoutchouc pour bande de roulement de pneumatique hiver - Google Patents

Composition de caoutchouc pour bande de roulement de pneumatique hiver Download PDF

Info

Publication number
FR2925913A1
FR2925913A1 FR0760390A FR0760390A FR2925913A1 FR 2925913 A1 FR2925913 A1 FR 2925913A1 FR 0760390 A FR0760390 A FR 0760390A FR 0760390 A FR0760390 A FR 0760390A FR 2925913 A1 FR2925913 A1 FR 2925913A1
Authority
FR
France
Prior art keywords
phr
composition
composition according
reinforcing
diene elastomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0760390A
Other languages
English (en)
Other versions
FR2925913B1 (fr
Inventor
Hiroko Fukasawa
Benjamin Kaplan
Salvatore Pagano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Original Assignee
Michelin Recherche et Technique SA Switzerland
Michelin Recherche et Technique SA France
Societe de Technologie Michelin SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Michelin Recherche et Technique SA Switzerland, Michelin Recherche et Technique SA France, Societe de Technologie Michelin SAS filed Critical Michelin Recherche et Technique SA Switzerland
Priority to FR0760390A priority Critical patent/FR2925913B1/fr
Priority to EP08866973A priority patent/EP2231769A1/fr
Priority to CA2709846A priority patent/CA2709846A1/fr
Priority to EA201070798A priority patent/EA201070798A1/ru
Priority to JP2010540048A priority patent/JP5480818B2/ja
Priority to PCT/EP2008/010650 priority patent/WO2009083125A1/fr
Publication of FR2925913A1 publication Critical patent/FR2925913A1/fr
Application granted granted Critical
Publication of FR2925913B1 publication Critical patent/FR2925913B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • C08K5/31Guanidine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L3/00Compositions of starch, amylose or amylopectin or of their derivatives or degradation products
    • C08L3/02Starch; Degradation products thereof, e.g. dextrin

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

Composition de caoutchouc utilisable comme bande de roulement d'un pneumatique hiver, à adhérence élevée sur glace fondante, comportant au moins un élastomère diénique tel que du caoutchouc naturel et/ou un polybutadiène, plus de 30 pce d'un agent plastifiant liquide, entre 50 et 150 pce d'une charge renforçante telle que silice et/ou noir de carbone et entre 5 et 40 pce de microparticules de blé. L'invention concerne également l'utilisation d'une telle composition pour la fabrication de bandes de roulement de pneumatiques hiver, ainsi que ces bandes de roulement et pneumatiques eux-mêmes.

