EP2523970A1 - Chimäre humane beta-defensine - Google Patents

Chimäre humane beta-defensine

Info

Publication number
EP2523970A1
EP2523970A1 EP10805676A EP10805676A EP2523970A1 EP 2523970 A1 EP2523970 A1 EP 2523970A1 EP 10805676 A EP10805676 A EP 10805676A EP 10805676 A EP10805676 A EP 10805676A EP 2523970 A1 EP2523970 A1 EP 2523970A1
Authority
EP
European Patent Office
Prior art keywords
peptide
nucleic acid
acid molecule
seq
peptides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10805676A
Other languages
English (en)
French (fr)
Inventor
Joachim GRÖTZINGER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christian Albrechts Universitaet Kiel
Original Assignee
Christian Albrechts Universitaet Kiel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Christian Albrechts Universitaet Kiel filed Critical Christian Albrechts Universitaet Kiel
Publication of EP2523970A1 publication Critical patent/EP2523970A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4723Cationic antimicrobial peptides, e.g. defensins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the invention relates to sequences coding for antimicrobial chimeric peptides from human beta-defensin-2 (HBD2) and human beta-defensin-3 (HBD3) with a novel antimicrobial activity spectrum, the antimicrobial peptides encoded by these sequences and their derivatives , as well as their use for the production of antimicrobial substances and their application.
  • HBD2 human beta-defensin-2
  • HBD3 human beta-defensin-3
  • Antimicrobial peptides have been isolated from a wide variety of organisms, including humans, in which they participate primarily in the first line of pathogen defense (1).
  • these peptides are the defensins, a family of antimicrobial peptides ranging in size from 3 to 6 kDa and possessing a high proportion of both cationic amino acid residues and cysteine residues (2-5).
  • Their abundance in humans and other vertebrates, along with their microbicidal activity, has made them important effector molecules of neutrophils, mucosal surfaces, skin and other epithelia (6).
  • the human defensins are classified into two subfamilies: alpha and beta defensins, which differ in the location and mating of 6 cysteine residues (7-9).
  • Human beta-defensins (HBD1-HBD4) are found mainly in different epithelial cells and tissues.
  • Two of the human beta-defensins, HBD2 and HBD3, were originally isolated from keratinocytes from patients with psoriasis (10, 11). Apart from the skin, HBD2 and HBD3 are also expressed in the epithelia of the trachea, lung, heart muscle and placenta (10, 12, 13). Both molecules are induced by bacterial influence or proinflammatory cytokines, for example TNF ⁇ , interferon- ⁇ and interleukin-l ⁇ (10, 12-16).
  • HBD1 has antimicrobial activity against Gram-positive and Gram-negative bacteria and protects against infections with adenovirus (17, 18).
  • HBD2 is active against many Gram-negative bacteria, among them Escherichia coli and Pseudomonas aeruginosa, but also against Candida albicans.
  • a bacteriostatic effect against Gram positive Staphylococcus aureus bacteria has been demonstrated (10).
  • HBD2 has been shown to be more potent against E. coli than HBD1 (16).
  • HBD1 and HBD2 depend on the availability of sodium chloride (16). Unlike them, HBD3 is much more positively charged and has antimicrobial activity not only against Gram-negative but also against Gram-positive bacteria, including S. aureus and Enterococcus faecium (11, 19). In addition, the bacteriocidal effect of HBD3 is insensitive to ion concentration (11).
  • Human beta-defensins show a characteristic folding that consists of three-stranded antiparallel ⁇ -sheets and a short N-terminal ⁇ -helix (20-23). Structural studies have shown that both HBD2 and HBD3 can form dimers in solution, with HBD2 only at high peptide concentrations (20, 23). HBD2 dimers have been postulated to form octamers, which, with their structural and electrostatic properties, do not appear to form a membrane-spanning pore. HBD2 has been proposed to destroy the bacterial membrane by electrostatic interactions (20).
  • HBD3 has been shown to produce ion channels in Xenopus laevis oocytes (19). Although the mechanism of action of the defensins is not fully understood, it is believed that their amphipathic character is the key to antimicrobial activity. Within the defensin family, the primary structures, with the exception of the cysteine residues, are poorly conserved. It is believed that the antimicrobial effect increases with the overall positive charge and the hydrophobicity of the molecule (24). The primary structures of HBDl-3 suggest that there are considerable differences in the total charge between these defensins. HBDl-3 show a positive total charge of +4, +6, and +11, respectively.
  • HBD3 shows the strongest activity and the highest positive charge.
  • the importance of the structure for the function has been extensively explored in studies in which the defensin primary structure has been altered. Single amino acid substitutions and N-terminal deletions that have no effect on the charge or do not massively alter the hydrophobicity maintain the antimicrobial effect. However, these changes can alter the susceptibility of the bacteria and the kill rate. It is discussed that an increase in total charge and hydrophobicity enhances antimicrobial activity.
  • HBD3 has been analyzed in several studies, with a detailed study of different regions of the peptide. Synthetic peptides with sequences from the N-terminus and the C-terminus were prepared. The N-terminal sequence of HBD3 consisting of 17 amino acids and a total charge of only +4 was synthesized. Despite its low charge, this peptide exhibited antimicrobial activity against Gram positive and Gram negative organisms. N-terminal deletion mutants of HBD3 highlight the importance of the first seven residues for activity against Gram-positive organisms (24).
  • the object of the present invention is therefore to provide novel peptides which, starting from the natural substances HBD2 and HBD3, as medicaments with a combined and improved biological and therapeutic defensin activity can be used.
  • FIG. 1 shows a schematic structural representation of the HBD2 / HBD3 chimeras (Cl-C6) and a sequence comparison between HBD2 and HBD3;
  • the nucleic acid sequences indicated under SEQ ID: NO 3 to SEQ ID: NO 8 code for novel peptides, the HBD2 / HBD3 chimera HBDC1 to C6 (amino acid sequences: SEQ ID: NO 11 to SEQ ID: NO 16).
  • the peptides of the invention HBDC3 and C5 have a unique activity against E. coli and S. aureus (see Table 1): They are surprisingly at least as effective or even more effective against these pathogens than the naturally occurring defensins HBD2 and HBD3.
  • HBD2 and HBD3 The structural determinants responsible for the different activities of HBD2 and HBD3 against Gram-positive and Gram-negative bacteria were investigated by generating six chimeric molecules from HBD2 and HBD3 and determining their activity against E. coli and S. aureus starch.
  • HBD2 and HBD3 not only the beta-defensin-typical cysteine residues but also two glycine residues are conserved (see FIG. 1).
  • the three-dimensional structure of both defensins indicated that these glycine residues are located in loop regions (21, 23).
  • the sequences of HBD2 (nucleotide sequence SEQ ID: NO 1, protein sequence SEQ ID: NO 9) and HBD3 (nucleotide sequence SEQ ID: NO 2; protein sequence SEQ ID: NO 10) were divided into three domains, the conserved glycine residues (see arrows in FIG Fig. 1) served as an internal border between the various regions for the composition of the chimeric peptides of the invention. The following peptides thus resulted from the various possible combinations of the three regions (see FIG.
  • HBDCl nucleotide sequence SEQ ID: NO 3; Protein sequence SEQ ID: NO 11
  • HBDC2 nucleotide sequence SEQ ID: NO 4; Protein sequence SEQ ID: NO 12
  • HBDC3 nucleotide sequence SEQ ID: NO 5; Protein sequence SEQ ID: NO 13
  • HBDC4 nucleotide sequence SEQ ID: NO 6; Protein sequence SEQ ID: NO 14
  • HBDC5 nucleotide sequence SEQ ID: NO 7; Protein sequence SEQ ID: NO 15
  • HBDC6 nucleotide sequence SEQ ID: NO 8; Protein sequence SEQ ID: NO 16
  • the chimeras according to the invention were expressed as fusion proteins as described in the examples. After cleavage of the fusion proteins and purification by RP-HPLC ( Figure 2), the different fractions were analyzed by MALDI-TOF. The HPLC fractions corresponding to the expected masses of the peptides are indicated by * in FIG. The chimera HBDCl was detected in 7 different fractions, all with the same expected mass (peptides HBDC1.1 - 1.7).
