EP2516305B1 - Method and device for determining the movement and/or position of a lift cabin - Google Patents

Method and device for determining the movement and/or position of a lift cabin Download PDF

Info

Publication number
EP2516305B1
EP2516305B1 EP10787793.8A EP10787793A EP2516305B1 EP 2516305 B1 EP2516305 B1 EP 2516305B1 EP 10787793 A EP10787793 A EP 10787793A EP 2516305 B1 EP2516305 B1 EP 2516305B1
Authority
EP
European Patent Office
Prior art keywords
movement
monitoring unit
signals
sensor
sensor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP10787793.8A
Other languages
German (de)
French (fr)
Other versions
EP2516305A1 (en
Inventor
Eric Birrer
Daniel Arnold
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inventio AG
Original Assignee
Inventio AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inventio AG filed Critical Inventio AG
Priority to EP10787793.8A priority Critical patent/EP2516305B1/en
Publication of EP2516305A1 publication Critical patent/EP2516305A1/en
Application granted granted Critical
Publication of EP2516305B1 publication Critical patent/EP2516305B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/04Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed
    • B66B5/06Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions for detecting excessive speed electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3492Position or motion detectors or driving means for the detector

Definitions

  • the invention relates to a method and a device for determining the movement and / or the position of an elevator car of an elevator installation, in particular for determining a possible faulty behavior of the elevator installation, as well as an elevator installation according to the preamble of the independent claims.
  • the movement and the position of an elevator car are detected in an elevator installation on the basis of sensor devices. It is typically provided that even a possible malfunction of the elevator system, such as an occurring overspeed of the elevator car, is detected in order to trigger the necessary security measures can.
  • a method and a device for measuring the speed and for detecting an overspeed in an elevator installation are in EP 0 712 804 A1 described.
  • the traveling speed of an elevator car guided in an elevator shaft and driven by a drive unit is monitored in order to stop it when an overspeed occurs.
  • a measuring strip is mounted on a wall of the elevator shaft and is scanned by a forked light barrier connected to the elevator car.
  • the measuring bar has a measuring track with flags, with which the speed of the elevator car is measured. By comparing the measured speed with the predetermined maximum speed, the possible occurrence of an overspeed can be determined and signaled in the sequence.
  • the length of the flags is in each case adapted to the maximum speed of the elevator car in the relevant shaft area, ie towards the upper and lower shaft end towards the flag segments are getting shorter.
  • the duration of the scanning of the individual flags is therefore included an at least approximately constant limit, if the entire shaft area is traversed at the intended maximum speed. If the duration of the scan of a single flag is shorter than this limit, then there is an impermissible exceeding of the maximum speed.
  • the measuring strip also has a control track with window openings, each associated with a flag and arranged at the same height. If the measuring bar and the forked light barrier are installed correctly, the markings of the measuring track and the control track are scanned correctly. On the basis of the scanning of the window openings of the control track is thus checked whether the fork light barrier sufficiently deep into the measuring strip engages and the sequential interruption of the light barriers is ensured by the flags during the journey of the elevator car. By scanning the control track can also be determined whether individual flags are missing on the measuring bar, whereby the speed measurement would be distorted.
  • the flags of the measuring track and the window openings of the control track are dimensioned and arranged such that always at least one light barrier is interrupted. If the photocells and the control track associated light barriers are not interrupted at the same time, therefore, there is an error that occurs, for example, when the fork light barrier has detached from the measuring bar.
  • the measuring strip in addition to the measuring track and the control track to a safety track, which serves the additional control of the elevator car in the upper and lower end of the hoistway.
  • the fork light barrier has a first and a second optical channel with independent light barriers whose signals are supplied to a first and a second measuring channel. If the measurement results of these two measurement channels deviate from each other, an error is detected that is due, for example, to a failure of a single optical component.
  • the displayed states do not contain an immediately clear indication of the actual state of the elevator installation. For example, a condition may occur in which all photocells are interrupted by the measuring bar. This condition may occur for a long time when the elevator car is stopped at a corresponding position within the hoistway. However, the same condition may also occur when the elevator car is in motion and one of the above errors occurs. On the basis of the available information can therefore not be clearly determined whether the elevator car is held at a certain position or moves along the elevator shaft.
  • US 2005-269163 discloses a device according to the preamble of claim 10.
  • the present invention is therefore based on the object to provide a method and an apparatus for reliably determining the movement and / or the position of an elevator car of an elevator installation, by means of which the deficiencies described above are avoided. Furthermore, an elevator system provided with this device and operating according to this method is to be specified.
  • the method and the device which are intended in particular to reliably detect a faulty behavior of the elevator installation, in particular an overspeed, should be able to be implemented with simple measures and lead to a significant improvement in the reliability of the monitoring of the elevator installation.
  • the method and the device which serve for the reliable determination of the movement and / or the position of an elevator car of an elevator installation, have a first monitoring unit, from which first signals of a first sensor device are evaluated, information on the movement and / or the position of the elevator car to determine and detect any occurring misbehavior of the elevator system and to trigger appropriate safety measures, which relate for example to the dropping of safety switching elements and thereby the shutdown of the elevator.
  • a second sensor device which does not operate according to the principle of the first sensor device is provided by means of which changes in the state of motion of the elevator car are detected and corresponding second signals are output to a second monitoring unit which evaluates the second signals and detects changes in the state of motion of the elevator car, which is then checked whether motion signals determined by the first monitoring unit are coherent with the changes in the state of motion of the elevator car detected by the second monitoring unit. If there is no coherence, a first error signal is generated.
  • the first monitoring unit determines, for example, the speed of the elevator car based on an optical first sensor device, then disturbances occurring there, as described above, are not relevant for an electro-mechanical second sensor device, based on which the second monitoring unit detects the occurrence of changes in the state of motion Elevator car detected. Conversely, disturbances that might possibly occur in the electromechanical second sensor device for the optical first sensor device are of little importance.
  • the two monitoring units Therefore work according to different principles, or in different technical sub-areas, which is why a higher information gain is achieved when comparing the corresponding work results, as compared with additionally obtained measures in the same technical sub-area.
  • the sampling provides additional information.
  • the sampling of all three paths can be affected simultaneously by the same cause. For example, all three tracks can be covered by foreign bodies. Furthermore, all light sensors can be disturbed by extraneous light at the same time, or all light sensors can also be covered by foreign bodies. Furthermore, it is to be expected that if the measuring strip is damaged, all three tracks will be damaged, which is why the addition of an additional track, which is also optically scanned, does not give the desired improvement.
  • the inventive device Due to the system-related decoupling of the first and second sensor device results in the inventive device a reduced susceptibility to simultaneously occurring disorders. If the first and second monitoring units are also electrically decoupled enough, the solution according to the invention results in a significantly increased safety gain with little effort. A mutual check of the first and second monitoring unit therefore makes it possible to immediately detect any faults and to protect the elevator system from danger.
  • first and second monitoring unit For a mutual check of the first and second monitoring unit, it is sufficient to monitor the coherent or coherent occurrence of mutually corresponding signals of both monitoring units. If the elevator car is being accelerated, optical first sensor device, which is guided along a stationary held measuring strip, and emitted from the electromechanical second sensor device to each other corresponding first or second signals, if both sensor devices are functional and thus coherent to each other.
  • a check as to whether there are also second signals in the presence of first signals which signal a movement or a change in the movement of the elevator car and signal a corresponding change in the movement of the elevator cabin therefore makes it possible to verify that both monitoring units and the associated sensor devices are in proper operation , For the test various signals can be consulted which indicate connected states. Furthermore, it is also possible to calculate kinematic variables in both monitoring units and to compare them with each other.
  • the respective signals of both monitoring units which signal movements or changes in the movement of the elevator car, occur simultaneously.
  • the mutually corresponding measurement signals typically occur with a mutual time shift, which can also vary within a certain range.
  • at least one time window is provided, within which the occurrence of two mutually corresponding signals or messages of both monitoring units is monitored.
  • the time window is opened after a corresponding signal has been detected in one of the monitoring units.
  • the second sensor device comprises at least one electromechanical motion sensor, such as an acceleration sensor and / or a speed sensor.
  • An acceleration sensor is a sensor normally provided with a test mass, with which the acceleration is measured by determining the inertial force acting on the test mass as acceleration or deceleration occurs.
  • the gravitational acceleration acting on the test mass is preferably compensated electrically or electronically, so that the signals emitted by the acceleration sensor indicate the further accelerations acting on the acceleration sensor, which are typically due to the actions of the drive device and the brake device.
  • an acceleration sensor is known in which the test mass acts on a diaphragm provided with strain gauges.
  • a capacitively or inductively operating sensor can be used as an acceleration sensor, in which the test mass is suspended elastically and acts as part of a capacitor or is moved as a magnet within a coil.
  • piezoelectric acceleration sensors are known.
  • a speed sensor may, for example, have an impeller rolling in the elevator shaft, which is coupled to a measuring transducer.
  • These electromechanical sensors therefore work on different principles than those from the EP 0 712 804 A1 known optical sensors which are preferably used in the first sensor device in the present invention.
  • the second sensor device comprises a transducer connected to the drive and / or brake device, which detects causes that lead to a later change in the movement of the elevator car.
  • signals are generated which relate to changes in the state of motion of the elevator car, which are compared within a correspondingly selected time window with corresponding signals of the first sensor device to determine whether the measurement results are coherent.
  • the choice of the size of the time window is preferably dependent on the intended speed of the elevator car, the signals to be compared and the measuring and evaluation methods used. If a movement change has already occurred and has been detected by the acceleration sensor, then the time window is selected to be correspondingly small. If, however, in the drive and / or braking device, a control command for commissioning of the system has been determined, the time window is selected correspondingly larger. When choosing the size of the time window, the applied measuring method is also taken into account. When using the forked light barrier described above, the time window is selected according to the distances of the markings of the measuring strip.
  • the first sensor device is a light barrier device mounted on the elevator car, which has first optical elements which serve to form at least a first light barrier, with which at least the markings of a measuring path of a measuring strip, which is mounted stationary in the elevator shaft, are scanned while the elevator car is moving , From the first signals emitted by the first sensor device, the first activation signals are determined in the monitoring unit.
  • first optical elements which serve to form at least a first light barrier, with which at least the markings of a measuring path of a measuring strip, which is mounted stationary in the elevator shaft, are scanned while the elevator car is moving .
  • the first activation signals are determined in the monitoring unit.
  • edge transitions or movement signals occur within the signal train, which indicate the closing or opening of the light barrier and thus the movement of the elevator car.
  • the time interval of these motion signals is inversely proportional to the speed of the elevator car.
  • the opening or interruption of the light barrier and thus a corresponding movement signal must be determined by the first monitoring unit within a correspondingly selected time window. By checking the arrival of the motion signal, therefore, the coherent operation of the two monitoring units can be verified.
  • the second signals emitted by the acceleration sensor and / or by the speed sensor and / or by the measuring transducer are evaluated in order to detect impermissible operating states, determining acceleration values lying above a limit value or speed values lying above a limit value or drive quantities lying outside of a tolerance range, wherein a second error signal is generated after determination of values which are above a limit value or outside the tolerance range.
  • Malfunctions can be detected early on the basis of the second monitoring unit, possibly before an overspeed has occurred and has been detected by the first monitoring unit. In this case, not only the proper function of the first monitoring unit, but the behavior of the elevator system is independently monitored by the second monitoring unit.
  • the first and / or second sensor device and the first and / or second monitoring unit are at least partially formed redundant.
  • the output signals of mutually corresponding redundant parts of these devices are compared with each other, wherein after occurrence of a difference, a third error signal is generated.
  • the first sensor device and at least a part of the second sensor device are preferably arranged in a common housing.
  • the acceleration sensor is constructed as a micro-electro-mechanical system (MEMS) and, for example, cast into the housing of the two sensor devices.
  • MEMS micro-electro-mechanical system
  • Corresponding micro-electro-mechanical sensor devices that can be easily integrated into the housing of the first sensor device, are for example in the WO2009117687A1 described.
  • the sensor system of the second sensor device is preferably designed redundantly or multi-channel, so that a fault can be detected by comparing the signals of the different channels.
  • the single or redundant trained first and / or the second monitoring unit in the common Housing integrated the sensor devices. This results in a total of a compact and cost-effective design of the entire monitoring device, which can be realized for example in the form of a forked light barrier. In a preferred embodiment, two separate or interconnected such forked light barriers are used.
  • the device according to the invention On the basis of the device according to the invention not only the overspeed of an elevator car can be reliably detected. It can also be determined whether a stop of the elevator car reported by the first monitoring unit actually exists. If an above-described error occurs in the first monitoring unit, the first sensor device or the measuring strip during the travel of the elevator car, it is possible that no movement signals will arrive from the first monitoring unit. This could be interpreted as the onset of hibernation of the elevator car, although it is still in progress. Again, the inventive review of the coherence of the measurement results of the first and second monitoring unit allows to recognize the error mentioned.
  • the size of the time window is preferably adjusted accordingly, within which a coherent confirmation of the change in movement is expected by the other monitoring unit. This not only determines whether the two monitoring units are in operation, but also whether they are working correctly.
  • the inventive method can therefore be advantageously used to check changes in the state of the elevator system and the state of monitoring devices and control devices.
  • the monitoring device or at least the monitoring units provided therein are preferably connected to the central control unit of the elevator installation and / or to a shaft information system which detects position data and / or movement information of the elevator car and transmits it to the control unit.
  • the exchange of information and signals between the sensor devices and the monitoring units as well as the control unit and the shaft information system can take place by means of wireless or wired transmission devices or a combination thereof.
  • the second monitoring unit can alternatively or additionally also process other information and signals, such as position signals and RFID signals, which reflect the status of the elevator installation.
  • other information and signals such as position signals and RFID signals, which reflect the status of the elevator installation.
  • the tolerance ranges e.g. the time window is reduced, if it was reported by the shaft information system that the elevator car is located in the lower or upper end of the elevator shaft.
  • Fig. 1 shows a schematic representation of an elevator system 1, which has a vertically movable in an elevator shaft 9 elevator car 11, which is connected via cables 12 and a traction sheave 13 with a drive unit 14.
  • the elevator installation 1 is further provided with a device according to the invention, by means of which the speed and possible overspeeds of the elevator car 11 can be detected.
  • the inventive device is constructed such that an error occurring therein can be reliably detected and the elevator system 1 can be secured accordingly.
  • the device according to the invention comprises a monitoring device 4, in which two mutually independent monitoring units 42, 43 are provided, in which, in this preferred embodiment, a reference clock t REF will be supplied from a shared time base 41.
  • the first monitoring unit 42 is provided with an in Fig. 2 Sensor device 2 shown connected in the embodiment shown in the EP 0 712 804 A1 known fork light barrier 2 corresponds.
  • This fork light barrier 2 has two channels and comprises pairwise optical elements, namely transmitters 21A, 23A, 25A and receivers 22A, 24A, 26A for the first channel and transmitters 21B, 23B, 25B and receivers 22B, 24B, 26B for the second channel, based on their light barriers LS MB-A1 , LS MB-A2 , LS KB-A , for the first channel and light barriers LS MB-B1 ; LS MB-B2 , LS KB-B are formed for the second channel.
  • the measurement signals generated on the basis of the light barriers of the two channels A and B are processed independently of one another and can be compared with one another in the first sensor device 2 or in the first monitoring unit by means of a comparator in order to detect malfunctions. For the following considerations, it is sufficient to consider the first and the third light barrier LS MB-A1 , LS KB-A of the first channel.
  • the fork light barrier 2 is arranged, for example, on the roof of the elevator car 11 in such a way that it embraces on one side a measuring strip 5 vertically aligned and stationarily mounted in the elevator shaft 9.
  • the fork light barrier 2 scans the markings 511, 512 of a measuring track 51 and a control track 52, which run parallel to one another along the measuring strip 5.
  • the measuring track 51 has markings 511 in the form of exposed lugs, whose width decreases towards the end areas of the elevator shaft 9, in which a steadily decreasing maximum speed is prescribed.
  • the flanks of the markings 511 are always run through the first light barrier LS MB-A1 provided at the same time intervals in a drive at maximum speed. In this case, also occur almost constant time intervals between the corresponding edges of the output from the forked light barrier 2 signals. These constant time intervals assume at maximum speed of the elevator car 11 to a minimum value, which is selected as a limit. If this minimum value or limit value is undershot, there is an overspeed.
  • the first monitoring unit 42 emits an error signal F42 to a security module 44, which triggers, for example, the release of security switching elements in the sequence and stops the elevator car 11, as shown in FIG EP 0 712 804 A1 is described.
  • a security module 44 which triggers, for example, the release of security switching elements in the sequence and stops the elevator car 11, as shown in FIG EP 0 712 804 A1 is described.
  • the second light barrier LS MB-A2 which also scans the measuring path 51, it is determined whether a mark 511 has passed or only been touched.
  • window openings 521 are provided at the level of the markings for 111 of the measuring track, which are scanned by means of the third light barrier LS KB-A of the fork light barrier 2. If the control track 52 is scanned correctly, it is ensured that the measuring strip 5 engages deep enough in the fork light barrier 2. If, however, the corresponding signals from the third light barrier LS KB-A do not occur, then another error signal is output to the security module 44.
  • each mark 511 of the measuring track 51 is opposite to a window opening 521 of the control track 52.
  • the width of the markings or flags 511 of the measuring path 51 is greater than the width of the window openings 521, which ensures that in normal operation always the first or third light barrier LS MB-A1 , LS KB-A of the fork light barrier 2 is interrupted. If the first and the third light barrier LS MB-A1 , LS KB-A are opened at the same time, an error is detected.
  • a state is permissible in which both the first and the third light barrier LS MB-A1 , LS KB-A of the forked light barrier 2 are interrupted.
  • This state which can last for a longer time when the elevator car 11 stops at a certain position, is thus not interpreted as an error.
  • this state can actually be faulty and caused for example by a foreign body 8 become.
  • a defect of an optical element 21A, 23A, 25A, 22A, 24A, 26A, or a defect in the first monitoring unit 42 may cause the aforementioned condition. This state is therefore not clear, which is why corresponding dangers result.
  • Fig. 5 shows a diagram with signals S-51, S-52 of the forked light barrier 2, from which it can be seen that the respective light barriers LS MB-A1 and LS KB-A , are closed at the times T1 and T2.
  • both light barriers LS MB-A1 and LS KB-A are closed by the measuring strip 5 and are subsequently opened again, so that two flank signals S-51 F and S-52F can each be detected in the first monitoring unit 42.
  • the light barriers LS MB-A1 and LS KB-A remain permanently closed, so that either the elevator car at the in Fig. 4 position has been stopped or a safety-relevant error has occurred.
  • the monitoring device 4 has a second monitoring unit 43, which is connected to a second sensor device 31, 32, 33, detected by means of the changes of the state of motion of the elevator car 11 and corresponding second signals S-31; S-32; S-33 are delivered to the second monitoring unit 43.
  • the second sensor device 31, 32, 33 comprises an acceleration sensor 31 and a speed sensor 32, which are connected to the elevator car 11.
  • the acceleration sensor 31 may operate according to one of the principles described above.
  • the speed sensor 32 has a transmitter, which is coupled to an impeller 321, which is guided along the shaft wall, for example in a rail.
  • signals S-31; S-32 delivered which signal the changes of the state of motion of the elevator car 11.
  • the second sensor device comprises a transducer 33 connected to the drive device 14 and preferably also to the brake device, from which signals are monitored which indicate the initiation of movement changes of the elevator car 11.
  • the signals S-31; S-32; S-33 of the second sensor device 31, 32, 33 therefore evaluated in order to determine whether or not expected changes in the state of motion of the elevator car 11 have occurred.
  • the movement signals S-51 determined by the first monitoring unit 42 F and the detected by the second monitoring unit 43 changes in the state of motion of the elevator car 11 are coherent to each other, wherein in the absence of coherence, an error signal is generated.
  • the verification of the coherence of the measurement results determined by the two monitoring units 42, 43 may be limited to checking a single signal S-51F or may involve the comparison of further determined kinematic information.
  • this status change is also to be registered by the first monitoring unit 42 if it is functional.
  • the measurement results of the two monitoring units 42, 43 are therefore coherent during trouble-free operation and are checked one-sidedly or mutually in order to determine any occurring error.
  • the movement signals S-51F ascertained by the first monitoring unit 42 are transmitted to the second monitoring unit 43, where they are checked for coherence.
  • the validity of the measurement results of the second monitoring unit 43 can also be checked by the first monitoring unit 42. After the detection and measurement of edge signals S-51 F, it is checked whether the changes in the movement state determined by the second monitoring unit 43 are coherent thereto. For this purpose, the measurement results S-43 of the second monitoring unit 43 are transmitted to the first monitoring unit 42 and evaluated there accordingly.
  • the examination of the monitoring units 42, 43 can therefore be one-sided or mutually.
  • errors that may occur in the first or second sensor device 2, 31, 32, 33 or in the first or second monitoring unit 42, 43 are detected and signaled immediately.
  • the mutual checking of the two monitoring units 42, 43 takes place in a separate module 45 (see FIG Fig. 7 ).
  • the monitoring device 4 is preferably connected to the control unit 6 and / or to a shaft information system 7.
  • the monitoring device 4 current operating data such as changed maximum values for accelerations and speeds can be transmitted.
  • Data of the shaft information system 7 can be used to individually take into account the respective position of the elevator car 11 in the evaluation of the first or second signals S51, S-31, S-32, S-33.
  • Fig. 6 shows the course of the signals from Fig. 5 after time T2.
  • the elevator car 11 was stopped at time T2 and accelerated again at time T3.
  • no movement signals S-51 F, S-52F occur in the signal paths S-51, S-52.
  • a motion signal S-51 F, S-52F does not occur directly, since the first and third light barriers LS MB-A1 , LS KB-A are normally removed from the edges of the markings 511, 521 of the measuring strip 5, like this in Fig. 4 is shown.
  • time T4 it is determined based on the signal S-31 output by the acceleration sensor 31 that a movement change or an acceleration of the elevator car 11 has occurred.
  • a time window W is opened and it is checked whether a movement signal S-51 F arrives from the first monitoring unit 42 within this time window W, indicating that the first light barrier LS MB-A1 has been opened or closed.
  • a counter acted upon by the reference clock t REF (counter 433 in FIG Fig. 7 ) started.
  • the current count is compared in the sequence in each case with a limit G1, which may not be exceeded and would be reached at the time T8, if no motion signal S-51 F arrives. If, however, the limit value is reached at time T8, the first error signal F1 is output to the fuse module 44, as shown in FIG Fig. 7 is shown.
  • Fig. 6 is shown that within the course of the signal S-51, however, already before reaching the time T8, namely at the time T7, a movement signal S-51 F or the opening or closing of the first light barrier LS MB-A1 and thus the proper function of the first Sensor device 2 and the first monitoring unit 42 has been detected.
  • the counter is reset and restarted to monitor the occurrence of the next edge change and the next motion signal S-51F, respectively.
  • a new time window W is simultaneously opened, within which the arrival of the next movement signal S-51 F is monitored. The monitoring is terminated in this preferred embodiment only when the stoppage of the elevator car 11 has been detected.
  • the stoppage of the elevator car 11 can in turn be determined in various known ways. If no movement signals S-51 F arrive from the first monitoring unit 42, the idle state of the elevator car 11 is thereby indicated. Preferably, the coherence of the measurement results of the first and second monitoring unit 42, 43 is also checked in this case. In this case, it is checked whether the second monitoring unit 43 has detected a corresponding change in movement or an acceleration opposite to the direction of movement of the elevator car, which can lead to a standstill of the elevator car 11. If the measurement results of both monitoring units 42, 43, however, are not coherent, an error signal is emitted again.
  • Fig. 6 Like this in Fig. 6 is illustrated, the coherence of various signals, events and information within individual time windows can be compared.
  • T5 for example, based on the signals S-32 of the speed sensor 32, a speed change is detected.
  • a second counter is started and its count Z2 compared with a limit. This second counter is reset on the occurrence of a falling edge S-52F of the signals S-52.
  • a limit value G2 is shown by which a maximum speed of the elevator car 11 is determined. If the counter (see counter 423 in Fig. 7 ) does not reach this limit value G2 before it is reset, the time interval between the movement signals S-51 F is too low, which is why the traveling speed of the elevator car 11 is above the maximum speed.
  • Fig. 6 is illustrated by the curves of the output from the acceleration sensor 31 and the speed sensor 32 signals S-31, S-32 that various fault events E1, E2, E3 can occur, which are safety-relevant, and should be signaled as an error.
  • the course of the output from the acceleration sensor 31 signal S-31 shows that too high Accelerations may occur (event E1) or that an acceleration may take too long (event E2), which is why the occurrence of an overspeed is expected.
  • the course of the output from the speed sensor 32 signal S-32 is shown, from which the exceeding of the limit value G VMAX the maximum speed can be read directly.
  • Fig. 7 shows a detailed functional block diagram of the monitoring device 4 of Fig. 1 with the first monitoring unit 42, the signals S-51, S-52 are supplied from the first sensor device 2, and the second monitoring unit 43, the signals S-31, S-32, S-33 from the acceleration sensor 31, the speed sensor 32 and be supplied from the transducer 33.
  • the two monitoring units 42, 43 to which clock signals t REF are supplied from a shared time base 41, evaluate the supplied signals S-51, S-52; S-31, S-32, S-33 and the signals S-51F, S-43, exchanged between the two monitoring units 42, 43, and transmit corresponding error signals or error messages F1, ..., F5 after the detection of faults the security module 44, which transmits corresponding control signals C to the drive device 14 and corresponding information to the control unit 6.
  • the first signals S-51, S-52 output by the first sensor device 2 are supplied in the first monitoring unit 42 to an edge detector 421, which transmits motion signals or edge signals S-51F, S-52F to an evaluation unit 422.
  • the time intervals of the occurrence of the movement signals S-51F, S-52F are checked by the evaluation unit 422 using a counter 423 to determine whether these time intervals are not below a limit value (see limit value G2 in FIG Fig. 6 ), which is selected according to the maximum permissible speed.
  • the evaluation unit 422 transmits further determined events, movement information or only individual movement signals S-51 F to the second monitoring unit 43.
  • the second signals S-31, S-32, S-33 emitted by the acceleration sensor 31, the speed sensor 32 and the measuring transducer 33 are fed in the second monitoring unit 43 to a detector unit 431, which transmits relevant movement changes and state changes to an evaluation unit 432.
  • the evaluation unit 433 checks whether the detected movement changes and state changes lie within the specified limit values and tolerance ranges. Furthermore, the evaluation unit 433 checks whether the detected movement changes and state changes are coherent with the events, movement information or movement signals S-51 F reported by the first monitoring unit 42.
  • a counter 433 is provided by which a time window W is determined, within which it is checked whether the mutually corresponding events, information and signals occur and the first and second monitoring unit 42, 43 work coherently.
  • Fig. 6 It is further shown that the movement changes and state changes determined by the second monitoring unit 43 are communicated to the first monitoring unit 42 by means of a message S-43, which in turn checks whether the communicated movement changes and state changes are coherent with the own measured values. In this way, a malfunction that has occurred in the second sensor device 31, 32, 33 or in the second monitoring unit 43 can also be determined.
  • test module 45 The check for coherence of the measurement results of the two monitoring units 42, 43 is carried out in a preferred embodiment in a separate test module 45. This results in a simplified modular design that can be expanded as desired. By checking the coherence of the reported measurement results, further data can be taken into account by the test module 45, which data are reported, for example, by at least one further monitoring unit or the control unit 6.
  • the elevator expert can arbitrarily change the set shapes and arrangements.
  • any sensor devices can be used, by means of which kinematic variables can be detected.
  • the solution according to the invention is arbitrarily scalable and can also additionally take into account further information, for example information of the shaft information system, and thus be adapted to the respective requirements of the user.
  • the use of acceleration sensor 31, speed sensor 32, and transducer 33 is shown as second signals S-31, S-32, S-33.
  • the elevator expert can use these different sensors in combination but also individually.
  • first and / or the second sensor device 2, 31, 32, 33 and / or the first and the second monitoring unit 42, 43 can optionally be integrated in a unit, for example in a common housing or in a common measuring body, so that a single functional unit is formed.
  • the forked light barrier 2 not only optical elements 21A, 22A; 23A, 24A; 21B, 22B; 23B, 24B; 25A, 26A; 25B, 26B for the realization of the light barriers LS MB-A1 , LS MB-B1 ; LS MB-A2 , LS MB-B2 , LS KB-A , LS KB-B , but also an acceleration sensor 31A for a first channel and an acceleration sensor 31B for a preferably provided second channel, the total in the body 28 of the forked light barrier 2 are integrated. Furthermore, the first and / or the second monitoring unit 42, 43 can be integrated into the body 28 of the forked light barrier 2.
  • the acceleration sensor 31 encloses all elements required for measuring the acceleration, in particular the test mass, in a housing, its use in combination with an arbitrarily designed first sensor device 2, in particular a fork light barrier, is particularly advantageous.
  • the installation of the acceleration sensor 31 in the fork light barrier 2 requires little additional space.
  • the acceleration sensor becomes 31, poured into the body 28 of the first sensor device 2 and thereby optimally protected.
  • the combination of the first and the second sensor device 2, 31 provides a complete sensor unit which can monitor itself and which does not require any further information to be fed in from outside for this purpose.
  • the speed sensor 32 and the transducer 33 may additionally be used if a further increase in the reliability of the measurement results is desired. Furthermore, the speed sensor 32 and / or the transducer 33 can also be used as an alternative to the acceleration sensor 31.
  • the first and / or the second sensor device 2, 31, 32, 33 can be constructed as single-channel or multi-channel.
  • Fig. 7 therefore shows only an embodiment in which only the possibility of using a plurality of sensors 31, 32, 33 for the second sensor device is shown. In practical application, at least one of the aforementioned sensors 31, 32, or 33 is present in each case.
  • At least the second monitoring unit 43 has a filter stage, by means of which disturbances are eliminated which could lead to false alarms.
  • the filter stage e.g. is integrated in the detector unit 431, in particular, signals are suppressed, e.g. due to irrelevant vibrations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Bestimmung der Bewegung und/oder der Position einer Aufzugskabine einer Aufzugsanlage, insbesondere zur Bestimmung eines allfälligen Fehlverhaltens der Aufzugsanlage, sowie eine Aufzugsanlage gemäss dem Oberbegriff der unabhängigen Patentansprüche.The invention relates to a method and a device for determining the movement and / or the position of an elevator car of an elevator installation, in particular for determining a possible faulty behavior of the elevator installation, as well as an elevator installation according to the preamble of the independent claims.