Description

-1- L'invention est relative aux compositions caoutchouteuses utilisables notamment comme bandes de roulement de pneumatiques hiver aptes à rouler sur des sols recouverts de glace ou verglas sans être pourvus de clous (aussi appelés pneumatiques "studless").
Elle est plus particulièrement relative aux bandes de roulement de pneumatiques hiver lo spécifiquement adaptées à un roulage sous des conditions dites de "glace fondante" rencontrées dans un domaine de températures typiquement compris entre -5°C et 0°C. On rappelle en effet que, dans un tel domaine, la pression des pneumatiques au passage d'un véhicule provoque une fusion superficielle de la glace qui se recouvre d'un mince film d'eau nuisible à l'adhérence de ces pneumatiques. 15 Pour éviter les effets néfastes des clous, notamment leur forte action abrasive sur le revêtement du sol lui-même et un comportement routier notablement dégradé sur sol sec, les manufacturiers de pneumatiques ont proposé différentes solutions consistant à modifier la formulation des compositions de caoutchouc elles-mêmes. 20 Ainsi, il a été proposé tout d'abord d'incorporer des particules solides à grande dureté, telle que par exemple du carbure de silicium (voir par exemple US 3 878 147), dont certaines viennent affleurer la surface de la bande de roulement au fur et à mesure de l'usure de cette dernière, et entrent donc en contact avec la glace. De telles particules, aptes à agir en 25 définitive comme des micro-clous sur de la glace dure, grâce à un effet de "griffe" bien connu, restent relativement agressives vis-à-vis du sol ; elles ne sont pas bien adaptées aux conditions de roulage sur une glace fondante.
D'autres solutions ont donc été proposées, consistant notamment à incorporer des poudres 30 hydrosolubles dans la composition constitutive de la bande de roulement. De telles poudres se solubilisent plus ou moins au contact de la neige ou de la glace fondue, ce qui permet d'une part la création à la surface de la bande de roulement de pneumatique de porosités susceptibles d'améliorer l'accrochage de la bande de roulement sur le sol et d'autre part la création de gorges jouant le rôle de canaux d'évacuation du film liquide créé entre le pneumatique et le 35 sol. A titre d'exemples de telles poudres hydrosolubles, on peut citer par exemple l'emploi de poudre de cellulose, d'alcool vinylique ou d'amidon (voir par exemple demandes de brevet JP 3-159803, JP 2002-11203).
Dans tous ces exemples, la solubilité à très basse température et dans un temps très court de la 40 poudre utilisée est un facteur essentiel au bon fonctionnement de la bande de roulement. Si la P10-2060 30 -2-
poudre n'est pas soluble dans les conditions d'utilisation du pneumatique, les fonctions précitées (création de microporosités et de canaux d'évacuation de l'eau) ne sont pas remplies et l'adhérence n'est pas améliorée. Un autre inconvénient connu de ces solutions est qu'elles peuvent pénaliser fortement le renforcement des compositions de caoutchouc (et donc leur résistance à l'usure) ou leur hystérèse (et donc leur résistance au roulement).
Poursuivant leurs recherches, les Demanderesses ont découvert une composition de caoutchouc nouvelle, apte a générer une microrugosité de surface efficace grâce à des microparticules qui ne sont ni à haute dureté ni hydrosolubles, et qui permet d'améliorer l'adhérence sur glace des bandes de roulement et des pneumatiques les comportant, sous conditions de glace fondante, sans pénaliser de manière notable les propriétés de renforcement et d'hystérèse.
Ainsi, un premier objet de l'invention concerne une composition de caoutchouc utilisable comme bande de roulement d'un pneumatique hiver, comportant au moins un élastomère diénique, plus de 30 pce d'un plastifiant liquide, entre 50 et 150 pce d'une charge renforçante, ladite composition étant caractérisée en ce qu'elle comprend en outre entre 5 et 40 pce de microparticules de blé.
Dans un premier temps, ces microparticules de blé, protubérantes à la surface de la bande de roulement, remplissent la fonction de griffe précédemment décrite sans l'inconvénient d'être abrasives. Puis, dans un second temps, après expulsion progressive de la matrice caoutchouteuse, elles libèrent des microcavités qui jouent le rôle de canal d'évacuation du film d'eau à la surface de la glace ; dans ces conditions, le contact entre la surface de la bande de roulement et la glace n'est plus lubrifié et le coefficient de friction est ainsi amélioré.
L'invention a également pour objet l'utilisation d'une telle composition de caoutchouc pour la fabrication de bandes de roulement de pneumatiques hiver, que ces dernières soient destinées à des pneumatiques neufs comme au rechapage de pneumatiques usagés. L'invention a également pour objet ces bandes de roulement et ces pneumatiques eux-mêmes lorsqu'ils comportent une composition de caoutchouc conforme à l'invention.
Les pneumatiques de l'invention sont particulièrement destinés à équiper des véhicules à 35 moteur de type tourisme, incluant les véhicules 4x4 (à quatre roues motrices) et véhicules SUV ("Sport Utility Vehicles"), des véhicules deux roues (notamment motos) comme des véhicules industriels choisis en particulier parmi camionnettes et "poids-lourd" (i.e., métro, bus, engins de transport routier (camions, tracteurs, remorques), véhicules hors-la-route tels qu'engins agricoles ou de génie civil. 40 P10-2060 10 -3-
L'invention ainsi que ses avantages seront aisément compris à la lumière de la description et des exemples de réalisation qui suivent.
I. MESURES ET TESTS UTILISES
Les bandes de roulement et compositions de caoutchouc constitutives de ces bandes de roulement sont caractérisées, avant et après cuisson, comme indiqué ci-après. I-1. Plasticité Mooney
On utilise un consistomètre oscillant tel que décrit dans la norme française NF T 43-005 (Novembre 1980). La mesure de plasticité Mooney se fait selon le principe suivant : la 15 composition à l'état cru (i.e., avant cuisson) est moulée dans une enceinte cylindrique chauffée à 100°C. Après une minute de préchauffage, le rotor tourne au sein de l'éprouvette à 2 tours/minute et on mesure le couple utile pour entretenir ce mouvement après 4 minutes de rotation. La plasticité Mooney (ML 1+4) est exprimée en "unité Mooney" (UM, avec 1 UM = 0,83 Newton.mètre). 20 I-2. Temps de grillage
Les mesures sont effectuées à 130°C, conformément à la norme française NF T 43-005. L'évolution de l'indice consistométrique en fonction du temps permet de déterminer le temps 25 de grillage des compositions de caoutchouc, apprécié conformément à la norme précitée par le paramètre T5 (cas d'une grand rotor), exprimé en minutes, et défini comme étant le temps nécessaire pour obtenir une augmentation de l'indice consistométrique (exprimée en UM) de 5 unités au dessus de la valeur minimale mesurée pour cet indice.
30 I-3. Rhéométrie
Les mesures sont effectuées à 150°C avec un rhéomètre à chambre oscillante, selon la norme DIN 53529 - partie 3 (juin 1983). L'évolution du couple rhéométrique en fonction du temps décrit l'évolution de la rigidification de la composition par suite de la réaction de 35 vulcanisation. Les mesures sont traitées selon la norme DIN 53529 - partie 2 (mars 1983) : Ti est le délai d'induction, c'est-à-dire le temps nécessaire au début de la réaction de vulcanisation ;Ta, (par exemple T90) est le temps nécessaire pour atteindre une conversion de a%, c'est-à-dire a% (par exemple 90%) de l'écart entre les couples minimum et maximum. P10-2060 15 I-4. Essais de traction
Ces essais de fraction permettent de déterminer les contraintes d'élasticité et les propriétés à la rupture. Sauf indication différente, ils sont effectués conformément à la norme française NF T 46-002 de septembre 1988. On mesure en seconde élongation (i.e., après un cycle d'accommodation au taux d'extension prévu pour la mesure elle-même) les modules sécants nominaux (ou contraintes apparentes, en MPa) à 10% d'allongement (notés M10), 100% d'allongement (notés M100) et 300% d'allongement (notés M300). Les contraintes à la rupture (en MPa) et les allongements à la rupture (en %) sont également mesurés. Toutes ces mesures de traction sont effectuées dans les conditions normales de température (23 2°C) et d'hygrométrie (50 5% d'humidité relative), selon la norme française NF T 40-101 (décembre 1979).
I-5. Dureté Shore A La dureté Shore A des compositions après cuisson est appréciée conformément à la norme ASTM D 2240-86.
I-6. Propriétés dynamiques 20 Les propriétés dynamiques sont mesurées sur un viscoanalyseur (Metravib VA4000), selon la norme ASTM D5992-96. On enregistre la réponse d'un échantillon de composition vulcanisée (éprouvette cylindrique de 4 mm d'épaisseur et de 400 mm2 de section), soumis à une sollicitation sinusoïdale en cisaillement simple alterné, à la fréquence de 10Hz, à une 25 température de 0°C. On effectue un balayage en amplitude de déformation de 0,1% à 50% (cycle aller), puis de 50% à 1% (cycle retour). Les résultats exploités sont le facteur de perte tan(6); pour le cycle retour, on indique la valeur maximale de tan(6) observée (notée tan(6)max) entre les valeurs à 0,15% et à 50% de déformation (effet Payne).
30 I-7. Tests sur pneumatiques A) Freinage sur glace:
Les pneumatiques sont montés sur un véhicule automobile ("Toyota Camry") équipé d'un 35 système de freinage anti-blocage (système ABS) et d'un système antipatinage à l'accélération (système TCS pour Traction Control System). On mesure la distance nécessaire pour passer de 20 à 5 km/h lors d'un freinage longitudinal brutal (ABS activé) sur une piste recouverte de glace. Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une distance de freinage plus courte. 40 -4- P10-2060 10 B) Accélération sur glace:
On mesure le temps nécessaire pour passer de 5 à 20 km/h lors d'une accélération à plein régime, sous le contrôle du système TCS activé. Une valeur supérieure à celle du témoin, arbitrairement fixée à 100, indique un résultat amélioré c'est-à-dire une accélération plus rapide.
II. DESCRIPTION DETAILLEE DE L'INVENTION La composition de caoutchouc de l'invention est à base d'au moins un élastomère diénique, un système plastifiant, une charge renforçante et des microparticules de blé, composants qui sont décrits en détail ci-après. 15 Dans la présente description, sauf indication expresse différente, tous les pourcentages (%) indiqués sont des % en masse. D'autre part, tout intervalle de valeurs désigné par l'expression "entre a et b" représente le domaine de valeurs allant de plus de a à moins de b (c'est-à-dire bornes a et b exclues) tandis que tout intervalle de valeurs désigné par l'expression "de a à b" 20 signifie le domaine de valeurs allant de a jusqu'à b (c'est-à-dire incluant les bornes strictes a et b).
II-1. Elastomère diénique
25 Par élastomère ou caoutchouc "diénique", on rappelle que doit être entendu un élastomère issu au moins en partie (i.e. un homopolymère ou un copolymère) de monomères diènes (monomères porteurs de deux doubles liaisons carbone-carbone, conjuguées ou non).
Les élastomères diéniques peuvent être classés de manière connue en deux catégories : ceux 30 dits "essentiellement insaturés" et ceux dits "essentiellement saturés". Les caoutchoucs butyl, comme par exemple les copolymères de diènes et d'alpha-oléfines type EPDM, entrent dans la catégorie des élastomères diéniques essentiellement saturés, ayant un taux de motifs d'origine diénique qui est faible ou très faible, toujours inférieur à 15% (% en moles). A contrario, par élastomère diénique essentiellement insaturé, on entend un élastomère diénique issu au moins 35 en partie de monomères diènes conjugués, ayant un taux de motifs ou unités d'origine diénique (diènes conjugués) qui est supérieur à 15% (% en moles). Dans la catégorie des élastomères diéniques "essentiellement insaturés", on entend en particulier par élastomère diénique "fortement insaturé" un élastomère diénique ayant un taux de motifs d'origine diénique (diènes conjugués) qui est supérieur à 50%. 40 -5- P10-2060 -6-
On préfère utiliser au moins un élastomère diénique du type fortement insaturé, en particulier un élastomère diénique choisi dans le groupe constitué par les polybutadiènes (BR), les polyisoprènes de synthèse (IR), le caoutchouc naturel (NR), les copolymères de butadiène, les copolymères d'isoprène (autres que IIR) et les mélanges de ces élastomères. De tels copolymères sont plus préférentiellement choisis dans le groupe constitué par les copolymères de butadiène-styrène (SBR), les copolymères d'isoprène-butadiène (BIR), les copolymères d'isoprène- styrène (SIR), les copolymères d'isoprène-butadiène-styrène (SBIR) et les mélanges de tels copolymères.
Les élastomères peuvent être par exemple à blocs, statistiques, séquencés, microséquencés, et être préparés en dispersion ou en solution ; ils peuvent être couplés et/ou étoilés ou encore fonctionnalisés avec un agent de couplage et/ou d'étoilage ou de fonctionnalisation. Pour un couplage à du noir de carbone, on peut citer par exemple des groupes fonctionnels comprenant une liaison C-Sn ou des groupes fonctionnels aminés tels que benzophénone par exemple ; pour un couplage à une charge inorganique renforçante telle que silice, on peut citer par exemple des groupes fonctionnels silanol ou polysiloxane ayant une extrémité silanol (tels que décrits par exemple dans US 6 013 718), des groupes alkoxysilanes (tels que décrits par exemple dans US 5 977 238), des groupes carboxyliques (tels que décrits par exemple dans US 6 815 473 ou US 2006/0089445) ou encore des groupes polyéthers (tels que décrits par exemple dans US 6 503 973). A titre d'autres exemples de tels élastomères fonctionnalisés, on peut citer également des élastomères (tels que SBR, BR, NR ou IR) du type époxydés.
A titre préférentiel conviennent les polybutadiènes et en particulier ceux ayant une teneur en unités -1,2 comprise entre 4% et 80% ou ceux ayant une teneur en cis-1,4 supérieure à 80%, les polyisoprènes, les copolymères de butadiène-styrène et en particulier ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement entre 20% et 40%, une teneur en liaisons -1,2 de la partie butadiénique comprise entre 4% et 65% , une teneur en liaisons trans-1,4 comprise entre 20% et 80%, les copolymères de butadiène- isoprène et notamment ceux ayant une teneur en isoprène comprise entre 5% et 90% en poids et une température de transition vitreuse ("Tg" - mesurée selon ASTM D3418-82) de -40°C à -80°C, les copolymères isoprène-styrène et notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et une Tg comprise entre -25°C et -50°C.
Dans le cas des copolymères de butadiène-styrène-isoprène conviennent notamment ceux ayant une teneur en styrène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 10% et 40%, une teneur en isoprène comprise entre 15% et 60% en poids et plus particulièrement entre 20% et 50%, une teneur en butadiène comprise entre 5% et 50% en poids et plus particulièrement comprise entre 20% et 40%, une teneur en unités -1,2 de la partie butadiénique comprise entre 4% et 85%, une teneur en unités trans -1,4 de la partie butadiénique comprise entre 6% et 80%, une teneur en unités -1,2 plus -3,4 de la partie P10-2060 -7-
isoprénique comprise entre 5% et 70% et une teneur en unités trans -1,4 de la partie isoprénique comprise entre 10% et 50%, et plus généralement tout copolymère butadiènestyrène-isoprène ayant une Tg comprise entre -20°C et -70°C.
Selon un mode de réalisation particulièrement préférentiel de l'invention, l'élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes ayant un taux de liaisons cis-1,4 supérieur à 90%, les copolymères de butadiène-styrène et les mélanges de ces élastomères.
Selon un mode de réalisation plus particulier et préférentiel, l'élastomère diénique utilisé est majoritairement, c'est-à-dire pour plus de 50 pce (pour rappel, "pce" signifiant parties en poids pour cent parties d'élastomère), du caoutchouc naturel (NR) ou un polyisoprène de synthèse (IR). Plus préférentiellement, ledit caoutchouc naturel ou polyisoprène de synthèse est alors utilisé en coupage avec un polybutadiène (BR) ayant un taux de liaisons cis-1,4 qui est de préférence supérieur à 90%.
Selon un autre mode de réalisation particulier et préférentiel, l'élastomère diénique utilisé est majoritairement, c'est-à-dire pour plus de 50 pce, un polybutadiène (BR) ayant un taux de liaisons cis-1,4 supérieur à 90%. Plus préférentiellement, ledit polybutadiène est alors utilisé en coupage avec du caoutchouc naturel ou un polyisoprène de synthèse.
Selon un autre mode de réalisation particulier et préférentiel, l'élastomère diénique utilisé est un coupage (mélange) binaire de NR (ou IR) et de BR, ou un coupage ternaire de NR (ou IR), BR et SBR. De préférence, dans le cas de tels coupages, la composition comporte entre 25 et 75 pce de NR (ou IR) et entre 75 et 25 pce de BR, auxquels peut être associé ou non un troisième élastomère (coupage ternaire) à un taux inférieur à 30 pce, notamment inférieur à 20 pce. Ce troisième élastomère est de préférence un élastomère SBR, notamment un SBR solution (dit "SSBR"). Plus préférentiellement encore, dans le cas d'un tel coupage, la composition comporte de 35 à 65 pce de NR (ou IR) et de 65 à 35 pce de BR. Le BR utilisé est de préférence un BR ayant un taux de liaisons cis-1,4 supérieur à 90%, plus préférentiellement supérieur à 95%.
Aux élastomères diéniques des bandes de roulement selon l'invention pourraient être associés, en quantité minoritaire, des élastomères synthétiques autre que diéniques, voire des polymères 35 autres que des élastomères, par exemple des polymères thermoplastiques.
II-2. Système plastifiant
La composition de caoutchouc de l'invention a pour autre caractéristique essentielle de 40 comporter au moins 30 pce d'un agent plastifiant liquide (à 23°C) dont la fonction est de P10-2060 -8-
ramollir la matrice en diluant l'élastomère et la charge renforçante ; sa Tg est par définition inférieure à -20°C, de préférence inférieure à -40°C.
Toute huile d'extension, qu'elle soit de nature aromatique ou non-aromatique, tout agent plastifiant liquide connu pour ses propriétés plastifiantes vis-à-vis d'élastomères diéniques, est utilisable ; conviennent particulièrement les plastifiants liquides choisis dans le groupe constitué par les huiles naphténiques, les huiles paraffiniques, les huiles MES, les huiles TDAE, les plastifiants esters et les mélanges de ces composés.
A titre de plastifiants esters, on peut citer notamment des triesters de glycérol, de préférence constitués majoritairement (pour plus de 50 %, plus préférentiellement pour plus de 80 % en poids) d'un acide gras insaturé en C18, c'est-à-dire choisi dans le groupe constitué par l'acide oléique, l'acide linoléique, l'acide linolénique et les mélanges de ces acides. Plus préférentiellement, qu'il soit d'origine synthétique ou naturelle (cas par exemple d'huiles végétales de tournesol ou de colza), l'acide gras utilisé est constitué pour plus de 50% en poids, plus préférentiellement encore pour plus de 80% en poids d'acide oléique. De tels triesters (trioléates) à fort taux d'acide oléique sont bien connus, ils ont été décrits par exemple dans la demande WO 02/088238, à titre d'agents plastifiants dans des bandes de roulement pour pneumatiques.
Le taux de plastifiant liquide dans la composition de l'invention est de préférence supérieur à 40 pce, plus préférentiellement compris dans un domaine de 50 à 100 pce.
Selon un autre mode de réalisation préférentiel, les compositions de l'invention peuvent comporter aussi, à titre de plastifiant solide (à 23°C), une résine hydrocarbonée présentant une Tg supérieur à +20°C, de préférence supérieure à +30°C, telles que décrites par exemple dans les demandes WO 2005/087859, WO 2006/061064 et WO 2007/017060.