  • HBDC2 The remaining chimeras, HBDC2, 3, 4, 5 and 6, were eluted as a single fraction with the expected mass. The different elution times are probably related to a different linkage of the cysteine side chains in the different molecules.
  • HBDC3 The higher activity of HBDC3 compared to the other peptides tested can not be explained by the total charge of the protein.
  • the theoretical value at pH 7 is 8.8 for HBDC3, which is the same as the value for the less active HBDC4, and lower than for the less active HBD3 and HBDC1 (Table 1).
  • HBDC3 the highest total chimeric peptide, HBDC5
  • HBD2 the highest total chimeric peptide
  • Biologically active means that the fragments have a maximum of 10-fold higher minimum bactericidal concentration (MBC) than the underlying complete peptides according to the measuring method given in the examples.
  • MBC minimum bactericidal concentration
  • the invention furthermore relates to peptides in which individual amino acids are exchanged. Preferably, these are conservative substitutions, d. H. Amino acids with similar properties are substituted, for example alanine versus serine, leucine versus isoleucine, etc. Again, it is preferred that no more than 10% of the amino acids in the peptides be replaced.
  • individual amino acids can also be replaced by non-natural amino acids, ie by amino acids which carry further functional groups, for example hydroxyproline, methylthreonine, homocysteine, etc. Also in this case, preferably not more than 10% of the amino acids are modified accordingly.
  • the peptides Carry derivatives, for example amidated, glycosylated, acetylated, sulfated or phosphorylated.
  • the present invention further provides a production process for the peptides of the invention.
  • the constructive total synthesis of customary solid phases in the sense of Merrifield synthesis or a liquid phase synthesis is possible.
  • the synthetic strategy and the structure of the peptides and derivatives derived therefrom with the corresponding protected amino acids are known in the art.
  • the present invention also relates to the use of the peptides of the invention as medicaments for various therapeutic indications.
  • the peptides can be used as highly pure substances or - if sufficient for use - within a partially purified peptide mixture or as a mixture of several inventive peptides.
  • the peptides according to the invention are also suitable for the surface coating of materials which should be kept as sterile as possible and in particular should not be colonized by bacteria, e.g. medical instruments, catheters, medical implants or contact lenses.
  • the nucleotide sequences of the HBD2 / HBD3 chimeras were codon-optimized for bacterial expression (SEQ ID NOs: 3-8) and synthesized by GENEART. These nucleotide sequences were cloned into the expression vector pET / 30a (Novagen) using the Kspl and Xhol restriction sites to generate a fusion protein with an N-terminal (His) 6 tag and an enterokinase or a factor Xa restriction site. The sequences of the chimeric peptides fused with the (His) 6 tag and a Enterokinase or a factor Xa restriction site are shown below. The underlined sequences belong to the HBD2 / HBD3 chimeras.
  • Peptide 1 (contains HBDC1):
  • Peptide 2 (contains HBDC2):
  • Peptide 3 (contains HBDC3):
  • Peptide 6 (contains HBDC6):
  • the optimal protein expression was carried out in the following E. co / z 'strains: BL21 (DE3) pLys (peptide 1, peptide 2 and peptide 6), B121 (DE3) (peptide 4 and peptide 5) and BLR (DE3) (peptide 3). All strains were cultured in LB medium with 50 ⁇ kanamycin at 37 ° C. When the cell cultures reached an OD 6 oo value between 0.5 and 0.6, IPTG was added to the culture to a final concentration of 1 mM or 0.3 mM (peptide 2) to induce protein expression. The cells were then cultured for a further 3 hours, except for the peptide 2 culture, which was incubated for 12 hours.
  • the bacteria were harvested by centrifugation at 8000 g and taken up in 50 mM Tris-HCl, 150 mM NaCl pH 7.5. The bacterial suspension was then sonified with a Sonopuls HD 2200 instrument (20 kHz, 200W) equipped with an MS-73 titanium microtip (Bandelin electronic GmbH) (60% duty cycle, 35% power, 1 - 1.5 min on ice) to unlock the cell membranes. After centrifuging the cell lysates for 30 min at 15,000 g, the peptides were obtained either in soluble form (peptides 1, 2 and 4) or as insoluble inclusion bodies (peptides 3, 5 and 6).
  • the soluble peptides (1, 2 and 4) in the supernatant were loaded on Ni 2+ -NTA agarose columns equilibrated with 50 mM sodium phosphate, 300 mM NaCl, 10 mM imidazole, pH 8. The columns were washed with 50 mM sodium phosphate, 300 mM NaCl, 40 mM imidazole, pH 8.0, to remove nonspecifically-bound proteins. The peptides were then eluted with 50 mM sodium phosphate, 300 mM NaCl, 250 mM imidazole, pH 8. The fractions containing the peptides were collected and concentrated with a 3000 MWCO Vivaspin 20 concentrator.
  • the insoluble inclusion bodies (peptides 3, 5, and 6) were taken up in 100 mM Tris-HCl, 6 M Gdn HCl, pH 8, and loaded on Ni-NT A agarose columns treated with 100 mM Tris-HCl, 6 M GdnHCl , pH 8, were equilibrated. The columns were washed with 100 mM Tris-HCl, 6 M GdnHCl, pH 8, and elution was carried out with 6 M GdnHCl, 50 mM sodium acetate, pH 4. The eluted fractions were collected and refolding of the peptides was performed by dilution of the Protein samples to a final concentration of 0.15 mg / ml at 1 M GdnHCl.
  • the peptides were loaded (in IM GdnHCl, pH 8.5) onto a NAP-10 column to replace the buffer with 50 mM sodium phosphate, 200 mM NaCl, pH 7.8 (cleavage buffer). The cleavage took place overnight at room temperature.
  • HBDC6 2 min. 80% A, 20 min. 36% A, 22 min. 0% A, 27 min. 0% A, 32 min. 100% A, 37 min. 100% A.
  • the average masses of derivatives from the purified peptides were determined by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
  • the samples were mixed with the matrix solution (8 mg / ml ⁇ -cyanocinnamic acid in 60% acetonitrile / 0.1% trifluoroacetic acid) and applied to a stainless steel support.
  • a MALDI-TOF TOF mass spectrometer (4700 Proteomics Analyzer, Applied Biosystems, Framingham, MA) was used. Before each measurement, the internal device calibration was performed. The average masses of the proteins were compared to the theoretical average masses of the derivatives taking into account potential disulfide formation.
  • HBD2 / HBD3 chimeras were constructed using the structures of HBD2 (pdb accession code: le4q) and HBD3 (pdb accession code: lkj6) Template created. The position of the six cysteine residues in each molecule was used to superpose the two structures. The essential parts were taken from each structure and combined into chimeric molecules.
  • HBD2 pdb accession code: le4q
  • HBD3 pdb accession code: lkj6
  • the antimicrobial activity of the peptides was determined by means of an altered microdilution test as described previously (25). Briefly, after 2-3 h growth in "brain heart infusion broth" at 36 ⁇ 1 ° C, the bacterial suspensions were adjusted to 10 4 to 10 5 bacteria / ml in 10 mM sodium phosphate buffer (pH 7.4) with 1 % "Tryptic soy broth” (TSB). Per 100 ⁇ M bacterial suspension were mixed with 10 ⁇ M solution of an antimicrobial peptide (final concentrations tested: 0.0125 - 100 ug / ml) and incubated at 36 ⁇ -1 ° C. CFUs ("colony forming units”) were determined after 2 h.
  • a negative control bacteria suspensions were used, which were mixed with 10 ⁇ phosphate buffer / 1% TSB or with 10 ml of 0.01% acetic acid instead of with peptide solution.
  • the antibacterial activities of the peptides are reported as LD90 ("90% lethal dose", concentrations which are lethal to 90% of the microorganisms) or as MBCs ("minimum bactericidal concentrations",> 99.9% kill).
  • a bacterial strain was arbitrarily defined as being susceptible to peptide at MBC ⁇ 12.5 ⁇ g / ml, mediocre at 25 ⁇ MBC ⁇ 100 ⁇ g / ml and resistant to MBC> 100 ⁇ g / ml.
  • Table 1 Antimicrobial activity and total charge at pH 7 of HBD2, HBD3 and HBD2 / HBD3 chimeras HBDC1-6.
  • MBC minimal bactericidal concentration, minimum bactericidal concentration (concentration at which more than 99.9% of the bacteria are killed).