Die Bewegung und die Position einer Aufzugskabine werden in einer Aufzugsanlage anhand von Sensoreinrichtungen erfasst. Dabei wird typischerweise vorgesehen, dass auch ein allfälliges Fehlverhalten der Aufzugsanlage, beispielsweise eine auftretende Übergeschwindigkeit der Aufzugskabine, detektiert wird, um die erforderlichen Sicherungsmassnahmen auslösen zu können.The movement and the position of an elevator car are detected in an elevator installation on the basis of sensor devices. It is typically provided that even a possible malfunction of the elevator system, such as an occurring overspeed of the elevator car, is detected in order to trigger the necessary security measures can.

Ein Verfahren und eine Vorrichtung zur Messung der Geschwindigkeit und zur Detektion einer Übergeschwindigkeit in einer Aufzugsanlage sind in der EP 0 712 804 A1 beschrieben. Mittels dieser bekannten Vorrichtung wird die Fahrgeschwindigkeit einer in einem Aufzugsschacht geführten und von einer Antriebseinheit angetriebenen Aufzugskabine überwacht, um diese beim Auftreten einer Übergeschwindigkeit zu stoppen.A method and a device for measuring the speed and for detecting an overspeed in an elevator installation are in EP 0 712 804 A1 described. By means of this known device, the traveling speed of an elevator car guided in an elevator shaft and driven by a drive unit is monitored in order to stop it when an overspeed occurs.

Dazu ist an einer Wand des Aufzugsschachts eine Messleiste angebracht, die von einer mit der Aufzugskabine verbundenen Gabellichtschranke abgetastet wird. Die Messleiste weist eine Messbahn mit Fahnen auf, anhand derer die Geschwindigkeit der Aufzugskabine gemessen wird. Durch einen Vergleich der gemessenen Geschwindigkeit mit der vorgegebenen Maximalgeschwindigkeit kann in der Folge das allfällige Auftreten einer Übergeschwindigkeit festgestellt und signalisiert werden. Die Länge der Fahnen ist jeweils der maximalen Geschwindigkeit der Aufzugskabine im betreffenden Schachtbereich angepasst, d.h. gegen das obere und untere Schachtende hin werden die Fahnensegmente immer kürzer. Die Dauer der Abtastung der einzelnen Fahnen liegt daher bei einem zumindest annähernd konstanten Grenzwert, falls der gesamte Schachtbereich mit der vorgesehenen Maximalgeschwindigkeit durchfahren wird. Sofern die Dauer der Abtastung einer einzelnen Fahne kürzer ist als dieser Grenzwert, so liegt eine unzulässige Überschreitung der Maximalgeschwindigkeit vor.For this purpose, a measuring strip is mounted on a wall of the elevator shaft and is scanned by a forked light barrier connected to the elevator car. The measuring bar has a measuring track with flags, with which the speed of the elevator car is measured. By comparing the measured speed with the predetermined maximum speed, the possible occurrence of an overspeed can be determined and signaled in the sequence. The length of the flags is in each case adapted to the maximum speed of the elevator car in the relevant shaft area, ie towards the upper and lower shaft end towards the flag segments are getting shorter. The duration of the scanning of the individual flags is therefore included an at least approximately constant limit, if the entire shaft area is traversed at the intended maximum speed. If the duration of the scan of a single flag is shorter than this limit, then there is an impermissible exceeding of the maximum speed.