Les résines hydrocarbonées sont des polymères bien connus de l'homme du métier, miscibles donc par nature dans les compositions d'élastomère(s) diénique(s) lorsqu'elles sont qualifiées en outre de "plastifiantes". Elles ont été décrites par exemple dans l'ouvrage intitulé "Hydrocarbon Resins" de R. Mildenberg, M. Zander et G. Collin (New York, VCH, 1997, ISBN 3-527-28617-9) dont le chapitre 5 est consacré à leurs applications, notamment en caoutchouterie pneumatique (5.5. "Rubber Tires and Mechanical Goods'). Elles peuvent être aliphatiques, aromatiques ou encore du type aliphatique/aromatique c'est-à-dire à base de monomères aliphatiques et/ou aromatiques. Elles peuvent être naturelles ou synthétiques, à base ou non de pétrole (si tel est le cas, connues aussi sous le nom de résines de pétrole). Elles sont préférentiellement exclusivement hydrocarbonées, c'est-à-dire qu'elles ne comportent que des atomes de carbone et d'hydrogène.
P10-2060 -9-
De préférence, la résine plastifiante hydrocarbonée présente au moins une, plus préférentiellement l'ensemble, des caractéristiques suivantes :
- une Tg supérieure à 20°C ; - une masse moléculaire moyenne en nombre (Mn) comprise entre 400 et 2000 g/mol ; - un indice de polymolécularité (Ip) inférieur à 3 (rappel : Ip = Mw/Mn avec Mw masse moléculaire moyenne en poids).
La Tg est mesurée de manière connue par DSC (Differential Scanning Calorimetry), selon la norme ASTM D3418 (1999). La macrostructure (Mw, Mn et Ip) de la résine hydrocarbonée est déterminée par chromatographie d'exclusion stérique (SEC) : solvant tétrahydrofurane ; température 35°C ; concentration 1 g/1 ; débit 1 ml/min ; solution filtrée sur filtre de porosité 0,45 m avant injection ; étalonnage de Moore avec des étalons de polystyrène ; jeu de 3 colonnes "WATERS" en série ("STYRAGEL" HR4E, HR1 et HRO.5) ; détection par réfractomètre différentiel ("WATERS 2410") et son logiciel d'exploitation associé ("WATERS EMPOWER").
Selon un mode de réalisation particulièrement préférentiel, la résine plastifiante hydrocarbonée est choisie dans le groupe constitué par les résines d'homopolymère ou copolymère de cyclopentadiène (en abrégé CPD) ou dicyclopentadiène (en abrégé DCPD), les résines d'homopolymère ou copolymère terpène, les résines d'homopolymère ou copolymère de coupe C5, et les mélanges de ces résines. Parmi les résines de copolymères ci- dessus sont préférentiellement utilisées celles choisies dans le groupe constitué par les résines de copolymère (D)CPD/ vinylaromatique, les résines de copolymère (D)CPD/ terpène, les résines de copolymère (D)CPD/ coupe C5, les résines de copolymère terpène/ vinylaromatique, les résines de copolymère coupe C5/ vinylaromatique, et les mélanges de ces résines.
Le terme "terpène" regroupe ici de manière connue les monomères alpha-pinène, beta-pinène et limonène ; préférentiellement est utilisé un monomère limonène, composé se présentant de manière connue sous la forme de trois isomères possibles : le L-limonène (énantiomère lévogyre), le D-limonène (énantiomère dextrogyre), ou bien le dipentène, racémique des énantiomères dextrogyre et lévogyre. A titre de monomère vinylaromatique conviennent par exemple le styrène, le phénol, l'alpha- méthylstyrène, l'ortho-, méta-, para-méthylstyrène, le vinyle-toluène, le para-tertiobutylstyrène, les méthoxystyrènes, les chlorostyrènes, le vinylmésitylène, le divinylbenzène, le vinylnaphtalène, tout monomère vinylaromatique issu d'une coupe C9 (ou plus généralement d'une coupe C8 à C10). De préférence, le composé vinyle-aromatique est du styrène ou un monomère vinylaromatique issu d'une coupe C9 (ou plus généralement d'une coupe C8 à C10). De préférence, le composé vinylaromatique est le monomère minoritaire, exprimé en fraction molaire, dans le copolymère considéré.
P10-2060 -10-
Le taux de résine hydrocarbonée est préférentiellement compris entre 5 et 60 pce, notamment entre 5 et 40 pce, plus préférentiellement encore compris entre 10 et 30 pce.
Le taux d'agent plastifiant total (i.e., plastifiant liquide plus, le cas échéant, résine 5 hydrocarbonée solide) est de préférence compris entre 40 et 100 pce, plus préférentiellement compris dans un domaine de 50 à 80 pce.
II-3. Charge renforçante
10 On peut utiliser tout type de charge renforçante connue pour ses capacités à renforcer une composition de caoutchouc utilisable pour la fabrication de pneumatiques, par exemple une charge organique telle que du noir de carbone, ou encore une charge inorganique renforçante telle que de la silice à laquelle est associé de manière connue un agent de couplage.
15 Une telle charge renforçante consiste typiquement en des nanoparticules dont la taille moyenne (en masse) est inférieure à 500 nm, le plus souvent comprise entre 20 et 200 nm, en particulier et préférentiellement entre 20 et 150 nm.
Comme noirs de carbone conviennent tous les noirs de carbone, notamment les noirs du type 20 HAF, ISAF, SAF conventionnellement utilisés dans les bandes de roulement des pneumatiques (noirs dits de grade pneumatique). Parmi ces derniers, on citera plus particulièrement les noirs de carbone renforçants des séries 100, 200 ou 300 (grades ASTM), comme par exemple les noirs N115, N134, N234, N326, N330, N339, N347, N375. Les noirs de carbone pourraient être par exemple déjà incorporés à l'élastomère isoprénique sous la forme d'un masterbatch 25 (voir par exemple demandes WO 97/36724 ou WO 99/16600).
Comme exemples de charges organiques autres que des noirs de carbone, on peut citer les charges organiques de polyvinylaromatique fonctionnalisé telles que décrites dans les demandes WO-A-2006/069792 et WO-A-2006/069793. 30 Par "charge inorganique renforçante", doit être entendu ici toute charge inorganique ou minérale, quelles que soient sa couleur et son origine (naturelle ou de synthèse), encore appelée charge "blanche" ou parfois charge "claire" par opposition au noir de carbone, capable de renforcer à elle seule, sans autre moyen qu'un agent de couplage intermédiaire, une 35 composition de caoutchouc destinée à la fabrication de pneumatiques, en d'autres termes apte à remplacer, dans sa fonction de renforcement, un noir de carbone conventionnel de grade pneumatique ; une telle charge se caractérise généralement, de manière connue, par la présence de groupes hydroxyle (ûOH) à sa surface. P10-2060 -11-
Comme charges inorganiques renforçantes conviennent notamment des charges minérales du type siliceuse, en particulier de la silice (SiO2), ou du type alumineuse, en particulier de l'alumine (Al2O3). La silice utilisée peut être toute silice renforçante connue de l'homme du métier, notamment toute silice précipitée ou pyrogénée présentant une surface BET ainsi qu'une surface spécifique CTAB toutes deux inférieures à 450 m 2/g, de préférence de 30 à 400 m /g, notamment entre 60 et 300 m2/g. A titres de silices précipitées hautement dispersibles (dites "HDS"), on citera par exemple les silices Ultrasil 7000 et Ultrasil 7005 de la société Degussa, les silices Zeosil 1165MP, 1135MP et 1115MP de la société Rhodia, la silice Hi-Sil EZ150G de la société PPG, les silices Zeopol 8715, 8745 et 8755 de la Société Huber.
Comme exemples d'alumines renforçantes, on peut citer les alumines "Baikalox" "Al25" ou "CR125" de la société Baïkowski, "APA-100RDX" de Condea, "Aluminoxid C" de Degussa ou "AKP-G015" de Sumitomo Chemicals.
De manière préférentielle, le taux de charge renforçante totale (noir de carbone et/ou charge 15 inorganique renforçante) est compris entre 60 et 120 pce, notamment entre 70 et 100 pce.
Selon un mode de réalisation particulier, la charge renforçante comprend du noir de carbone à titre majoritaire ; dans un tel cas, le noir de carbone est présent à un taux préférentiellement supérieur à 60 pce, associé ou non à une charge inorganique renforçante telle que silice en 20 quantité minoritaire.
Selon un autre mode de réalisation particulier, la charge renforçante comprend une charge inorganique, notamment de la silice, à titre majoritaire ; dans un tel cas, la charge inorganique, notamment silice, est présente à un taux préférentiellement supérieur à 70 pce, associée ou 25 non à du noir de carbone en quantité minoritaire ; le noir de carbone, lorsqu'il est présent, est utilisé de préférence à un taux inférieur à 20 pce, plus préférentiellement inférieur à 10 pce (par exemple entre 0,1 et 10 pce).
Indépendamment de l'aspect premier de l'invention, à savoir la recherche d'une adhérence 30 optimisée sur glace fondante, l'emploi à titre majoritaire d'une charge inorganique renforçante telle que silice est également avantageux du point de vue de l'adhérence sur sol mouillé ou enneigé.
Selon un autre mode de réalisation possible de l'invention, la charge renforçante comprend un 35 coupage de noir de carbone et de charge inorganique renforçante telle que silice en des quantités voisines ; dans un tel cas, le taux de charge inorganique, notamment silice, et le taux de noir de carbone sont de préférence chacun compris entre 25 et 75 pce, plus particulièrement chacun compris entre 30 et 50 pce. P10-2060 10 -12-
Pour coupler la charge inorganique renforçante à l'élastomère diénique, on utilise de manière bien connue un agent de couplage (ou agent de liaison) au moins bifonctionnel destiné à assurer une connexion suffisante, de nature chimique et/ou physique, entre la charge inorganique (surface de ses particules) et l'élastomère diénique. On utilise en particulier des organosilanes ou des polyorganosiloxanes bifonctionnels.
On utilise notamment des silanes polysulfurés, dits "symétriques" ou "asymétriques" selon leur structure particulière, tels que décrits par exemple dans les demandes WO03/002648 (ou US 2005/016651) et WO03/002649 (ou US 2005/016650). Conviennent en particulier, sans que la définition ci-après soit limitative, des silanes polysulfurés dits "symétriques" répondant à la formule générale (I) suivante:
(I) Z - A - SX - A - Z , dans laquelle: 15 - x est un entier de 2 à 8 (de préférence de 2 à 5) ; - A est un radical hydrocarboné divalent (de préférence des groupements alkylène en C1-C18 ou des groupements arylène en C6-C12, plus particulièrement des alkylènes en C1-C1o, notamment en C1-C4, en particulier le propylène) ; 20 - Z répond à l'une des formules ci-après:
R2 ùS ùSiùR2 ùSiùR2 R2 R2 R2 dans lesquelles: 25 - les radicaux R1, substitués ou non substitués, identiques ou différents entre eux, représentent un groupe alkyle en C1-C18, cycloalkyle en C5-C18 ou aryle en C6-C18 (de préférence des groupes alkyle en C1-C6, cyclohexyle ou phényle, notamment des groupes alkyle en C1-C4, plus particulièrement le méthyle et/ou l'éthyle). - les radicaux R2, substitués ou non substitués, identiques ou différents entre eux, 30 représentent un groupe alkoxyle en C1-C18 ou cycloalkoxyle en C5-C18 (de préférence un groupe choisi parmi alkoxyles en C1-C8 et cycloalkoxyles en C5-C8, plus préférentiellement encore un groupe choisi parmi alkoxyles en C1-C4, en particulier méthoxyle et éthoxyle).
35 A titre d'exemples de silanes polysulfurés, on citera plus particulièrement les polysulfures de bis(3-triméthoxysilylpropyl) ou de bis(3-triéthoxysilylpropyl). Parmi ces composés, on utilise en particulier le tétrasulfure de bis(3-triéthoxysilylpropyl), en abrégé TESPT, ou le disulfure P10-2060 25 -13-
de bis-(triéthoxysilylpropyle), en abrégé TESPD. On citera également à titre d'exemples préférentiels les polysulfures (notamment disulfures, trisulfures ou tétrasulfures) de bis-(monoalkoxyl(Ci-C4)-dialkyl(CI-C4)silylpropyl), plus particulièrement le tétrasulfure de bismonoéthoxydiméthylsilylpropyl tel que décrit dans la demande de brevet WO 02/083782 (ou US 2004/132880).
A titre d'agent de couplage autre qu'alkoxysilane polysulfuré, on citera notamment des POS (polyorganosiloxanes) bifonctionnels ou encore des polysulfures d'hydroxysilane (R2 = OH dans la formule (I) ci-dessus) tels que décrits dans les demandes de brevet WO 02/30939 (ou US 6,774,255) et WO 02/31041 (ou US 2004/051210), ou encore des silanes ou POS porteurs de groupements fonctionnels azo-dicarbonyle, tels que décrits par exemple dans les demandes de brevet WO 2006/125532, WO 2006/125533, WO 2006/125534.
Dans les compositions de caoutchouc conformes à l'invention, la teneur en agent de couplage 15 est préférentiellement comprise entre 4 et 12 pce, plus préférentiellement entre 3 et 8 pce.
L'homme du métier comprendra qu'à titre de charge équivalente de la charge inorganique renforçante décrite dans le présent paragraphe, pourrait être utilisée une charge renforçante d'une autre nature, notamment organique, dès lors que cette charge renforçante serait 20 recouverte d'une couche inorganique telle que silice, ou bien comporterait à sa surface des sites fonctionnels, notamment hydroxyles, nécessitant l'utilisation d'un agent de couplage pour établir la liaison entre la charge et l'élastomère.
II-4. Microparticules de blé Les compositions de caoutchouc de l'invention ont pour caractéristique essentielle de comporter entre 5 et 40 pce de microparticules de blé.
Par microparticules, on entend par définition des particules de taille micrométrique, c'est-à- 30 dire dont la taille moyenne et la taille médiane (toutes deux exprimées en poids) sont comprises entre 1 m et 1 mm. De préférence, la taille médiane est comprise entre 50 m et 1 mm.
En dessous des minima indiqués ci-dessus, l'effet technique visé (à savoir la création d'une 35 microrugosité adaptée) risque d'être insuffisant alors qu'au delà des maxima indiqués, on s'expose à différents inconvénients, en particulier lorsque la composition de caoutchouc est utilisée comme bande de roulement : outre une perte d'esthétique possible (particules trop visibles à la surface de la bande de roulement) et un risque de décohésion, lors du roulage, d'éléments de sculpture de taille relativement importante, on a constaté que la performance 40 d'adhérence sur glace fondante pouvait être dégradée. P10-2060 -14-
Pour toutes ces raisons, on préfère que les microparticules aient une taille médiane comprise entre 100 m et 800 m, plus préférentiellement encore comprise dans un domaine de 300 à 600 m. Ce domaine de taille particulièrement préférentiel semble correspondre à un compromis optimisé entre d'une part la rugosité de surface recherchée et d'autre part un bon contact entre la composition de caoutchouc et la glace.
D'autre part, pour des raisons identiques à celles exposées ci-dessus, le taux de microparticules est de préférence compris entre 5 à 35 pce, plus préférentiellement compris 10 entre 10 et 30 pce.
Typiquement, on utilise des microparticules de blé destinées à la consommation humaine, élaborées à partir de grains de blé ordinaire, par des procédés de mouture ou de broyage dans lesquels le son et le germe sont en grande partie éliminés. Compte tenu des tailles de 15 microparticules ici préconisées, il s'agit non pas de farines mais plutôt de semoules plus ou moins grossières comportant des grains de blé concassés, broyés grossièrement, de forme quelconque et présentant généralement des angles relativement saillants.
Pour l'analyse de la granulométrie et le calcul de la taille médiane des microparticules (ou 20 diamètre moyen pour des microparticules supposées sensiblement sphériques), différentes méthodes connues sont applicables, par exemple par diffraction laser (voir par exemple norme ISO-8130-13 ou norme JIS K5600-9-3).
On peut aussi utiliser de manière simple une analyse de la granulométrie par un tamisage 25 mécanique ; l'opération consiste a tamiser une quantité définie d'échantillon (par exemple 200 g) sur une table vibrante pendant 30 min avec des diamètres de tamis différents (par exemple, selon une raison de progression égale à 1,26, avec des mailles de 1000, 800, 630, 500, 400, ... 100, 80, 63 m) ; les refus récoltés sur chaque tamis sont pesés sur une balance de précision ; on en déduit le % de refus pour chaque diamètre de maille par rapport au poids 30 total de produit ; la taille médiane (ou diamètre médian) est finalement calculée de manière connue à partir de l'histogramme de la distribution granulométrique.
II-5. Additifs divers
35 Les compositions de caoutchouc de l'invention comportent également tout ou partie des additifs usuels habituellement utilisés dans les compositions d'élastomères destinées à la fabrication de bandes de roulement pour pneumatiques, notamment pour pneumatiques hiver, comme par exemple des agents de protection tels que cires anti-ozone, anti-ozonants chimiques, anti-oxydants, des résines renforçantes, des accepteurs (par exemple résine 40 phénolique novolaque) ou des donneurs de méthylène (par exemple HMT ou H3M), un P10-2060 -15-
système de réticulation à base soit de soufre, soit de donneurs de soufre et/ou de peroxyde et/ou de bismaléimides, des accélérateurs de vulcanisation, des activateurs de vulcanisation.
Ces compositions peuvent également contenir des activateurs de couplage lorsque qu'un agent de couplage est utilisé, des agents de recouvrement de la charge inorganique ou plus généralement des agents d'aide à la mise en oeuvre susceptibles de manière connue, grâce à une amélioration de la dispersion de la charge dans la matrice de caoutchouc et à un abaissement de la viscosité des compositions, d'améliorer leur faculté de mise en oeuvre à l'état cru ; ces agents sont par exemple des silanes hydrolysables tels que des alkyl-alkoxysilanes, des polyols, des polyéthers, des amines, des polyorganosiloxanes hydroxylés ou hydrolysables.
II-6. Fabrication des compositions de caoutchouc et des bandes de roulement
Les compositions de caoutchouc de l'invention sont fabriquées dans des mélangeurs appropriés, en utilisant deux phases de préparation successives selon une procédure générale bien connue de l'homme du métier : une première phase de travail ou malaxage thermomécanique (parfois qualifiée de phase "non-productive") à haute température, jusqu'à une température maximale comprise entre 130°C et 200°C, de préférence entre 145°C et 185°C, suivie d'une seconde phase de travail mécanique (parfois qualifiée de phase "productive") à plus basse température, typiquement inférieure à 120°C, par exemple entre 60°C et 100°C, phase de finition au cours de laquelle est incorporé le système de réticulation ou vulcanisation.
Un procédé utilisable pour la fabrication de telles compositions comporte par exemple et de 25 préférence les étapes suivantes :
- incorporer à l'élastomère diénique, dans un mélangeur, plus de 30 pce d'un plastifiant liquide, entre 50 et 150 pce d'une charge renforçante, entre 5 et 40 pce de microparticules de blé, en malaxant thermomécaniquement le tout, en une ou 30 plusieurs fois, jusqu'à atteindre une température maximale comprise entre 130°C et 200°C ; -refroidir l'ensemble à une température inférieure à 100°C ; - incorporer ensuite un système de réticulation ; - malaxer le tout jusqu'à une température maximale inférieure à 120°C ; 35 - extruder ou calandrer la composition de caoutchouc ainsi obtenue, notamment sous la forme d'une bande de roulement de pneumatique.
A titre d'exemple, la première phase (non-productive) est conduite en une seule étape thermomécanique au cours de laquelle on introduit, dans un mélangeur approprié tel qu'un 40 mélangeur interne usuel, tous les constituants nécessaires, les éventuels agents de P10-2060 30 35 40 -16-
recouvrement ou de mise en oeuvre complémentaires et autres additifs divers, à l'exception du système de réticulation. Après refroidissement du mélange ainsi obtenu au cours de la première phase non-productive, on incorpore alors le système de réticulation à basse température, généralement dans un mélangeur externe tel qu'un mélangeur à cylindres ; le tout est alors mélangé (phase productive) pendant quelques minutes, par exemple entre 5 et 15 min.