Abstract

Nukleinsäuremolekül ausgewählt aus der Gruppe bestehend aus a) einem Nukleinsäuremolekül mit einer der in SEQ ID:NO 4 bis SEQ ID:NO 8 dargestellten Nukleotidsequenz, b) einem Nukleinsäuremolekül, das ein Peptid mit einer der in SEQ ID:NO 12 bis SEQ ID:NO 16 dargestellten Aminosäuresequenz kodiert, c) einem Nukleinsäuremolekül, dessen Komplementärstrang an ein Nukleinsäuremolekül nach a) oder b) hybridisiert und das ein Peptid mit antimikrobieller Aktivität codiert, und d) einem Nukleinsäuremolekül, dessen Nukleotidsequenz von der Nukleotidsequenz eines Nukleinsäuremoleküls nach c) aufgrund des degenerierten genetischen Codes abweicht.

Description

Chimäre humane beta-Defensine Die Erfindung betrifft für antimikrobielle chimäre Peptide aus humanem beta-Defensin-2 (HBD2) und humanem beta-Defensin-3 (HBD3) mit einem neuen antimikrobiellen Wirkungspektrum kodierende Sequenzen, die von diesen Sequenzen kodierten antimikrobiellen Peptide und deren Derivate, sowie deren Verwendung zur Herstellung antimikrobiell wirksamer Substanzen und ihre Anwendung.
Antimikrobielle Peptide wurden von einer breiten Vielfalt von Organismen isoliert, einschließlich des Menschen, bei dem sie hauptsächlich an der ersten Linie der Pathogenabwehr teilnehmen (1). Unter diesen Peptiden finden sich die Defensine, eine Familie von antimikrobiellen Peptiden, die eine Größe von 3 bis 6 kDa besitzen und einen hohen Anteil sowohl an kationischen Aminosäureresten als auch an Cysteinresten besitzen (2- 5). Ihre Abundanz in Menschen und anderen Vertebraten, zusammen mit ihrer mikrobioziden Aktivität, machte sie zu wichtigen Effektor-Molekülen von Neutrophilen, mukosalen Oberflächen, Haut und anderen Epithelien (6). Die humanen Defensine werden in zwei Subfamilien klassifiziert: alpha- und beta-Defensine, die sich in der Lokalisation und der Paarung von 6 Cysteinresten unterscheiden (7-9). Menschliche beta-Defensine (HBD1-HBD4) finden sich hauptsächlich in verschiedenen epithelialen Zellen und Geweben. Zwei der humanen beta-Defensine, HBD2 und HBD3, wurden ursprünglich aus Keratinocyten von Patienten mit Psoriasis isoliert (10, 11) . Außer in der Haut werden HBD2 und HBD3 auch in den Epithelien der Trachea, Lunge, Herzmuskel und Plazenta exprimiert (10, 12, 13) . Beide Moleküle werden durch bakteriellen Einfluss oder proinflammatorische Cytokine, zum Beispiel TNFa, Interferon-γ und Interleukin-lß, induziert (10, 12-16).
Die meisten Beweise für die antimikrobielle Aktivität der humanen beta-Defensine in vivo kommen aus Experimenten in denen gezeigt wurde, dass gereinigte Peptide auf eine große Anzahl von Mikroorganismen in vitro wirken. HBD1 hat eine antimikrobielle Wirkung gegen grampositive und gramnegative Bakterien und schützt gegen Infektionen mit Adenovirus (17, 18) . HBD2 ist gegen viele gramnegative Bakterien aktiv, unter ihnen Escherichia coli und Pseudomonas aeruginosa, aber auch gegen Candida albicans. Es wurde zudem eine bakteriostatische Wirkung gegen grampositive Staphylococcus aureus Bakterien nachgewiesen (10). Des Weiteren wurde nachgewiesen, dass HBD2 stärker gegen E. coli wirkt als HBD1 (16). Die antimikrobielle Wirkung von HBD1 und HBD2 hängt von der Verfügbarkeit von Natriumchlorid ab (16). Im Gegensatz zu ihnen ist HBD3 viel stärker positiv geladen und besitzt eine antimikrobielle Wirkung nicht nur gegen gramnegative sondern auch gegen grampositive Bakterien, einschließlich S. aureus und Enterococcus faecium (11, 19). Darüber hinaus ist die bakteriozide Wirkung von HBD3 unempfindlich gegenüber der Ionenkonzentration (11).
Obwohl die Tertiärstrukturen der humanen beta-Defensine bestimmt wurden, ist der Mechanismus der Permeabilisierung der bakteriellen Doppelmembranen nicht bestätigt. Humane beta-Defensine zeigen eine charakteristische Faltung die aus dreisträngigen antiparallelen ß-Faltblättern und einer kurzen N-terminalen α-Helix aufgebaut sind (20-23). Strukturuntersuchungen haben ergeben, dass sowohl HBD2 als auch HBD3 in Lösung Dimere bilden können, wobei dies für HBD2 nur bei hohen Peptidkonzentrationen gilt (20, 23). Für HBD2-Dimere wurde postuliert, dass sie Oktamere bilden, wobei diese mit ihren strukturellen und elektrostatischen Eigenschaften keine Membran-durchspannende Pore zu bilden scheinen. Für HBD2 wurde vorgeschlagen, dass es die Bakterienmembran durch elektrostatische Interaktionen zerstört (20). Darüber hinaus wurde für HBD3 gezeigt, dass es Ionenkanäle in Oozyten von Xenopus laevis erzeugt (19). Der Wirkungsmechanismus der Defensine ist zwar nicht vollständig aufgeklärt, es wird aber angenommen, dass ihr amphipatischer Charakter der Schlüssel zur antimikrobiellen Aktivität ist. Innerhalb der Defensinfamilie sind die Primärstrukturen, mit Ausnahme der Cysteinreste, wenig konserviert. Es wird vermutet, dass die antimikrobielle Wirkung mit der positiven Gesamtladung und der Hydrophobizität des Moleküls zunimmt (24). Die Primärstrukturen von HBDl-3 legen nahe, dass es beachtliche Unterschiede in der Gesamtladung zwischen diesen Defensinen gibt. HBDl-3 zeigen eine positive Gesamtladung von +4, +6 bzw. +11. Kationische Aminosäurereste treten hauptsächlich hinter dem dritten Cystein in HBD1 und HBD2 auf. In HBD3 liegen neun von dreizehn kationischen Aminosäureresten hinter diesem Cysteinrest. Die antimikrobielle Wirkung von diesen Peptiden variiert. HBD3 zeigt die stärkste Aktivität und die höchste positive Ladung. Die Bedeutung der Struktur für die Funktion wurde in Studien intensiv erforscht, in denen die Defensin Primärstruktur verändert wurde. Einzelne Aminosäurenaustausche und N-terminale Deletionen, die keinen Einfluss auf die Ladung haben oder die Hydrophobie nicht massiv