Die Messleiste weist ferner eine Kontrollbahn mit Fensteröffnungen auf, die je einer Fahne zugeordnet und auf gleicher Höhe angeordnet sind. Sofern die Messleiste und die Gabellichtschranke korrekt installiert sind, werden die Markierungen der Messbahn und der Kontrollbahn korrekt abgetastet. Anhand der Abtastung der Fensteröffnungen der Kontrollbahn wird somit geprüft, ob die Gabellichtschranke genügend tief in die Messleiste eingreift und die sequenzielle Unterbrechung der Lichtschranken durch die Fahnen während der Fahrt der Aufzugskabine gewährleistet ist. Durch die Abtastung der Kontrollbahn kann ferner festgestellt werden, ob einzelne Fahnen an der Messleiste fehlen, wodurch die Geschwindigkeitsmessung verfälscht würde. Die Fahnen der Messbahn und die Fensteröffnungen der Kontrollbahn sind dabei derart dimensioniert und angeordnet, dass immer mindestens eine Lichtschranke unterbrochen ist. Sofern die der Messbahn und der Kontrollbahn zugeordneten Lichtschranken gleichzeitig nicht unterbrochen sind, liegt daher ein Fehler vor, der beispielsweise dann eintritt, wenn sich die Gabellichtschranke von der Messleiste gelöst hat.The measuring strip also has a control track with window openings, each associated with a flag and arranged at the same height. If the measuring bar and the forked light barrier are installed correctly, the markings of the measuring track and the control track are scanned correctly. On the basis of the scanning of the window openings of the control track is thus checked whether the fork light barrier sufficiently deep into the measuring strip engages and the sequential interruption of the light barriers is ensured by the flags during the journey of the elevator car. By scanning the control track can also be determined whether individual flags are missing on the measuring bar, whereby the speed measurement would be distorted. The flags of the measuring track and the window openings of the control track are dimensioned and arranged such that always at least one light barrier is interrupted. If the photocells and the control track associated light barriers are not interrupted at the same time, therefore, there is an error that occurs, for example, when the fork light barrier has detached from the measuring bar.

In einer vorzugsweisen Ausgestaltung dieser bekannten Vorrichtung weist die Messleiste zusätzlich zur Messbahn und zur Kontrollbahn eine Sicherheitsbahn auf, die der zusätzlichen Kontrolle der Aufzugskabine im oberen und unteren Endbereich des Aufzugsschachts dient.In a preferred embodiment of this known device, the measuring strip in addition to the measuring track and the control track to a safety track, which serves the additional control of the elevator car in the upper and lower end of the hoistway.

Ferner weist die Gabellichtschranke einen ersten und einen zweiten optischen Kanal mit voneinander unabhängigen Lichtschranken auf, deren Signale einem ersten und einem zweiten Messkanal zugeführt werden. Sofern die Messresultate dieser beiden Messkanäle voneinander abweichen, wird ein Fehler erkannt, der beispielsweise auf einen Ausfall eines einzelnen optischen Bauelements zurückzuführen ist.Furthermore, the fork light barrier has a first and a second optical channel with independent light barriers whose signals are supplied to a first and a second measuring channel. If the measurement results of these two measurement channels deviate from each other, an error is detected that is due, for example, to a failure of a single optical component.

Trotz dieser vielfältigen Sicherungsmassnahmen können auch bei dieser Vorrichtung unter bestimmten Voraussetzungen Fehler auftreten, die den sicheren Betrieb der Aufzugsanlage gefährden. Beispielsweise können bei beiden Kanälen der Gabellichtschranke identische Fehler auftreten. Ferner können Beschädigungen an der Messleiste oder permanente Einwirkungen von Fremdkörpern auftreten. Sofern die genannten Mängel an der Gabellichtschranke oder an der Messleiste auftreten, werden die Markierungen der Messleiste nicht mehr korrekt abgetastet, weshalb eine korrekte Messung der Geschwindigkeit und somit auch eine Detektion einer Übergeschwindigkeit nicht mehr möglich sind.Despite these various security measures, errors can occur in this device under certain conditions that jeopardize the safe operation of the elevator system. For example, identical errors can occur in both channels of the forked light barrier. Furthermore, damage to the measuring strip or permanent effects of foreign bodies may occur. If the aforementioned defects occur at the fork light barrier or at the measuring strip, the markings of the measuring strip are no longer scanned correctly, which is why a correct measurement of the speed and thus also detection of an overspeed are no longer possible.

Dabei enthalten die angezeigten Zustände unter Umständen keinen unmittelbar eindeutigen Hinweis auf den tatsächlichen Zustand der Aufzugsanlage. Beispielsweise kann ein Zustand auftreten, bei dem alle Lichtschranken durch die Messleiste unterbrochen sind. Dieser Zustand kann für eine längere Zeit auftreten, wenn die Aufzugskabine an einer entsprechenden Position innerhalb des Aufzugsschachts angehalten wird. Derselbe Zustand kann jedoch auch auftreten, wenn die Aufzugskabine in Fahrt ist und einer der oben genannten Fehler auftritt. Anhand der vorliegenden Informationen kann daher nicht eindeutig bestimmt werden, ob die Aufzugskabine an einer bestimmten Position gehalten ist oder sich entlang dem Aufzugsschacht bewegt.Under certain circumstances, the displayed states do not contain an immediately clear indication of the actual state of the elevator installation. For example, a condition may occur in which all photocells are interrupted by the measuring bar. This condition may occur for a long time when the elevator car is stopped at a corresponding position within the hoistway. However, the same condition may also occur when the elevator car is in motion and one of the above errors occurs. On the basis of the available information can therefore not be clearly determined whether the elevator car is held at a certain position or moves along the elevator shaft.

US 2005-269163 offenbart eine Vorrichtung gemäss dem Oberbegriff des Anspruchs 10. US 2005-269163 discloses a device according to the preamble of claim 10.

Der vorliegenden Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren und eine Vorrichtung zur zuverlässigen Bestimmung der Bewegung und/oder der Position einer Aufzugskabine einer Aufzugsanlage anzugeben, mittels derer die oben beschriebenen Mängel vermieden werden. Ferner ist eine mit dieser Vorrichtung versehene und nach diesem Verfahren arbeitende Aufzugsanlage anzugeben.The present invention is therefore based on the object to provide a method and an apparatus for reliably determining the movement and / or the position of an elevator car of an elevator installation, by means of which the deficiencies described above are avoided. Furthermore, an elevator system provided with this device and operating according to this method is to be specified.

Das Verfahren und die Vorrichtung, welche es insbesondere erlauben sollen, ein Fehlverhalten der Aufzugsanlage, insbesondere eine Übergeschwindigkeit, zuverlässig zu detektieren, soll mit einfachen Massnahmen realisierbar sein und zu einer signifikanten Verbesserung der Zuverlässigkeit der Überwachung der Aufzugsanlage führen.The method and the device, which are intended in particular to reliably detect a faulty behavior of the elevator installation, in particular an overspeed, should be able to be implemented with simple measures and lead to a significant improvement in the reliability of the monitoring of the elevator installation.

Das Verfahren und die Vorrichtung, welche der zuverlässigen Bestimmung der Bewegung und/oder der Position einer Aufzugskabine einer Aufzugsanlage dienen, weisen eine erste Überwachungseinheit auf, von der erste Signale einer ersten Sensoreinrichtung ausgewertet werden, um Informationen zur Bewegung und/oder zur Position der Aufzugskabine zu ermitteln und ein gegebenenfalls auftretendes Fehlverhalten der Aufzugsanlage zu detektieren und entsprechende Sicherheitsmassnahmen auszulösen, welche beispielsweise den Abwurf von Sicherheitsschaltelementen und dadurch die Stillsetzung des Aufzugs betreffen.The method and the device, which serve for the reliable determination of the movement and / or the position of an elevator car of an elevator installation, have a first monitoring unit, from which first signals of a first sensor device are evaluated, information on the movement and / or the position of the elevator car to determine and detect any occurring misbehavior of the elevator system and to trigger appropriate safety measures, which relate for example to the dropping of safety switching elements and thereby the shutdown of the elevator.

Erfindungsgemäss ist eine nicht nach dem Prinzip der ersten Sensoreinrichtung arbeitende zweite Sensoreinrichtung vorgesehen, mittels der Änderungen des Bewegungszustandes der Aufzugskabine erfasst und entsprechende zweite Signale an eine zweite Überwachungseinheit abgegeben werden, welche die zweiten Signale auswertet und Änderungen des Bewegungszustandes der Aufzugskabine detektiert, wonach überprüft wird, ob von der ersten Überwachungseinheit ermittelte Bewegungssignale kohärent zu den von der zweiten Überwachungseinheit detektierten Änderungen des Bewegungszustandes der Aufzugskabine sind. Bei fehlender Kohärenz wird ein erstes Fehlersignal erzeugt wird.According to the invention, a second sensor device which does not operate according to the principle of the first sensor device is provided by means of which changes in the state of motion of the elevator car are detected and corresponding second signals are output to a second monitoring unit which evaluates the second signals and detects changes in the state of motion of the elevator car, which is then checked whether motion signals determined by the first monitoring unit are coherent with the changes in the state of motion of the elevator car detected by the second monitoring unit. If there is no coherence, a first error signal is generated.

Durch die Überprüfung der Kohärenz der Messergebnisse der voneinander unabhängig arbeitenden ersten und zweiten Überwachungseinheiten wird eine deutlich höhere Zuverlässigkeit der Bestimmung der Bewegung und/oder der Position der Aufzugskabine und insbesondere eines allfälligen Fehlverhaltens, insbesondere einer unzulässigen Übergeschwindigkeit, der Aufzugsanlage erzielt. Sofern die erste Überwachungseinheit z.B. die Geschwindigkeit der Aufzugskabine anhand einer optischen ersten Sensoreinrichtung ermittelt, so sind dort auftretende Störungen, wie sie oben beschrieben wurden, für eine elektro-mechanische zweite Sensoreinrichtung nicht relevant, anhand der die zweite Überwachungseinheit das Auftreten von Änderungen des Bewegungszustandes der Aufzugskabine erfasst. Umgekehrt sind Störungen, die bei der elektromechanischen zweiten Sensoreinrichtung gegebenenfalls auftreten könnten, für die optische erste Sensoreinrichtung kaum von Bedeutung. Die beiden Überwachungseinheiten arbeiten daher nach unterschiedlichen Prinzipien, bzw. in verschiedenen technischen Teilbereichen, weshalb beim Vergleich der entsprechenden Arbeitsresultate ein höherer Informationsgewinn erzielt wird, als bei einem Vergleich mit zusätzlich gewonnenen Messgrössen in demselben technischen Teilbereich. So wird beim Gegenstand der EP 0 712 804 A1 in einer vorzugsweisen Ausgestaltung nebst der Messbahn und der Kontrollbahn eine Sicherungsbahn vorgesehen, deren Abtastung zusätzliche Informationen liefert. Hingegen kann die Abtastung aller drei Bahnen durch dieselbe Ursache gleichzeitig beeinträchtigt werden. Beispielsweise können alle drei Bahnen durch Fremdkörper abgedeckt werden. Weiterhin können alle Lichtsensoren durch Fremdlicht gleichzeitig gestört werden oder es können auch alle Lichtsensoren durch Fremdkörper abgedeckt sein. Ferner ist zu erwarten, dass bei einer Beschädigung der Messleiste alle drei Bahnen beschädigt werden, weshalb die Ergänzung mit einer zusätzlichen Bahn die ebenfalls optisch abgetastet wird nicht die erwünschte Verbesserung ergibt.By checking the coherence of the measurement results of the independently operating first and second monitoring units a significantly higher reliability of the determination of the movement and / or the position of the elevator car and in particular a possible misconduct, in particular an impermissible overspeed of the elevator system is achieved. If the first monitoring unit determines, for example, the speed of the elevator car based on an optical first sensor device, then disturbances occurring there, as described above, are not relevant for an electro-mechanical second sensor device, based on which the second monitoring unit detects the occurrence of changes in the state of motion Elevator car detected. Conversely, disturbances that might possibly occur in the electromechanical second sensor device for the optical first sensor device are of little importance. The two monitoring units Therefore work according to different principles, or in different technical sub-areas, which is why a higher information gain is achieved when comparing the corresponding work results, as compared with additionally obtained measures in the same technical sub-area. So is the subject of the EP 0 712 804 A1 provided in a preferred embodiment, together with the measuring path and the control lane a security lane, the sampling provides additional information. On the other hand, the sampling of all three paths can be affected simultaneously by the same cause. For example, all three tracks can be covered by foreign bodies. Furthermore, all light sensors can be disturbed by extraneous light at the same time, or all light sensors can also be covered by foreign bodies. Furthermore, it is to be expected that if the measuring strip is damaged, all three tracks will be damaged, which is why the addition of an additional track, which is also optically scanned, does not give the desired improvement.

Durch die systembedingte Entkopplung der ersten und zweiten Sensoreinrichtung resultiert bei der erfindungsgemässen Vorrichtung eine reduzierte Anfälligkeit auf gleichzeitig auftretende Störungen. Sofern die ersten und zweiten Überwachungseinheiten zudem elektrisch genügend entkoppelt sind, resultiert bei der erfindungsgemässen Lösung mit geringem Aufwand ein deutlich erhöhter Sicherheitsgewinn. Eine gegenseitige Überprüfung der ersten und zweiten Überwachungseinheit erlaubt es daher, allfällige Fehler unverzüglich zu entdecken und die Aufzugsanlage vor Gefährdung zu schützen.Due to the system-related decoupling of the first and second sensor device results in the inventive device a reduced susceptibility to simultaneously occurring disorders. If the first and second monitoring units are also electrically decoupled enough, the solution according to the invention results in a significantly increased safety gain with little effort. A mutual check of the first and second monitoring unit therefore makes it possible to immediately detect any faults and to protect the elevator system from danger.

Trotz der verschiedenen Funktionsprinzipien besteht zwischen den einerseits von der ersten Sensoreinrichtung und der ersten Überwachungseinheit ermittelten ersten Messgrössen und den andererseits von der zweiten Sensoreinrichtung und der zweiten Überwachungseinheit ermittelten Messgrössen, die beide die Bewegung der Aufzugskabine betreffen, ein direkter Zusammenhang, welcher eine gegenseitige Überprüfung der beiden Überwachungseinheiten erlaubt.In spite of the various functional principles, there is a direct relationship between the first measured variables determined on the one hand by the first sensor device and the first monitoring unit and the other measured variables determined by the second sensor device and the second monitoring unit, both of which relate to the movement of the elevator car both monitoring units allowed.

Für eine gegenseitige Überprüfung der ersten und zweiten Überwachungseinheit genügt es bereits, das zusammenhängende bzw. kohärente Auftreten zueinander korrespondierender Signale beider Überwachungseinheiten zu überwachen. Sofern die Aufzugskabine beschleunigt wird, werden von der z.B. optischen ersten Sensoreinrichtung, die entlang einer stationär gehaltenen Messleiste geführt wird, und von der elektromechanischen zweiten Sensoreinrichtung zueinander korrespondierende erste bzw. zweite Signale abgegeben, falls beide Sensoreinrichtungen funktionstüchtig sind und somit kohärent zueinander arbeiten. Eine Überprüfung, ob bei Vorliegen erster Signale, die eine Bewegung oder eine Bewegungsänderung der Aufzugskabine signalisieren, auch zweite Signale vorliegen, die eine dazu korrespondierende Bewegungsänderung der Aufzugskabine signalisieren, erlaubt daher, zu verifizieren, dass beide Überwachungseinheiten und die zugehörigen Sensoreinrichtungen ordnungsgemäss in Betrieb sind. Für die Prüfung können verschiedene Signale hinzugezogen werden, welche zusammenhängende Zustände anzeigen. Ferner ist es auch möglich, in beiden Überwachungseinheiten kinematische Grössen zu berechnen und miteinander zu vergleichen.For a mutual check of the first and second monitoring unit, it is sufficient to monitor the coherent or coherent occurrence of mutually corresponding signals of both monitoring units. If the elevator car is being accelerated, optical first sensor device, which is guided along a stationary held measuring strip, and emitted from the electromechanical second sensor device to each other corresponding first or second signals, if both sensor devices are functional and thus coherent to each other. A check as to whether there are also second signals in the presence of first signals which signal a movement or a change in the movement of the elevator car and signal a corresponding change in the movement of the elevator cabin therefore makes it possible to verify that both monitoring units and the associated sensor devices are in proper operation , For the test various signals can be consulted which indicate connected states. Furthermore, it is also possible to calculate kinematic variables in both monitoring units and to compare them with each other.

Dabei ist es nicht erforderlich, dass die betreffenden Signale beider Überwachungseinheiten, welche Bewegungen oder Bewegungsänderungen der Aufzugskabine signalisieren, gleichzeitig auftreten. Aufgrund verschiedenartiger physikalischer Messprinzipien und unterschiedlicher Messschaltungen treten die zueinander korrespondierenden Messsignale typischerweise mit einer gegenseitigen zeitlichen Verschiebung auf, die ebenfalls innerhalb eines bestimmten Bereichs variieren kann. In vorzugsweisen Ausgestaltungen wird daher wenigstens ein Zeitfenster vorgesehen, innerhalb dessen das Auftreten von zwei zueinander korrespondierenden Signalen oder Meldungen beider Überwachungseinheiten überwacht wird. Typischerweise wird das Zeitfenster geöffnet, nachdem ein entsprechendes Signal in einer der Überwachungseinheiten detektiert wurde.It is not necessary that the respective signals of both monitoring units, which signal movements or changes in the movement of the elevator car, occur simultaneously. Due to different physical measurement principles and different measurement circuits, the mutually corresponding measurement signals typically occur with a mutual time shift, which can also vary within a certain range. In preferred embodiments, therefore, at least one time window is provided, within which the occurrence of two mutually corresponding signals or messages of both monitoring units is monitored. Typically, the time window is opened after a corresponding signal has been detected in one of the monitoring units.