Le système de réticulation proprement dit est préférentiellement à base de soufre et d'un accélérateur primaire de vulcanisation, en particulier d'un accélérateur du type sulfénamide. A ce système de vulcanisation viennent s'ajouter, incorporés au cours de la première phase non-productive et/ou au cours de la phase productive, divers accélérateurs secondaires ou activateurs de vulcanisation connus tels qu'oxyde de zinc, acide stéarique, dérivés guanidiques (en particulier diphénylguanidine), etc. Le taux de soufre est de préférence compris entre 0,5 et 3,0 pce, celui de l'accélérateur primaire est de préférence compris entre 0,5 et 5,0 pce.
On peut utiliser comme accélérateur (primaire ou secondaire) tout composé susceptible d'agir comme accélérateur de vulcanisation des élastomères diéniques en présence de soufre, notamment des accélérateurs du type thiazoles ainsi que leurs dérivés, des accélérateurs de types thiurames, dithiocarbamates de zinc. Ces accélérateurs sont plus préférentiellement choisis dans le groupe constitué par disulfure de 2-mercaptobenzothiazyle (en abrégé "MBTS"), N-cyclohexyl-2-benzothiazyle sulfénamide (en abrégé "CBS"), N,N-dicyclohexyl-2-benzothiazyle sulfénamide ("DCBS"), N-ter-butyl-2-benzothiazyle sulfénamide ("TBBS"), N-ter-butyl-2-benzothiazyle sulfénimide ("TBSI"), dibenzyldithiocarbamate de zinc ("ZBEC") et les mélanges de ces composés.
La composition finale ainsi obtenue est ensuite calandrée par exemple sous la forme d'une feuille ou d'une plaque, notamment pour une caractérisation au laboratoire, ou encore extrudée sous la forme d'un profilé de caoutchouc utilisable directement comme bande de roulement de pneumatique hiver.
La vulcanisation (ou cuisson) est conduite de manière connue à une température généralement comprise entre 130°C et 200°C, pendant un temps suffisant qui peut varier par exemple entre 5 et 90 min en fonction notamment de la température de cuisson, du système de vulcanisation adopté et de la cinétique de vulcanisation de la composition considérée.
Les compositions de caoutchouc selon l'invention peuvent constituer la totalité ou une partie seulement de la bande de roulement conforme à l'invention, dans le cas d'une bande de roulement de type composite formée de plusieurs compositions de caoutchouc de formulations différentes. P10-2060 5 40 -17-
L'invention concerne les compositions de caoutchouc et bandes de roulement précédemment décrites tant à l'état cru (i.e., avant cuisson) qu'à l'état cuit (i.e., après réticulation ou vulcanisation). III. EXEMPLES DE REALISATION DE L'INVENTION
III-1. Préparation des compositions de caoutchouc et bandes de roulement 10 On procède pour les essais qui suivent de la manière suivante: on introduit dans un mélangeur interne, dont la température initiale de cuve est d'environ 60°C, successivement la charge renforçante (par exemple une charge inorganique renforçante telle que silice et son agent de couplage associé), le plastifiant liquide, les microparticules de blé, l'élastomère diénique (ou 15 coupage d'élastomères diéniques) ainsi que les divers autres ingrédients à l'exception du système de vulcanisation ; le mélangeur est ainsi rempli à environ 70% (% en volume). On conduit alors un travail thermomécanique (phase non-productive) en une étape, qui dure au total environ 3 à 4 minutes, jusqu'à atteindre une température maximale de "tombée" de 165°C. On récupère le mélange ainsi obtenu, on le refroidit puis on incorpore du soufre et un 20 accélérateur type sulfénamide sur un mélangeur externe (homo-finisseur) à 30°C, en mélangeant le tout (phase productive) pendant un temps approprié (par exemple entre 5 et 12 min).
Les compositions ainsi obtenues sont ensuite calandrées soit sous la forme de plaques 25 (épaisseur de 2 à 3 mm) ou feuilles fines de caoutchouc pour la mesure de leurs propriétés physiques ou mécaniques, soit extrudées sous la forme de bandes de roulement de pneumatiques hiver pour véhicule tourisme.
III-2. Tests de caoutchouterie 30 Dans cet essai, on compare trois compositions à base d'élastomères diéniques (coupage NR et BR à taux de liaisons cis-1,4 supérieur à 95%), renforcées par un coupage de silice et de noir de carbone auxquels est associée ou non une fraction (20 pce) de microparticules de blé se présentant sous la forme d'une semoule alimentaire (de Fuji Seifun) ; deux tailles (médianes) 35 de semoule sont ici analysées (environ 200 m et environ 440 m).
Les tableaux 1 et 2 donnent la formulation des trois compositions (tableau 1 - taux des différents produits exprimés en pce), leurs propriétés avant et après cuisson (30 min à 150°C) ; le système de vulcanisation est constitué par soufre et sulfénamide. P10-2060 20 35 -18-
Tout d'abord, l'examen des différents résultats du tableau 2 ne révèle aucune dégradation notable des propriétés de caoutchouterie malgré la présence d'un taux relativement élevé de microparticules de blé : - la processabilité à l'état cru (plasticité Mooney) est de manière inattendue légèrement améliorée pour les compositions de l'invention ; - les propriétés rhéométriques (cuisson) ne sont pas modifiées de manière sensible, la sécurité au grillage (T5) étant même augmentée de 4 min ; -après cuisson, dureté Shore et modules en extension restent constants, ce qui est 10 favorable au comportement mécanique de la bande de roulement, donc au comportement routier du pneumatique ; - la diminution des propriétés à la rupture, notamment de la contrainte à la rupture, si elle peut être qualifiée d'attendue, reste néanmoins dans un domaine non rédhibitoire pour l'homme du métier ; 15 - enfin, l'hystérèse n'est pas augmentée, ce qui est l'indicateur reconnu d'une résistance au roulement non dégradée.
Ce n'est en fait qu'au cours de tests de roulage réels conduits sur pneumatiques que se révèle le résultat inattendu apporté par l'invention, comme en atteste clairement l'essai qui suit. III-3. Essais en pneumatiques
Les compositions C-1, C-2 et C-3 précédemment testées sont ensuite utilisées comme bandes de roulement de pneumatiques tourisme hiver à carcasse radiale, notés respectivement P-1 25 (pneus témoins), P-2 et P-3 (pneus conformes à l'invention), de dimensions 205/65 R15 conventionnellement fabriqués et en tous points identiques, hormis les compositions de caoutchouc constitutives de leur bande de roulement.
Tous les pneumatiques sont montés à l'avant et à l'arrière d'un véhicule automobile, sous 30 pression de gonflage nominale, et on leur fait subir un roulage sur circuit (d'environ 2000 km), sur un sol sec, pour rodage et début d'usure.
Puis les pneumatiques ainsi rodés sont soumis aux test d'adhérence sur glace tels que décrits au paragraphe I-7 qui précède, selon différentes conditions de température. Les résultats des tests de roulage sont rapportés dans le tableau 3, en unités relatives, la base 100 étant retenue pour le pneumatique témoin P-1 (pour rappel, une valeur supérieure à 100 indique une performance améliorée). P10-2060 5 15 -19-
On constate tout d'abord que le freinage sur glace fondante (-2°C) est notablement amélioré pour les pneumatiques conformes à l'invention (P-2 et P-3) alors qu'aucun effet n'est visible pour une température inférieure à -5°C. C'est bien la démonstration que l'adhérence sur glace fondante est une problématique spécifique qui nécessite des solutions bien spécifiques.
On remarque en outre la supériorité nette des pneumatiques P-3 en ce qui concerne non seulement le freinage sur glace fondante (-2°C) mais aussi la performance d'accélération, améliorations qui ne peuvent être attribuées qu'à une taille médiane supérieure des microparticules de blé, comparativement aux pneumatiques P-2.
En résumé, les pneumatiques P-3 dont la bande de roulement inclut des microparticules de blé dont la taille médiane est comprise dans le domaine particulièrement préférentiel de 300 à 600 m, sont clairement ceux affichant la meilleure performance combinée d'adhérence et accélération sur glace. P10-2060 10 15 20 -20- Tableau 1 Composition N°: C-1 C-2 C-3 BR (1) 60 60 60 NR (2) 40 40 40 silice (3) 80 80 80 agent de couplage (4) 5 5 5 microparticules de blé (5) - 20 - microparticules de blé (6) - - 20 noir de carbone (7) 5 5 5 huile non aromatique (8) 65 65 65 DPG (9) 1.5 1.5 1.5 ZnO 1.2 1.2 1.2 acide stéarique 1 1 1 cire anti-ozone 1.5 1.5 1.5 antioxydant (10) 2 2 2 soufre 2 2 2 accélérateur (11) 1.7 1.7 1.7 (1) BR avec 4,3% de 1-2 ; 2,7% de trans ; 97% de cis 1-4 (Tg = -104°C) ; (2) Caoutchouc naturel (peptisé) ; (3) silice "Zeosil 1115MP" de la société Rhodia, type "HDS" (BET et CTAB : environ 120 m2/g); (4) agent de couplage TESPT ("Si69" de la société Degussa) ; (5) semoule de blé (taille médiane des particules : environ 200 m) ; (6) semoule de blé (taille médiane des particules : environ 440 m) ; (7) grade ASTM N234 (société Cabot) ; (8) huile MES ("Catenex SNR" de Shell) ; (9) diphénylguanidine (Perkacit DPG de la société Flexsys) ; (10) N-1,3-diméthylbutyl-N-phénylparaphénylènediamine (Santoflex 6-PPD de la société Flexsys); (11) N-dicyclohexyl-2-benzothiazol-sulfénamide ("Santocure CBS" de la société Flexsys). P10-2060 -21- Tableau 2 Composition N°: C-1 C-2 C-3 Propriétés avant cuisson: Mooney (UM) 54 47 47 T5 (min) 13 17 17 Ti (min) 2.1 2.3 3.0 T90 (min) 15.8 16.8 18.4 T90 û Ti (min) 13.7 14.5 15.4 Propriétés après cuisson: Shore A 55 56 56 M10 (MPa) 3.4 3.5 3.5 M100 (MPa) 1.1 1.2 1.2 M300 (MPa) 1.0 1.0 1.0 contrainte à la rupture (MPa) 13.9 10.4 9.3 allongement à la rupture (%) 540 520 490 tan(Ô)n. (0°C) 0.280 0.280 0.280 Io Tableau 3 Pneumatique°: P-1 P-2 P-3 Freinage sur glace (-2°C) 100 107 111 Freinage sur glace (-6°C) 100 99 99 Accélération sur glace (-4°C) 100 101 106 P10-2060 20 25 30