verändern, erhalten die antimikrobielle Wirkung. Allerdings können diese Änderungen die Empfänglichkeit der Bakterien und die Tötungsrate verändern. Es wird diskutiert, dass eine Erhöhung der Gesamtladung und der Hydrophobie die antimikrobielle Aktivität verstärkt. Peptide mit einer geringeren Anzahl an kationischen Resten und moderater Hydrophobie sind nahezu inaktiv, während Peptide mit einer hohen Gesamtladung und mit signifikant hydrophobem Charakter aktiv sind. HBD3 wurde in mehreren Studien analysiert, wobei verschiedene Regionen des Peptides eingehend untersucht wurden. Synthetische Peptide mit Sequenzen aus dem N-Terminus und dem C-Terminus wurden hergestellt. Die N-terminale Sequenz von HBD3 bestehend aus 17 Aminosäuren und einer Gesamtladung von nur +4 wurde synthetisiert. Trotz seiner geringen Ladung zeigte dieses Peptid eine antimikrobielle Aktivität gegen grampositive und gramnegative Organismen. N-terminale Deletionsmutanten von HBD3 heben die Bedeutung der ersten sieben Reste für die Aktivität gegen grampositive Organismen hervor (24).
Es besteht dringender Bedarf an neuen Therapeutika, um pathogene Mikroorganismen erfolgreich zu bekämpfen. Die natürlich vorkommenden humanen beta-Defensine sind in diesem Zusammenhang eine Proteinfamilie mit sehr interessanten und unterschiedlichen antibiotischen Eigenschaften. Wie bereits oben erwähnt zeigen z. B. HBD2 und HBD3 bemerkenswerte Unterschiede in ihren Wirkungsspektra. Der vorliegenden Erfindung liegt damit die Aufgabe zugrunde, neue Peptide bereitzustellen, die, ausgehend von den natürlichen Stoffen HBD2 und HBD3, als Arzneimittel mit einer kombinierten und verbesserten biologischen und therapeutischen Defensin-Aktivität verwendet werden können.
Erfindungsgemäß wird diese Aufgabe durch Chimäre aus HBD2 und HBD3 mit den Merkmalen des Anspruch 1 gelöst. Die Unteransprüche geben vorteilhafte Ausführungen der Erfindung wieder.
Die Erfindung wird in den Figuren näher veranschaulicht. Es zeigen: Fig. 1 eine schematische Strukturdarstellung der HBD2/HBD3-Chimären (Cl - C6) und einen Sequenzvergleich zwischen HBD2 und HBD3; und
Fig. 2 das Ergebnis der chromatographischen Aufreinigung der rekombinanten HBD2/HBD3-Chimären.
Die unter der SEQ ID:NO 3 bis SEQ ID:NO 8 angegebenen Nukleinsäuresequenzen codieren für neuartige Peptide, die HBD2/HBD3-Chimäre HBDC1 bis C6 (Aminosäuresequenzen: SEQ ID:NO 11 bis SEQ ID:NO 16). Die erfindungsgemäße Peptide HBDC3 und C5 weisen eine einzigartige Aktivität gegen E. coli und S. aureus auf (siehe Tabelle 1): Sie sind überraschenderweise mindestens genauso wirksam oder gar wirksamer gegen diese Erreger als die natürlich vorkommenden Defensine HBD2 und HBD3.
Die strukturellen Bestimmungsfaktoren, die für die verschiedenen Aktivitäten von HBD2 und HBD3 gegen grampositive und gramnegative Bakterien verantwortlich sind, wurden untersucht durch die Generierung sechs chimärer Moleküle aus HBD2 und HBD3 und der Ermittlung ihrer Aktivität gegen E. coli- und S. aureus-Stärame.
Bei HBD2 und HBD3 sind nicht nur die beta-Defensin-typischen Cysteinreste sondern auch zwei Glycinreste konserviert (siehe Fig. 1). Die dreidimensionale Struktur beider Defensine zeigte, dass diese Glycinreste sich in loop-Regionen (21, 23) befinden. Die Sequenzen von HBD2 (Nukleotidsequenz SEQ ID:NO 1; Proteinsequenz SEQ ID:NO 9) und HBD3 (Nukleotidsequenz SEQ ID:NO 2; Proteinsequenz SEQ ID:NO 10) wurden in drei Domänen aufgeteilt, wobei die konservierten Glycinreste (siehe Pfeile in Fig. 1) als interne Grenze zwischen den verschiedenen Regionen für die Zusammensetzung der erfindungsgemäßen chimären Peptide dienten. Aus den verschiedenen Kombinationsmöglichkeiten der drei Regionen entstanden somit folgende Peptide ( vgl. Fig. 1):
HBDCl: Nukleotidsequenz SEQ ID:NO 3; Proteinsequenz SEQ ID:NO 11
HBDC2: Nukleotidsequenz SEQ ID:NO 4; Proteinsequenz SEQ ID:NO 12
HBDC3: Nukleotidsequenz SEQ ID:NO 5; Proteinsequenz SEQ ID:NO 13
HBDC4: Nukleotidsequenz SEQ ID:NO 6; Proteinsequenz SEQ ID:NO 14
HBDC5: Nukleotidsequenz SEQ ID:NO 7; Proteinsequenz SEQ ID:NO 15
HBDC6: Nukleotidsequenz SEQ ID:NO 8; Proteinsequenz SEQ ID:NO 16
Interessanterweise, bilden die drei Domänen, die durch die Aufteilung von HBD2 und HBD3 an den konservierten Glycinresten entstehen, ein einziges, eigenständiges Epitop auf der Moleküloberfläche. Die erfindungsgemäßen Chimären wurden wie in den Beispielen beschrieben als Fusionsproteine exprimiert. Nach der Spaltung der Fusionsproteine und der Aufreinigung durch RP-HPLC (Fig. 2) wurden die verschiedenen Fraktionen mittels MALDI-TOF analysiert. Die HPLC-Fraktionen, die den erwarteten Massen der Peptide entsprechen sind in Fig. 2 durch * gekennzeichnet. Die Chimäre HBDCl wurde in 7 verschiedenen Fraktionen detektiert, alle mit der gleichen erwarteten Masse (Peptide HBDC1.1 - 1.7). Die restlichen Chimären, HBDC2, 3, 4, 5 und 6, wurden als eine einzige Fraktion mit der erwarteten Masse eluiert. Die unterschiedlichen Elutionszeiten hängen wahrscheinlich mit einer unterschiedlichen Verknüpfung der Cysteinseitenketten in den verschiedenen Molekülen zusammen. Die antimikrobielle Aktivität der erfindungsgemäßen Chimären gegen E. coli (ATCC 35218) and S. aureus (ATCC 12600) wurde bestimmt und mit der Aktivität von HBD2 und HBD3 verglichen (Tabelle 1). Dabei stellt sich heraus, dass HBDC3 überraschenderweise eine höhere Aktivität gegen beide Stämme aufweist als HBD2, HBD3 und alle anderen erfindungsgemäßen Chimären (mit der Ausnahme der minimalen bakteriziden Konzentration von HBDC5 gegen S. aureus). Die höhere Aktivität von HBDC3 im Vergleich zu den anderen getesteten Peptiden kann nicht anhand der Gesamtladung des Proteins erklärt werden. Der theoretische Wert bei pH 7 liegt für HBDC3 bei 8,8, und ist somit genau so hoch wie der Wert für das weniger aktive HBDC4, und niedriger als der Wert für die ebenfalls weniger aktiven HBD3 und HBDC1 (Tabelle 1). Nach HBDC3 erweist sich das chimäre Peptid mit der höchsten Gesamtladung, HBDC5, als genau so effektiv wie HBD2 und sogar besser als HBD3 gegen E. coli sowie effektiver als beide natürliche Defensine gegen S. aureus.