In einer vorzugsweisen Ausgestaltung umfasst die zweite Sensoreinrichtung wenigstens einen elektromechanischen Bewegungssensor, wie einen Beschleunigungssensor und/oder einen Geschwindigkeitssensor. Ein Beschleunigungssensor ist ein normalerweise mit einer Testmasse versehener Messfühler, mit dem die Beschleunigung gemessen wird, indem bei einer auftretenden Beschleunigung oder Verzögerung die auf die Testmasse wirkende Trägheitskraft bestimmt wird. Die auf die Testmasse einwirkende Erdbeschleunigung wird vorzugsweise elektrisch oder elektronisch kompensiert, so dass die vom Beschleunigungssensor abgegebenen Signale die weiteren auf den Beschleunigungssensor einwirkenden Beschleunigungen anzeigen, die typischerweise auf die Einwirkungen der Antriebsvorrichtung und der Bremsvorrichtung zurückzuführen sind. Aus Tietze-Schenk, Halbleiter-Schaltungstechnik, Springer-Verlag, Heidelberg 1999, 11. Auflage, Seite 1223 , ist ein Beschleunigungssensor bekannt, bei dem die Testmasse auf eine mit Dehnmessstreifen versehene Membran einwirkt. Ferner kann ein kapazitiv oder induktiv arbeitender Sensor als Beschleunigungssensor verwendet werden, bei dem die Testmasse federelastisch aufgehängt ist und als Teil eines Kondensators wirkt oder als Magnet innerhalb einer Spule bewegt wird. Ferner sind piezoelektrische Beschleunigungssensoren bekannt. Ein Geschwindigkeitssensor kann beispielsweise ein im Aufzugsschacht abrollendes Laufrad aufweisen, welches mit einem Messumformer gekoppelt ist. Diese elektromechanischen Sensoren arbeiten daher nach anderen Prinzipien, als die aus der EP 0 712 804 A1 bekannten optischen Sensoren, die bei der vorliegenden Erfindung vorzugsweise in der ersten Sensoreinrichtung verwendet werden. Alternativ oder zusätzlich umfasst die zweite Sensoreinrichtung einen mit der Antriebs- und/oder Bremsvorrichtung verbundenen Messwertaufnehmer, welcher Ursachen feststellt, die zu einer späteren Bewegungsänderung der Aufzugskabine führen.In a preferred embodiment, the second sensor device comprises at least one electromechanical motion sensor, such as an acceleration sensor and / or a speed sensor. An acceleration sensor is a sensor normally provided with a test mass, with which the acceleration is measured by determining the inertial force acting on the test mass as acceleration or deceleration occurs. The gravitational acceleration acting on the test mass is preferably compensated electrically or electronically, so that the signals emitted by the acceleration sensor indicate the further accelerations acting on the acceleration sensor, which are typically due to the actions of the drive device and the brake device. Out Tietze-Schenk, semiconductor circuit technology, Springer-Verlag, Heidelberg 1999, 11th edition, page 1223 , an acceleration sensor is known in which the test mass acts on a diaphragm provided with strain gauges. Furthermore, a capacitively or inductively operating sensor can be used as an acceleration sensor, in which the test mass is suspended elastically and acts as part of a capacitor or is moved as a magnet within a coil. Furthermore, piezoelectric acceleration sensors are known. A speed sensor may, for example, have an impeller rolling in the elevator shaft, which is coupled to a measuring transducer. These electromechanical sensors therefore work on different principles than those from the EP 0 712 804 A1 known optical sensors which are preferably used in the first sensor device in the present invention. Alternatively or additionally, the second sensor device comprises a transducer connected to the drive and / or brake device, which detects causes that lead to a later change in the movement of the elevator car.

Anhand der zweiten Sensoreinrichtung werden Signale erzeugt, die Änderungen des Bewegungszustands der Aufzugskabine betreffen, die innerhalb eines entsprechend gewählten Zeitfensters mit dazu korrespondierenden Signalen der ersten Sensoreinrichtung verglichen werden, um festzustellen ob die Messergebnisse kohärent sind.On the basis of the second sensor device signals are generated which relate to changes in the state of motion of the elevator car, which are compared within a correspondingly selected time window with corresponding signals of the first sensor device to determine whether the measurement results are coherent.

Die Wahl der Grösse des Zeitfensters wird vorzugsweise in Abhängigkeit der vorgesehenen Geschwindigkeit der Aufzugskabine, der zu vergleichenden Signale und der angewendeten Mess- und Auswerteverfahren gewählt. Sofern eine Bewegungsänderung bereits eingetreten ist und durch den Beschleunigungssensor detektiert wurde, so wird das Zeitfenster entsprechend klein gewählt. Sofern hingegen in der Antriebs- und/oder Bremsvorrichtung ein Steuerbefehl zur Inbetriebsetzung der Anlage ermittelt wurde, so wird das Zeitfenster entsprechend grösser gewählt. Bei der Wahl der Grösse des Zeitfensters wird auch das angewendete Messverfahren berücksichtigt. Bei der Verwendung der eingangs beschriebenen Gabellichtschranke wird das Zeitfenster entsprechend den Abständen der Markierungen der Messleiste gewählt.The choice of the size of the time window is preferably dependent on the intended speed of the elevator car, the signals to be compared and the measuring and evaluation methods used. If a movement change has already occurred and has been detected by the acceleration sensor, then the time window is selected to be correspondingly small. If, however, in the drive and / or braking device, a control command for commissioning of the system has been determined, the time window is selected correspondingly larger. When choosing the size of the time window, the applied measuring method is also taken into account. When using the forked light barrier described above, the time window is selected according to the distances of the markings of the measuring strip.

Vorzugsweise ist die erste Sensoreinrichtung eine an der Aufzugskabine montierte Lichtschrankenvorrichtung, die erste optische Elemente aufweist, die der Bildung wenigstens einer ersten Lichtschranke dienen, anhand der während der Fahrt der Aufzugskabine wenigstens die Markierungen einer Messbahn einer Messleiste abgetastet werden, die im Aufzugsschacht stationär montiert ist. Aus den von der ersten Sensoreinrichtung abgegebenen ersten Signalen werden in der Überwachungseinheit die ersten Aktivierungssignale ermittelt. Bei der Verwendung von Lichtschranken treten Flankenübergänge bzw. Bewegungssignale innerhalb des Signalzugs auf, welche das Schliessen oder das Öffnen der Lichtschranke und somit die Bewegung der Aufzugskabine anzeigen. Der zeitliche Abstand dieser Bewegungssignale ist dabei umgekehrt proportional zur Geschwindigkeit der Aufzugskabine. Sofern von der zweiten Überwachungseinheit eine Beschleunigung der Aufzugskabine aus dem Ruhezustand oder aus einer Fahrt mit konstanter Geschwindigkeit ermittelt wurde, so muss innerhalb eines entsprechend gewählten Zeitfensters von der ersten Überwachungseinheit das Öffnen oder ein Unterbruch der Lichtschranke und somit ein entsprechendes Bewegungssignal ermittelt werden. Durch die Überprüfung des Eintreffens des Bewegungssignals kann daher der kohärente Betrieb der beiden Überwachungseinheiten verifiziert werden.Preferably, the first sensor device is a light barrier device mounted on the elevator car, which has first optical elements which serve to form at least a first light barrier, with which at least the markings of a measuring path of a measuring strip, which is mounted stationary in the elevator shaft, are scanned while the elevator car is moving , From the first signals emitted by the first sensor device, the first activation signals are determined in the monitoring unit. When using light barriers, edge transitions or movement signals occur within the signal train, which indicate the closing or opening of the light barrier and thus the movement of the elevator car. The time interval of these motion signals is inversely proportional to the speed of the elevator car. If an acceleration of the elevator car from the idle state or from a drive with constant speed was determined by the second monitoring unit, the opening or interruption of the light barrier and thus a corresponding movement signal must be determined by the first monitoring unit within a correspondingly selected time window. By checking the arrival of the motion signal, therefore, the coherent operation of the two monitoring units can be verified.

In einer weiteren vorzugsweisen Ausgestaltung werden die vom Beschleunigungssensor und/oder vom Geschwindigkeitssensor und/oder vom Messwertaufnehmer abgegebenen zweiten Signale ausgewertet, um unzulässige Betriebszustände, wie oberhalb eines Grenzwerts liegende Beschleunigungswerte oder oberhalb eines Grenzwerts liegende Geschwindigkeitswerte oder ausserhalb eines Toleranzbereichs liegende Antriebsgrössen zu ermitteln, wobei nach Ermittlung von Werten, die oberhalb eines Grenzwerts oder ausserhalb des Toleranzbereiches liegen, ein zweites Fehlersignal generiert wird. Fehlfunktionen können anhand der zweiten Überwachungseinheit dadurch früh erfasst werden, gegebenenfalls bevor eine Übergeschwindigkeit aufgetreten ist und von der ersten Überwachungseinheit detektiert wurde. Durch die zweite Überwachungseinheit wird in diesem Fall somit nicht nur die ordnungsgemässe Funktion der ersten Überwachungseinheit, sondern das Verhalten der Aufzugsanlage eigenständig überwacht.In a further preferred refinement, the second signals emitted by the acceleration sensor and / or by the speed sensor and / or by the measuring transducer are evaluated in order to detect impermissible operating states, determining acceleration values lying above a limit value or speed values lying above a limit value or drive quantities lying outside of a tolerance range, wherein a second error signal is generated after determination of values which are above a limit value or outside the tolerance range. Malfunctions can be detected early on the basis of the second monitoring unit, possibly before an overspeed has occurred and has been detected by the first monitoring unit. In this case, not only the proper function of the first monitoring unit, but the behavior of the elevator system is independently monitored by the second monitoring unit.

In weiteren vorzugsweisen Ausgestaltungen werden die erste und/oder zweite Sensoreinrichtung sowie die erste und/oder zweite Überwachungseinheit zumindest teilweise redundant ausgebildet. Die Ausgangssignale von zueinander korrespondierenden redundanten Teilen dieser Vorrichtungen werden miteinander verglichen, wobei nach Auftreten einer Differenz ein drittes Fehlersignal erzeugt wird.In further preferred embodiments, the first and / or second sensor device and the first and / or second monitoring unit are at least partially formed redundant. The output signals of mutually corresponding redundant parts of these devices are compared with each other, wherein after occurrence of a difference, a third error signal is generated.

Die erste Sensoreinrichtung und zumindest ein Teil der zweiten Sensoreinrichtung werden vorzugsweise in einem gemeinsamen Gehäuse angeordnet. Auf diese Weise ist ein kompakter Aufbau der Sensorik möglich. Vorzugsweise ist zumindest der Beschleunigungssensor als Mikro-Elektro-Mechanisches System (MEMS) aufgebaut und beispielsweise in das Gehäuse der beiden Sensoreinrichtungen eingegossen. Entsprechende micro-elektro-mechanische Sensorvorrichtungen, die problemlos in das Gehäuse der ersten Sensoreinrichtung integriert werden können, sind beispielsweise in der WO2009117687A1 beschrieben.The first sensor device and at least a part of the second sensor device are preferably arranged in a common housing. In this way, a compact design of the sensor is possible. Preferably, at least the acceleration sensor is constructed as a micro-electro-mechanical system (MEMS) and, for example, cast into the housing of the two sensor devices. Corresponding micro-electro-mechanical sensor devices that can be easily integrated into the housing of the first sensor device, are for example in the WO2009117687A1 described.

Wie die Sensorik der ersten Sensoreinrichtung wird auch die Sensorik der zweiten Sensoreinrichtung vorzugsweise redundant bzw. mehrkanalig aufgebaut, so dass durch einen Vergleich der Signale der verschiedenen Kanäle ein Fehler erkannt werden kann. Vorzugsweise werden auch die einfach oder redundant ausgebildete erste und/oder die zweite Überwachungseinheit in das gemeinsame Gehäuse der Sensoreinrichtungen integriert. Auf diese Weise resultiert insgesamt ein kompakter und kostengünstiger Aufbau der gesamten Überwachungsvorrichtung, die beispielsweise in der Form einer Gabellichtschranke realisiert werden kann. In einer vorzugsweisen Ausgestaltung werden zwei voneinander getrennte oder miteinander verbundene derartige Gabellichtschranken eingesetzt.Like the sensor system of the first sensor device, the sensor system of the second sensor device is preferably designed redundantly or multi-channel, so that a fault can be detected by comparing the signals of the different channels. Preferably, the single or redundant trained first and / or the second monitoring unit in the common Housing integrated the sensor devices. This results in a total of a compact and cost-effective design of the entire monitoring device, which can be realized for example in the form of a forked light barrier. In a preferred embodiment, two separate or interconnected such forked light barriers are used.

Anhand der erfindungsgemässen Vorrichtung kann nicht nur die Übergeschwindigkeit einer Aufzugskabine zuverlässig detektiert werden. Es kann auch festgestellt werden, ob ein von der ersten Überwachungseinheit gemeldetes Anhalten der Aufzugskabine tatsächlich vorliegt. Sofern während der Fahrt der Aufzugskabine ein oben beschriebener Fehler in der ersten Überwachungseinheit, der ersten Sensoreinrichtung oder der Messleiste auftritt, ist es möglich, dass von der ersten Überwachungseinheit keine Bewegungssignale mehr eintreffen. Dies könnte als Eintreten des Ruhezustands der Aufzugskabine interpretiert werden, obwohl diese tatsächlich noch in Fahrt ist. Auch hier erlaubt die erfindungsgemässe Überprüfung der Kohärenz der Messergebnisse der ersten und zweiten Überwachungseinheit, den genannten Fehler zu erkennen. Sofern nach dem Fahrbetrieb der Aufzugskabine von der ersten Überwachungseinheit ein Stillstand gemeldet wird, wird überprüft, ob auch von der zweiten Überwachungseinheit eine entsprechende Bewegungsänderung, insbesondere eine der Bewegungsrichtung der Aufzugskabine entgegen gesetzte Beschleunigung, festgestellt wurde und somit Kohärenz vorliegt.On the basis of the device according to the invention not only the overspeed of an elevator car can be reliably detected. It can also be determined whether a stop of the elevator car reported by the first monitoring unit actually exists. If an above-described error occurs in the first monitoring unit, the first sensor device or the measuring strip during the travel of the elevator car, it is possible that no movement signals will arrive from the first monitoring unit. This could be interpreted as the onset of hibernation of the elevator car, although it is still in progress. Again, the inventive review of the coherence of the measurement results of the first and second monitoring unit allows to recognize the error mentioned. If a standstill is reported by the first monitoring unit after the driving operation of the elevator car, it is checked whether a corresponding change in movement, in particular an acceleration opposite to the direction of movement of the elevator car, has also been detected by the second monitoring unit and thus there is coherence.

Sofern während der Fahrt der Aufzugskabine eine Bewegungsänderung in einer der beiden Überwachungseinheiten festgestellt wird, so wird vorzugsweise die Grösse des Zeitfensters entsprechend angepasst, innerhalb dessen eine kohärente Bestätigung der Bewegungsänderung von der anderen Überwachungseinheit erwartet wird. Dadurch kann nicht nur festgestellt werden, ob die beiden Überwachungseinheiten in Betrieb sind, sondern ob sie auch korrekt arbeiten.If a movement change is detected in one of the two monitoring units while the elevator car is moving, the size of the time window is preferably adjusted accordingly, within which a coherent confirmation of the change in movement is expected by the other monitoring unit. This not only determines whether the two monitoring units are in operation, but also whether they are working correctly.

Das erfindungsgemässe Verfahren kann daher vorteilhaft eingesetzt werden, um Zustandsänderungen der Aufzugsanlage sowie den Zustand von Überwachungseinrichtungen und Steuerungseinrichtungen zu prüfen.The inventive method can therefore be advantageously used to check changes in the state of the elevator system and the state of monitoring devices and control devices.

Die Überwachungsvorrichtung oder zumindest die darin vorgesehenen Überwachungseinheiten werden vorzugsweise mit der zentralen Steuereinheit der Aufzugsanlage und/oder mit einem Schachtinformationssystem verbunden, welches Positionsdaten und/oder Bewegungsinformationen der Aufzugskabine erfasst und an die Steuereinheit überträgt.The monitoring device or at least the monitoring units provided therein are preferably connected to the central control unit of the elevator installation and / or to a shaft information system which detects position data and / or movement information of the elevator car and transmits it to the control unit.

Der Austausch von Informationen und Signalen zwischen den Sensoreinrichtungen und den Überwachungseinheiten sowie der Steuereinheit und dem Schachtinformationssystem kann mittels drahtloser oder drahtgebundener Übertragungsvorrichtungen oder einer Kombination davon erfolgen.The exchange of information and signals between the sensor devices and the monitoring units as well as the control unit and the shaft information system can take place by means of wireless or wired transmission devices or a combination thereof.

Ferner können von der zweiten Überwachungseinheit alternativ oder ergänzend auch andere Informationen und Signale, wie Positionssignale und RFID-Signale verarbeitet werden, welche den Status der Aufzugsanlage widerspiegeln. Anhand tiefer greifender Informationen ist es möglich, die Messergebnisse weiter zu optimieren. Beispielsweise können die Toleranzbereiche, z.B. der Zeitfenster, reduziert werden, falls vom Schachtinformationssystem gemeldet wurde, dass sich die Aufzugskabine im unteren oder oberen Endbereich des Aufzugsschachts befindet.Furthermore, the second monitoring unit can alternatively or additionally also process other information and signals, such as position signals and RFID signals, which reflect the status of the elevator installation. On the basis of more in-depth information, it is possible to further optimize the measurement results. For example, the tolerance ranges, e.g. the time window is reduced, if it was reported by the shaft information system that the elevator car is located in the lower or upper end of the elevator shaft.