Claims (16)

REVENDICATIONS
1. Composition de caoutchouc utilisable comme bande de roulement d'un pneumatique hiver, comprenant au moins un élastomère diénique, plus de 30 pce d'un plastifiant liquide, entre 50 et 150 pce d'une charge renforçante, caractérisée en ce qu'elle comporte entre 5 et 40 pce de microparticules de blé.
2. Composition selon la revendication 1, dans laquelle les microparticules ont une taille 10 médiane (en poids) comprise entre 50 m et 1 mm, de préférence entre 100 m et 800 m.
3. Composition selon la revendication 2, dans laquelle les microparticules ont une taille médiane comprise dans un domaine de 300 à 600 m. 15
4. Composition selon la revendication 3, dans laquelle le taux de microparticules est compris entre 5 à 35 pce.
5. Composition selon la revendication 4, dans laquelle le taux de microparticules est compris entre 10 et 30 pce.
6. Composition selon l'une quelconque des revendications 1 à 5, dans laquelle l'élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes, les copolymères de butadiène, les copolymères d'isoprène et les mélanges de ces élastomères.
7. Composition selon la revendication 6, dans laquelle l'élastomère diénique est choisi dans le groupe constitué par le caoutchouc naturel, les polyisoprènes de synthèse, les polybutadiènes ayant un taux de liaisons cis-1,4 supérieur à 90%, les copolymères de butadiène-styrène et les mélanges de ces élastomères.
8. Composition selon la revendication 7, dans laquelle l'élastomère diénique est majoritairement, c'est-à-dire pour plus de 50 pce, du caoutchouc naturel ou un polyisoprène de synthèse. 35
9. Composition selon la revendication 8, dans laquelle le caoutchouc naturel ou le polyisoprène de synthèse est utilisé en coupage avec un polybutadiène ayant un taux de liaisons cis-1,4 supérieur à 90%. P10-2060 15 35- 23 -
10. Composition selon la revendication 7, dans laquelle l'élastomère diénique est majoritairement, c'est-à-dire pour plus de 50 pce, un polybutadiène ayant un taux de liaisons cis-1,4 supérieur à 90%.
11. Composition selon la revendication 10, dans laquelle le polybutadiène est utilisé en coupage avec du caoutchouc naturel ou un polyisoprène de synthèse.
12. Composition selon l'une quelconque des revendications 1 à 11, dans laquelle la charge renforçante comprend à titre majoritaire du noir de carbone, le taux de noir de carbone étant 10 de préférence supérieur à 60 pce.
13. Composition selon l'une quelconque des revendications 1 à 11, dans laquelle la charge renforçante comprend à titre majoritaire une charge inorganique renforçante, le taux de charge inorganique renforçante étant de préférence supérieur à 70 pce.
14. Composition selon la revendication 13, dans laquelle la charge inorganique renforçante est de la silice.
15. Composition selon l'une quelconque des revendications 1 à 14, dans laquelle la charge 20 renforçante comprend un coupage de noir de carbone et de silice.
16. Composition selon l'une quelconque des revendications 1 à 15, dans laquelle le taux de charge renforçante totale est compris entre 60 et 120, de préférence entre 70 et 100 pce. 25 17 Composition selon l'une quelconque des revendications 1 à 16, dans laquelle le plastifiant liquide est choisi dans le groupe constitué par constitué par les huiles naphténiques, les huiles paraffiniques, les huiles MES, les huiles TDAE, les plastifiants esters et les mélanges de ces composés. 30 18. Composition selon la revendication 17, dans laquelle le taux de plastifiant liquide est supérieur à 40 pce, de préférence compris dans un domaine de 50 à 100 pce. 19. Composition selon l'une quelconque des revendications 1 à 18, comportant une résine hydrocarbonée présentant une Tg supérieure à 20°C. 20. Composition selon la revendication 19, dans laquelle la résine hydrocarbonée est choisie dans le groupe constitué par les résines d'homopolymères ou de copolymères d'alphapinène, betapinène, dipentène ou polylimonène, coupe C5 et les mélanges de telles résines. P10-2060- 24 - 21. Composition selon les revendications 19 ou 20, dans laquelle le taux de résine hydrocarbonée est compris entre 5 et 60 pce. 22. Utilisation d'une composition conforme à l'une quelconque des revendications 1 à 21, 5 pour la fabrication de bandes de roulement de pneumatiques hiver. 23. Bande de roulement de pneumatique hiver comportant une composition conforme à l'une quelconque des revendications 1 à 21. 10 24. Pneumatique hiver comportant une bande de roulement selon la revendication 23. P10-2060
FR0760390A 2007-12-27 2007-12-27 Composition de caoutchouc pour bande de roulement de pneumatique hiver Expired - Fee Related FR2925913B1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
FR0760390A FR2925913B1 (fr) 2007-12-27 2007-12-27 Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP08866973A EP2231769A1 (fr) 2007-12-27 2008-12-15 Composition de caoutchouc pour bande de roulement de pneumatique hiver
CA2709846A CA2709846A1 (fr) 2007-12-27 2008-12-15 Composition de caoutchouc pour bande de roulement de pneumatique hiver
EA201070798A EA201070798A1 (ru) 2007-12-27 2008-12-15 Резиновая смесь для протектора зимней шины
JP2010540048A JP5480818B2 (ja) 2007-12-27 2008-12-15 冬季タイヤのトレッド用ゴム組成物
PCT/EP2008/010650 WO2009083125A1 (fr) 2007-12-27 2008-12-15 Composition de caoutchouc pour bande de roulement de pneumatique hiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0760390A FR2925913B1 (fr) 2007-12-27 2007-12-27 Composition de caoutchouc pour bande de roulement de pneumatique hiver