Gegenstand der Erfindung sind neben den beschriebenen Peptiden auch deren biologisch aktive Fragmente. Biologisch aktiv bedeutet, dass die Fragmente gemäß dem in den Beispielen angegebenen Messverfahren eine maximal 10-fach höhere minimale bakterizide Konzentration (MBC) aufweisen als die zugrunde liegenden kompletten Peptide. Bevorzugt handelt es sich um Derivate, bei denen N- oder C-terminal eine oder mehrere Aminosäuren fehlen. Es können jedoch auch Aminosäuren aus der Sequenz deletiert sein. Solche Fragmente weisen bevorzugt nicht mehr als 30 % deletierte Aminosäuren auf.
Gegenstand der Erfindung sind weiterhin solche Peptide, bei denen einzelne Aminosäuren ausgetauscht sind. Bevorzugt handelt es sich dabei um konservative Austausche, d. h. Aminosäuren mit ähnlichen Eigenschaften werden ersetzt, beispielsweise Alanin gegen Serin, Leucin gegen Isoleucin, etc. Auch hier wird bevorzugt, dass nicht mehr als 10 % der Aminosäuren in den Peptiden ersetzt werden.
Darüber hinaus können auch einzelne Aminosäuren durch nicht-natürliche Aminosäuren ersetzt sein, d.h. durch Aminosäuren, die weitere funktionelle Gruppen tragen, beispielsweise Hydroxyprolin, Methylthreonin, Homocystein, etc. Auch in diesem Fall sind bevorzugt nicht mehr als 10 % der Aminosäuren entsprechend modifiziert. Weiterhin können die Peptide Derivatisierungen tragen, beispielsweise amidiert, glycosiliert, acetyliert, sulfatiert oder phosphoryliert sein.
Die vorliegende Erfindung stellt des Weiteren ein Herstellungsverfahren für die erfindungsgemäßen Peptide bereit. Neben der gentechnischen Herstellung der Peptide ist auch die aufbauende Totalsynthese an üblichen Festphasen im Sinne der Merrifield-Synthese oder einer Flüssigphasensynthese möglich. Die Synthesestrategie und der Aufbau der Peptide und von ihnen abgeleiteter Derivate mit den entsprechend geschützten Aminosäuren sind dem Fachmann bekannt.
Die vorliegende Erfindung betrifft außerdem die Verwendung der erfindungsgemäßen Peptide als Arzneimittel für verschiedene therapeutische Indikationen. Dazu können die Peptide als hochreine Stoffe oder - wenn für die Verwendung ausreichend - innerhalb eines teilweise gereinigten Peptidgemisches oder als Gemisch mehrerer erfindungsgemäßer Peptide verwendet werden.
Darüber hinaus eignen sich die erfindungsgemäßen Peptide auch zur Oberflächenbeschichtung von Materialien, die möglichst steril gehalten und insbesondere nicht von Bakterien besiedelt werden sollen, z.B. medizinische Instrumente, Katheter, medizinische Implantate oder Kontaktlinsen.
Die Erfindung wird anhand der folgenden Beispiele näher beschrieben.
Beispiel 1:
Generierung chimärer HBD2- und HBD3-Konstrukte
Die Nukleotidsequenzen der HBD2/HBD3-Chimären wurden für die bakterielle Expression Codon-optimiert (SEQ ID:NO 3 - 8) und von GENEART synthetisiert. Diese Nukleotidsequenzen wurden in den Expressionsvektor pET/30a (Novagen) unter Verwendung der Kspl und Xhol Restriktionsschnittstellen kloniert, um ein Fusionsprotein mit einem N- terminalen (His)6-Tag und einer Enterokinase- oder einer Faktor Xa-Restriktionsschnittstelle zu generieren. Die Sequenzen der chimären Peptide fusioniert mit dem (His)6-Tag und einer Enterokinase- oder einer Faktor Xa-Restriktionsschnittstelle werden im Folgenden dargestellt. Die unterstrichen dargelegten Sequenzen gehören zu den HBD2/HBD3-Chimären.
Peptid 1 (enthält HBDC1):
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKGIGDPVTCL SG AICHPVFCPRRYKOIGKCSTRGRKCCRRKK
Peptid 2 (enthält HBDC2):
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKGIGDPVTCLKSG GRCAVLSCLPKEEOIGTCGLPGTKCCKKP
Peptid 3 (enthält HBDC3):
MHHHHHHSSGLVPRGSGMKETAAAKFEROHMDSPDLGTIEGRGIINTLOKYYCRVR GAICHPVFCPRRYKQIGTCGLPGTKCCKKP
Peptid 4 (enthält HBDC4):
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTIEGRGIINTLOKYYCRVR GGRCAVLSCLPKEEOIGTCGLPGTKCCKKP Peptid 5 (enthält HBDC5):
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTIEGRGII TLOKYYCRVR GAICHPVFCPRRYKOIGKCSTRGRKCCRRKK
Peptid 6 (enthält HBDC6):
MHHHHHHSSGLVPRGSGMKETAAAKFERQHMDSPDLGTDDDDKGIGDPVTCLKSG GRCAVLSCLPKEEOIGKCSTRGRKCCRRKK .
Beispiel 2:
Proteinexpression
Die optimale Proteinexpression erfolgte in folgenden E. co/z'-Stämmen: BL21 (DE3) pLys (Peptid 1, Peptid 2 und Peptid 6), B121 (DE3) (Peptid 4 und Peptid 5) und BLR (DE3) (Peptid 3). Alle Stämme wurden in LB-Medium mit 50 μ^ιηΐ Kanamycin bei 37 °C kultiviert. Als die Zellkulturen einen OD6oo-Wert zwischen 0,5 und 0,6 erreichten, wurde IPTG zu einer Endkonzentration von 1 mM oder 0,3 mM (Peptid 2) zur Kultur hinzugefügt, um die Proteinexpression zu induzieren. Die Zellen wurden anschließend für weitere 3 Stunden kultiviert, mit Ausnahme der Peptid 2-Kultur, wobei diese 12 Stunden inkubiert wurde.
Beispiel 3:
Aufreinigung der rekombinant-exprimierten Peptide
Die Bakterien wurden durch Zentrifugation bei 8000 g geerntet und in 50 mM Tris-HCl, 150 mM NaCl pH 7,5 aufgenommen. Die Bakteriensuspension wurde anschließend mit einem Sonopuls HD 2200 Gerät (20 kHz, 200W) ausgestattet mit einem MS-73 Titanium-microtip (Bandelin electronic GmbH) sonifiziert (60% duty cycle, 35% power, 1 - 1,5 Min auf Eis), um die Zellmembranen aufzuschließen. Nach Zentrifugation der Zelllysate für 30 Min. bei 15000 g, erhielt man die Peptide entweder in löslicher Form (Peptide 1, 2 und 4) oder als unlösliche Inklusionskörper (Peptide 3, 5 und 6).