Im Folgenden wird die Erfindung anhand mehrerer Ausführungsbeispiele im Zusammenhang mit den nachstehenden Figuren näher erläutert.
Es zeigen:

Fig. 1
eine schematische Darstellung einer erfindungsgemässen Aufzugsanlage 1, welche eine Überwachungsvorrichtung 4 mit einer ersten und einer zweiten Überwachungseinheit 42, 43 aufweist, die mit Sensoreinrichtungen 2, 31, 32, 33 gekoppelt sind, anhand derer die Bewegungen einer in einem Aufzugsschacht 9 vertikal verfahrbaren Aufzugskabine 11 auf verschiedene Arten erfasst werden können;
Fig. 2
eine aus der EP 0 712 804 A1 bekannte Gabellichtschranke 2
Fig. 3
eine Messleiste 5 mit einer Messbahn 51 und einer Kontrollbahn 52, die mittels Lichtschranken LSMB-A1, LSMB-B1; LSMB-A2, LSMB-B2, LSKB-A, LSKB-B abgetastet werden, welche durch optische Elemente 21A, 22A; 23A, 24A; 21 B, 22B; 23B, 24B; 25A, 26A; 25B, 26B der Gabellichtschranke 2 von Figur 2 gebildet werden;
Fig. 4
die Lichtschranken LSMB-A1, LSMB-B1; LSMB-A2, LSMB-B2, LSKB-A, LSKB-B der Gabellichtschranke 2 von Figur 3, welche einerseits durch die Messleiste 5 und andererseits zumindest teilweise durch einen Fremdkörper 8 unterbrochen sind:
Fig. 5
ein Diagramm mit dem Verlauf der Signale S-51, S-52 der Gabellichtschranke 2 von Figur 3, welches zeigt, dass die entsprechenden Lichtschranken LSMB-A1 und LSKB-A, nach einem Zeitpunkt T2 verschlossen sind und daher entweder die Aufzugskabine 11 an einer bestimmten Position angehalten wurde oder ein Fehler aufgetreten ist;
Fig. 6
ein Diagramm, welches Signalverläufe die ersten Signale S-51, S-52 der Gabellichtschranke 2 von Fig. 3 und zweite Signale S-31, S-32 eines Beschleunigungssensors 31 und eines Geschwindigkeitssensors 32 sowie den Verlauf entsprechender Zählerstände Z1, Z2 zeigt, welche mit Grenzwerten verglichen werden, um die Kohärenz der Messergebnisse beider Überwachungseinheiten 42, 43 zu prüfen; und
Fig. 7
ein detailliertes Funktionsblockschaltbild der Überwachungsvorrichtung 4 von Figur 1.
In the following, the invention will be explained in more detail with reference to several embodiments in conjunction with the following figures.
Show it:
Fig. 1
a schematic representation of an inventive elevator system 1, which has a monitoring device 4 with a first and a second monitoring unit 42, 43, which are coupled to sensor devices 2, 31, 32, 33, based on which the movements of a lift shaft 9 vertically movable elevator car 11th can be detected in different ways;
Fig. 2
one from the EP 0 712 804 A1 known fork light barrier 2
Fig. 3
a measuring strip 5 with a measuring track 51 and a control track 52, which by means of light barriers LS MB-A1 , LS MB-B1 ; LS MB-A2 , LS MB-B2 , LS KB-A , LS KB-B , which are detected by optical elements 21A, 22A; 23A, 24A; 21B, 22B; 23B, 24B; 25A, 26A; 25B, 26B of the forked light barrier 2 of FIG. 2 be formed;
Fig. 4
the photocells LS MB-A1 , LS MB-B1 ; LS MB-A2 , LS MB-B2 , LS KB-A , LS KB-B the fork light barrier 2 of FIG. 3 which are interrupted on the one hand by the measuring strip 5 and on the other hand at least partially by a foreign body 8:
Fig. 5
a diagram with the course of the signals S-51, S-52 of the forked light barrier 2 of FIG. 3 showing that the respective light barriers LS MB-A1 and LS KB-A are closed after a time T2 and therefore either the elevator car 11 has been stopped at a certain position or an error has occurred;
Fig. 6
a diagram which waveforms the first signals S-51, S-52 of the forked light barrier 2 of Fig. 3 and second signals S-31, S-32 of an acceleration sensor 31 and a speed sensor 32 and the course of corresponding counter readings Z1, Z2 which are compared with limit values in order to check the coherence of the measurement results of both monitoring units 42, 43; and
Fig. 7
a detailed functional block diagram of the monitoring device 4 of FIG. 1 ,

Fig. 1 zeigt eine schematische Darstellung einer Aufzugsanlage 1, welche eine in einem Aufzugsschacht 9 vertikal verfahrbare Aufzugskabine 11 aufweist, die über Seile 12 und eine Treibscheibe 13 mit einer Antriebseinheit 14 verbunden ist. Die Aufzugsanlage 1 ist ferner mit einer erfindungsgemässen Vorrichtung versehen, mittels der die Geschwindigkeit und allfällige Übergeschwindigkeiten der Aufzugskabine 11 erfasst werden können. Die erfindungsgemässe Vorrichtung ist dabei derart aufgebaut, dass ein darin auftretender Fehler zuverlässig erkannt und die Aufzugsanlage 1 entsprechend gesichert werden kann. Die erfindungsgemässe Vorrichtung umfasst eine Überwachungsvorrichtung 4, in der zwei voneinander unabhängige Überwachungseinheiten 42, 43 vorgesehen sind, denen in dieser vorzugsweisen Ausgestaltung ein Referenztakt tREF von einer gemeinsam genutzten Zeitbasis 41 zugeführt werden wird. Fig. 1 shows a schematic representation of an elevator system 1, which has a vertically movable in an elevator shaft 9 elevator car 11, which is connected via cables 12 and a traction sheave 13 with a drive unit 14. The elevator installation 1 is further provided with a device according to the invention, by means of which the speed and possible overspeeds of the elevator car 11 can be detected. The inventive device is constructed such that an error occurring therein can be reliably detected and the elevator system 1 can be secured accordingly. The device according to the invention comprises a monitoring device 4, in which two mutually independent monitoring units 42, 43 are provided, in which, in this preferred embodiment, a reference clock t REF will be supplied from a shared time base 41.

Die erste Überwachungseinheit 42 ist mit einer in Fig. 2 gezeigten Sensoreinrichtung 2 verbunden, die in der gezeigten Ausgestaltung der aus der EP 0 712 804 A1 bekannten Gabellichtschranke 2 entspricht. Diese Gabellichtschranke 2 ist zweikanalig aufgebaut und umfasst paarweise optische Elemente, nämlich Sender 21A, 23A, 25A und Empfänger 22A, 24A, 26A für den ersten Kanal und Sender 21 B, 23B, 25B und Empfänger 22B, 24B, 26B für den zweiten Kanal, anhand deren Lichtschranken LSMB-A1, LSMB-A2, LSKB-A, für den ersten Kanal und Lichtschranken LSMB-B1; LSMB-B2, LSKB-B für den zweiten Kanal gebildet werden. Die anhand der Lichtschranken der beiden Kanäle A und B erzeugten Messsignale werden unabhängig voneinander verarbeitet und können in der ersten Sensoreinrichtung 2 oder in der ersten Überwachungseinheit anhand eines Komparators miteinander verglichen werden, um Fehlfunktionen festzustellen. Für die nachfolgenden Betrachtungen genügt es, die erste und die dritte Lichtschranke LSMB-A1, LSKB-A des ersten Kanals zu berücksichtigen.The first monitoring unit 42 is provided with an in Fig. 2 Sensor device 2 shown connected in the embodiment shown in the EP 0 712 804 A1 known fork light barrier 2 corresponds. This fork light barrier 2 has two channels and comprises pairwise optical elements, namely transmitters 21A, 23A, 25A and receivers 22A, 24A, 26A for the first channel and transmitters 21B, 23B, 25B and receivers 22B, 24B, 26B for the second channel, based on their light barriers LS MB-A1 , LS MB-A2 , LS KB-A , for the first channel and light barriers LS MB-B1 ; LS MB-B2 , LS KB-B are formed for the second channel. The measurement signals generated on the basis of the light barriers of the two channels A and B are processed independently of one another and can be compared with one another in the first sensor device 2 or in the first monitoring unit by means of a comparator in order to detect malfunctions. For the following considerations, it is sufficient to consider the first and the third light barrier LS MB-A1 , LS KB-A of the first channel.

Die Gabellichtschranke 2 ist beispielsweise auf dem Dach der Aufzugskabine 11 derart angeordnet, dass sie eine im Aufzugsschacht 9 vertikal ausgerichtete und stationär montierte Messleiste 5 einseitig umgreift. Während der Fahrt der Aufzugskabine 11 tastet die Gabellichtschranke 2 die Markierungen 511, 512 einer Messbahn 51 und einer Kontrollbahn 52 ab, die entlang der Messleiste 5 parallel zueinander verlaufen. Die Messbahn 51 weist Markierungen 511 in der Form von freiliegenden Fahnen auf, deren Breite gegen die Endbereiche des Aufzugsschachts 9 abnimmt, in denen eine stetig abnehmende Maximalgeschwindigkeit vorgeschrieben ist. Aufgrund der Anpassung der Breite der Markierungen 511 der Messbahn 51 an die Maximalgeschwindigkeit der Aufzugskabine 11 werden bei einer Fahrt mit Maximalgeschwindigkeit die Flanken der Markierungen 511 von der dafür vorgesehenen ersten Lichtschranke LSMB-A1 stets in gleich langen zeitlichen Abständen durchlaufen. In diesem Fall treten auch nahezu konstante zeitliche Abstände zwischen den entsprechenden Flanken der von der Gabellichtschranke 2 abgegebenen Signale auf. Diese konstanten zeitlichen Abstände nehmen bei Maximalgeschwindigkeit der Aufzugskabine 11 einen Minimalwert an, der als Grenzwert gewählt wird. Sofern dieser Minimalwert bzw. Grenzwert unterschritten wird, liegt eine Übergeschwindigkeit vor. In diesem Fall wird von der ersten Überwachungseinheit 42 ein Fehlersignal F42 an ein Sicherungsmodul 44 abgegeben, welches in der Folge z.B. den Abwurf von Sicherheitsschaltelementen auslöst und die Aufzugskabine 11 anhält, wie dies in der EP 0 712 804 A1 beschrieben ist. Anhand der zweiten Lichtschranke LSMB-A2, welche ebenfalls die Messbahn 51 abtastet, wird festgestellt, ob eine Markierung 511 passiert oder nur touchiert wurde.The fork light barrier 2 is arranged, for example, on the roof of the elevator car 11 in such a way that it embraces on one side a measuring strip 5 vertically aligned and stationarily mounted in the elevator shaft 9. During the travel of the elevator car 11, the fork light barrier 2 scans the markings 511, 512 of a measuring track 51 and a control track 52, which run parallel to one another along the measuring strip 5. The measuring track 51 has markings 511 in the form of exposed lugs, whose width decreases towards the end areas of the elevator shaft 9, in which a steadily decreasing maximum speed is prescribed. Due to the adaptation of the width of the markings 511 of the measuring track 51 to the maximum speed of the elevator car 11, the flanks of the markings 511 are always run through the first light barrier LS MB-A1 provided at the same time intervals in a drive at maximum speed. In this case, also occur almost constant time intervals between the corresponding edges of the output from the forked light barrier 2 signals. These constant time intervals assume at maximum speed of the elevator car 11 to a minimum value, which is selected as a limit. If this minimum value or limit value is undershot, there is an overspeed. In this case, the first monitoring unit 42 emits an error signal F42 to a security module 44, which triggers, for example, the release of security switching elements in the sequence and stops the elevator car 11, as shown in FIG EP 0 712 804 A1 is described. On the basis of the second light barrier LS MB-A2 , which also scans the measuring path 51, it is determined whether a mark 511 has passed or only been touched.

In der Kontrollbahn 52 sind auf der Höhe der Markierungen für 111 der Messbahn Fensteröffnungen 521 vorgesehen, welche mittels der dritten Lichtschranke LSKB-A der Gabellichtschranke 2 abgetastet werden. Sofern die Kontrollbahn 52 korrekt abgetastet wird, ist sichergestellt, dass die Messleiste 5 genügend tief in die Gabellichtschranke 2 eingreift. Sofern die entsprechenden Signale von der dritten Lichtschranke LSKB-A hingegen ausbleiben, so wird ein weiteres Fehlersignal an das Sicherungsmodul 44 abgegeben.In the control track 52, window openings 521 are provided at the level of the markings for 111 of the measuring track, which are scanned by means of the third light barrier LS KB-A of the fork light barrier 2. If the control track 52 is scanned correctly, it is ensured that the measuring strip 5 engages deep enough in the fork light barrier 2. If, however, the corresponding signals from the third light barrier LS KB-A do not occur, then another error signal is output to the security module 44.

Die Abtastung der Messbahn 51 und der Kontrollbahn 52 der Messleiste 5 ist in Fig. 3 gezeigt. Es ist ersichtlich, dass jede Markierung 511 der Messbahn 51 einer Fensteröffnung 521 der Kontrollbahn 52 gegenüber liegt. Die Breite der Markierungen bzw. Fahnen 511 der Messbahn 51 ist grösser als die Breite der Fensteröffnungen 521, weshalb gewährleistet ist, dass bei Normalbetrieb stets die erste oder dritte Lichtschranke LSMB-A1, LSKB-A der Gabellichtschranke 2 unterbrochen ist. Sofern die erste und die dritte Lichtschranke LSMB-A1, LSKB-A gleichzeitig geöffnet sind, so wird ein Fehler detektiert.The scanning of the measuring track 51 and the control track 52 of the measuring strip 5 is in Fig. 3 shown. It can be seen that each mark 511 of the measuring track 51 is opposite to a window opening 521 of the control track 52. The width of the markings or flags 511 of the measuring path 51 is greater than the width of the window openings 521, which ensures that in normal operation always the first or third light barrier LS MB-A1 , LS KB-A of the fork light barrier 2 is interrupted. If the first and the third light barrier LS MB-A1 , LS KB-A are opened at the same time, an error is detected.

Wie dies in Fig. 4 gezeigt ist, ist auch ein Zustand zulässig, bei dem sowohl die erste, als auch die dritte Lichtschranke LSMB-A1, LSKB-A der Gabellichtschranke 2 unterbrochen sind. Dieser Zustand, der beim Anhalten der Aufzugskabine 11 an einer bestimmten Position für längere Zeit andauern kann, wird somit nicht als Fehler interpretiert. Wie dies in Fig. 4 illustriert ist, kann dieser Zustand jedoch tatsächlich fehlerhaft sein und z.B. durch einen Fremdkörper 8 hervorgerufen werden. Ferner kann ein Defekt eines optischen Elements 21A, 23A, 25A bzw. 22A, 24A, 26A oder ein Defekte in der ersten Überwachungseinheit 42 den genannten Zustand hervorrufen. Dieser Zustand ist daher nicht eindeutig, weshalb entsprechende Gefahren resultieren.Like this in Fig. 4 is shown, a state is permissible in which both the first and the third light barrier LS MB-A1 , LS KB-A of the forked light barrier 2 are interrupted. This state, which can last for a longer time when the elevator car 11 stops at a certain position, is thus not interpreted as an error. Like this in Fig. 4 However, this state can actually be faulty and caused for example by a foreign body 8 become. Further, a defect of an optical element 21A, 23A, 25A, 22A, 24A, 26A, or a defect in the first monitoring unit 42 may cause the aforementioned condition. This state is therefore not clear, which is why corresponding dangers result.

Fig. 5 zeigt ein Diagramm mit Signalen S-51, S-52 der Gabellichtschranke 2, aus dem ersichtlich ist, dass die entsprechenden Lichtschranken LSMB-A1 und LSKB-A, zu den Zeitpunkten T1 und T2 verschlossen sind. Zum Zeitpunkt T1 sind beide Lichtschranken LSMB-A1 und LSKB-A, durch die Messleiste 5 verschlossen und werden anschliessend wieder geöffnet, so dass in der ersten Überwachungseinheit 42 je zwei Flankensignale S-51 F bzw. S-52F detektierbar sind. Nach dem Zeitpunkt T2 bleiben die Lichtschranken LSMB-A1 und LSKB-A permanent verschlossen, so dass entweder die Aufzugskabine an der in Fig. 4 gezeigten Position angehalten wurde oder ein sicherheitsrelevanter Fehler aufgetreten ist. Fig. 5 shows a diagram with signals S-51, S-52 of the forked light barrier 2, from which it can be seen that the respective light barriers LS MB-A1 and LS KB-A , are closed at the times T1 and T2. At time T1, both light barriers LS MB-A1 and LS KB-A are closed by the measuring strip 5 and are subsequently opened again, so that two flank signals S-51 F and S-52F can each be detected in the first monitoring unit 42. After the time T2, the light barriers LS MB-A1 and LS KB-A remain permanently closed, so that either the elevator car at the in Fig. 4 position has been stopped or a safety-relevant error has occurred.

Zur Beseitigung dieses Problems weist die Überwachungsvorrichtung 4 eine zweite Überwachungseinheit 43 auf, die mit einer zweiten Sensoreinrichtung 31, 32, 33 verbunden ist, mittels der Änderungen des Bewegungszustandes der Aufzugskabine 11 erfasst und entsprechende zweite Signale S-31; S-32; S-33 an die zweite Überwachungseinheit 43 abgegeben werden.To overcome this problem, the monitoring device 4 has a second monitoring unit 43, which is connected to a second sensor device 31, 32, 33, detected by means of the changes of the state of motion of the elevator car 11 and corresponding second signals S-31; S-32; S-33 are delivered to the second monitoring unit 43.