Publications (2)

Publication Number Publication Date
FR2925913A1 true FR2925913A1 (fr) 2009-07-03
FR2925913B1 FR2925913B1 (fr) 2010-10-22

Family

ID=39272201

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0760390A Expired - Fee Related FR2925913B1 (fr) 2007-12-27 2007-12-27 Composition de caoutchouc pour bande de roulement de pneumatique hiver

Country Status (6)

Country Link
EP (1) EP2231769A1 (fr)
JP (1) JP5480818B2 (fr)
CA (1) CA2709846A1 (fr)
EA (1) EA201070798A1 (fr)
FR (1) FR2925913B1 (fr)
WO (1) WO2009083125A1 (fr)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2952645B1 (fr) 2009-10-27 2011-12-16 Michelin Soc Tech Bandage pneumatique dont la paroi interne est pourvue d'une couche de caoutchouc thermo-expansible
FR2956118B1 (fr) * 2009-12-18 2013-03-08 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver.
FR2955584B1 (fr) * 2009-12-18 2014-08-22 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver.
FR2955328B1 (fr) * 2010-01-18 2013-03-08 Michelin Soc Tech Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2974538B1 (fr) * 2011-04-28 2013-06-14 Michelin Soc Tech Pneumatique a adherence sur glace amelioree
FR2975999B1 (fr) 2011-06-01 2014-07-04 Michelin Soc Tech Pneu dont la bande de roulement comporte une composition de caoutchouc thermo-expansible reduisant les bruits de roulage
FR2975997B1 (fr) 2011-06-01 2013-06-14 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2979076B1 (fr) 2011-07-28 2013-08-16 Michelin Soc Tech Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2992322B1 (fr) 2012-06-22 2015-06-19 Michelin & Cie Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2997407B1 (fr) 2012-10-30 2015-01-23 Michelin & Cie Bandage pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR2998510A1 (fr) 2012-11-29 2014-05-30 Michelin & Cie Pneumatique pour vehicule dont la bande de roulement comporte une composition de caoutchouc thermo-expansible
FR3015503B1 (fr) 2013-12-19 2016-02-05 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant des microparticules d'oxyde ou carbure metallique.
FR3015501B1 (fr) 2013-12-19 2017-05-26 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides comportant un caoutchouc thermo-expansible a l'etat cru, ou caoutchouc mousse a l'etat cuit.
FR3015502B1 (fr) 2013-12-19 2016-02-05 Michelin & Cie Pneu dont la bande de roulement comporte des elements de sculpture avec des parois laterales rigides contenant des microparticules hydrosolubles.
EP3289011B1 (fr) 2015-04-30 2019-03-20 Compagnie Générale des Etablissements Michelin Composition de caoutchouc thermo-expansible
RU2708574C1 (ru) * 2016-01-19 2019-12-09 Бриджстоун Корпорейшн Каучуковая композиция и покрышка
KR20210146888A (ko) * 2019-04-01 2021-12-06 제이에스알 가부시끼가이샤 가교물 및 타이어
WO2022029791A1 (fr) * 2020-08-05 2022-02-10 Tvs Srichakra Ltd Composition de caoutchouc pour bandes de roulement de pneus de motocycles utilisant de l'huile de moringa oleifera et procédé associé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332459A1 (fr) * 1988-03-10 1989-09-13 Sumitomo Rubber Industries Limited Composition de caoutchouc et pneu fabriqué à l'aide de cette composition
DE19622169A1 (de) * 1995-06-07 1996-12-12 Semperit Reifen Kautschukmischung
EP0942041A1 (fr) * 1998-03-13 1999-09-15 Sumitomo Rubber Industries Limited Composition de caoutchouc pour bande de roulement
WO2007017060A1 (fr) * 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3771942B2 (ja) * 1993-02-15 2006-05-10 住友ゴム工業株式会社 トレッドゴム組成物
JPH0825905A (ja) * 1994-07-12 1996-01-30 Nippondenso Co Ltd 車両のスリップ防止補助装置
JP4298820B2 (ja) * 1998-08-25 2009-07-22 東洋ゴム工業株式会社 スタッドレスタイヤ用ゴム組成物
MXPA02011982A (es) * 2001-03-12 2003-05-27 Michelin Rech Tech Composicion de caucho para banda de rodadura de neumatico.
JP2005255796A (ja) * 2004-03-10 2005-09-22 Bridgestone Corp タイヤトレッド用ゴム組成物及びこれを用いた空気入りタイヤ
JP2005344000A (ja) * 2004-06-02 2005-12-15 Toyo Tire & Rubber Co Ltd 重荷重用スタッドレスタイヤ用トレッドゴム組成物および重荷重用スタッドレスタイヤ
JP4559167B2 (ja) * 2004-09-07 2010-10-06 住友ゴム工業株式会社 空気入りタイヤ
JP2006321827A (ja) * 2005-05-17 2006-11-30 Toyo Tire & Rubber Co Ltd ゴム組成物及び空気入りタイヤ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332459A1 (fr) * 1988-03-10 1989-09-13 Sumitomo Rubber Industries Limited Composition de caoutchouc et pneu fabriqué à l'aide de cette composition
DE19622169A1 (de) * 1995-06-07 1996-12-12 Semperit Reifen Kautschukmischung
EP0942041A1 (fr) * 1998-03-13 1999-09-15 Sumitomo Rubber Industries Limited Composition de caoutchouc pour bande de roulement
WO2007017060A1 (fr) * 2005-08-08 2007-02-15 Societe De Technologie Michelin Systeme plastifiant pour composition de caoutchouc

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DITMAR, RUDOLF: "The effect of flour in rubber mixtures vulcanized with sulfur", KAUTSCHUKLABORATORIUM GRAZ. GUMMI-ZTG. , 43, 1928, pages 191, XP009105361 *

Also Published As

Publication number Publication date
JP5480818B2 (ja) 2014-04-23
CA2709846A1 (fr) 2009-07-09
WO2009083125A1 (fr) 2009-07-09
FR2925913B1 (fr) 2010-10-22
JP2011508029A (ja) 2011-03-10
EP2231769A1 (fr) 2010-09-29
EA201070798A1 (ru) 2011-02-28

Similar Documents

Publication Publication Date Title
EP2307491B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2655089B1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique
FR2928647A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP1828302B1 (fr) Systeme plastifiant pour composition de caoutchouc
FR2925913A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
EP2296916B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere snbr
EP2501558B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique hydrogene.
EP2104705B1 (fr) Bande de roulement pour pneumatique
EP2512826B1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2516537B1 (fr) Pneumatique dont la zone sommet est pourvue d'une sous-couche comportant un elastomere thermoplastique
EP2542427B1 (fr) Pneumatique dont la bande de roulement comporte un elastomere thermoplastique
EP2552712B1 (fr) Pneumatique dont la bande de roulement comporte une composition de caoutchouc comprenant une resine poly(vinylester).
EP2512825A1 (fr) Pneumatique hiver a adherence sur glace amelioree
EP2150422A1 (fr) Composition de caoutchouc pour pneumatique comportant un plastifiant diester
EP2547726A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver
FR2955328A1 (fr) Composition de caoutchouc pour bande de roulement de pneumatique hiver

Legal Events

Date Code Title Description
PLFP Fee payment

Year of fee payment: 9

ST Notification of lapse

Effective date: 20170831