Die löslichen Peptide (1, 2 und 4) im Überstand wurden auf Ni2+-NTA- Agarose-Säulen geladen, die mit 50 mM Natriumphosphat, 300 mM NaCl, 10 mM Imidazol, pH 8 equilibriert wurden. Die Säulen wurden mit 50 mM Natriumphosphat, 300 mM NaCl, 40 mM Imidazol, pH 8,0, gewaschen, um unspezifisch-gebundene Proteine zu entfernen. Die Peptide wurden anschließend mit 50 mM Natriumphosphat, 300 mM NaCl, 250 mM Imidazol, pH 8, eluiert. Die Fraktionen, die die Peptide enthielten wurden gesammelt und mit einem 3000 MWCO Vivaspin 20 Konzentrator konzentriert. Die unlöslichen Inklusionskörper (Peptide 3, 5 und 6) wurden in 100 mM Tris-HCl, 6 M GdnHCl, pH 8, aufgenommen und auf Ni -NT A- Agarose-Säulen geladen, die mit 100 mM Tris-HCl, 6 M GdnHCl, pH 8, equilibriert wurden. Die Säulen wurden mit 100 mM Tris-HCl, 6 M GdnHCl, pH 8, gewaschen, und die Elution erfolgte mit 6 M GdnHCl, 50 mM Natriumacetat, pH 4. Die eluierten Fraktionen wurden gesammelt, und die Rückfaltung der Peptide erfolgte durch Dilution der Proteinproben zu einer Endkonzentration von 0,15 mg/ml bei 1 M GdnHCl. Das Redox-System (Endkonzentration 4 mM reduziertes und 0,4 mM oxidiertes Glutathion) wurde hinzugefügt, und der pH- Wert wurde auf 8,5 eingestellt. Die Proben wurden für 72 h bei 4 °C inkubiert und anschließend für 30 Min. bei 18000 g zentrifugiert und konzentriert. Beispiel 4:
Spaltung der Peptide durch Enterokinase oder Faktor Xa
Vor der Spaltung wurden die Peptide (in IM GdnHCl, pH 8,5) auf eine NAP-10-Säule geladen, um den Puffer gegen 50 mM Natriumphosphat, 200 mM NaCl, pH 7,8 (Spaltungspuffer) zu ersetzen. Die Spaltung erfolgte Übernacht bei Raumtemperatur.
Beispiel 5:
Aufreinigung der gespaltenen Peptide durch HPLC
Alle Peptide wurden nach der Spaltung durch HPLC aufgereinigt mittels einer VP 250/10 Nulceosil 300-7 C18 reverse-phase HPLC-Säule (Macherey Nagel) verbunden mit einer VP 50/10 Nucleosil 300-7 C18 reverse-phase HPLC- Vorsäule. Die Absorbtion wurde bei 214 nm gemessen. Die Fraktionen wurden manuell gesammelt, um die verschiedenen Formen der Peptide getrennt zu erhalten. Alle Proben wurden auf einen sauren pH Wert eingestellt, bevor sie auf die Säule aufgetragen wurden. Die Gradienten bestanden aus Puffer A (2% ACN in 0,1% TFA) und B (95% ACN in 0,1%TFA). Folgende Gradienten wurden für die Aufreinigung der Peptide verwendet:
2 Min. 80% A, 10 Min. 80% A, 20 Min. 70% A, 23 Min. 0% A, 28 Min. 0% A, 33 Min. 100 % A, 38 Min. 100 % A.
2 Min. 80% A, 20 Min. 36% A, 22 Min. 0% A, 27 Min. 0% A, 32 Min. 100 % A, 37 Min. 100% A.
2 Min. 80% A, 20 Min. 25% A, 22 Min. 0% A, 27 Min. 0% A,32 Min. 100 % A, 37 Min. 100% A.
2 Min. 80% A, 20 Min. 25 % A, 22 Min. 0% A, 27 Min. 0% A, 32 Min. 100 % A, 37 Min. 100% A.
3 Min. 69 % A, 10 Min. 69% A, 20 Min. 68 % A, 30 Min. 68% A, 34 Min. 0% A, 39 Min. 0% A, 44 Min. 100 % A, 49 Min. 100% A. HBDC6 : 2 Min. 80% A, 20 Min. 36 % A, 22 Min. 0% A, 27 Min. 0% A, 32 Min. 100 % A, 37 Min. 100 % A.
Beispiel 6:
Bestimmung der Proteinkonzentration
Die Extinktion bei 214 nm wurde für die verschiedenen Peptide gemessen, und die Proteinkonzentration wurde anhand folgender Extinktionskoeffizienten ermittelt:
HBDC1: ε214 = 138805 MT 1;
HBDC2: ε214 = 116686 M^cnf
HBDC3: ε = 161699 T'cm"1;
HBDC4: ε = 142426 M^cnf
HBDC5: ε2)4 = 158853 MTW;
HBDC6: ε = 122378 M^cnT1. Beispiel 7:
Massenspektrometrie
Die durchschnittlichen Massen der Derivate aus den gereinigten Peptiden wurden mittels matrix-assisted-laser desorption ionization-time-of-flight Massenspektrometrie (MALDI-TOF MS) bestimmt. Die Proben wurden mit der Matrix-Lösung (8 mg/ml α-Cyanozimtsäure in 60 % Acetonitril / 0,1 % Trifiuoressigsäure) vermischt und auf einen Edelstahlträger aufgebracht. Zur Aufnahme der Massenspektren im Positiv-Ionen-Linearmodus wurde ein MALDI-TOF TOF Massenspektrometer (4700 Proteomics Analyzer, Applied Biosystems, Framingham, MA, USA) verwendet. Vor jeder Messung wurde die interne Gerätekalibration durchgeführt. Die durchschnittlichen Massen der Proteine wurden mit den theoretischen durchschnittlichen Massen der Derivate unter Berücksichtigung potenzieller Disulfidbildung verglichen.
Beispiel 8:
Molekulares Modelling
Modelle der dreidimensionalen Struktur der HBD2/HBD3-Chimären wurden mit den Strukturen von HBD2 (pdb accession code: le4q) und HBD3 (pdb accession code: lkj6) als Vorlage erstellt. Die Position der sechs Cysteinreste in jedem Molekül wurde verwendet, um die zwei Strukturen zu superponieren. Die wesentlichen Teile wurden aus jeder Struktur entnommen und zu den Chimären Molekülen kombiniert. Beispiel 9:
Antimikrobielle Aktivität
Die antimikrobielle Aktivität der Peptide wurde anhand eines veränderten Mikrodilutionsversuches wie bereits beschrieben bestimmt (25). In Kürze, nach 2-3 h Wachstum in„brain heart infusion broth" bei 36 ± 1 °C, wurden die Bakteriensuspensionen auf 104 bis 105 Bakterien/ml eingestellt in 10 mM Natriumphosphat-Puffer (pH 7,4) mit 1 % „tryptic soy broth" (TSB). Je 100 μΐ Bakteriensuspension wurden mit 10 μΐ Lösung eines antimikrobiellen Peptids versetzt (getestete Endkonzentrationen: 0,0125 - 100 μg/ml) und bei 36 ± -1 °C inkubiert. CFUs („colony forming units" =„koloniebildende Einheiten") wurden nach 2 h bestimmt. Als Negativkontrolle dienten Bakteriensuspensionen, die mit 10 μΐ Phosphat-Puffer/ 1 % TSB oder mit 10 ml 0,01 % Essigsäure statt mit Peptid-Lösung versetzt wurden. Die antibakteriellen Aktivitäten der Peptide werden als LD90 („90 % lethal dose", Konzentrationen, die für 90 % der Mikroorganismen letal sind) oder als MBCs („minimal bactericidal concentrations", minimale bakterizide Konzentrationen; > 99,9 % Tötung) angegeben. Ein Bakterienstamm wurde willkürlich definiert als empfindlich gegenüber ein Peptid bei MBC- Werten < 12,5 μg/ml, als mittelmäßig empfindlich bei 25 < MBC < 100 μg/ml und als resistent bei MBC- Werten > 100 μg/ml.