In der vorliegenden Ausgestaltung umfasst die zweite Sensoreinrichtung 31, 32, 33 einen Beschleunigungssensor 31 und einen Geschwindigkeitssensor 32, die mit der Aufzugskabine 11 verbunden sind. Der Beschleunigungssensor 31 kann nach einem der oben beschriebenen Prinzipien arbeiten. Der Geschwindigkeitssensor 32 weist einen Messumformer auf, der mit einem Laufrad 321 gekoppelt ist, das entlang der Schachtwand z.B. in einer Schiene geführt ist. Von beiden elektromechanischen Bewegungssensoren 31, 32 werden Signale S-31; S-32 abgegeben, welche der Änderungen des Bewegungszustandes der Aufzugskabine 11 signalisieren. Ferner umfasst die zweite Sensoreinrichtung einen mit der Antriebsvorrichtung 14 und vorzugsweise auch mit der Bremsvorrichtung verbundenen Messwertaufnehmer 33, von dem Signale überwacht werden, welche die Einleitung von Bewegungsänderungen der Aufzugskabine 11 anzeigen. Von der zweiten Überwachungseinheit 43 werden die Signale S-31; S-32; S-33 der zweiten Sensoreinrichtung 31, 32, 33 daher ausgewertet, um erfolgte oder zu erwartende Änderungen des Bewegungszustandes der Aufzugskabine 11 zu ermitteln.In the present embodiment, the second sensor device 31, 32, 33 comprises an acceleration sensor 31 and a speed sensor 32, which are connected to the elevator car 11. The acceleration sensor 31 may operate according to one of the principles described above. The speed sensor 32 has a transmitter, which is coupled to an impeller 321, which is guided along the shaft wall, for example in a rail. Of both electromechanical motion sensors 31, 32, signals S-31; S-32 delivered, which signal the changes of the state of motion of the elevator car 11. Furthermore, the second sensor device comprises a transducer 33 connected to the drive device 14 and preferably also to the brake device, from which signals are monitored which indicate the initiation of movement changes of the elevator car 11. Of the second monitoring unit 43, the signals S-31; S-32; S-33 of the second sensor device 31, 32, 33 therefore evaluated in order to determine whether or not expected changes in the state of motion of the elevator car 11 have occurred.

Nach der Detektion einer Änderung des Bewegungszustands der Aufzugskabine, gegebenenfalls nur bei einer Beschleunigung aus dem Ruhezustand oder bedarfsweise auch bei einer Beschleunigung, bzw. Verzögerung aus einer Fahrt mit konstanter Geschwindigkeit, wird geprüft, ob die von der ersten Überwachungseinheit 42 ermittelten Bewegungssignale S-51 F und die von der zweiten Überwachungseinheit 43 detektierten Änderungen des Bewegungszustandes der Aufzugskabine 11 kohärent zueinander sind, wobei bei fehlender Kohärenz ein Fehlersignal erzeugt wird. Die Prüfung der Kohärenz der von den beiden Überwachungseinheiten 42, 43 ermittelten Messresultate kann sich auf die Überprüfung eines einzelnen Signals S-51F beschränken oder den Vergleich weiter ermittelter kinematische Informationen einschliessen.After detection of a change in the state of motion of the elevator car, possibly only during acceleration from the idle state or, if necessary, during acceleration or deceleration from a constant speed drive, it is checked whether the movement signals S-51 determined by the first monitoring unit 42 F and the detected by the second monitoring unit 43 changes in the state of motion of the elevator car 11 are coherent to each other, wherein in the absence of coherence, an error signal is generated. The verification of the coherence of the measurement results determined by the two monitoring units 42, 43 may be limited to checking a single signal S-51F or may involve the comparison of further determined kinematic information.

Nach der Detektion einer Beschleunigung, bzw. Verzögerung der Aufzugskabine 11 in der zweiten Überwachungseinheit 43 ist diese Zustandsänderung auch von der ersten Überwachungseinheit 42 zu registrieren falls diese funktionstüchtig ist. Die Messergebnisse der beiden Überwachungseinheiten 42, 43 sind während des störungsfreien Betriebs daher kohärent und werden einseitig oder gegenseitig geprüft, um einen allfällig auftretenden Fehler festzustellen. Im gezeigten Ausführungsbeispiel werden die von der ersten Überwachungseinheit 42 ermittelten Bewegungssignale S-51 F zur zweiten Überwachungseinheit 43 übertragen und dort auf Kohärenz geprüft.After the detection of an acceleration or deceleration of the elevator car 11 in the second monitoring unit 43, this status change is also to be registered by the first monitoring unit 42 if it is functional. The measurement results of the two monitoring units 42, 43 are therefore coherent during trouble-free operation and are checked one-sidedly or mutually in order to determine any occurring error. In the exemplary embodiment shown, the movement signals S-51F ascertained by the first monitoring unit 42 are transmitted to the second monitoring unit 43, where they are checked for coherence.

Umgekehrt kann auch die Validität der Messergebnisse der zweiten Überwachungseinheit 43 von der ersten Überwachungseinheit 42 geprüft werden. Nach der Detektion und Vermessung von Flankensignalen S-51 F, wird geprüft, ob die von der zweiten Überwachungseinheit 43 ermittelten Änderungen des Bewegungszustandes dazu kohärent sind. Dazu werden die Messergebnisse S-43 der zweiten Überwachungseinheit 43 zur ersten Überwachungseinheit 42 übertragen und dort entsprechend ausgewertet.Conversely, the validity of the measurement results of the second monitoring unit 43 can also be checked by the first monitoring unit 42. After the detection and measurement of edge signals S-51 F, it is checked whether the changes in the movement state determined by the second monitoring unit 43 are coherent thereto. For this purpose, the measurement results S-43 of the second monitoring unit 43 are transmitted to the first monitoring unit 42 and evaluated there accordingly.

Die Prüfung der Überwachungseinheiten 42, 43 kann daher einseitig oder gegenseitig erfolgen. Durch die vorzugsweise vollzogene gegenseitige Überprüfung werden Fehler, die in der ersten oder zweiten Sensoreinrichtung 2, 31, 32, 33 oder in der ersten oder zweiten Überwachungseinheit 42, 43 auftreten können, jeweils unverzüglich erkannt und signalisiert. In einer vorzugsweisen Ausgestaltung erfolgt die gegenseitige Überprüfung der beiden Überwachungseinheiten 42, 43 in einem separaten Modul 45 (siehe Fig. 7 ).The examination of the monitoring units 42, 43 can therefore be one-sided or mutually. As a result of the preferably performed mutual checking, errors that may occur in the first or second sensor device 2, 31, 32, 33 or in the first or second monitoring unit 42, 43 are detected and signaled immediately. In a preferred embodiment, the mutual checking of the two monitoring units 42, 43 takes place in a separate module 45 (see FIG Fig. 7 ).

In Fig. 1 ist ferner gezeigt, dass die Überwachungsvorrichtung 4 vorzugsweise mit der Steuereinheit 6 und/oder mit einem Schachtinformationssystem 7 verbunden ist. Anhand der Steuereinheit 6 können der Überwachungsvorrichtung 4 aktuelle Betriebsdaten, beispielsweise geänderte Maximalwerte für Beschleunigungen und Geschwindigkeiten übertragen werden. Daten des Schachtinformationssystems 7 können dazu verwendet werden, um die jeweilige Position der Aufzugskabine 11 bei der Auswertung der ersten oder zweiten Signale S51, S-31, S-32, S-33 individuell zu berücksichtigen.In Fig. 1 It is further shown that the monitoring device 4 is preferably connected to the control unit 6 and / or to a shaft information system 7. On the basis of the control unit 6 the monitoring device 4 current operating data, such as changed maximum values for accelerations and speeds can be transmitted. Data of the shaft information system 7 can be used to individually take into account the respective position of the elevator car 11 in the evaluation of the first or second signals S51, S-31, S-32, S-33.

Fig. 6 zeigt den Verlauf der Signale von Fig. 5 nach dem Zeitpunkt T2. Für eine erste Betrachtung wird angenommen, dass die Aufzugskabine 11 zum Zeitpunkt T2 angehalten und zum Zeitpunkt T3 wieder beschleunigt wurde. Zwischen den Zeitpunkten T2 und T3 treten daher keine Bewegungssignale S-51 F, S-52F in den Signalverläufen S-51, S-52 auf. Auch nach dem Zeitpunkt tritt nicht unmittelbar ein Bewegungssignal S-51 F, S-52F auf, da die erste und die dritte Lichtschranke LSMB-A1, LSKB-A normalerweise von den Flanken der Markierungen 511, 521 der Messleiste 5 entfernt sind, wie dies in Fig. 4 gezeigt ist. Fig. 6 shows the course of the signals from Fig. 5 after time T2. For a first consideration, it is assumed that the elevator car 11 was stopped at time T2 and accelerated again at time T3. Between the times T2 and T3, therefore, no movement signals S-51 F, S-52F occur in the signal paths S-51, S-52. Even after the time instant, a motion signal S-51 F, S-52F does not occur directly, since the first and third light barriers LS MB-A1 , LS KB-A are normally removed from the edges of the markings 511, 521 of the measuring strip 5, like this in Fig. 4 is shown.

Zum Zeitpunkt T4 wird anhand des vom Beschleunigungssensor 31 abgegebenen Signals S-31 festgestellt, dass eine Bewegungsänderung bzw. eine Beschleunigung der Aufzugskabine 11 eingetreten ist. Zu diesem Zeitpunkt T4 wird ein Zeitfenster W geöffnet und überprüft, ob von der ersten Überwachungseinheit 42 innerhalb dieses Zeitfensters W ein Bewegungssignal S-51 F eintrifft, welches anzeigt, dass die erste Lichtschranke LSMB-A1 geöffnet oder verschlossen wurde.At time T4, it is determined based on the signal S-31 output by the acceleration sensor 31 that a movement change or an acceleration of the elevator car 11 has occurred. At this point in time T4, a time window W is opened and it is checked whether a movement signal S-51 F arrives from the first monitoring unit 42 within this time window W, indicating that the first light barrier LS MB-A1 has been opened or closed.

Dazu wird zum Zeitpunkt T4 ein mit dem Referenztakt tREF beaufschlagter Zähler (Zähler 433 in Fig. 7 ) gestartet. Der aktuelle Zählerstand wird in der Folge jeweils mit einem Grenzwert G1 verglichen, welcher nicht überschritten werden darf und der zum Zeitpunkt T8 erreicht würde, falls kein Bewegungssignal S-51 F eintrifft. Sofern zum Zeitpunkt T8 der Grenzwert hingegen erreicht wird, so wird das erste Fehlersignal F1 an das Sicherungsmodul 44 abgegeben, wie dies in Fig. 7 gezeigt ist.For this purpose, a counter acted upon by the reference clock t REF (counter 433 in FIG Fig. 7 ) started. The current count is compared in the sequence in each case with a limit G1, which may not be exceeded and would be reached at the time T8, if no motion signal S-51 F arrives. If, however, the limit value is reached at time T8, the first error signal F1 is output to the fuse module 44, as shown in FIG Fig. 7 is shown.

In Fig. 6 ist gezeigt, dass innerhalb des Verlaufs des Signals S-51 jedoch bereits vor Erreichen des Zeitpunkts T8, nämlich zum Zeitpunkt T7 ein Bewegungssignal S-51 F bzw. das Öffnen oder Schliessen der ersten Lichtschranke LSMB-A1 und somit die ordnungsgemässe Funktion der ersten Sensoreinrichtung 2 und der ersten Überwachungseinheit 42 festgestellt wurde. Bei diesem Ausführungsbeispiel wird der Zähler nach der Detektion des Bewegungssignal S-51 F zurückgesetzt und neu gestartet, um das Auftreten des nächsten Flankenwechsels bzw. des nächsten Bewegungssignals S-51 F zu überwachen. Mit dem Rücksetzen des Zählers wird gleichzeitig ein neues Zeitfenster W geöffnet, innerhalb dessen das Eintreffen des nächsten Bewegungssignal S-51 F überwacht wird. Die Überwachung wird bei dieser vorzugsweisen Ausgestaltung erst dann beendet, wenn der Stillstand der Aufzugskabine 11 detektiert wurde.In Fig. 6 is shown that within the course of the signal S-51, however, already before reaching the time T8, namely at the time T7, a movement signal S-51 F or the opening or closing of the first light barrier LS MB-A1 and thus the proper function of the first Sensor device 2 and the first monitoring unit 42 has been detected. In this embodiment, after the detection of the motion signal S-51F, the counter is reset and restarted to monitor the occurrence of the next edge change and the next motion signal S-51F, respectively. With the resetting of the counter, a new time window W is simultaneously opened, within which the arrival of the next movement signal S-51 F is monitored. The monitoring is terminated in this preferred embodiment only when the stoppage of the elevator car 11 has been detected.

Der Stillstand der Aufzugskabine 11 kann wiederum auf verschiedene bekannte Arten festgestellt werden. Sofern von der ersten Überwachungseinheit 42 keine Bewegungssignale S-51 F mehr eintreffen, wird dadurch der Ruhezustand der Aufzugskabine 11 angezeigt. Vorzugsweise wird auch in diesem Fall die Kohärenz der Messergebnisse der ersten und zweiten Überwachungseinheit 42, 43 überprüft. Dabei wird geprüft, ob auch von der zweiten Überwachungseinheit 43 eine entsprechende Bewegungsänderung bzw. eine der Bewegungsrichtung der Aufzugskabine entgegengesetzte Beschleunigung festgestellt wurde, die zum Stillstand der Aufzugskabine 11 führen kann. Sofern die Messergebnisse beider Überwachungseinheiten 42, 43 hingegen nicht kohärent sind, wird wiederum ein Fehlersignal abgegeben.The stoppage of the elevator car 11 can in turn be determined in various known ways. If no movement signals S-51 F arrive from the first monitoring unit 42, the idle state of the elevator car 11 is thereby indicated. Preferably, the coherence of the measurement results of the first and second monitoring unit 42, 43 is also checked in this case. In this case, it is checked whether the second monitoring unit 43 has detected a corresponding change in movement or an acceleration opposite to the direction of movement of the elevator car, which can lead to a standstill of the elevator car 11. If the measurement results of both monitoring units 42, 43, however, are not coherent, an error signal is emitted again.

Wie dies in Fig. 6 illustriert ist, kann die Kohärenz verschiedener Signale, Ereignisse und Informationen innerhalb individueller Zeitfenster miteinander verglichen werden. Zum Zeitpunkt T5 wird beispielsweise anhand der Signale S-32 des Geschwindigkeitssensors 32 eine Geschwindigkeitsänderung detektiert. Nach der Detektion der Geschwindigkeitsänderung wird ein zweiter Zähler gestartet und dessen Zählerstand Z2 mit einem Grenzwert verglichen. Dieser zweite Zähler wird beim Auftreten einer abfallenden Flanke S-52F der Signale S-52 zurückgesetzt.Like this in Fig. 6 is illustrated, the coherence of various signals, events and information within individual time windows can be compared. At time T5, for example, based on the signals S-32 of the speed sensor 32, a speed change is detected. After the detection of the speed change, a second counter is started and its count Z2 compared with a limit. This second counter is reset on the occurrence of a falling edge S-52F of the signals S-52.

Weiter ist im Diagramm von Fig. 6 ein Grenzwert G2 gezeigt, durch den eine Maximalgeschwindigkeit der Aufzugskabine 11 festgelegt ist. Sofern der Zähler (siehe den Zähler 423 in Fig. 7 ) diesen Grenzwert G2 nicht erreicht, bevor er zurückgesetzt wird, ist der zeitliche Abstand zwischen den Bewegungssignalen S-51 F zu gering, weshalb die Fahrgeschwindigkeit der Aufzugskabine 11 über der Maximalgeschwindigkeit liegt.Next is in the diagram of Fig. 6 a limit value G2 is shown by which a maximum speed of the elevator car 11 is determined. If the counter (see counter 423 in Fig. 7 ) does not reach this limit value G2 before it is reset, the time interval between the movement signals S-51 F is too low, which is why the traveling speed of the elevator car 11 is above the maximum speed.

Vorzugsweise wird bei der Auswertung der Signale S-31; S-32; S-33 der zweiten Sensoreinrichtung 31, 32, 33 zusätzlich geprüft, ob unzulässige Betriebszustände der Aufzugsanlage 1 und insbesondere der Aufzugskabine 11 vorliegen. Sofern festgestellt wird, dass die gemessenen Beschleunigungswerte oder Geschwindigkeitswerte oberhalb eines Grenzwerts oder Antriebsgrössen ausserhalb eines Toleranzbereichs liegen, wird ein Fehlersignal F43 erzeugt und an das Sicherungsmodul 44 übertragen. Bei dieser Ausgestaltung der erfindungsgemässen Überwachungsvorrichtung 4 können Fehlfunktionen, insbesondere Übergeschwindigkeiten, daher nicht nur von der ersten Überwachungseinheit 42, sondern auch von der zweiten Überwachungseinheit 43 festgestellt und signalisiert werden.Preferably, in the evaluation of the signals S-31; S-32; S-33 of the second sensor device 31, 32, 33 additionally checked whether inadmissible operating states of the elevator installation 1 and in particular the elevator car 11 are present. If it is determined that the measured acceleration values or speed values are outside a tolerance range above a limit value or drive variables, an error signal F43 is generated and transmitted to the fuse module 44. In this embodiment of the monitoring device 4 according to the invention, malfunctions, in particular overspeeds, can therefore be detected and signaled not only by the first monitoring unit 42 but also by the second monitoring unit 43.