Tabelle 1: Antimikrobielle Aktivität und Gesamtladung bei pH 7 von HBD2, HBD3 und HBD2/HBD3-Chimären HBDC1-6.
MBC: minimal bactericidal concentration, minimale bakterizide Konzentration (Konzentration, bei der mehr als 99,9 % der Bakterien getötet werden).
LD 90: letale Dosis für 90 % der Zellen
n.d.: nicht bekannt Bibliographie
(1) Jenssen, H, Hamill, P, Hancock, RE. (2006) Peptide antimicrobial agents. Clin Microbiol Rev. 19, 491 -511.
(2) Ganz, T, Selsted, ME, Szklarek, D, Harwig, SS, Daher, K, Bainton, DF, Lehrer, RI.
(1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 76, 1427-1435.
(3) Selsted, ME, Brown, DM, DeLange, Rj, Harwig, SS, Lehrer, RI. (1985) Primary structures of six antimicrobial peptides of rabbit peritoneal neutrophils. J Biol Chem. 260, 4579-4584.
(4) Selsted, ME, Harwig, SS, Ganz, T, Schilling, JW, Lehrer, RI. (1985) Primary structures of three human neutrophil defensins. J Clin Invest. 76, 1436-1439.
(5) Diamond, G, Zasloff, M, Eck, H, Brasseur, M, Maloy, WL, Bevins, CL. (1991) Tracheal antimicrobial peptide, a cysteine-rich peptide from mammalian tracheal mucosa: peptide isolation and cloning of a cDNA. Proc Natl Acad Sei U S A. 88, 3952-3956.
(6) Lehrer, RI, Ganz, T. (1996) Endogenous vertebrate antibiotics. Defensins, protegrins, and other cysteine-rich antimicrobial peptides. Ann N Y Acad Sei. 797, 228-239.
(7) Ganz, T. (2005) Defensins and other antimicrobial peptides: a historical perspective and an update. Comb Chem High Throughput Screen. 8, 209-217.
(8) Selsted, ME, Harwig, SS. (1989) Determination of the disulfide array in the human defensin HNP-2. A covalently cyclized peptide. J Biol Chem. 264, 4003-4007.
(9) Selsted, ME, Tang, YQ, Morris, WL, McGuire, PA, Novotny, MJ, Smith, W, Henschen, AH, Cullor, JS. (1993) Purification, primary structures, and antibacterial activities of beta-defensins, a new family of antimicrobial peptides from bovine neutrophils. J Biol Chem. 268, 6641-6648.
(10) Härder, J, Bartels, J, Christophers, E, Schröder, JM. (1997) A peptide antibiotic from human skin. Nature. 387, 861.
(11) Härder, J, Bartels, J, Christophers, E, Schröder, JM. (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. JBiol Chem. 276, 5707-5713. (12) Garcia, JR, Krause, A, Schulz, S, Rodriguez-Jimenez, FJ, Klüver, E, Adermann, K, Forssmann, U, Frimpong-Boateng, A, Bals, R, Forssmann, WG. (2001) Human beta- defensin 4: a novel inducible peptide with a specific salt-sensitive spectrum of antimicrobial activity. Faseb J. 15, 1819-1821.
(13) Jia, HP, Schutte, BC, Schudy, A, Linzmeier, R, Guthmiller, JM, Johnson, GK, Tack, BF, Mitros, JP, Rosenthal, A, Ganz, T, McCray, PB, Jr. (2001) Discovery of new human beta-defensins using a genomics-based approach. Gene. 263, 21 1-218.
(14) Schröder, JM. (1999) Epithelial antimicrobial peptides: innate local host response elements. Cell Mol Life Sei. 56, 32-46.
(15) Härder, J, Meyer-Hoffert, U, Teran, LM, Schwichtenberg, L, Bartels, J, Maune, S, Schröder, JM. (2000) Mucoid Pseudomonas aeruginosa, TNF-alpha, and IL-lbeta, but not IL-6, induce human beta-defensin-2 in respiratory epithelia. Am J Respir Cell Mol Biol. 22, 714-721.
(16) Singh, PK, Jia, HP, Wiles, K, Hesselberth, J, Liu, L, Conway, BA, Greenberg, EP, Valore, EV, Welsh, MJ, Ganz, T, Tack, BF, McCray, PB, Jr. (1998) Production of beta-defensins by human airway epithelia. Proc Natl Acad Sei U S A. 95, 14961- 14966.
(17) Gropp, R, Frye, M, Wagner, TO, Bargon, J. (1999) Epithelial defensins impair adenoviral infection: implication for adenovirus-mediated gene therapy. Hum Gene Thor. 10, 957-964.
(18) Valore, EV, Park, CH, Quayle, AJ, Wiles, KR, McCray, PB, Jr., Ganz, T. (1998) Human beta-defensin-1 : an antimicrobial peptide of urogenital tissues. J Clin Invest. 101, 1633-1642.
(19) Garcia, JR, Jaumann, F, Schulz, S, Krause, A, Rodriguez-Jimenez, J, Forssmann, U, Adermann, K, Klüver, E, Vogelmeier, C, Becker, D, Hedrich, R, Forssmann, WG,
Bals, R. (2001) Identification of a novel, multifunctional beta-defensin (human beta- defensin 3) with specific antimicrobial activity. Its interaction with plasma membranes of Xenopus oocytes and the induetion of macrophage chemoattraction. Cell Tissue Res. 306, 257-264. (20) Hoover, DM, Rajashankar, KR, Blumenthal, R, Puri, A, Oppenheim, JJ, Chertov, O, Lubkowski, J. (2000) The structure of human beta-defensin-2 shows evidence of higher order oligomerization. JBiol Chem. 275, 32911-32918.
(21) Sawai, MV, Jia, HP, Liu, L, Aseyev, V, Wiencek, JM, McCray, PB, Jr., Ganz, T, Kearney, WR, Tack, BF. (2001) The NMR structure of human beta-defensin-2 reveals a novel alpha-helical segment. Biochemistry. 40, 3810-3816.
(22) Hoover, DM, Chertov, O, Lubkowski, J. (2001) The structure of human beta-defensin- 1 : new insights into structural properties of beta-defensins. J Biol Chem. 276, 39021- 39026.
(23) Schibli, DJ, Hunter, HN, Aseyev, V, Starner, TD, Wiencek, JM, McCray, PB, Jr., Tack, BF, Vogel, HJ. (2002) The Solution structures of the human beta-defensins lead to a better understanding of the potent bactericidal activity of HBD3 against Staphylococcus aureus. J Biol Chem. 277, 8279-8289.
(24) Taylor, K, Barran, PE, Dorin, JR. (2008) Structure-activity relationships in beta- defensin peptides. Biopolymers. 90, 1-7.
(25) Rudolph, B, Podschun, R, Sahly, H, Schubert, S, Schröder, JM, Härder, J. (2006) Identification of RNase 8 as a novel human antimicrobial protein. Antimicrob Agents Chemother. 50, 3194-3196.

Claims

ANSPRÜCHE
Nukleinsäuremolekül ausgewählt aus der Gruppe bestehend aus a) einem Nukleinsäuremolekül mit einer der in SEQ ID:NO 4 bis SEQ ID:NO 8 dargestellten Nukleotidsequenz, b) einem Nukleinsäuremolekül, das ein Peptid mit einer der in SEQ ID:NO 12 bis SEQ ID:NO 16 dargestellten Aminosäuresequenz kodiert, c) einem Nukleinsäuremolekül, dessen Komplementärstrang an ein Nukleinsäuremolekül nach a) oder b) hybridisiert und das ein Peptid mit antimikrobieller Aktivität codiert, und d) einem Nukleinsäuremolekül, dessen Nukleotidsequenz von der Nukleotidsequenz eines Nukleinsäuremoleküls nach c) aufgrund des degenerierten genetischen Codes abweicht.
Vektor, gekennzeichnet durch ein Nukleinsäuremolekül mit der Nukleotidsequenz nach einem der vorhergehenden Ansprüche.
Wirtszelle, gekennzeichnet durch ein Nukleinsäuremolekül mit der Nukleotidsequenz nach Anspruch 1.
Wirtszelle, gekennzeichnet durch den Vektor nach Anspruch 2.
5. Peptid mit einer der unter SEQ ID:NO 12 bis SEQ ID:NO 16 dargestellten Aminosäuresequenz.
6. Peptid nach Anspruch 5, dadurch gekennzeichnet, dass das Peptid ein zyklisches, amidiertes, acetyliertes, sulfatiertes, phosphoryliertes, glycosiliertes oder oxidiertes Derivat ist.
7. Peptid nach einem der Ansprüche 5 und 6, dadurch gekennzeichnet, dass < 30 % der angegebenen Aminosäuren durch andere Aminosäuren konservativ substituiert sind.
8. Peptid nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass < 10 % der angegebenen Aminosäuren mit nicht-natürlich-vorkommenden Aminosäuren substituiert sind.
9. Peptid nach Anspruch 8, dadurch gekennzeichnet, dass die nicht-natürlich-vorkommenden Aminosäuren ausgewählt sind aus der Gruppe bestehend aus Hydroxyprolin,
Methylthreonin oder Homocystein.
10. Verwendung des Peptids nach einem der Ansprüche 5 bis 9 zur Herstellung eines Arzneimittels zur Behandlung mikrobieller Infektionen.
11. Verwendung nach Anspruch 10 zur Behandlung von Infektionen mit gramnegativen oder grampositiven Bakterien.
12. Verwendung des Peptids nach einem der Ansprüche 5 bis 9 als Beschichtung für ein medizinisches Instrument, einen Katheter, ein medizinisches Implantat oder eine Kontaktlinse.
EP10805676A 2010-01-14 2010-11-20 Chimäre humane beta-defensine Withdrawn EP2523970A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010004541A DE102010004541A1 (de) 2010-01-14 2010-01-14 Chimäre humane beta-Defensine
PCT/DE2010/001365 WO2011085704A1 (de) 2010-01-14 2010-11-20 Chimäre humane beta-defensine

Publications (1)

Publication Number Publication Date
EP2523970A1 true EP2523970A1 (de) 2012-11-21

Family

ID=43662061

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10805676A Withdrawn EP2523970A1 (de) 2010-01-14 2010-11-20 Chimäre humane beta-defensine

Country Status (4)

Country Link
US (1) US8546525B2 (de)
EP (1) EP2523970A1 (de)
DE (1) DE102010004541A1 (de)
WO (1) WO2011085704A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064987A1 (ko) 2013-10-28 2015-05-07 주식회사 엘지화학 리튬 이차전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0641746B1 (de) * 1993-09-08 2002-11-06 Mbt Holding Ag Zementzusammensetzungen zum schichtförmigen Aufbringen
US8172395B2 (en) * 2002-12-03 2012-05-08 Novartis Ag Medical devices having antimicrobial coatings thereon
EP2481287B1 (de) * 2003-08-01 2016-07-20 Stratatech Corporation Exogene Polypeptide exprimierende Äquivalente menschlicher Haut
EP2077274A1 (de) * 2008-01-02 2009-07-08 Ceinge Biotecnologie Avanzate s.c. a r.l. Synthetische Analoge menschlicher Beta-Defensine mit antimikrobieller, antiviraler und chemotaktischer Aktivität

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2011085704A1 *

Also Published As

Publication number Publication date
US20130028939A1 (en) 2013-01-31
US8546525B2 (en) 2013-10-01
DE102010004541A1 (de) 2011-07-21
WO2011085704A1 (de) 2011-07-21

Similar Documents

Publication Publication Date Title
Park et al. A novel antimicrobial peptide frombufo bufo gargarizans
Kościuczuk et al. Cathelicidins: family of antimicrobial peptides. A review
Zhang et al. Porcine antimicrobial peptides: new prospects for ancient molecules of host defense
Zasloff Antibiotic peptides as mediators of innate immunity
DE69629210T2 (de) Insulinabkömmlinge
KR101503152B1 (ko) 미토콘드리아 타겟팅 펩타이드
WO1995032992A1 (de) Synthetische peptidanaloge des lungenoberflächenproteins sp-c
Chan et al. Microscopic observations of the different morphological changes caused by anti‐bacterial peptides on Klebsiella pneumoniae and HL‐60 leukemia cells
EP1614691B1 (de) Antibakterielles Peptid
JP2013521801A (ja) タンパク質及びポリペプチドの産生
JPH05504566A (ja) 生物学的活性を有するペプチドを使用した創傷処置方法
Won et al. Activity optimization of an undecapeptide analogue derived from a frog-skin antimicrobial peptide
EP2822958B1 (de) Antimikrobielle peptide
CA2325659A1 (en) Indolicidin analogs and methods of using same
CN101914561B (zh) 一种具有抗菌和修复功能的融合蛋白及其生产方法和应用
KR20190116454A (ko) 홍합 접착 단백질의 분리정제 방법
EP1397384B1 (de) Antimikrobiell wirkendes peptid
EP2905288B1 (de) Synthetische artifizielle Peptide mit antimikrobieller Wirkung
DE19825447A1 (de) Neue Insulinanaloga mit erhöhter Zinkbildung
EP2523970A1 (de) Chimäre humane beta-defensine
KR20170062559A (ko) 전복의 베타글루칸 결합 단백질로부터 유도된 항균 펩타이드, 이를 코딩하는 핵산 및 이들의 용도
DE10001113A1 (de) Rekombinante Herstellung von humanen Histon 1-Subtypen sowie deren Verwendung für therapeutische Zwecke
AT393690B (de) Homogene, rekombinante immun-interferonfragmente
EP3049432B1 (de) Analoge von temporin-sha und verwendungen davon
EP2396020B1 (de) Neue antimikrobielle peptide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141128

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20171214