In Fig. 6 ist anhand der Verläufe der vom Beschleunigungssensor 31 und vom Geschwindigkeitssensor 32 abgegebenen Signale S-31, S-32 illustriert, dass verschiedene Störungsereignisse E1, E2, E3 eintreten können, welche sicherheitsrelevant sind, und als Fehler signalisiert werden sollen. Der Verlauf des vom Beschleunigungssensor 31 abgegebenen Signals S-31 zeigt, dass zu hohe Beschleunigungen auftreten können (Ereignis E1) oder dass eine Beschleunigung zu lange anhalten kann (Ereignis E2), weshalb mit dem Auftreten einer Übergeschwindigkeit zu rechnen ist. Ferner ist der Verlauf des vom Geschwindigkeitssensor 32 abgegebenen Signals S-32 gezeigt, aus denen das Überschreiten des Grenzwerts GVMAX der Maximalgeschwindigkeit unmittelbar abgelesen werden kann.In Fig. 6 is illustrated by the curves of the output from the acceleration sensor 31 and the speed sensor 32 signals S-31, S-32 that various fault events E1, E2, E3 can occur, which are safety-relevant, and should be signaled as an error. The course of the output from the acceleration sensor 31 signal S-31 shows that too high Accelerations may occur (event E1) or that an acceleration may take too long (event E2), which is why the occurrence of an overspeed is expected. In addition, the course of the output from the speed sensor 32 signal S-32 is shown, from which the exceeding of the limit value G VMAX the maximum speed can be read directly.

Fig. 7 zeigt ein detailliertes Funktionsblockschaltbild der Überwachungsvorrichtung 4 von Fig. 1 mit der ersten Überwachungseinheit 42, der Signale S-51, S-52 von der ersten Sensoreinrichtung 2 zugeführt werden, und der zweiten Überwachungseinheit 43, der Signale S-31, S-32, S-33 vom Beschleunigungssensor 31, vom Geschwindigkeitssensor 32 und vom Messwertaufnehmer 33 zugeführt werden. Die beiden Überwachungseinheiten 42, 43, denen Taktsignale tREF von einer gemeinsam genutzten Zeitbasis 41 zugeführt werden, werten die zugeführten Signale S-51, S-52; S-31, S-32, S-33 sowie die zwischen den beiden Überwachungseinheiten 42, 43 ausgetauschten Signale S-51F, S-43 aus, und übermitteln nach der Detektion von Störungen entsprechende Fehlersignale oder Fehlermeldungen F1, ..., F5 an das Sicherungsmodul 44, welches entsprechende Steuersignale C an die Antriebsvorrichtung 14 und entsprechende Informationen an die Steuereinheit 6 übermittelt. Fig. 7 shows a detailed functional block diagram of the monitoring device 4 of Fig. 1 with the first monitoring unit 42, the signals S-51, S-52 are supplied from the first sensor device 2, and the second monitoring unit 43, the signals S-31, S-32, S-33 from the acceleration sensor 31, the speed sensor 32 and be supplied from the transducer 33. The two monitoring units 42, 43, to which clock signals t REF are supplied from a shared time base 41, evaluate the supplied signals S-51, S-52; S-31, S-32, S-33 and the signals S-51F, S-43, exchanged between the two monitoring units 42, 43, and transmit corresponding error signals or error messages F1, ..., F5 after the detection of faults the security module 44, which transmits corresponding control signals C to the drive device 14 and corresponding information to the control unit 6.

Die von der ersten Sensoreinrichtung 2 abgegebenen ersten Signale S-51, S-52 werden in der ersten Überwachungseinheit 42 einem Flankendetektor 421 zugeführt, welcher Bewegungssignale oder Flankensignale S-51F, S-52F an eine Auswerteeinheit 422 übermittelt. Die zeitlichen Abstände des Auftretens der Bewegungssignale S-51F, S-52F werden von der Auswerteeinheit 422 anhand eines Zählers 423 überprüft, um festzustellen, ob diese zeitlichen Abstände nicht unterhalb eines Grenzwerts (siehe Grenzwert G2 in Fig. 6 ) liegen, welcher entsprechend der maximal zulässigen Geschwindigkeit gewählt ist. Von der Auswerteeinheit 422 werden ermittelte Ereignisse, Bewegungsinformationen oder auch nur einzelne Bewegungssignale S-51 F ferner zur zweiten Überwachungseinheit 43 übertragen.The first signals S-51, S-52 output by the first sensor device 2 are supplied in the first monitoring unit 42 to an edge detector 421, which transmits motion signals or edge signals S-51F, S-52F to an evaluation unit 422. The time intervals of the occurrence of the movement signals S-51F, S-52F are checked by the evaluation unit 422 using a counter 423 to determine whether these time intervals are not below a limit value (see limit value G2 in FIG Fig. 6 ), which is selected according to the maximum permissible speed. The evaluation unit 422 transmits further determined events, movement information or only individual movement signals S-51 F to the second monitoring unit 43.

Die vom Beschleunigungssensor 31, vom Geschwindigkeitssensor 32 und vom Messwertaufnehmer 33 abgegebenen zweiten Signale S-31, S-32, S-33 werden in der zweiten Überwachungseinheit 43 einer Detektoreinheit 431 zuführt, welche relevante Bewegungsänderungen und Zustandsänderungen an eine Auswerteeinheit 432 übermittelt. Die Auswerteeinheit 433 prüft, ob die festgestellten Bewegungsänderungen und Zustandsänderungen innerhalb der festgelegten Grenzwerte und Toleranzbereiche liegen. Ferner prüft die Auswerteeinheit 433, ob die festgestellten Bewegungsänderungen und Zustandsänderungen kohärent zu den von der ersten Überwachungseinheit 42 gemeldeten Ereignissen, Bewegungsinformationen oder Bewegungssignalen S-51 F sind. Da die in der ersten und zweiten Überwachungseinheit 42, 43 ermittelten Ereignisse, Informationen und Signale typischerweise nicht gleichzeitig auftreten, ist ein Zähler 433 vorgesehen, durch den ein Zeitfenster W festgelegt wird, innerhalb dessen geprüft wird, ob die zueinander korrespondierenden Ereignisse, Informationen und Signale auftreten und die erste und zweite Überwachungseinheit 42, 43 kohärent arbeiten.The second signals S-31, S-32, S-33 emitted by the acceleration sensor 31, the speed sensor 32 and the measuring transducer 33 are fed in the second monitoring unit 43 to a detector unit 431, which transmits relevant movement changes and state changes to an evaluation unit 432. The evaluation unit 433 checks whether the detected movement changes and state changes lie within the specified limit values and tolerance ranges. Furthermore, the evaluation unit 433 checks whether the detected movement changes and state changes are coherent with the events, movement information or movement signals S-51 F reported by the first monitoring unit 42. Since the events, information and signals determined in the first and second monitoring units 42, 43 typically do not occur simultaneously, a counter 433 is provided by which a time window W is determined, within which it is checked whether the mutually corresponding events, information and signals occur and the first and second monitoring unit 42, 43 work coherently.

In Fig. 6 ist ferner gezeigt, dass die von der zweiten Überwachungseinheit 43 ermittelten Bewegungsänderungen und Zustandsänderungen mittels einer Meldung S-43 auch der ersten Überwachungseinheit 42 mitgeteilt werden, welche ihrerseits überprüft, ob die mitgeteilten Bewegungsänderungen und Zustandsänderungen kohärent zu den eigenen Messwerten sind. Auf diese Weise kann auch eine Fehlfunktion festgestellt werden, die in der zweiten Sensoreinrichtung 31, 32, 33 oder in der zweiten Überwachungseinheit 43 aufgetreten ist.In Fig. 6 It is further shown that the movement changes and state changes determined by the second monitoring unit 43 are communicated to the first monitoring unit 42 by means of a message S-43, which in turn checks whether the communicated movement changes and state changes are coherent with the own measured values. In this way, a malfunction that has occurred in the second sensor device 31, 32, 33 or in the second monitoring unit 43 can also be determined.

Die Prüfung auf Kohärenz der Messergebnisse der beiden Überwachungseinheiten 42, 43 wird in einer vorzugsweisen Ausgestaltung in einem separaten Prüfmodul 45 durchgeführt. Auf diese Weise resultiert ein vereinfachter modularer Aufbau, der beliebig erweitert werden kann. Durch das Prüfmodul 45 können bei der Prüfung auf Kohärenz der gemeldeten Messergebnisse weitere Daten berücksichtigt werden, die beispielsweise von wenigstens einer weiteren Überwachungseinheit oder der Steuereinheit 6 gemeldet werden.The check for coherence of the measurement results of the two monitoring units 42, 43 is carried out in a preferred embodiment in a separate test module 45. This results in a simplified modular design that can be expanded as desired. By checking the coherence of the reported measurement results, further data can be taken into account by the test module 45, which data are reported, for example, by at least one further monitoring unit or the control unit 6.

Bei Kenntnis der vorliegenden Erfindung kann der Aufzugsfachmann die gesetzten Formen und Anordnungen beliebig verändern. Insbesondere sind beliebige Sensoreinrichtungen einsetzbar, anhand derer kinematische Grössen erfasst werden können. Die erfindungsgemässe Lösung ist beliebig skalierbar und kann auch weitere Informationen, beispielsweise Informationen des Schachtinformationssystems zusätzlich berücksichtigen und somit an die jeweiligen Anforderungen des Anwenders angepasst werden. In den Beispielen ist die Verwendung von Beschleunigungssensor 31, Geschwindigkeitssensor 32 und Messwertaufnehmer 33 als zweites Signale S-31, S-32, S-33 dargestellt. Der Aufzugsfachmann kann selbstverständlich diese unterschiedlichen Sensoren in Kombination aber auch Einzeln verwenden.With knowledge of the present invention, the elevator expert can arbitrarily change the set shapes and arrangements. In particular, any sensor devices can be used, by means of which kinematic variables can be detected. The solution according to the invention is arbitrarily scalable and can also additionally take into account further information, for example information of the shaft information system, and thus be adapted to the respective requirements of the user. In the examples, the use of acceleration sensor 31, speed sensor 32, and transducer 33 is shown as second signals S-31, S-32, S-33. Of course, the elevator expert can use these different sensors in combination but also individually.

Auch können die erste und/oder die zweite Sensoreinrichtung 2, 31, 32, 33 und/oder die erste und die zweite Überwachungseinheit 42, 43 wahlweise in eine Einheit, beispielsweise in ein gemeinsames Gehäuse oder in einem gemeinsamen Messkörper, integriert werden, so dass eine einzige Funktionseinheit gebildet wird.Also, the first and / or the second sensor device 2, 31, 32, 33 and / or the first and the second monitoring unit 42, 43 can optionally be integrated in a unit, for example in a common housing or in a common measuring body, so that a single functional unit is formed.

In Fig. 2 ist gezeigt, dass die Gabellichtschranke 2 nicht nur optische Elemente 21A, 22A; 23A, 24A; 21 B, 22B; 23B, 24B; 25A, 26A; 25B, 26B für die Realisierung der Lichtschranken LSMB-A1, LSMB-B1; LSMB-A2, LSMB-B2, LSKB-A, LSKB-B, sondern auch einen Beschleunigungssensor 31A für einen ersten Kanal und einen Beschleunigungssensor 31 B für einen vorzugsweise vorgesehenen zweiten Kanal aufweist, die gesamthaft in den Körper 28 der Gabellichtschranke 2 integriert sind. Ferner können auch die erste und/oder die zweite Überwachungseinheit 42, 43 in den Körper 28 der Gabellichtschranke 2 integriert werden.In Fig. 2 it is shown that the forked light barrier 2 not only optical elements 21A, 22A; 23A, 24A; 21B, 22B; 23B, 24B; 25A, 26A; 25B, 26B for the realization of the light barriers LS MB-A1 , LS MB-B1 ; LS MB-A2 , LS MB-B2 , LS KB-A , LS KB-B , but also an acceleration sensor 31A for a first channel and an acceleration sensor 31B for a preferably provided second channel, the total in the body 28 of the forked light barrier 2 are integrated. Furthermore, the first and / or the second monitoring unit 42, 43 can be integrated into the body 28 of the forked light barrier 2.

Da der Beschleunigungssensor 31 alle zur Messung der Beschleunigung erforderlichen Elemente, insbesondere die Testmasse, in einem Gehäuse einschliesst, ist dessen Verwendung in Kombination mit einer beliebig ausgestalteten ersten Sensoreinrichtung 2, insbesondere einer Gabellichtschranke, besonders vorteilhaft. Der Einbau des Beschleunigungssensors 31 in die Gabellichtschranke 2 erfordert kaum zusätzlichen Raum. Vorzugsweise wird der Beschleunigungssensor 31, in den Körper 28 der ersten Sensoreinrichtung 2 eingegossen und dadurch optimal geschützt. Durch die Kombination der ersten und der zweiten Sensoreinrichtung 2, 31 wird eine komplette Sensoreinheit bereitgestellt, welche sich selbst überwachen kann und welche zu diesem Zweck keine weiteren von aussen einzuspeisenden Informationen benötigt.Since the acceleration sensor 31 encloses all elements required for measuring the acceleration, in particular the test mass, in a housing, its use in combination with an arbitrarily designed first sensor device 2, in particular a fork light barrier, is particularly advantageous. The installation of the acceleration sensor 31 in the fork light barrier 2 requires little additional space. Preferably, the acceleration sensor becomes 31, poured into the body 28 of the first sensor device 2 and thereby optimally protected. The combination of the first and the second sensor device 2, 31 provides a complete sensor unit which can monitor itself and which does not require any further information to be fed in from outside for this purpose.

Bereits mit der Verwendung eines Beschleunigungssensors 31 wird eine signifikante Erhöhung der Zuverlässigkeit der Vorrichtung erzielt. Der Geschwindigkeitssensor 32 und der Messwertaufnehmer 33 können zusätzlich eingesetzt werden, falls eine weitere Erhöhung der Zuverlässigkeit der Messergebnisse erwünscht ist. Ferner können der Geschwindigkeitssensor 32 und/oder der Messwertaufnehmer 33 auch alternativ zum Beschleunigungssensor 31 verwendet werden. Wie erwähnt, können die erste und/oder die zweite Sensoreinrichtung 2, 31, 32, 33 einkanalig oder mehrkanalig aufgebaut sein.Even with the use of an acceleration sensor 31, a significant increase in the reliability of the device is achieved. The speed sensor 32 and the transducer 33 may additionally be used if a further increase in the reliability of the measurement results is desired. Furthermore, the speed sensor 32 and / or the transducer 33 can also be used as an alternative to the acceleration sensor 31. As mentioned, the first and / or the second sensor device 2, 31, 32, 33 can be constructed as single-channel or multi-channel.

Fig. 7 zeigt daher lediglich ein Ausführungsbeispiel, bei dem lediglich die Möglichkeit der Verwendung mehrer Sensoren 31, 32, 33 für die zweite Sensoreinrichtung gezeigt ist. In der praktischen Anwendung ist jeweils wenigstens einer der genannten Sensoren 31, 32, oder 33 vorhanden. Fig. 7 therefore shows only an embodiment in which only the possibility of using a plurality of sensors 31, 32, 33 for the second sensor device is shown. In practical application, at least one of the aforementioned sensors 31, 32, or 33 is present in each case.

In einer weiteren vorzugsweisen Ausgestaltung weist wenigstens die zweite Überwachungseinheit 43 eine Filterstufe auf, mittels der Störungen eliminiert werden, welche zu Fehlalarmen führen könnten. Mittels der Filterstufe, die z.B. in der Detektoreinheit 431 integriert ist, werden insbesondere Signale unterdrückt, die z.B. auf nicht relevante Vibrationen zurückzuführen sind.In a further preferred embodiment, at least the second monitoring unit 43 has a filter stage, by means of which disturbances are eliminated which could lead to false alarms. By means of the filter stage, e.g. is integrated in the detector unit 431, in particular, signals are suppressed, e.g. due to irrelevant vibrations.

Claims (15)

  1. Method of determining a movement and/or a position of a lift cage (11) of a lift installation (1),
    - with a first monitoring unit (42), by which first signals (S-51; S-52) of a first sensor device (2) are evaluated in order to ascertain data with respect to the movement and/or position of the lift cage (11) and to detect possibly occurring faulty behaviour of the lift installation (1) and trigger appropriate safety measures,
    - with a second sensor device (31, 32, 33), which operates otherwise than in accordance with the principle of the first sensor device (2) and by means of which a change in the movement state of the lift cage (11) is detected and corresponding second signals (S-31; S-32; S-33) are delivered to a second monitoring unit (43), which evaluates the second signals (S-31; S-32; S-33) and detects a change which occurs in the movement state of the lift cage (11),
    comprising the steps:
    - ascertaining a time instant (T4) of a change in the movement state of the lift cage (11) in the first or second monitoring unit (42; 43),
    - monitoring the occurrence of at least one of the first movement signal or function signal (S-51F, S-52F), which is generated by the second or first monitoring unit (43; 42), within at least one time window (W) adjoining the time instant (T4), and
    - generating a first fault signal (F1) if the first movement signal (S-51), which indicates coherent mode of operation of the corresponding monitoring unit (42; 43), does not arise within the time window (W).
  2. Method according to claim 1, wherein the second sensor device (31, 32, 33) comprises at least one electromechanical movement sensor such as an acceleration sensor (31) and/or a speed sensor (32) and/or a measurement value pick-up (33) connected with the drive and/or brake device (14), by means of which changes in the movement state of the lift cage (11), such as changes in acceleration and changes in speed or corresponding causes in the drive and/or brake device (14), are detected.
  3. Method according to claim 2, wherein the first signals (S-51; S-52) delivered by the first sensor device (2) are evaluated in order to determine the speed, in a given case a possible excess speed, of the lift cage (11); and/or the second signals (S-31; S-32; S-33) delivered by the acceleration sensor (31) and/or by the speed sensor (32) and/or by the measurement value pick-up (33) are evaluated in order to ascertain impermissible operating states, such as acceleration values lying above a limit value or speed values lying above a limit value or drive variables lying outside a tolerance range, wherein after ascertaining values lying above a limit value or outside the tolerance range a second fault signal (F2) is generated.
  4. Method according to any one of claims 1 to 3, wherein the second monitoring unit (43) comprises a detector unit (431), to which the second signals (S-31; S-32; S-33) of the sensor device (31, 32, 33) are fed and which detects a change in the movement state of the lift cage (11) and signals an associated evaluating unit (432), which after receipt of a corresponding third signal (4311) activates a counter unit (433) and within the time window (W) measured by the counter unit (433) monitors receipt of the expected first movement or function signal (S-51) from the first monitoring unit (42) and if the expected first movement signal (S-51) is absent generates the first fault signal (F1) and supplies it to a safety module (44).
  5. Method according to any one of claims 1 to 4, wherein monitoring of the coherence of the measurement results of the first and second monitoring units (42, 43) is concluded only with detection of standstill of the lift cage (11), which is verified in the second monitoring unit (43) with consideration of the detection of corresponding changes in movement, particularly an acceleration directed oppositely to the direction of movement of the lift cage (11); and/or in the case of detection of changes in movement in one of the monitoring units (42; 43) of the size of the time window (W) within which a coherent confirmation of the change of movement is expected from the other monitoring unit (43; 42) is appropriately adapted.
  6. Method according to any one of claims 1 to 5, wherein the first sensor device (2) is a light barrier device (2) which is mounted on the lift cage (11) and preferably of multichannel construction and which comprises first optical elements (21A, 22A, 23A, 24A; 21 B, 22B; 23B, 24B) serving for formation of at least one light barrier (LSMB-A1, LSMB-B1, LSMB-A2, LSMB-B2), by way of which at least markings (511) of a measurement path (51) of a measurement strip (5) mounted in stationary position are scanned and corresponding first signals (S-51) are formed, from which the first movement signals (S-51F) are ascertained in the first monitoring unit (42).
  7. Method according to claim 6, wherein the light barrier device (2) comprises two optical elements (25A, 26A; 25B, 26B) serving for formation of at least one second light barrier (LSKB-A, LSKB-B), by way of which at least markings (512) of a control path (52) of the measurement strip (5) are scanned and further first signals (S-52) are formed, from which second movement signals (S-52F) are formed in the first monitoring unit (42).
  8. Method according to claim 6 or 7, wherein the first monitoring unit (42) comprises a flank detector (421), which ascertains, by way of the first and/or second part of the first signals (S-51, S-52) delivered by the barrier device (2), changes in status of the light barriers (LSMB-A1, LSMB-B1; LSMB-A2, LSMB-B2; LSKB-A, LSKB-B) which occur and supplies the corresponding first and second movement signals (S-51, S-52) on the one hand to the second monitoring unit (43) and on the other hand to an associated evaluating unit (421), which after receipt of a first movement signal (S-51) caused by the measurement path (51) activates a counter unit (423) and checks whether up to receipt of the succeeding first movement signal (S-51) a defined counter state is exceeded and which in the case of falling below the intended counter state generates a fourth fault signal (F4) and supplies it to the safety module (44) and in the absence of second movement signals (S-52) caused by the control path (52) generates a fifth fault signal (F5) and supplies it to the safety module (44).
  9. Method according to any one of claims 6 to 8, wherein the length of the at least one time window (W) in the case of use of at least one light barrier (LSMB-A1, LSMB-B1, LSMB-A2, LSMB-B2) in the first monitoring unit (42) is selected in dependence on a spacing between the markings (511, 521) of the measurement path (51), the control path (52) and/or a safety path.
  10. Device for determining a movement and/or position of a lift cage (11) of a lift installation (1), according to any one of claims 1 to 9,
    - with a first monitoring unit (42), by which first signals (S-51; S-52) of a first sensor device (2) can be evaluated in order to ascertain data with respect to the movement and/or position of the lift cage (11) and to detect possibly occurring faulty behaviour of the lift installation (1) and trigger appropriate safety measures,
    - with a second sensor device (31, 32, 33), which operates otherwise than in accordance with the principle of the first sensor device (2) and which serves for detection of changes in the movement state of the lift cage (11) and for the delivery of corresponding second signals (S-31; S-32; S-33) to a second monitoring unit (43), by means of which the second signals (S-31; S-32; S-33) can be evaluated and
    - with a module (45) which checks whether the movement signals (S-51F) ascertained by the first monitoring unit (42) and the changes, which are detected by the second monitoring unit (43), in the state of movement of the lift cage (11) are coherent with one another and which in the absence of coherence a first fault signal (F1) can be generated,
    characterised in that the coherence of the movement signals (S-51F, S-52F) ascertained in the first monitoring unit (42) and the changes, which are detected in the second monitoring unit (43), in the movement state of the lift cage (11) can be checked in the model (45) by way of a counter (433) by which a time window (W) is determinable.
  11. Device according to claim 10, characterised in that the first sensor device (2) is a light barrier device (2), which is mounted in the lift cage (11) and preferably of multichannel construction and which comprises first optical elements (21A, 22A, 23A, 24A, 21 B, 22B, 23B, 24B) serving for formation of at least one first light barrier (LSMB-A1, LSMB-B1, LSMB-A2, LSMB-B2), by way of which at least markings (511) of a measurement path (51) of a measurement strip (5) mounted in stationary position can be scanned, and that the light barrier device (2) comprises second optical elements (25A, 26A; 25B, 26B) serving for formation of at least one second light barrier (LSKB-A, LSKB-B), by way of which at least markings (512) of a control path (52) of the measurement strip (5) can be scanned.
  12. Device according to claim 10 or 11, characterised in that the second sensor device (31, 32, 33) comprises at least one electromechanical movement sensor such as an acceleration sensor (31) and/or a speed sensor (32) and/or a measurement value pick-up (33) connected with the drive and/or brake device (14), by means of which changes in the movement state of the lift cage (11), such as changes in acceleration and changes in speed or corresponding causes in the drive and/or brake device (14), are detectable.
  13. Device according to any one of claims 10 to 12, characterised in that
    a) the first sensor device (2) and at least a part of the second sensor device (31, 32, 33) are arranged within a common housing (28) and/or
    b) the first sensor device (2) and the first monitoring unit (42) are arranged within a common housing (28) and/or the second sensor device (31, 32, 33) and the second monitoring unit (43) are arranged within a common housing (28) and/or
    c) the first and second monitoring units (42, 43) of simple or redundant construction are arranged within a common housing (4) and/or
    d) the module (45) is constructed as a separate component or as a component integrated in the first or second monitoring unit (42, 43) or in the common housing (4).
  14. Device according to any one of claims 10 to 13, characterised in that the first and/or the second monitoring unit (42; 43) is or are connected with a central control unit (6) of the lift installation (1) and/or a shaft information system (7), which shaft information system (7) detects position data and/or items of movement information of the lift cage (11) and transmits them to the control unit (6).
  15. Lift installation (1) with a device according to any one of claims 10 to 14.
EP10787793.8A 2009-12-22 2010-12-10 Method and device for determining the movement and/or position of a lift cabin Not-in-force EP2516305B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10787793.8A EP2516305B1 (en) 2009-12-22 2010-12-10 Method and device for determining the movement and/or position of a lift cabin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP09180409 2009-12-22
EP10787793.8A EP2516305B1 (en) 2009-12-22 2010-12-10 Method and device for determining the movement and/or position of a lift cabin
PCT/EP2010/069397 WO2011076590A1 (en) 2009-12-22 2010-12-10 Method and device for determining the movement and/or the position of an elevator car

Publications (2)

Publication Number Publication Date
EP2516305A1 EP2516305A1 (en) 2012-10-31
EP2516305B1 true EP2516305B1 (en) 2015-02-11

Family

ID=42224978

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10787793.8A Not-in-force EP2516305B1 (en) 2009-12-22 2010-12-10 Method and device for determining the movement and/or position of a lift cabin

Country Status (6)

Country Link
US (1) US8464841B2 (en)
EP (1) EP2516305B1 (en)
CN (1) CN102666341B (en)
ES (1) ES2536702T3 (en)
HK (1) HK1173712A1 (en)
WO (1) WO2011076590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006595B4 (en) * 2014-04-16 2019-11-28 Mitsubishi Electric Corporation Excerpt position detection device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2250114A1 (en) * 2008-03-06 2010-11-17 Inventio AG Lift system and method for servicing such a lift system
FI120449B (en) * 2008-08-12 2009-10-30 Kone Corp Arrangement and method for determining the position of the elevator car
FI122183B (en) * 2010-03-15 2011-09-30 Kone Corp Method and apparatus for starting the electric drive of an elevator
ES2526325T3 (en) * 2010-12-17 2015-01-09 Inventio Ag Surveillance device to detect an unwanted displacement of an elevator car from a stop
EP2567923A1 (en) * 2011-09-12 2013-03-13 Wachendorff Automation GmbH & Co. KG Redundant shaft copying
KR20140128343A (en) 2012-01-25 2014-11-05 인벤티오 아게 Method and control device for monitoring travelling movements of a lift cabin
DE102012106018A1 (en) * 2012-07-05 2014-01-09 Rg Mechatronics Gmbh Method and device for the early release of an elevator brake
CN104955756B (en) * 2012-11-29 2017-08-08 奥的斯电梯公司 Recover the position carried out via imaginary stop pattern
DE102013011391B8 (en) 2013-07-09 2015-01-15 Phoenix Contact Gmbh & Co. Kg Counter unit and control system with counter unit
CN104370175B (en) * 2013-08-16 2016-10-05 重庆和航科技股份有限公司 Parameters of elevator run monitoring method and device
CN103601049B (en) * 2013-12-06 2016-01-20 北京金自天正智能控制股份有限公司 A kind of equipment and method showing the location status of boost container
CN103803354A (en) * 2014-01-24 2014-05-21 江苏蒙哥马利电梯有限公司 Elevator cable winding and unwinding device
US10112801B2 (en) * 2014-08-05 2018-10-30 Richard Laszlo Madarasz Elevator inspection apparatus with separate computing device and sensors
EP3130554B1 (en) * 2015-08-13 2021-11-24 KONE Corporation An elevator
EP3002245A3 (en) 2015-10-05 2016-04-27 Raw Tech, S.L. Recognition and transmission system of the status and position of a lift cabin
WO2017158736A1 (en) * 2016-03-15 2017-09-21 三菱電機株式会社 Cage position detection device
WO2017168035A1 (en) 2016-03-30 2017-10-05 Kone Corporation A method, a safety control unit, and an elevator system for verifying speed data of an elevator car for overspeed monitoring of the elevator car
US10942975B2 (en) * 2016-05-20 2021-03-09 Cisco Technology, Inc. Search engine for sensors
CN107804764A (en) 2016-09-09 2018-03-16 奥的斯电梯公司 The position identification of elevator device and position are recovered
ES2807823T3 (en) 2016-10-04 2021-02-24 Otis Elevator Co Elevator system
CA3051111A1 (en) * 2017-03-15 2018-09-20 Inventio Ag Method and device for monitoring operating parameters in a passenger transport installation
JP6431577B1 (en) * 2017-08-02 2018-11-28 東芝エレベータ株式会社 Elevator monitoring system and test method thereof
CN107539863A (en) * 2017-08-30 2018-01-05 顺德职业技术学院 A kind of practice teaching elevator surely stopped and its control method of slowing down
US11325809B2 (en) 2018-03-19 2022-05-10 Otis Elevator Company Monitoring roller guide health
US11673769B2 (en) * 2018-08-21 2023-06-13 Otis Elevator Company Elevator monitoring using vibration sensors near the elevator machine
EP3670415A3 (en) 2018-12-21 2020-07-15 Otis Elevator Company Virtual sensor for elevator monitoring
US11597629B2 (en) 2018-12-27 2023-03-07 Otis Elevator Company Elevator system operation adjustment based on component monitoring
US11591183B2 (en) 2018-12-28 2023-02-28 Otis Elevator Company Enhancing elevator sensor operation for improved maintenance
IT201900004071A1 (en) * 2019-03-20 2020-09-20 Stem Srl SYSTEM FOR MEASURING THE POSITIONING OF AN OBJECT WITH RESPECT TO A FIXED REFERENCE
US20220219942A1 (en) * 2019-05-29 2022-07-14 Inventio Ag Elevator system with a multipurpose edge-gateway and method for data communication
JP7312129B2 (en) * 2020-02-27 2023-07-20 株式会社日立製作所 Measuring device, elevator system, and measuring method
CN114261869B (en) * 2021-12-22 2023-12-19 苏州汇川控制技术有限公司 Method for detecting consistency of motor driving direction and door plate running direction and door controller

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5274203A (en) * 1989-06-30 1993-12-28 Otis Elevator Company "Smart" position transducer system for elevators
US5407028A (en) * 1993-04-28 1995-04-18 Otis Elevator Company Tested and redundant elevator emergency terminal stopping capability
CA2161291C (en) 1994-11-18 2006-01-10 Christian Arpagaus Excess speed detector with multiple light barrier
US5747755A (en) * 1995-12-22 1998-05-05 Otis Elevator Company Elevator position compensation system
US7353916B2 (en) * 2004-06-02 2008-04-08 Inventio Ag Elevator supervision
EP1679279B2 (en) * 2005-01-07 2011-03-30 ThyssenKrupp Elevator AG Elevator with control system
FI119877B (en) * 2005-08-19 2009-04-30 Kone Corp Elevator security
JP2009525239A (en) * 2006-01-30 2009-07-09 オーチス エレベータ カンパニー Managing encoder malfunctions in elevator drive systems
FI118642B (en) * 2006-04-28 2008-01-31 Kone Corp Elevator system
FI118641B (en) * 2006-06-21 2008-01-31 Kone Corp Procedure and system in an elevator for detecting and stopping uncontrolled movement of the basket
US8239160B2 (en) 2008-03-21 2012-08-07 Analog Devices, Inc. Activity detection in MEMS accelerometers
FI20090335A (en) * 2009-09-16 2011-03-17 Kone Corp Method and arrangement for preventing uncontrolled movement of the elevator car

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006595B4 (en) * 2014-04-16 2019-11-28 Mitsubishi Electric Corporation Excerpt position detection device

Also Published As

Publication number Publication date
US20110147135A1 (en) 2011-06-23
US8464841B2 (en) 2013-06-18
ES2536702T3 (en) 2015-05-27
WO2011076590A1 (en) 2011-06-30
HK1173712A1 (en) 2013-05-24
CN102666341B (en) 2014-07-02
EP2516305A1 (en) 2012-10-31
CN102666341A (en) 2012-09-12

Similar Documents

Publication Publication Date Title
EP2516305B1 (en) Method and device for determining the movement and/or position of a lift cabin
EP1679279B1 (en) Elevator with control system
EP2807103B1 (en) Safety device and control method for a lift system
EP3356273B1 (en) Method and device for operating a lift system
EP0391174B2 (en) Arrangement and method to detect physical parameters of an elevator
DE102011054590B4 (en) Device for detecting the position of an elevator car and method for operating an elevator system
EP2914529B1 (en) Movement-monitoring system of a lift installation
DE102015107416B4 (en) Maintenance system for monitoring a gate device and method for monitoring a gate device
EP3190075A1 (en) Monitoring unit for monitoring an elevator
EP2457860B1 (en) Safety device for a lift
EP3233694B1 (en) Safety circuit for a lift facility
EP2493802A1 (en) Safety circuit in an elevator system
DE112013006482T5 (en) winder
DE112013007449T5 (en) winder
EP3317218A1 (en) Monitoring device for a lift system
WO2017220304A1 (en) Method for operating a positioning device, and positioning device
EP0483560B1 (en) Two-channel forked light barrier in Failsafe-design
WO2009013114A1 (en) Method for ascertaining the speed of a lift cabin and a control unit for implementing this method
EP3335961B1 (en) Method for releasing the configuration of an adjacent route for a rail vehicle
WO2019121487A1 (en) Lift system having a light curtain unit
WO2019057421A1 (en) Detecting and optimizing the stopping-point accuracy of a vehicle
WO2014005835A1 (en) Method and device for early actuation of an elevator brake
DE10020520B4 (en) Method and device for monitoring the driving properties of a rail vehicle
DE102016204422A1 (en) Device and method for checking a load limiting device esp. From a conveyor system
EP4015430A1 (en) Method for operating an elevator equipped with a positioning system and corresponding devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1173712

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140911

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 709843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008878

Country of ref document: DE

Effective date: 20150326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2536702

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20150527

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150511

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 18561

Country of ref document: SK

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1173712

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150611

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008878

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

26N No opposition filed

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151210

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20161209

Year of fee payment: 7

Ref country code: CZ

Payment date: 20161209

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20101210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 18561

Country of ref document: SK

Effective date: 20171210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171210

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20191220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20191230

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20191209

Year of fee payment: 10

Ref country code: AT

Payment date: 20191220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200121

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201229

Year of fee payment: 11

Ref country code: GB

Payment date: 20201228

Year of fee payment: 11

Ref country code: CH

Payment date: 20201222

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210224

Year of fee payment: 11

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201210

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 709843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201210

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220406

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201210

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502010008878

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211210

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231